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Non-uniform stabilization of control systems
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A version of non-uniform in time robust global asymptotic stability is proposed and enables
us to derive: (1) sufficient conditions for the stabilization of uncertain nonlinear triangular
time-varying control systems; (2) sufficient conditions for the solution of the partial-state
global stabilization problem for autonomous systems. The results are obtained via the
method of integrator backstepping and are generalizations of the existing corresponding
results in the literature.
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1. Introduction

The notion of non-uniform in time Robust Global Asymptotic Stability (RGAS) has been
proved to be fruitful for the solution of several problems in Control Theory (see (Karafyllis
& Tsinias, 2002a,b; Tsinias & Karafyllis, 1999; Tsinias, 2000) for applications to tracking
problems and to the robust stabilization of uncertain systems that cannot be stabilized
by continuous static time-invariant feedback and (Karafyllis & Tsinias, 2001) for the
extension of the notion of Input-to-State Stability (ISS) to the time-varying case). It is
shown in Karafyllis & Tsinias (2001, 2002b) that, even for autonomous systems for which
uniform in time asymptotic stabilization by a continuous static feedback is not feasible, it
is possible to exhibit non-uniform in time asymptotic stabilization by means of a smooth
time-varying feedback.

In this paper our interest is focused on uncertain nonlinear time-varying triangular
systems. In order to find sufficient conditions for the robust stabilization of such systems,
we first strengthen the notion of Robust Global Asymptotic Stability (RGAS) given in
Karafyllis & Tsinias (2001), by introducing the notion ofφ-RGAS in such a way that
it allows the estimation of the rate of convergence to the equilibrium point. Roughly
speaking, for the system

ẋ = f (t, x, d)

x ∈ �n, t � 0, d ∈ D
(1.1)

whereD ⊂ �m is a compact set andf (t, 0, d) = 0 for all (t, d) ∈ �+ × D, we say that
0 ∈ �n is φ-RGAS if it is in general non-uniformly in time RGAS and particularly, there
exists a smooth functionφ : �+ → [1, +∞) such that every solution of (1.1) satisfies the
following property:

lim
t→+∞ φ p(t)|x(t)| = 0, ∀p � 0 (1.2)
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In Section 3 we develop the main tool for the integrator backstepping method that it is
used in this paper, and in Section 4 this tool is used for the following triangular system:

ẋi = fi (t, θ, x1, . . . , xi ) + gi (t, θ, x1, . . . , xi )xi+1 i = 1, . . . , n
u := xn+1

x = (x1, . . . , xn)T ∈ �n, t � 0, u ∈ �
(1.3)

where the uncertaintyθ = θ(t) is any measurable function taking values in a compact set
Ω ⊂ �l . We obtain a set of sufficient conditions (Proposition 4.1) for the robust global
asymptotic stabilization of (1.3), which is a direct generalization of the corresponding set
of sufficient conditions given in the literature for the autonomous case (Jianget al., 1994;
Tsinias, 1996).

The problem of the stabilization by means of partial-state time-varying feedback is also
addressed (Proposition 4.2). Specifically, we study systems of the form

ż = f0(t, θ, z, x1)

ẋi = fi (t, θ, z, x1, . . . , xi ) + gi (t, θ, z, x1, . . . , xi )xi+1 i = 1, . . . , n
u := xn+1

(1.4)

wherez ∈ �m , x = (x1, . . . , xn)T ∈ �n , u ∈ �, θ = θ(t) is any measurable function
taking values in a compact setΩ ⊂ �l , and we obtain sufficient conditions for the robust
global asymptotic stabilization of (1.4) by means of a partial state smooth time-varying
feedback of the formu = k(t, x).

Using these results, we next study the applications of time-varying feedback to
autonomous control systems. In Section 5, the following two applications of time-varying
feedback to autonomous control systems are studied:

(1) We prove that for every functionφ(·) there exists a smooth time-varying feedback
of the formu = k(t, x), such that 0∈ �n is φ-RGAS for the system

ẋi = fi (θ, x1, . . . , xi ) + gi (θ, x1, . . . , xi )xi+1 i = 1, . . . , n
u := xn+1

(1.5)

wherex = (x1, . . . , xn)T ∈ �n , u ∈ �, θ = θ(t) is any measurable function
taking values in a compact setΩ ⊂ �l (Corollary 5.1). Roughly speaking, this
means that we can design a smooth time-varying feedback so that the solutions
of (1.5) converge to the equilibrium point as ‘fast’ as desired. We emphasize that
this feature cannot be accomplished by the use of locally Lipschitz time-invariant
feedback.

(2) The stabilization of autonomous systems by means of partial-state smooth time-
varying feedback (Theorem 5.4). Specifically, consider the system

ż = f0(z, x, u) (1.6a)

ẋi = fi (θ, x1, . . . , xi ) + gi (θ, x1, . . . , xi )xi+1 i = 1, . . . , n

u := xn+1 (1.6b)

wherez ∈ �m , x = (x1, . . . , xn)T ∈ �n , u ∈ �, θ = θ(t) is any measurable
function taking values in a compact setΩ ⊂ �l , f0, fi andgi are continuous with
respect toθ ∈ Ω and locally Lipschitz with respect to(z, x, u), uniformly in θ ∈ Ω ,
with f0(0, 0, 0) = 0, fi (θ, 0, . . . , 0) = 0 for all θ ∈ Ω , for i = 1, . . . , n.
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System (1.6) can be regarded as the cascade connection of two subsystems. Sufficient
conditions for the global asymptotic stability of the equilibrium point for a cascade
connection of two independent subsystems were given in Jianget al. (1994) and recently
in Panteley & Loria (1998). We provide sufficient conditions for the existence of a smooth
partial-state time-varying feedback of the formu = k(t, x), such that 0∈ �m ×�n is GAS.
This is achieved in Theorem 5.4 and to this end we are using the Lyapunov characterization
of forward completeness given in Angeli & Sontag (1999). We guarantee the existence of
such a feedback, under the hypotheses:

(i) Subsystem (1.6a) is forward complete with(x, u) as input.
(ii) 0 ∈ �m is GAS for the ‘unforced’ subsysteṁz = f0(z, 0, 0) (0-GAS property).

This is a generalization of the existing results since forward completeness and 0-GAS is
weaker than ISS (or even iISS as shown in Angeliet al., 2000).

Notation

* By C j (A)(C j (A;Ω)), where j � 0 is anon-negative integer, we denote the class of
functions (taking values inΩ ) that have continuous derivatives of orderj on A.

* By Br (Br ), wherer > 0, we denote the open (closed) ball of radiusr in �n , centred at
0 ∈ �n .

* For definitions of classesK , K∞, K L see [8].

* By D+ f (t) we denote the upper right-hand side Dini derivative of the scalar function
f , i.e. D+ f (t) = lim suph→0+ f (t+h)− f (t)

h .

* Wedenote byMD the class of measurable functionsd : �+ → D.

2. Definitions and preliminary technical results

In this section we give the notion ofφ-RGAS for time-varying systems and we present
definitions and technical lemmas that play a key role in proving the main results of the
paper. Their proofs can be found in the Appendix.

DEFINITION 2.1 We denote byK + the class of non-decreasingC∞ functionsφ : �+ →
� with φ(0) � 1, and we denote byK ∗ ⊂ K +, the class ofC∞ functions that belong to

K + and satisfy limt→+∞ φ̇(t)
φr (t) = 0, for somer � 1.

For example the functionsφ(t) = 1, φ(t) = 1 + t , φ(t) = exp(t) all belong to the class
K ∗. The following lemma states some of the properties of these classes of functions.

LEMMA 2.2 For everyp ∈ K ∗, q ∈ K ∗ and for all constantsM � 1 anda � 0, it holds
that the functionsp(·)+q(·), p(·)q(·) andMpa(·) are of classK ∗ as well. Furthermore, for
every functionφ of classK +, there exists a functioñφ of classK ∗, such thatφ(t) � φ̃(t)
for all t � 0.

Wenext give the notion ofφ-RGAS, which directly extends the notion of RGAS presented
in Karafyllis & Tsinias (2001). This notion is introduced in such a manner that we can have
an estimate of the rate of convergence of the solution to the equilibrium point. Consider the
system (1.1), whereD is a compact subset of�m and the vector fieldf : �+ ×�n × D →
�n satisfies the following conditions:



422 I. KARAFYLLIS

(1) The functionf (t, x, d) is measurable int , for all (x, d) ∈ �n × D.
(2) The functionf (t, x, d) is continuous ind, for all (t, x) ∈ �+ × �n .
(3) The function f (t, x, d) is locally Lipschitz with respect tox , uniformly in d ∈ D,

in the sense that for every bounded intervalI ⊂ �+ and for every compact subset
S of �n , there exists a constantL � 0 such that

| f (t, x, d) − f (t, y, d)| � L|x − y|
∀t ∈ I, ∀(x, y) ∈ S × S, ∀d ∈ D

(2.1)

with f (t, 0, d) = 0, for all (t, d) ∈ �+ × D.

Let us denote byx(t, t0, x0; d) = x(t) the unique solution of (1.1) at timet that
corresponds to inputd ∈ MD with initial conditionx(t0) = x0 (see Fillipov, 1988).

DEFINITION 2.3 Letφ be a function of the classK +.

•Wesay that 0∈ �n is φ-Robustly Globally Stable (φ-RGS), if for everyT � 0, p � 0
andε > 0, it holds that sup{φ p(t)|x(t)| : d ∈ MD, t � t0, |x0| � ε, t0 ∈ [0, T ]} <

+∞ and there exists aδ = δ(ε, T, p) > 0 such thatφ p(t)|x(t)| � ε, for all |x0| � δ,
t � t0, t0 ∈ [0, T ] and inputd ∈ MD.

•0 ∈ �n is called aφ-Robust Global Attractor (φ-RGA), if for every R > 0, ε > 0,
p � 0 andT � 0, there is aτ := τ(ε, T, R, p) � 0 such thatφ p(t)|x(t)| � ε for all
x0 ∈ B R , t � t0 + τ , t0 ∈ [0, T ] and inputd ∈ MD.

•0 ∈ �n is calledφ-Robustly Globally Asymptotically Stable (φ-RGAS), if it isφ-RGS
andφ-RGA. If 0 ∈ �n is φ-RGAS forφ(t) := 1 then we simply write that 0∈ �n is
RGAS.

In Tsinias & Karafyllis (1999) we requiredt N |x(t)| � ε for every integerN � 0 in
the definition of theLt –Global Asymptotic Stability. It is clear that the present definition
includes this case withφ(t) = 1+t ∈ K ∗. The following lemma clarifies the consequences
of the notion ofφ-RGAS and provides estimates of the solutions.

LEMMA 2.4 Suppose that 0∈ �n is φ-RGAS, for system (1.1) withd ∈ D as input. Then
the following statements hold:

(i) For every functionφ̃ ∈ K + that satisfiesφ̃(t) � φ(t) for all t � 0, 0 ∈ �n is
φ̃-RGAS for system (1.1). Particularly, 0∈ �n is RGAS.

(ii) For every pair of constantsR � 1 andp � 0, 0∈ �n is φ̃-RGAS, for system (1.1),
whereφ̃(t) = Rφ p(t).

(iii) For every p � 0, there exist functionsσ(·) ∈ K L andβ(·) ∈ K +, such that the
following estimate holds for the solution of (1.1):

|x(t)| � 1

φ p(t)
σ (β(t0)|x0|, t − t0) , ∀t � t0, ∀d ∈ MD. (2.2)

For the construction of a smooth time-varying feedback, we need to introduce the following
class of convex functions.

DEFINITION 2.5 Wesay thata : �+ → �+ belongs toKcon if:
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(1) a ∈ C1(�+) ∩ K .
(2) The functionda

ds (s) is non-decreasing.

The following technical lemmas state some important properties of classKcon that are used
in the subsequent sections of this paper.

LEMMA 2.6 The following statements hold:

(i) Kcon ⊂ K∞.
(ii) If a, β belong toKcon thena + β, aβ, aoβ also belong toKcon.

(iii) For everya ∈ C0(�+) there exists a constantR > 0 and a functionβ ∈ Kcon such
thata(s) � R + β(s), ∀s � 0.

(iv) If a(·) ∈ Kcon the following properties hold:

λa(s) � a(λs), ∀s � 0, ∀λ � 1 (2.3a)

a(s1) + a(s2) � a(s1 + s2) � a(2s1) + a(2s2), ∀(s1, s2) ∈ (�+)2
. (2.3b)

LEMMA 2.7 Consider the vector fieldf ∈ C0(Ω ×�n; �m), whereΩ ⊂ �l is a compact
set, which is locally Lipschitz with respect tox ∈ �n , uniformly with respect toθ ∈ Ω and
satisfiesf (θ, 0) = 0, for all θ ∈ Ω . Then there existsa ∈ Kcon such that:

| f (θ, x)| � a(|x |), ∀(θ, x) ∈ Ω × �n . (2.4)

LEMMA 2.8 For everya ∈ Kcon, there exists an odd functionβ ∈ C∞(�), functions
γ ∈ Kcon, ã ∈ Kcon ∩ C∞(�+) and a constantR > 0, with the following properties:

a(s) � ã(s), ∀s � 0 (2.5)

a(s) � β(s) � γ (s), ∀s � 0 (2.6)∣∣∣∣dβ

ds
(s)

∣∣∣∣ � R + γ (s), ∀s � 0. (2.7)

The next lemma shows a fundamental property of forward complete time-varying
systems. It shows that the ‘reachable set’ contains a closed ball of positive radius at all
times. This fact is going to be used in Section 3 of the paper.

LEMMA 2.9 Consider system (1.1) and suppose that there exists a functionρ(·) ∈ Kcon
and a functionφ(·) ∈ K + such that

| f (t, x, d)| � ρ(φ(t)|x |), ∀(t, x, d) ∈ �+ × �n × D. (2.8)

Suppose, furthermore, that for allr � 0, t0 � 0 andt � t0 we have

sup{|x(t)|; |x0| � r, d ∈ MD} < +∞. (2.9)

Then it holds that

Bβ(t,t0,r) ⊆ {x(t); |x0| � r, d ∈ MD} (2.10)

whereβ(t, t0, r) is the unique solution of initial value problem:

ẇ = −ρ(φ(t)w)

w ∈ �, w(t0) = r � 0 . (2.11)
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3. Adding a time-varying integrator

The following technical lemma is the basic tool in the integrator backstepping method that
we intend to use. Notice that in the time-varying case, there are many technical difficulties
to obtain such a result, concerning the rate of convergence of the solution to the equilibrium
point, as well as the issue of whether the dynamics converge to zero or not. Most of the
technical assumptions introduced below are automatically satisfied in the autonomous case.

LEMMA 3.1 Consider the system

ẋ = F(t, θ, x, y) (3.1a)

ẏ = f (t, θ, x, y) + g(t, θ, x, y)u

x ∈ �n, y ∈ �, u ∈ �, t � 0, θ ∈ Ω (3.1b)

whereΩ ⊂ �l is a compact set, withF(t, θ, 0, 0) = 0, f (t, θ, 0, 0) = 0, for all (t, θ) ∈
�+ × Ω and F , f , g are measurable with respect tot , continuous with respect toθ , and
locally Lipschitz with respect to(x, y) uniformly in θ ∈ Ω . Suppose that there exists
φ ∈ K ∗ such that the following hold:

(H1) There exists a functionγ ∈ K∞, being locally Lipschitz on�+, a C j ( j � 1)

mappingk : �+ × �n → � with k(·, 0) = 0, a constantµ � 0, such that 0∈ �n

is φ-RGAS for

ẋ = F

(
t, θ, x, k(t, x) + d

γ (|x |)
φµ(t)

)
(3.2)

with (θ, d) ∈ D := Ω × [−1, 1] as input.
(H2) There exists a functionp ∈ Kcon such that

s � p(γ (s)), ∀s � 0. (3.3)

(H3) There existsa ∈ Kcon such that the following inequalities hold for all(t, θ, x, y) ∈
�+ × Ω × �n × �:

|F(t, θ, x, y)| � a(φ(t)|(x, y)| (3.4)

|k(t, x) +
∣∣∣∣∂k

∂t
(t, x)

∣∣∣∣ � a(φ(t)|x |) (3.5)

∣∣∣∣∂k

∂t
(t, x)

∣∣∣∣ � φ(t) + a(φ(t)|x |). (3.6)

(H4) There exist constantsK > 0 andδ � 0 such that the following inequalities hold
for all (t, θ, x, y) ∈ �+ × Ω × �n × �:

1

Kφδ(t)
� g(t, θ, x, y) � φ(t) + a(φ(t)|(x, y)|) (3.7)

| f (t, θ, x, y) � a(φ(t)|(x, y)|). (3.8)
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Then for every locally Lipschitz functionΓ (·) ∈ K∞, there exists aC∞ mappingk :
�+ × � → � with k(·, 0) = 0 and constantsM � 1, q � 1, such that 0∈ �n+1 is
φ̃-RGAS for

d

dt
x̃ = F̃(t, θ, x̃, k(t, y − k(t, x)) + dΓ (|x̃ |)) (3.9)

with (θ, d) ∈ D := Ω × [−1, 1] as input, wherex̃ := (x, y), F̃(t, θ, x̃, u) :=(
F(t, θ, x, y)

f (t, θ, x, y) + g(t, θ, x, y)u

)
and

φ̃(t) := Mφq(t). (3.10)

Furthermore, there exists a functionã(·) ∈ Kcon, such that hypothesis (H3) is satisfied with
F̃(·), x̃ , k̃(t, x̃) := k(t, y − k(t, x)), ã(·) andφ̃(·) instead ofF(·), x , k(t, x), a(·) andφ(·),
respectively. Whenφ(·) is bounded then the mappingk can be chosen to be independent
of t .

Proof. Let Φ(t, t0, x0; (θ, d)) denote the solution of (3.2) initiated fromx0 ∈ �n at time
t0 � 0 and corresponding to input(θ, d) ∈ MD andx̃(t) = (x(t), y(t)) denote the solution
of (3.9) initiated fromx̃0 ∈ �n+1 at timet0 � 0 and corresponding to input(θ, d) ∈ MD.
The proof is based on the following observations:

(i) By property (ii) of Lemma 2.4 and definition (3.10), it suffices to show that 0∈
�n+1 is φ-RGAS for (3.9) with(θ, d) ∈ D := Ω × [−1, 1] as input.

(ii) In order to prove that 0∈ �n+1 is φ-RGAS for (3.9) with(θ, d) ∈ D := Ω ×
[−1, 1] as input, it suffices to show that there exists a functionG(·) ∈ Kcon and a
C0 functionE : �+×�+ → �+ with E(t, ·) ∈ K∞ for all t � 0 andE(·, s) being
non-decreasing, in such a way that the following inequality holds for allt � t0,
s � 0:

sup{|x̃(t)|; |x̃0| � s, (θ, d) ∈ MD} �
G(φ(t) sup{|Φ(t, t0, x0; (θ, d))|; |x0| � E(t0, s), (θ, d) ∈ MD}). (3.11)

Indeed, notice that by virtue of (3.11), property (iv) of Lemma 2.6 and the facts thatφ(t) �
1 andE(·, s) is non-decreasing, we have for allq � 0, T � 0, s � 0 andh � 0:

sup{φq(t0 + h)|x̃(t0 + h)|; |x̃0| � s, t0 ∈ [0, T ], (θ, d) ∈ MD} �
G

(
φq+1(t0 + h) sup{|Φ(t0 + h, t0, x0; (θ, d))|; |x0| � E(T, s), t0∈[0, T ], (θ, d)∈ MD}).

(3.12)

Furthermore, by virtue of (iii) of Lemma 2.4 and the fact that 0∈ �n is φ-RGAS for (3.2),
it follows that there exist functionsσ(·) ∈ K L andβ(·) ∈ K +, such that the following
estimate holds for the solution of (3.2):

φq+1(t)|Φ(t, t0, x0; (θ, d))| � σ (β(t0)|x0|, t − t0) , ∀t � t0, ∀(θ, d) ∈ MD. (3.13)

Combining (3.12) with (3.13) we obtain the following estimate, which holds for all
h, s, T, q � 0:

sup
{
φq(t0 + h)|x̃(t0 + h)|; |x̃0| � s, t0 ∈ [0, T ], (θ, d) ∈ MD

}
� G (σ (β(T )E(T, s), h)),
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which implies that 0∈ �n+1 is φ-RGAS for (3.9) with(θ, d) ∈ D := Ω × [−1, 1] as
input.

Since the proof is long and technical, we divide it into two parts.

First part: Construction of Feedback. Given a locally Lipschitz functionΓ (·) ∈ K∞, we
construct the feedback law̃k(t, x̃) := k(t, y − k(t, x)), wherek(·) ∈ C∞(�+ × �) with
k(·, 0) = 0, such that the analogue of (H3) is satisfied.

Second part: Stability Analysis. Exploiting the properties of the constructed feedback
and Lemma 2.9, we prove that (3.11) holds for appropriate functionsG(·) ∈ Kcon and a
E(·) ∈ C0(�+ × �+). The methodology used is entirely different from the methodology
used in Tsinias & Karafyllis (1999) for the caseφ(t) = 1 + t .

Without loss of generality, we may assume that the functionp(·), involved in (3.3),
is of classKcon ∩ C∞(�+). Indeed, this follows from Lemma 2.8, which guarantees the
existence of a functioñp(·) ∈ Kcon ∩ C∞(�+) that satisfiesp(s) � p̃(s), for all s � 0.
Consequently, ifp(·) is not of classKcon ∩ C∞(�+), wecan replace it bỹp(·). Similarly,
without loss of generality, we may assume thatγ ∈ Kcon∩ C∞(�+), because if this is not
the case then we can replacep(·) ∈ Kcon∩ C∞(�+) in (3.3) by p(s) := p(s)+ s andγ (s)
by γ (s) := p−1(s) � γ (s), which belongs toK∞ ∩ C∞(�+).

First part: Construction of Feedback. In this part of proof we use repeatedly inequalities
(2.3a), (2.3b) of Lemma 2.6 for functions of classKcon, as well as the fact thatφ(t) � 1
for all t � 0. Notice that, by application of Lemma 2.7, to the even extensions ofγ and
Γ (·) (which are locally Lipschitz), there exist functionsγ̃ (·) ∈ Kcon andΓ̃ (·) ∈ Kcon such
that

γ (s) � γ̃ (s), ∀s � 0 (3.14a)

Γ (s) � Γ̃ (s), ∀s � 0. (3.14b)

Define

u := k(t, z) + dΓ (|x̃ |) (3.15a)

z := y − k(t, x) (3.15b)

wherek(·) is yet to be selected. We get from (3.1) and (3.15a), (3.15b):

ż = f (t, θ, x, k(t, x) + z) + dg(t, θ, x, k(t, x) + z)Γ (|x̃ |) − ∂k

∂t
(t, x)

−∂k

∂t
(t, x)F(t, θ, x, k(t, x) + z) + g(t, θ, x, k(t, x) + z)k(t, z).

(3.15c)
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Moreover, by (3.3), (3.5), (3.14a) and (3.15b), there exist functionsGi (·) ∈ Kcon (i =
1, . . . , 3) such that

|x̃ | � G1

(
φµ+1(t)|z|

)
, whenγ (|x |) � 2φµ(t)|z| (3.16a)

|x̃ | � G2 (φ(t)|x |) , whenφµ(t)|z| � γ (|x |) (3.16b)

|z| � G3 (φ(t)|x̃ |) , ∀(t, x̃) ∈ �+ × �n+1 (3.16c)

whereµ � 0 is the constant involved in (3.2). Furthermore, property (iii) of Lemma 2.6
implies the existence of a functionG4(·) ∈ Kcon and a constantR1 > 0 such that

0 � max
0�ξ�s

{
dγ

ds
(ξ)

}
� R1 + G4(s), ∀s � 0. (3.16d)

It follows from (3.4), (3.5), (3.6), (3.7), (3.8), (3.14b), (3.15c), (3.16a) and (3.16d) that
there exists a constantν � 2 and functionsai (·) ∈ Kcon, i = 1, 2, that satisfy the following
inequalities:

d

dt
|z(t)| � a1(φ

µ+ν(t)|z|) + sgn(z)g(t, θ, x, k(t, x) + z)k(t, z),

for 2φµ(t)|z| � γ (|x |) andz �= 0 (3.17)

∣∣∣∣ d

dt
γ (|x(t)|)

∣∣∣∣ � a2(φ
µ+ν(t)|z|), for 2φµ(t)|z| � γ (|x |) > 0 (3.18)

Sinceφ ∈ K ∗, there exist constantsK ′ � 0 andr � 1 with

0 � φ̇(t) � K ′φr (t), ∀t � 0. (3.19)

Inequalities (3.17), (3.18) in conjunction with (3.19) imply

d

dt

(
φµ(t)|z(t)| − γ (|x(t)|)) � K ′µφσ (t)|z| + a1(φ

σ (t)|z|) + a2(φ
σ (t)|z|)

+ φµ(t)sgn(z)g(t, θ, x, k(t, x) + z)k(t, z)

for 2φµ(t)|z| � γ (|x |) > 0 (3.20a)

d

dt

(
φµ(t)|z(t)|) � K ′µφσ (t)|z| + a1(φ

σ (t)|z|)
+ φµ(t)sgn(z)g(t, θ, x, k(t, x) + z)k(t, z)

for 2φµ(t)|z| � γ (|x |) andz �= 0 (3.20b)

where

σ := 2µ + ν + r − 1. (3.21)

Wedefine the functiona3(·) ∈ Kcon:

a3(s) := a1(s) + a2(s) + K ′µs + (R1 + G4(s))ρ(s) (3.22)
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ρ(s) := a (s + a(s) + γ̃ (s)) (3.23)

where γ̃ (·) ∈ Kcon, R1 > 0 and G4(·) ∈ Kcon are defined in (3.14a) and (3.16d),
respectively. Notice that, by virtue of (3.4), (3.5), (3.14a) and definition (3.23), we have∣∣∣∣F

(
t, θ, x, k(t, x) + d

γ (|x |)
φµ(t)

)∣∣∣∣ � ρ(φ2(t)|x |). (3.24)

Furthermore, by virtue of Lemma 2.8, there exists an oddC∞ function ψ(·), a function
G5(·) ∈ Kcon and a constantR2 > 0, with the following properties:

a3(s) � ψ(s) � G5(s), ∀s � 0 (3.25a)

∣∣∣∣dψ

ds
(s)

∣∣∣∣ � R2 + G5(s), ∀s � 0. (3.25b)

Wealso define

k(t, z) := −ψ
(
(1 + K )φσ+δ(t)z

)
(3.26)

whereK > 0 andδ � 0 are the constants involved in (3.7). It is clear that the mapping
k̃(t, x, y) = k(t, y−k(t, x)) is of classC j (�+×�n+1). Moreover, inequalities (3.5), (3.6),
(3.19) in conjunction with (3.25a), (3.25b) imply that there exists a functionã(·) ∈ Kcon
and constantsq � 1, M � 1, such that (H3) is satisfied with̃x , k̃(·), ã(·) andφ̃(·) instead
of x , k(·), a(·) andφ(·), respectively, wherẽφ(·) is defined in (3.10) and is of classK ∗ by
virtue of (iii) of Lemma 2.2. Whenφ(·) is bounded we may select for̃R := supt�0 φ(t):

k(t, z) := k(z) = −ψ
(
(1 + K )R̃σ+δz

)
. (3.26′)

The major property of the constructed feedback is the following inequality, which is a
consequence of (3.7), (3.16d), (3.22), (3.25a), (3.26) and the fact that the functionψ(·) is
odd:

sgn(z)φµ(t)g(t, θ, x, k(t, x) + z)k(t, z) � −K ′µφσ (t)|z| − a1(φ
σ (t)|z|) − a2(φ

σ (t)|z|)
−dγ

ds

(
φµ(t)|z|) ρ

(
φ2+µ(t)|z|

)
. (3.27)

Notice that by virtue of inequalities (3.20a), (3.20b) and (3.27), it follows that:

d

dt

(
φµ(t)|z(t)| − γ (|x(t)|)) � 0, when 2φµ(t)|z| � γ (|x |) > 0 (3.28a)

d

dt

(
φµ(t)|z(t)|)�−dγ

ds

(
φµ(t)|z|) ρ

(
φ2+µ(t)|z|

)
, when 2φµ(t)|z| � γ (|x |) andz �= 0.

(3.28b)
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Second part: Stability Analysis. Wedefine:

Lt := {
(x, y) ∈ �n × � : φµ(t)|y − k(t, x)| � γ (|x |)} . (3.29)

Notice that by virtue of (3.28a) and definitions (3.15b), (3.29) ofz, Lt , respectively, it
follows that the regionLt is positively invariant (the case|x | = 0 implies z = 0, which is
the equilibrium position of (3.9)). As long as the trajectory of the solution of (3.9) remains
outsideLt we obtain using (3.15b), (3.28b) and (3.29) that

D+ (
φµ(t)|z(t)|) � −dγ

ds
(φµ(t)|z(t)|)ρ

(
φ2+µ(t)|z(t)|

)
. (3.30)

Let β(t, t0, r) denote the unique solution of the following initial value problem:

ẇ = −ρ
(
φ2(t)w

)
w ∈ �, w(t0) = r � 0.

(3.31)

Indeed, by virtue of inequality (3.24) and Lemma 2.9, we guarantee that

Bβ(t,t0,r) ⊆ {Φ(t, t0, x0; (θ, d)), |x0| � r, (θ, d) ∈ MD} (3.32)

whereΦ(t, t0, x0; (θ, d)) denotes the solution of (3.2) initiated fromx0 ∈ �n at time
t0 � 0 and corresponding to input(θ, d) ∈ MD. Furthermore, differential inequality (3.30)
implies (by virtue of the comparison principle in Khalil, 1996):

φµ(t)|z(t)| � γ (β(t, t0, γ −1(φµ(t0)|z(t0)|)))
as long as the trajectory of (3.9) remains outsideLt . (3.33)

Thus by (3.14a), (3.16a), (3.16c) and (3.33) we obtain the estimate for the solution of (3.9):

|x̃(t)| � G1
(
φ(t)γ̃

(
β(t, t0, γ −1(φµ(t0)G3(φ(t0)|x̃(t0)|)))

))
as long as the trajectory of (3.9) remains outsideLt . (3.34)

Moreover, by virtue of (3.32), (3.33) and the facts thatG3(·), γ̃ (·) ∈ Kcon, φ(t) � 1
and using property (iv) of Lemma 2.6, we obtain that the following estimate holds for
G6 := G1oγ̃ :

sup{|x̃(t)|; |x̃0| � s, (θ, d) ∈ MD}
� G6

(
φ(t) sup

{
|Φ(t, t0, x0; (θ, d))|; |x0| � γ −1

(
G3(φ

µ+1(t0)s)
)

, (θ, d) ∈ MD

})
as long as the trajectory of (3.9) remains outsideLt . (3.35)

Let us denote byT � +∞ the first time that the solution is enteringLT . Notice that for
all t � T , by positive invariance ofLt , the solution remains insideLt . Moreover, there
exists an input(θ̃ , d̃) ∈ MD such that componentx(t) of the solutionx̃(t) of (3.9) satisfies
x(t) ≡ Φ(t, T, x(T ); (θ̃ , d̃)), for all t � T .

Let t � t0 be arbitrary. We distinguish the cases:
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(a) T = t0. In this case we have|x(t)| � sup{|Φ(t, t0, x0; (θ, d))|; (θ, d) ∈ MD} and
consequently using (3.16b) we obtain the estimate:

sup{|x̃(t)|; |x̃0| � s, (θ, d) ∈ MD} �
G2 (φ(t) sup{|Φ(t, t0, x0; (θ, d))|; |x0| � s, (θ, d) ∈ MD}) .

(3.36)

(b) T /∈ [t0, t]. In this case estimate (3.35) holds.
(c) t0 < T � t . In this case we have:

|x(t)| � sup{|Φ(t, T, x(T ); (θ, d))|; T ∈ [t0, t], (θ, d) ∈ MD}
By definition (3.29) and continuity of the solution we also have for the case
(c): γ (|x(T )|) = φµ(T )|z(T )|. Moreover, estimate (3.33) impliesφµ(T )|z(T )| �
γ (β(T, t0, γ −1(φµ(t0)|z0|))). These estimates in conjunction with (3.16b), (3.16c) give

sup{|x̃(t)|; |x̃0| � s, (θ, d) ∈ MD} � G2
(
φ(t) supI

)
(3.37a)

I :=
{
|Φ(t, T, x(T ); (θ, d))|; T ∈ [t0, t], (θ, d) ∈ MD,

|x(T )| � β
(

T, t0, γ
−1 (

φµ(t0)G3(φ(t0)s)
)) }

. (3.37b)

Inclusion (3.32) in conjunction with estimate (3.37) and the fact thatG3(·) ∈ Kcon and
φ(t) � 1, shows that the following estimate holds for case (c):

sup{|x̃(t)|; |x̃0| � s, (θ, d) ∈ MD}
� G2

(
φ(t) sup

{|Φ(t, t0, x0; (θ, d))|; |x0| � γ −1
(
G3(φ

µ+1(t0)s)
)
, (θ, d) ∈ MD

})
.

(3.38)

Combining estimates (3.35), (3.36) and (3.38) for the cases (a), (b) and (c), respectively,
we obtain the desired inequality (3.11) for

G(s) := 2G2(s) + G6(s) (3.39a)

E(t0, s) := max
{

s, γ −1(G3(φ
µ+1(t0)s))

}
. (3.39b)

Indeed, by virtue of property (ii) of Lemma 2.6, we haveG(·) ∈ Kcon. The proof is
complete. �

The following lemma provides a sufficient condition for hypothesis (H2). In fact,
Lemma 3.2 shows that hypothesis (H2) is the analogue of the hypothesis of local
exponential stability made in Jianget al. (1994), Tsinias (1996) for the autonomous case.

LEMMA 3.2 Suppose thatγ ∈ K∞ is a locally Lipschitz function that satisfiesγ (s) � Λs,
∀s ∈ [0, η], for some constantsη,Λ > 0. Then (H2) is satisfied.

Proof. Clearly, γ −1(s) � Λ−1s, for all s ∈ [0, γ (η)] and consequently the function

g(s) := sup0<u�s
γ −1(u)

u is continuous on(0, +∞), positive and non-decreasing with
g(s) � Λ−1 for all s ∈ (0, γ (η)]. Defining g(0) := lims→0+ g(s), we haveγ −1(s) �
g(s)s, for all s � 0. We also defineh(s) := ∫ s+1

0 g(r)dr , which satisfiesh(s) � g(s), for
all s � 0 and notice that the functionp(s) := h(s)s is of classKcon. Combining, we get
γ −1(s) � p(s), for all s � 0, which implies (H2). �
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4. Applications to time-varying control systems

We are now ready to apply induction using Lemma 3.1 and the method of integrator
backstepping for the stabilization of system (1.3).

PROPOSITION 4.1 Consider system (1.3), wherex = (x1, . . . xn)T ∈ �n , θ ∈ Ω ⊂ �l ,
Ω being a compact set,fi andgi are measurable with respect tot � 0, continuous with
respect toθ ∈ Ω and locally Lipschitz with respect to(x1, . . . xi ), uniformly in θ ∈ Ω ,
for i = 1, . . . , n. Suppose that there exist functionsφ ∈ K ∗, a ∈ Kcon, constantsδ � 0,
K > 0, such that the following hold for all(t, x, θ) ∈ �+ × �n × Ω andi = 1, . . . , n:

| fi (t, θ, x1, . . . , xi )| � a(φ(t)|(x1, . . . , xi )|) (4.1)

1

Kφδ(t)
� gi (t, θ, x1, . . . , xi ) � φ(t) + a(φ(t)|(x1, . . . , xi )|). (4.2)

Then for every locally Lipschitz functionΓ (·) ∈ K∞ there exists aC∞ mappingk :
�+ × �n → � with k(·, 0) = 0, a functionη ∈ Kcon and a constantp � 0, with

|k(t, x)| � η
(
φ p(t)|x |) , ∀(t, x) ∈ �+ × �n (4.3)

such that 0∈ �n is φ-RGAS for the following system:

ẋi = fi (t, θ, x1, . . . , xi ) + gi (t, θ, x1, . . . , xi )xi+1 i = 1, . . . , n
xn+1 = k(t, x) + dΓ (|x |) (4.4)

with (θ, d) ∈ D := Ω × [−1, 1] as input. Moreover, whenφ(·) is bounded then the
mappingk can be chosen to be independent oft .

Proof. The proof of the general case is based on Lemma 3.1 and follows by using standard
induction arguments like those given in Jianget al. (1994). For reasons of simplicity we
consider the casen = 2. The general case follows similarly by induction. First we consider
the one-dimensional subsystem

ẋ1 = f1(t, θ, x1) + g1(t, θ, x1)x2
with x2 as input.

(4.5)

Let M > 0. We define

ã(s) := (1 + s)a(s) + (1 + M)s (4.6)

which obviously by Lemma 2.6 is of classKcon. By Lemma 2.8 there exists an odd function
ψ(·) ∈ C∞(�), a functionβ(·) ∈ Kcon and a constantR1 > 0 such that

ã(s) � ψ(s) � β(s), ∀s � 0 (4.7a)

∣∣∣∣dψ

ds
(s)

∣∣∣∣ � R1 + β(s), ∀s � 0. (4.7b)
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Furthermore, sinceφ(·) ∈ K ∗, there exists a constantr � 1 such that

lim
t→+∞

φ̇(t)

φr (t)
= 0. (4.7c)

Weset

k1(t, x1) := −ψ((1 + K )φ1+δ+r (t)x1) (4.8)

or for the case of boundedφ(·) ∈ K ∗ with R2 := supt�0 φ(t):

k1(t, x1) := k1(x1) = −ψ((1 + K )R1+r+δ
2 x1) (4.8′)

where K , δ are the constants involved in (4.2). Obviouslyk1(·) is a function of class
C∞(�+ × �) with k1(·, 0) = 0. It follows from (4.2), (4.6), (4.7a) and definition (4.8),
the fact thatψ(·) is odd andφ(t) � 1 for all t � 0, as well as (iv) of Lemma 2.6, that the
following inequality holds for all(t, θ, x1) ∈ �+ × Ω × �:

sgn(x1)g1(t, θ, x1)k1(t, x1) � −ã
(
φr+1(t)|x1|

)
� −Mφr (t)|x1| − (1 + |x1|)a(φ(t)|x1|)

−φ(t)|x1|. (4.9)

Moreover, inequalities (4.7a)–(4.7c) and definition (4.8) imply the existence of constants
R3 � 1, σ � 1 and a functionζ(·) ∈ Kcon, such that the following inequalities hold for all
(t, x1) ∈ �+ × �:

|k1(t, x1)| +
∣∣∣∣∂k1

∂t
(t, x1)

∣∣∣∣ � ζ
(
φ̃(t)|x1|

)
(4.10a)

∣∣∣∣ ∂k1

∂x1
(t, x1)

∣∣∣∣ � φ̃(t) + ζ
(
φ̃(t)|x1|

)
(4.10b)

φ̃(t) := R3φ
σ (t). (4.10c)

We claim that 0∈ � is φ-RGAS for the closed-loop system (4.5) withx2 = k1(t, x1) +
d|x1|, d ∈ [−1, 1]. In order to prove this claim, notice that by (4.1), (4.2) and (4.9) we
have for allx1 �= 0, t � 0 and(θ, d) ∈ D = Ω × [−1, 1]:

d

dt
|x1| = sgn(x1) f (t, θ, x1) + sgn(x1)g(t, θ, x1)k1(t, x1) + sgn(x1)g(t, θ, x1)d|x1|

� −Mφr (t)|x1|.
Sincex1 = 0 isthe equilibrium point of the closed-loop system (4.5) withx2 = k1(t, x1)+
d|x1|, d ∈ [−1, 1] we get

D+|x1(t)| � −Mφr (t)|x1(t)|, for all t � t0. (4.11)
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The differential inequality (4.11) and the comparison lemma in Khalil (1996) give for all
q � 0, s � 0:

sup
{
φq(t)|x1(t)|; |x1(t0)|�s, (θ, d) ∈ MD

}
�φq(t0) exp

(
−

∫ t

t0

(
Mφr (τ ) − q

φ̇(τ )

φ(τ)

)
dτ

)
s.

(4.12)

By (4.7c) it follows that for everyq � 0 there exists a finite timeT := T (q) � 0, such

that 1
2 Mφ(t) � q φ̇(t)

φr (t) for all t � T . This implies
∫ +∞

0

(
Mφr (τ ) − q φ̇(τ )

φ(τ)

)
dτ = +∞

for all q � 0 and consequently by (4.12), we have that 0∈ � is φ-RGAS for the closed-
loop system (4.5) withx2 = k1(t, x1) + d|x1|, d ∈ [−1, 1]. By (ii) of Lemma 2.4 and
definition (4.10c) it also follows that 0∈ � is φ̃-RGAS for the closed-loop system (4.5)
with x2 = k1(t, x1) + d|x1|, d ∈ [−1, 1].

Consider next the two-dimensional subsystem

ẋ1 = f1(t, θ, x1) + g1(t, θ, x1)x2

ẋ2 = f2(t, θ, x1, x2) + g1(t, θ, x1, x2)x3

with x3 as input.

We apply Lemma 3.1 for this system. Clearly, by the previous analysis hypothesis (H1) is
satisfied forφ̃(·) ∈ K ∗ as defined by (4.10c),γ (s) := s andµ = 0. Hypothesis (H2) is
trivially satisfied, while hypotheses (H3) and (H4) are consequences of inequalities (4.1),
(4.2), (4.10a), (4.10b). The desired conclusion follows from the application of Lemma 3.1.
The proof is complete. �

The following proposition is concerned with the problem of partial-state robust
feedback stabilization of uncertain nonlinear time-varying systems. It is the analogue
of Corollary 3.4 in [11] and Theorem 2.4 in [12], although here we consider uncertain
systems. Its proof follows directly by induction and Lemmas 3.1 and 3.2.

PROPOSITION 4.2 Consider the system (1.4), wherez ∈ �m, x = (x1, . . . xn)T ∈ �n ,
θ ∈ Ω ⊂ �l , Ω is a compact set,fi (i = 0, . . . , n) andgi (i = 1, . . . , n) are measurable
with respect tot � 0,C0 with respect toθ ∈ Ω and locally Lipschitz with respect to(z, x),
uniformly in θ ∈ Ω . Suppose that there exist functionsφ ∈ K ∗, a ∈ Kcon, constantsδ � 0
and K > 0, such that the following hold for all(t, z, x, θ) ∈ �+ × �m × �n × Ω and
i = 1, . . . , n:

| f0(t, θ, z, x1)| � a(φ(t)
∣∣(zT , x1)

∣∣) (4.13)

| fi (t, θ, z, x1, . . . , xi )| � a(φ(t)
∣∣(zT , x1, . . . , xi )

∣∣) (4.14)

1

Kφδ(t)
� gi (t, θ, z, x1, . . . , xi )) � φ(t) + a(φ(t)

∣∣(zT , x1, . . . , xi )
∣∣). (4.15)

Suppose, furthermore, that 0∈ �m is φ-RGAS for the following system

ż = f0

(
t, θ, z, d

γ (|z|)
φµ(t)

)
(4.16)
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with (θ, d) ∈ D := Ω × [−1, 1] as input, whereµ � 0 andγ ∈ K∞ is a locally Lipschitz
function that satisfies the following inequality for certain constantsη,Λ > 0:

Λs � γ (s), ∀s ∈ [0, η]. (4.17)

Then for every locally Lipschitz functionΓ (·) ∈ K∞ there exists aC∞ mappingk :
�+ × �n → � with k(·, 0) = 0, such that 0∈ �m × �n is φ-RGAS for the following
system:

ż = f0(t, θ, z, x1)

ẋi = fi (t, θ, z, x1, . . . , xi ) + gi (t, θ, z, x1, . . . , xi )xi+1 i = 1, . . . , n (4.18)

xn+1 = k(t, x) + dΓ (|(z, x)|)
with (θ, d) ∈ D := Ω × [−1, 1] as input. Moreover, whenφ(·) is bounded then the
mappingk can be chosen to be independent oft .

EXAMPLE 4.3 Consider the system:

ż = −2t z + θ1(t) exp(µt)x

ẋ = exp(at)θ2(t)w(z, x) + u (4.19)

(z, x) ∈ �2, t � 0, u ∈ �, θ = (θ1, θ2) ∈ B(0, r)

wherea, r, µ > 0 are known constants,w(z, x) is a locally Lipschitz function satisfying
w(0, 0) = 0 and θ denotes the vector of the uncertain parameters of the system. It is
immediate to verify that 0∈ � is et -RGAS for the subsystem

ż = −2t z + θ1(t)d(t)|z| (4.20)

where|d(t)| � 1. Indeed, for every(θ(·), d(·)) ∈ MB(0,r)×[−1,1] the solution of (4.20)
satisfies the estimate

|z(t)| � exp
{

r(t − t0) −
(

t2 − t2
0

)}
|z0|.

Thus by Proposition 4.2 there exists aC∞ mappingk : �+ × � → � with k(·, 0) = 0
with such that the origin for (4.19) withu = k(t, x) is et -RGAS.

5. Applications to autonomous control systems

In this section we study the applications of time-varying feedback laws to autonomous
control systems. We first consider the case (1.5). We establish that the use of time-varying
feedback can robustly ‘accelerate’ the rate of convergence of the solution to the equilibrium
point. This is shown by the following corollary, which is an immediate consequence of
Proposition 4.1 and Lemma 2.7.

COROLLARY 5.1 Consider system (1.5), wherex = (x1, . . . xn)T ∈ �n , θ ∈ Ω ⊂ �l , Ω
being a compact set,fi andgi are continuous with respect toθ ∈ Ω and locally Lipschitz
with respect to(x1, . . . xi ), uniformly in θ ∈ Ω , with fi (θ, 0, . . . , 0) = 0, for all θ ∈ Ω ,
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for i = 1, . . . , n. Suppose that there exists a constantK > 0 such that the following hold
for all (x, θ) ∈ �n × Ω andi = 1, . . . , n:

1

K
� gi (θ, x1, . . . , xi ). (5.1)

Then for everyφ(·) ∈ K ∗ andΓ (·) ∈ K∞ being locally Lipschitz, there exists aC∞
mappingk : �+ ×�n → � with k(·, 0) = 0, a functionη(·) ∈ Kcon and a constantp � 0,
with

|k(t, x)| � η
(
φ p(t)|x |) , ∀(t, x) ∈ �+ × �n (5.2)

such that 0∈ �n is φ-RGAS for the following system with(θ, d) ∈ D := Ω × [−1, 1] as
input:

ẋi = fi (θ, x1, . . . , xi ) + gi (θ, x1, . . . , xi )xi+1 i = 1, . . . , n
xn+1 = k(t, x) + dΓ (|x |). (5.3)

Proof. Let φ(·) ∈ K ∗. Since eachfi and gi is locally Lipschitz, uniformly inθ ∈ Ω ,
Lemma 2.7 implies that there exists a functiona ∈ Kcon, such that the following
inequalities hold for all(t, θ, x) ∈ �+ × Ω × �n andi = 1, . . . , n:

| fi (θ, x1, . . . , xi )| � a(|(x1, . . . , xi )|) � a(φ(t)|(x1, . . . , xi )|) (5.4a)

|gi (θ, x1, . . . , xi ) − gi (θ, 0, . . . , 0)| � a(|(x1, . . . , xi )|) � a(φ(t)|(x1, . . . , xi )|).
(5.4b)

Furthermore, inequality (5.1) gives fori = 1, . . . , n:

1

Kφ(t)
� 1

K
� gi (θ, x1, . . . , xi ). (5.4c)

Inequalities (5.4a)–(5.4c) establish that all hypotheses of Proposition 4.1 are fulfilled for
φ(t) = Rφ(t), whereR := 1+supθ∈Ω ,i=1,... ,n gi (θ, 0, . . . , 0). Notice that it holds:φ(t) �
φ(t) for all t � 0. Therefore for every locally Lipschitz functionΓ (·) ∈ K∞, there exists
a C∞ mappingk : �+ × �n → �, a function η̃(·) ∈ Kcon, a constantp � 0, with
|k(t, x)| � η̃(φ

p
(t)|x |), such that 0∈ �n is φ-RGAS for (3.63) with(θ, d) ∈ Ω × [−1, 1]

as input. Consequently, by Lemma 2.4 and inequalityφ(t) � φ(t), it follows that 0∈ �n

is φ-RGAS for (5.3) with(θ, d) ∈ Ω × [−1, 1] as input. Moreover, (5.2) is satisfied for
η(s) := η̃(R ps). �
REMARK 5.2 Notice that the origin for system (1.5) cannot becomeφ-RGAS forφ(t) =
exp(t) with the application of locally Lipschitz static time-invariant feedback (i.e. the rate
of convergence to 0∈ �n of the solution of the closed-loop system (1.5) with a static
locally Lipschitz time-invariant feedback cannot be ‘faster’ than the exponential rate).

EXAMPLE 5.3 Consider the two dimensional system

ẋ1 = θ(t)x2
1 + x2

ẋ2 = u
(x1, x2) ∈ �2, u ∈ �

(5.5)
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whereθ(·) : �+ → [−1, 1] is an unknown time-varying parameter. Letφ(·) ∈ K ∗ be

a function that satisfies limt→+∞ φ̇(t)
φr (t) = 0, for some constantr � 1. Then 0∈ �2 is

φ-RGAS for the following system with(θ, d) ∈ [−1, 1]2 as input:

ẋ1 = θ(t)x2
1 + x2

ẋ2 = k(t, x1, x2) + d(t)|x1| + d(t)|x2| (5.6)

where k(t, x1, x2) is the C∞ time-varying feedback law, defined for someM > 0
sufficiently large, by the following relation:

k(t, x1, x2) := −Mφ2r (t)
(
z + z3 + z5

)
z := x2 + 3φr (t)

(
x1 + x3

1

)
.

(5.7)

Notice that for the selectionφ(t) ≡ 1 ∈ K ∗, the feedback law defined by (5.7) is actually
time-invariant and guarantees uniform global asymptotic stability of the origin for system
(5.6).

Next we consider the problem of partial-state feedback stabilization of autonomous
systems of the form (1.6). In the literature the usual assumption is that subsystem (1.6a)
is ISS with (x, u) as input. Here we intend to relax this hypothesis, by making use of
time-varying feedback of the formu = k(t, x).

THEOREM 5.4 Consider the system (1.6) and suppose that there exists a constantK > 0,
such that the following hold for all(x, θ) ∈ �n × Ω andi = 1, . . . , n:

1

K
� gi (θ, x1, . . . , xi ). (5.8)

Furthermore suppose that the subsystemż = f0(z, x, u) is forward complete with(x, u)

as input and that 0∈ �m is GAS for the systeṁz = f0(z, 0, 0). Then for every locally
Lipschitz functionΓ (·) ∈ K∞ there exists aC∞ mappingk : �+ × �n → �, with
k(t, 0) = 0, for all t � 0, such that 0∈ �m × �n is RGAS for the following system with
(θ, d) ∈ D := Ω × [−1, 1] as input:

ż = f0(z, x, u)

ẋi = fi (θ, x1, . . . , xi ) + gi (θ, x1, . . . , xi )xi+1 i = 1, . . . , n
u = xn+1 = k(t, x) + dΓ (|x |).

(5.9)

Proof. The proof is divided into three parts.

First part. Weobtain estimates for the solutionz(t) of the subsystem (1.6a), with(x, u) ∈
�n × � as input.

Second part. We design a feedback lawk(t, x), such that 0∈ �n is φ-RGAS for the
subsystem (1.6b) withxn+1 = k(t, x) + dΓ (|x |), for an appropriate choice ofφ ∈ K ∗.

Third part. Weprove that 0∈ �m × �n is RGAS for (5.9).
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First part

Since 0∈ �m is GAS for the subsysteṁz = f0(z, 0, 0), then in Angeliet al. (2000, Lemma
IV.10) and Sontag (1998, Theorem 3), there exists a smooth functionV : �n → �+, K∞
functionsa1, a2, λ, δ, such that for all(z, x, u) ∈ �m × �n × � we have

a1(|z|) � V (z) � a2(|z|) (5.10a)

∂V

∂z
(z) f0(z, x, u) � −V (z) + λ(|z|)δ(|(x, u)|). (5.10b)

Furthermore, in Angeli & Sontag (1999, Corollary 2.11), there exists a smooth and proper
function W : �n → �+ and functionsa3, a4, σ of classK∞ and a constantR > 0, such
that for all(z, x, u) ∈ �m × �n × � we have

a3(|z|) � W (z) � a4(|z|) + R (5.10c)

∂W

∂z
(z) f0(z, x, u) � W (z) + σ(|(x, u)|). (5.10d)

Notice that by virtue of (5.10c), (5.10d) the solutionz(t) initiated atz(t0) = z0 of the
subsystem (1.6a) satisfies

a3(|z(t)|) � exp(t − t0)a4(|z0|) + R) +
∫ t

t0
exp(t − τ)σ (|(x(τ ), u(τ ))|)dτ, ∀t � t0.

(5.11)

On the other hand, by (5.10a), (5.10b) and (5.11) we obtain the estimate forλ̃(s) :=
λ(2a−1

3 (2s)) and for allξ ∈ [t0, t]:
a1(|z(t)|) � exp(−(t − ξ))a2(|z(ξ)|)

+
∫ t

ξ

λ̃

(∫ τ

t0
exp(τ − s)σ (|(x(s), u(s))|)ds

)
δ(|(x(τ ), u(τ ))|)dτ

+
∫ t

ξ

λ̃(exp(τ − t0)(a4(|z0|) + R))δ(|(x(τ ), u(τ ))|)dτ, ∀t � ξ .

(5.12)

Second part

In Sontag (1998, Corollary 10), there exist functionsq1, q2, µ ∈ K∞ ∩ C∞((0, +∞)),
such that

σ(rs) � q1(r)q1(s), ∀r, s � 0 (5.13a)

δ(rs) � q2(r)q2(s), ∀r, s � 0 (5.13b)

λ̃(rs) � µ(r)µ(s), ∀r, s � 0. (5.13c)

Without loss of generality, we may assume thatq−1
1 , q−1

2 ∈ K∞ ∩ C∞((0, +∞)). Define

φ̃(t) := 1 + 1

q−1
1 (exp(−t))

+ 1

q−1
2

(
exp(−t)
µ(exp(t))

) . (5.14a)
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Notice thatφ̃ ∈ K +. Consequently, by Lemma 2.2, there existsφ ∈ K ∗ such that

φ(t) � φ̃(t), ∀t � 0. (5.14b)

Furthermore, by (5.8) and Corollary 5.1, we have that for every locally Lipschitz function
Γ (·) ∈ K∞ there exists aC∞ mappingk : �+ × �n → �, a functionη ∈ Q, aconstant
p � 0, with

|k(t, x)| � η
(
φ p(t)|x |) , ∀(t, x) ∈ �+ × �n (5.15)

such that 0∈ �n is φ-RGAS for the following system with(θ, d) ∈ D := Ω × [−1, 1] as
input:

ẋi = fi (θ, x1, . . . , xi ) + gi (θ, x1, . . . , xi )xi+1 i = 1, . . . , n
xn+1 = k(t, x) + dΓ (|x |). (5.16)

Third part

Since isφ-RGAS for (5.16) with input(θ, d) ∈ MD, by Lemma 2.4 it follows that there
exist a K L functionζ and aK + functionβ, such that

φ p+1(t)|x(t)| � ζ (β(t0)|x0|, t − t0) , ∀t � t0 (5.17)

where p � 0 is the constant involved in (5.15). Moreover, applying Lemma 2.7 for the
even extension ofΓ (·) on� (which is locally Lipschitz), we find that there exists a function
Γ̃ (·) ∈ Kcon such that

Γ (s) � Γ̃ (s), ∀s � 0. (5.18)

Inequalities (5.15), (5.17), (5.18) and the fact thatΓ̃ , η ∈ Kcon, imply that the following
estimate holds for allt � t0:

|(x(t), u(t))| � |x(t)| + |u(t)| = |x(t)| + |k(t, x(t)) + d(t)Γ (|x(t)|)|
� |x(t)| + η

(
φ p(t)|x(t)|) + Γ̃ (|x(t)|)

�
(

1 + dη

ds

(
φ p(t)|x(t)|) + dΓ̃

ds

(
φ p(t)|x(t)|)

)
φ p(t)|x(t)|

� 1

φ(t)
H (β(t0)|x0|) ζ (β(t0)|x0|, t − t0) (5.19)

whereH(s) := 1+ dη
ds (ζ(s, 0))+ dΓ̃

ds (ζ(s, 0)) is a continuous, positive and non-decreasing
function. By (5.13a) and (5.19) it follows that∫ τ

t0
exp(τ − s)σ (|(x(s), u(s))|)ds � exp(τ )q1 (Z (β(t0)|x0|))

∫ τ

t0
q1

(
1

φ(s)

)
ds, ∀τ � t0

whereZ(s) := H(s)ζ(s, 0), Z ∈ K∞. On the other hand (5.14) implies thatq1

(
1

φ(t)

)
�

exp(−t), which in conjunction with the latter inequality gives∫ τ

t0
exp(τ − s)σ (|(x(s), u(s))|)ds � exp(τ )q1 (Z (β(t0)|x0|)) , ∀τ � t0. (5.20)
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The above inequality, combined with (5.12), (5.13b), (5.13c) and (5.19) gives for allξ ∈
[t0, t]:

a1(|z(t)|) � exp(−(t − ξ))a2(|z(ξ)|)
+q2 (Z (β(t0)|x0|)) [µ (q1 (Z (β(t0)|x0|))) + µ (a4(|z0|) + R)] I (t, ξ)

(5.21a)

I (t, ξ) :=
∫ t

ξ

µ(exp(τ ))q2

(
1

φ(τ)

)
dτ . (5.21b)

As previously, using (5.14) we may establish thatµ(exp(t))q2

(
1

φ(t)

)
� exp(−t) and thus

a1(|z(t)|) � exp(−(t − ξ))a2(|z(ξ)|) +
+ exp(−ξ)q2 (Z (β(t0)|x0|))

[
µ (q1 (Z (β(t0)|x0|))) µ (a4(|z0|) + R)

]
for all ξ ∈ [t0, t] andt � ξ . (5.22)

The inequality above and (5.17) imply that 0∈ �m × �n is RGAS for (5.9). In order to
establish this fact, notice that, by virtue of (5.17) and (5.22), for allT � 0 andr � 0, it
holds

sup{|(z(t), x(t))|; (θ, d) ∈ MD, t � t0, |(z0, x0)| � r, t0 ∈ [0, T ]} � G(β(T )r) (5.23a)

G(s) := ζ(s, 0) + a−1
1 (a2(s) + q2 (Z(s)) [µ (q1 (Z(s))) + µ (R + a4(s))]) (5.23b)

whereG is a classK∞ function. This establishes stability. In order to prove attractivity
let ε > 0, r > 0 and T � 0. There exists aτ := τ(ε, T, r) � T , such that
exp(−ξ)q2(Z(β(T )r))[µ(q1(Z(β(T )r))) + µ(a4(r) + R)] � a1(ε), for all ξ � τ . It
follows from (5.17), (5.22) and (5.23) that for allt � τ it holds

sup{|(z(t), x(t))|; (θ, d) ∈ MD, |(z0, x0)| � r, t0 ∈ [0, T ]}
� ζ(β(T )r, t − T ) + a−1

1 (exp(−(t − τ))a2(G(β(T )r)) + a1(ε)).

This proves that lim
t→+∞ sup{|(z(t), x(t))|; (θ, d) ∈ MD, |(z0, x0)| � r, t0 ∈ [0, T ]} � ε.

Sinceε > 0 isarbitrary we have thatlim
t→+∞ sup{|(z(t), x(t))|; (θ, d) ∈ MD, |(z0, x0)| � r ,

t0 ∈ [0, T ]} = 0. The proof is complete. �
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Appendix

Proof of Lemma 2.2. The implications (i)–(iii) are obvious. We only prove the last
statement of the lemma. Define the function

µ(s) :=
{

φ(logs) + s if s � 1
(φ(0) + 1)s if 0 � s < 1.

(A.1)

Clearlyµ(·) ∈ K∞ and satisfies

φ(t) � µ
(
et) , ∀t � 0. (A.2)

Define the function

ρ(s) :=
{

0 if s = 0
1

µ−1
(

1
s

) if 0 < s. (A.3)

Again we have thatρ(·) ∈ K∞ and letρ̃(·) ∈ K∞ ∩ C∞((0, +∞)) be a function with
dρ̃
ds (s) � 1 for all s > 0 and lims→0+ ρ̃(s)

s = +∞, that satisfies̃ρ(s) � ρ(s) for all s � 0.
Thus by (A.3) we have

1

µ−1
(

1
s

) � ρ̃(s) ∀s > 0 ⇒ µ
(
et) � 1

ρ̃−1
(
e−t

) ∀t � 0. (A.4)
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Define

φ̃(t) := 1

ρ̃−1
(
e−t

) . (A.5)

Sinceρ̃(·) ∈ K∞ ∩ C∞((0, +∞)) with dρ̃
ds (s) � 1 for all s > 0, we easily establish that

φ̃(·) ∈ C∞(�+) and thatφ̃(·) is non-decreasing. Furthermore, sincedρ̃
ds (s) � 1 for all

s > 0 and lims→0+ ρ̃(s)
s = +∞, it follows that 0� dρ̃−1

ds (s) � 1, for all s � 0. This fact
and definition (A.5) imply

dφ̃

dt
(t) = φ̃2(t)

dρ̃−1

ds

(
e−t) e−t � φ̃2(t)e−t .

The latter inequality gives limt→+∞ 1
φ̃2(t)

dφ̃
dt (t) = 0. Notice that we can easily establish

(using the implied inequalitỹρ−1(s) � s for all s � 0) thatφ̃(t) � et � 1, for all t � 0.
Consequently, we conclude thatφ̃(·) ∈ K ∗. Moreover, by (A.2), (A.4) and definition (A.5)
we get thatφ(t) � φ̃(t), for all t � 0. The proof is complete. �

Proof of Lemma 2.4. Implications (i) and (ii) are immediate consequences of the definition
of φ-RGAS and the fact thatφ(t) � 1, for all t � 0. We focus on implication (iii). Let
p � 0 and consider the time-varying transformation

z := φ p(t)x . (A.6)

Clearly,z(t) satisfies the following system of differential equations:

ż = p
φ̇(t)

φ(t)
z + φ p(t) f

(
t,

z

φ p(t)
, d

)
z ∈ �n, t � 0, d ∈ D.

The fact that 0∈ �n is φ-RGAS for (1.1) and definition (A.6) imply that 0∈ �n is RGAS
for the system above withd as input. Furthermore, Proposition 2.2 in Karafyllis & Tsinias
(2002b) guarantees the existence of aK L functionσ(·) and aK + functionβ̃(·) such that

|z(t)| � σ
(
β̃(t0)|z0|, t − t0

)
, ∀t � t0. (A.7)

The desired (2.2) is a consequence of inequality (A.7), definition (A.6) and the selection
β(t) := β̃(t)φ p(t).

Proof of Lemma 2.6. The statements (i)–(ii) are obvious. We prove statements (iii)–(iv).
(iii) Define the function

γ (s) := s + sup
0�τ�s

|a(τ )|. (A.8)

Clearlyγ ∈ C0(�+) and is strictly increasing with

a(s) � γ (s), ∀s � 0. (A.9)



442 I. KARAFYLLIS

Let h : � → �+ be aC∞ function with h(s) = 0 if s /∈ (0, 1) and
∫
� h(s)ds =∫ 1

0 h(s)ds = 1. Define the function

γ̃ (s) :=
∫

�
γ (w)h(w − s)dw =

∫ 1

0
γ (s + w)h(w)dw. (A.10)

Clearly γ̃ ∈ C∞(�+), is non-decreasing and satisfies

γ (s) � γ̃ (s) � γ (s + 1), ∀s � 0. (A.11)

Let r > 0 be an arbitrary constant and define the following functions:

δ(s) :=




dγ̃

ds
(r) + 1 if 0 � s � r

sup
r�τ�s

dγ̃

ds
(τ ) + 1 if s > r

(A.12)

β(s) =
∫ s

0
δ(w)dw. (A.13)

Since by definition (A.12),δ is continuous, non-decreasing and satisfiesδ(s) � 1, ∀s � 0,
we have thatβ ∈ Kcon. Notice that fors > r we get by (A.12) and (A.13)

β(s) �
∫ s

r
δ(w)dw � γ̃ (s) − γ̃ (r)

and the latter inequality in conjunction with (A.9) and (A.11) implies thata(s) � R+β(s),
∀s � 0, for R = γ̃ (r).

(iv) Inequality (2.3a) is a consequence of the inequalityȧ(s) � ȧ(λs), which holds for
all λ � 1 ands � 0. The right-hand side of inequality (2.3b) is a well-known property of
the functions of classK . The left-hand side of inequality (2.3b) is a consequence of the
inequalityȧ(s1) � ȧ(s1 + s2), which holds for alls1 � 0 ands2 � 0.

The proof is complete. �

Proof of Lemma 2.7. Since f is locally Lipschitz inx , uniformly in θ , there exist constants
L , r > 0, such that

| f (θ, x)| � L|x |, ∀θ ∈ Ω , for |x | � r . (A.14)

Consider the function

β(s) := sup
θ∈Ω
|x |�s

| f (θ, x)|. (A.15)

Clearly, the mappingβ(·) is continuous and non-decreasing withβ(0) = 0. Furthermore
by (A.14) we have

β(s) � Ls, for s � r . (A.16)



NON-UNIFORM STABILIZATION OF CONTROL SYSTEMS 443

Clearly the functionζ(s) = 1
s

∫ 2s
s β(w)dw belongs to the classK∞ ∩ C1((0, +∞)) and

satisfiesζ(s) � β(s) for all s � 0. Define the functions:

δ(s) :=




dζ

ds

(r

2

)
for 0 � s <

r

2

sup
r
2�τ�s

dζ

ds
(τ ) for s � r

2

(A.17)

a(s) := λs +
∫ s

0
δ(w)dw (A.18)

λ := max

{
L + 1,

2

r
ζ

(r

2

)}
. (A.19)

Sinceδ is a continuous, non-decreasing function we have thata ∈ Kcon. We claim that
(2.4) is satisfied. Notice thata(s) � λs � (L + 1)s and consequently for all|x | � r and
θ ∈ Ω , weobtain using (A.14)

| f (θ, x)| � L|x | � a(|x |).
On the other hand, fors � r

2, by (A.17) and (A.19) we have that

a(s) = λs +
∫ r

2

0
δ(w)dw +

∫ s

r
2

δ(w)dw � λ
r

2
+

∫ s

r
2

dζ

ds
(w)dw � ζ(s) � β(s)

The proof is complete. �

Proof of Lemma 2.8. Let h : �+ → �+ be aC∞ function that satisfiesh(s) = 0, ∀s /∈
(0, 1) and

∫
�+ h(s)ds = ∫ 1

0 h(s)ds = 1. Define

ã(s) :=
∫

�+
a(u)h(u − s)du −

∫
�+

a(u)h(u)du. (A.20)

Notice thatã(0) = 0 andã ∈ C∞(�+). Furthermore, we have

ã(s) =
∫ 1

0
(a(s + w) − a(w))h(w)dw. (A.21)

Clearly by virtue of (2.3b) of Lemma 2.6 and (A.21), it follows that (2.5) holds. Moreover
by (A.21) we get

dã

ds
(s) =

∫ 1

0

da

ds
(s + w)h(w)dw (A.22)

which implies thatdã
ds (s) is non-decreasing and positive. Thereforeã ∈ Kcon ∩ C∞(�+).

Define R̃ := da
ds (2r) for somer > 0 and notice that we also have

a(s) � R̃s, ∀s ∈ [0, 2r ]. (A.23)
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Finally, define

β̃(s) :=



R̃s for 0 � s � r

R̃s + exp

(
1

r
− 1

s − r

)
ã(s) for s > r .

(A.24)

Clearlyβ̃ ∈ C∞(�+) and its odd extensionβ(·) is also a smooth function on�. Moreover
by (2.5), (A.23) and definition (A.24) we have thata(s) � β(s), ∀s � 0. By virtue of (iii)
of Lemma 2.6, there existM > 0 andδ ∈ Kcon such thatdã

ds (s) � M + δ(s) and since

sups>0
1
s2 exp

(
−1

s

)
� 4, we can easily verify that (2.6) and (2.7) are satisfied for

R := R̃ + M exp

(
1

r

)

γ (s) := 5 exp

(
1

r

)
(ã(s) + δ(s)) + R̃s.

The proof is complete. �

Proof of Lemma 2.9. In order to prove (2.10), letr � 0, t0 � 0, t � t0 and notice that for
the solutionβ(t, t0, r) of (2.11) we have

∂

∂τ
β(t − τ, t0, r) = ρ(φ(t − τ)β(t − τ, t0, r)), ∀τ ∈ [0, t − t0]. (A.25)

Let a vectorx ∈ Bβ(t,t0,r) be the initial condition for the problem

dξ

dτ
(τ ) = − f (t − τ, ξ, d)

ξ(0) = x, d ∈ D, τ � 0.
(A.26)

This is the time-reversed system (1.1). It is clear by virtue of (2.8) that the following
differential inequality is satisfied:

D+|ξ(τ )| � ρ(φ(t − τ)|ξ(τ )|), ∀τ ∈ [0, t]. (A.27)

It follows by (A.25), (A.27) and the comparison Lemma in Khalil (1996), that

|ξ(τ )| � β(t − τ, t0, r), ∀τ ∈ [0, t − t0]. (A.28)

Sinceβ(t0, t0, r) = r , inequality (A.28) shows that there existsx0 ∈ Br andd ∈ MD such
thatx(t, t0, x0; d) = x and it is given byx0 = ξ(t − t0) for the particulard ∈ MD. Since
x ∈ Bβ(t,t0,r) is arbitrary, it follows that (2.10) holds. The proof is complete. �


