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Non-uniform stabilization of control systems
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A version of non-uniform in time robust global asymptotic stability is proposed and enables
us to derive: (1) sufficient conditions for the stabilization of uncertain nonlinear triangular
time-varying control systems; (2) sufficient conditions for the solution of the partial-state
global stabilization problem for autonomous systems. The results are obtained via the
method of integrator backstepping and are generalizations of the existing corresponding
results in the literature.
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1. Introduction

The notion of non-uniform in time Robust Global Asymptotic Stability (RGAS) has been
proved to be fruitful for the solution of several problems in Control Theory (see (Karafyllis
& Tsinias, 2002a,b; Tsinias & Karafyllis, 1999; Tsinias, 2000) for applications to tracking
problems and to the robust stabilization of uncertain systems that cannot be stabilized
by continuous static time-invariant feedback and (Karafyllis & Tsinias, 2001) for the
extension of the notion of Input-to-State Stability (ISS) to the time-varying case). It is
shown in Karafyllis & Tsinias (2001, 2002b) that, even for autonomous systems for which
uniform in time asymptotic stabilization by a continuous static feedback is not feasible, it
is possible to exhibit non-uniform in time asymptotic stabilization by means of a smooth
time-varying feedback.

In this paper our interest is focused on uncertain nonlinear time-varying triangular
systems. In order to find sufficient conditions for the robust stabilization of such systems,
we first strengthen the notion of Robust Global Asymptotic Stability (RGAS) given in
Karafyllis & Tsinias (2001), by introducing the notion ¢fRGAS in such a way that
it allows the estimation of the rate of convergence to the equilibrium point. Roughly
speaking, for the system

x = f(t,x,d)

xef"t>0,deD (1.1)

whereD c %™ is a compact set anfi(t, 0, d) = O for all (t,d) € %t x D, we say that

0 € R" is p-RGAS if it is in general non-uniformly in time RGAS and particularly, there
exists a smooth functioth : ™ — [1, +00) such that every solution of (1.1) satisfies the
following property:

Jim gPIx®] =0, vp>0 (1.2)
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In Section 3 we develop the main tool for the integrator backstepping method that it is
used in this paper, and in Section 4 this tool is used for the following triangular system:

Xi=fit,0,x1,...,%)+ 0, 0,X1,...,%)X+1 i=1...,n
U:= Xnt1 (1.3)
X=Xt ..., X)) €eRLt>=0ueR

where the uncertainty = 0(t) is any measurable function taking values in a compact set
2 c %'. We obtain a set of sufficient conditions (Proposition 4.1) for the robust global
asymptotic stabilization of (1.3), which is a direct generalization of the corresponding set
of sufficient conditions given in the literature for the autonomous case (étaatg 1994;
Tsinias, 1996).

The problem of the stabilization by means of partial-state time-varying feedback is also
addressed (Proposition 4.2). Specifically, we study systems of the form

z= fo(t, 0,z X1

Xi=fit,0,z,x1, ..., %) +6(t,0,zX,....,%)%4+1 i=1...,n (1.4)
U= Xp+1
wherez € ™, x = (X1,...,X%)" € %", u € N, 6 = (1) is any measurable function

taking values in a compact sét c 9!, and we obtain sufficient conditions for the robust
global asymptotic stabilization of (1.4) by means of a partial state smooth time-varying
feedback of the fornm = k(t, x).

Using these results, we next study the applications of time-varying feedback to
autonomous control systems. In Section 5, the following two applications of time-varying
feedback to autonomous control systems are studied:

(1) We prove that for every functiopi(-) there exists a smooth time-varying feedback
of the formu = k(t, x), such that Oc R" is »-RGAS for the system

X = i@, X, ..., %)+, X,... ., X)X i=1...,n (1.5)
U:= Xn41
wherex = (X1,...,X%)" € ", u € M, = 6(t) is any measurable function

taking values in a compact sé& c %' (Corollary 5.1). Roughly speaking, this
means that we can design a smooth time-varying feedback so that the solutions
of (1.5) converge to the equilibrium point as ‘fast’ as desired. We emphasize that
this feature cannot be accomplished by the use of locally Lipschitz time-invariant
feedback.

(2) The stabilization of autonomous systems by means of partial-state smooth time-
varying feedback (Theorem 5.4). Specifically, consider the system

z = fo(z, x,u) (1.6a)

Xi=fi(0,xe,....,x)+d@ %, ..., %)X+ i=1...,n

U:= Xp+1 (1.6b)
wherez € ™M, X = (X1,..., %)) € RN, u € N, 6 = 6(t) is any measurable

function taking values in a compact setc %', fo, f; andg; are continuous with
respectt® e (2 and locally Lipschitz with respect i@, x, u), uniformly iné € 2,
with f9(0,0,0) =0, f;(8,0,...,0) =0forallo € 2,fori =1,...,n.
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System (1.6) can be regarded as the cascade connection of two subsystems. Sufficient
conditions for the global asymptotic stability of the equilibrium point for a cascade
connection of two independent subsystems were given in daalg (1994) and recently

in Panteley & Loria (1998). We provide sufficient conditions for the existence of a smooth
partial-state time-varying feedback of the fous= k(t, x), such that 0= %™ x %" is GAS.

This is achieved in Theorem 5.4 and to this end we are using the Lyapunov characterization
of forward completeness given in Angeli & Sontag (1999). We guarantee the existence of
such a feedback, under the hypotheses:

(i) Subsystem (1.6a) is forward complete with u) as input.
(i) 0 € %M is GAS for the ‘unforced’ subsystein= fy(z, 0, 0) (0-GAS property).

This is a generalization of the existing results since forward completeness and 0-GAS is
weaker than ISS (or even ilSS as shown in Angeédl., 2000).

Notation

* By CI(A)(CI(A; 1)), wherej > 0 is anon-negative integer, we denote the class of
functions (taking values i?) that have continuous derivatives of ordeon A.

* By B (By), wherer > 0, we denote the open (closed) ball of raditis )", centred at
0e N
*  For definitions of classeK, K, KL see [8].

* By DT f(t) we denote the upper right-hand side Dini derivative of the scalar function
f,ie. Dt f(t) = limsup,_ o ~HHN=TO,

* Wedenote byMp the class of measurable functioths R ™ — D.

2. Definitionsand preliminary technical results

In this section we give the notion @f-RGAS for time-varying systems and we present
definitions and technical lemmas that play a key role in proving the main results of the
paper. Their proofs can be found in the Appendix.

DEFINITION 2.1 We denote byK* the class of non-decreasi@j® functionsg : K+ —
R with ¢ (0) > 1, and we denote bit* ¢ K™, the class ofc> functions that belong to

K+ and satisfy lim_, ;o % — 0, for somer > 1.

For example the functiong (t) = 1, ¢(t) = 1+ t, ¢ (t) = expt) all belong to the class
K*. The following lemma states some of the properties of these classes of functions.

LEMMA 2.2 For everyp € K*, q € K* and for all constant8! > 1 anda > 0, it holds
that the function®(-)+q(-), p(-)q(-) andMp?3(-) are~of clasK* as well. Furthermor~e, for
every functiong of classk T, there exists a functiog of classK *, such thatp (t) < ¢(t)
forallt > 0.

We next give the notion op-RGAS, which directly extends the notion of RGAS presented

in Karafyllis & Tsinias (2001). This notion is introduced in such a manner that we can have
an estimate of the rate of convergence of the solution to the equilibrium point. Consider the
system (1.1), wher® is a compact subset 8f™ and the vector field : it x R" x D —

R" satisfies the following conditions:
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(1) The functionf (t, x, d) is measurable in, for all (x, d) € " x D.

(2) The functionf (t, x, d) is continuous ird, for all (t, x) € /R x K",

(3) The functionf (t, x, d) is locally Lipschitz with respect t&, uniformly ind € D,
in the sense that for every bounded intervat )™ and for every compact subset
Sof R", there exists a constaht > 0 such that

Vtel, V(X,y) € Sx S, vde D )

with f(t,0,d) =0, forall (t,d) e ®T x D.

Let us denote byx(t, tg, Xp; d) = x(t) the unique solution of (1.1) at time that
corresponds to inpuwt € Mp with initial conditionx(tg) = Xg (see Fillipov, 1988).

DEFINITION 2.3 Letg be a function of the clags .

e\Wesay that Oc R" is ¢-Robustly Globally Stable-RGS), if for everyT > 0,p > 0
ande > 0, it holds that suf@Pt)|x(t)] : d € Mp,t > tg, [Xo] < &,t0 € [0, T]} <
+oo and there exists &= 5(¢, T, p) > 0 such thatpP(t)|x(t)| < &, for all |xg| < 8,
t > to,to € [0, T]and inputd € Mp.

o0 ¢ 9" is called ap-Robust Global Attractorg-RGA), if for everyR > 0,¢ > 0,
p>0andT > 0, thereisa := (¢, T, R, p) > Osuch thapP(t)|x(t)| < e for all
Xo € Br,t > to+ 7,19 € [0, T] and inputd € Mp.

¢0 € %" is calledp-Raobustly Globally Asymptotically Stabled(RGAS), if itis p-RGS
and¢-RGA. If 0 € R" is ¢-RGAS for¢(t) := 1 then we simply write that & R" is
RGAS.

In Tsinias & Karafyllis (1999) we requiretN |x(t)| < & for every integerN > 0 in
the definition of theL{—Global Asymptotic Stability. It is clear that the present definition
includes this case with(t) = 1+t € K*. The following lemma clarifies the consequences
of the notion ofp-RGAS and provides estimates of the solutions.

LEMMA 2.4 Suppose that @ i" is p-RGAS, for system (1.1) witd € D as input. Then
the following statements hold:

(i) For every functionp € K that satisfiegp(t) < ¢(t) forallt > 0,0 e R"is
$-RGAS for system (1.1). Particularly, ®R" is RGAS.
(i) For every pair of constant® > 1andp > 0, 0 e %" is $-RGAS, for system (1.1),
whereg(t) = RoP(t).
(iiiy For every p > 0, there exist functions () € KL andB(-) € K™, such that the
following estimate holds for the solution of (1.1):

IX(t)] < o (B(to)IXol,t —to), Vt >to, Vd € Mp. (2.2)

1
PP (1)
For the construction of a smooth time-varying feedback, we need to introduce the following
class of convex functions.

DEFINITION 2.5 Wesay thata : it — % belongs toKcon if:
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(1) aeClMH)NK.

(2) The functiong—";‘(s) is non-decreasing.
The following technical lemmas state some important properties of Klgsghat are used
in the subsequent sections of this paper.
LEMMA 2.6 The following statements hold:

() Kcon C Keo-
(i) If a, B belong toKconthena + B, a8, aoB also belong tKcon.
(iii) Foreverya e CO(0+) there exists a constaf > 0 and a function8 € K¢on such
thata(s) < R+ B(s),Vs > 0.
(iv) If a(-) € Kconthe following properties hold:

ra(s) <a(as), vs>0, va > 1 (2.3a)

a(s) + a(s) < as1 + %) < a@s) +a?sy), ¥(s, ) € ()2, (2.3b)

LEMMA 2.7 Consider the vector field € CO(2 x %"; ™), where2 ¢ %' is a compact
set, which is locally Lipschitz with respect xoe K", uniformly with respect t@ < 2 and
satisfiesf (9, 0) = 0, for all§ € 2. Then there exista € K¢gn such that:

(0, )] <a(x]), Y@, x) e 2 x R". (2.4)

LEMMA 2.8 For everya € Kcopn, there exists an odd functiof € C* (%), functions
y € Keon @ € Kgon N C® (M) and a constarR > 0, with the following properties:

a(s) <a(s), vs>0 (2.5)
a(s) < B(s) <y(s), vs=0 (2.6)
z—i(s) < R+ y(s), Vs> 0. 2.7)

The next lemma shows a fundamental property of forward complete time-varying
systems. It shows that the ‘reachable set’ contains a closed ball of positive radius at all
times. This fact is going to be used in Section 3 of the paper.

LEMMA 2.9 Consider system (1.1) and suppose that there exists a funetipEe Kcon
and a functionp(-) € K™ such that

Lt x, d)| < p(@®)IX]), V(t, x,d) e Rt x R" x D. (2.8)
Suppose, furthermore, that for al>> 0,tg > 0 andt > to we have
sup{|x(®)[; [Xol <T,d € Mp} < +o0. (2.9)
Then it holds that
Bpt.tor) S {(X(1); X0l <T.d € Mp} (2.10)

wheref(t, to, r) is the unique solution of initial value problem:

w=—p(@HOw)
weNRwlty)=r=0. (2.11)
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3. Adding atime-varying integrator

The following technical lemma is the basic tool in the integrator backstepping method that
we intend to use. Notice that in the time-varying case, there are many technical difficulties
to obtain such a result, concerning the rate of convergence of the solution to the equilibrium
point, as well as the issue of whether the dynamics converge to zero or not. Most of the
technical assumptions introduced below are automatically satisfied in the autonomous case.

LEMMA 3.1 Consider the system

X=F(,0,x,Y) (3.1a)
y=f(.6.x,y)+9(.0,x yu
XeR,yeRueRt=>006¢en (3.1b)

where2 c % is a compact set, with (t,6,0,0) = 0, f(t,6,0,0) = 0, for all (t,0) €
R+ x 2 andF, f, g are measurable with respectttocontinuous with respect 1, and
locally Lipschitz with respect t@x, y) uniformly in & € 2. Suppose that there exists
¢ € K* such that the following hold:

(H1) There exists a functiop € Ko, being locally Lipschitz oti™, aCl(j > 1)
mappingk : KT x K" — R with k(-, 0) = 0, a constant, > 0, such that G R"
is »-RGAS for

x=F (t,e, x, K(t, X) +d;%|))> (3.2)

with (8, d) € D := 2 x [—1, 1] as input.
(H2) There exists a functiop € K¢on such that

s < p(y(s), Vs > 0. (3.3)

(H3) There exista € K¢onsuch that the following inequalities hold for &tl 0, x, y) €
RT x 2 x R x N

[F,0,X, Y <a@®)|X, yl (3.4)
k(t, x) + 'g—lt((t,X) < a(eM)x)) (3.5)
ok
‘ﬁ(t,x) < @) +a(@t)x]). (3.6)

(H4) There exist constants > 0 ands > 0 such that the following inequalities hold
forall (t,0,x,y) e R x 2 x A" x R

1
Ko (t) <Ot 0.X,y) < o) +a@Mx, y)) (3.7)

[f(t,0,%,y) <al@®IXx, Y. (3.8)
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Then for every Iocaﬂy Lipschitz functiod’(-) € Ky, there exists &€ mappingk :
R x % — %R with k(-,0) = 0 and constantd! > 1,q > 1, such that 0 %"+ is
¢-RGAS for

5= F(t, 0, % K(t, y — k(t, X)) + dI'(|X])) (3.9)
with (6,d) € D := 2 x [—1,1] as input, whereX := (x,y), F(t,0,% u) :=
F(t797x9 y) and
f(t,0,x,y)+9(,0,x, yu

$(t) := Mg9(b). (3.10)

Furthermore, there exists a functiaf) € Kcon, such that hypothesis (H3) is satisfied with
F(), X k(t, %) ==k, y —k(t, X)), &(-) andg () instead ofF (-), x, k(t, x), a(-) andé (),
respectively. Whew (-) is bounded then the mappitkgcan be chosen to be independent
of t.

Proof. Let &(t, to, Xo; (4, d)) denote the solution of (3.2) initiated frorg € R" at time
to > 0and corresponding to inp@, d) € Mp andX(t) = (x(t), y(t)) denote the solution
of (3.9) initiated fromxg € %"t at timetg > 0 and corresponding to inp#, d) € Mp.
The proof is based on the following observations:

(i) By property (ii) of Lemma 2.4 and definition (3.10), it suffices to show that 0
N+l is ¢-RGAS for (3.9) with(9, d) € D := 2 x [—1, 1] as input.

(i) In order to prove that 0c %"+ is $-RGAS for (3.9) with(9,d) € D := 2 x
[—1, 1] as input, it suffices to show that there exists a funct&p € Keon and a
COfunctionE : R x Rt — M+ with E(t, ) € Ky forallt > 0andE(., s) being
non-decreasing, in such a way that the following inequality holds for &l to,
s> 0:

SUpIX(®)[; %ol < 's, (6, d) € Mp} <

G (o () SUH B, to, xo: (6. d)); [¥ol < Ecto.9), 0, d) € Mpp. 1)

Indeed, notice that by virtue of (3.11), property (iv) of Lemma 2.6 and the facte that>
landE(., s) is non-decreasing, we have forgl> 0, T > 0,s > Oandh > 0:

sup(¢¥(to + X (to + h)l; %ol < S,to € [0, T1, (6, d) € Mp} <
G (¢"+L(to + h) sup{| &(to + h, to. xo; (8, d)]: X0l < E(T, 8), to€[0, T1, (6, d) € Mp}).
(3.12)

Furthermore, by virtue of (iii) of Lemma 2.4 and the fact that &" is ¢-RGAS for (3.2),
it follows that there exist functions(-) € KL andg(-) € KT, such that the following
estimate holds for the solution of (3.2):

9T (1) | B(t, to, Xo; (6, d))| < o (B(to)|Xol, t —to), ¥t =10, ¥(0,d) € Mp. (3.13)

Combining (3.12) with (3.13) we obtain the following estimate, which holds for all
h,s, T,q > 0:

sup{¢9(to + h)[X(to + h)|; [Xo| < S, 0 € [0, T], (6, d) € Mp} < G (a(B(T)E(T, s), h)),
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which implies that 0e %™ is ¢-RGAS for (3.9) with(d,d) € D := 2 x [—1,1] as
input.
Since the proof is long and technical, we divide it into two parts.

First part: Construction of Feedback. Given a locally Lipschitz functiod’(-) € Ko, we
construct the feedback lak(t, X) := k(t, y — K(t, X)), wherek() € C®MT x N) with
k(-, 0) = 0, such that the analogue of (H3) is satisfied.

Second part: Sability Analysis.  Exploiting the properties of the constructed feedback
and Lemma 2.9, we prove that (3.11) holds for appropriate functi®ms € Keon and a
E() e COMT x ). The methodology used is entirely different from the methodology
used in Tsinias & Karafyllis (1999) for the cagét) = 1 +t.

Without loss of generality, we may assume that the funcfon, involved in (3.3),
is of classKcon N C®(RT). Indeed, this follows from Lemma 2.8, which guarantees the
existence of a functionp(-) € Kgon N C®(RT) that satisfiep(s) < p(s), for all s > 0.
Consequently, ifo(-) is not of clasK¢on N C®(RT), we can replace it byd(-). Similarly,
without loss of generality, we may assume that KconN C®(R1), because if this is not
the case then we can replge € KconN C® (M) in (3.3) byP(s) := p(s) +sandy(s)
by 7(s) := P~1(s) < y(s), which belongs td o, N C®(NR).

First part: Construction of Feedback. In this part of proof we use repeatedly inequalities
(2.3a), (2.3b) of Lemma 2.6 for functions of classy,, as well as the fact thap(t) > 1

for allt > 0. Notice that, by application of Lemma 2.7, to the even extensionsarid
I'(-) (which are locally Lipschitz), there exist functiofi-) € Kcon andI'() € Keonsuch
that

y(s) <y(s), Vs 20 (3.14a)
I'(s) < I'(s), Vs > 0. (3.14b)
Define
u:=Kk(, 2 +dIr(x) (3.15a)
z:=y—K(,x) (3.15b)

wherek(-) is yet to be selected. We get from (3.1) and (3.15a), (3.15b):

z = f(, 0,xk, x)+ 2 +dg(, 0, x, k(t,x) + 2I'(|X]) — a—k(t, X)
o9k ot (3.15¢)
_§(t’ X)F(t, 0, x, k(t, X) + 2) + g(t, 0, X, k(t, X) + 2)k(t, 2).
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Moreover, by (3.3), (3.5), (3.14a) and (3.15b), there exist funct®ns) € Keon (i =
1,...,3) suchthat

[X| <G (¢>“+l(t)IZI) ., wheny (Ix|) < 2¢"(1)|z] (3.16a)
[X] < G2 (@M)[x]), wheng”t)|z] < y(Ix]) (3.16b)
1z < G3(pM)|KX]), V(t,%) € RT x \R"+L (3.16¢)

wheren > 0 isthe constant involved in (3.2). Furthermore, property (iii) of Lemma 2.6
implies the existence of a functidB(-) € Keonand a constanR; > 0 such that

0 < max {d—y(s)} < Ry + Ga(s), Vs> 0. (3.16d)
0<e<s | ds

It follows from (3.4), (3.5), (3.6), (3.7), (3.8), (3.14b), (3.15¢), (3.16a) and (3.16d) that
there exists a constant> 2 and functions; (-) € Keop, i = 1, 2, that satisfy the following
inequalities:

d _
5201 < a ("1 ()|z)) + sgn2)g(t, 0, x, k(t, x) + 2)k(t, 2),
for 29 (t)|z| > y(|x|) andz # 0 (3.17)

d
ay(lx(t)l)‘ <a(@" Mz, for2¢" 1)z = y(Ix)) > 0 (3.18)

Since¢ € K*, there exist constant§’ > 0 andr > 1 with
0< g(t) <K'¢'(t), vt > 0. (3.19)
Inequalities (3.17), (3.18) in conjunction with (3.19) imply

d
s (@*®1zO] =y (Ix®OD) < K'ue” (0)12] + 22(¢ (D12]) + a2(¢° (V)]2])

+ ¢ (H)sgn2)g(t, 6, x, k(t, X) + 2)k(t, 2)
for 290 (t)|z| > y(IX|) > O (3.20a)

d / o g
s (6" (®1zM)]) < K'ug® (02| + ar(@’ (D)z)

+ ¢ (H)sgN2)g(t, 6, x, k(t, X) + 2)k(t, 2)
for 29" (t)|z| > y(Ix|) andz # 0 (3.20b)

where
o:=2u+v+r—1. (3.21)
We define the functioraz(-) € Keon:

a3(s) := a1(s) + ax(s) + K'us+ (Ry + Ga(s))p(s) (3.22)
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p(s) :=a(s+a(s) +y(s)) (3.23)

where7(:) € Keon, R1 > 0 and Ga4(-) € Kcon are defined in (3.14a) and (3.16d),
respectively. Notice that, by virtue of (3.4), (3.5), (3.14a) and definition (3.23), we have

v (XD
PH(t)

‘F <t, 0, x, k(t, x) +d )‘ < p(PPM)IX)). (3.24)

Furthermore, by virtue of Lemma 2.8, there exists an @dtl function v (-), a function
Gs(+) € Keonand a constan®, > 0, with the following properties:

ag(s) < ¥ (s) < Gs(s), Vs> 0 (3.253)
dyr
‘E(s) < Ro 4 Gs(s), Vs> 0. (3.25b)
We also define
K(t, 2) := —y (1 + K)¢ T (t)z) (3.26)

whereK > 0and§ > 0 are the constants involved in (3.7). It is clear that the mapping
k(t, x, y) = k(t, y—k(t, X)) is of classCI (T x ®"*t1). Moreover, inequalities (3.5), (3.6),
(3.19) in conjunction with (3.25a), (3.25b) imply that there exists a fundigh e K¢on

and constantg > 1, M > 1, such that (H3) is satisfied with k(-), a(-) andé(-) instead

of x, k(-), a(-) ande(-), respectively, where(-) is defined in (3.10) and is of clags* by
virtue of (iii) of Lemma 2.2. Whem (-) is bounded we may select fét := SUR>o ¢ (1):

Kt,2) =K@ = —v ((1+ K)Fi"“z) . (3.26)
The major property of the constructed feedback is the following inequality, which is a
consequence of (3.7), (3.16d), (3.22), (3.25a), (3.26) and the fact that the fupctjas
odd:

SgMD" (DY(L. 6, % k(t, X) + 2K(t, 2) < —K'ug” (0]2] — as(¢° (V12D - 22" (V]z)
dy
— 4 (" wiz) p (6> wiz).  (327)

Notice that by virtue of inequalities (3.20a), (3.20b) and (3.27), it follows that:

d
q (p"® 1z — ¥ (X)) <0, when 2*(t)|z| > y(x]) >0 (3.28a)

d d
S (0" OO <=L (9" 12) p (62 )12) . when 2" 1)[2 > y(Ix]) andz # 0.
(3.28b)



NON-UNIFORM STABILIZATION OF CONTROL SYSTEMS 429

Second part: Sability Analysis.  We define:
Le:={(x, y) € A" x % : p* )]y — k(t, )| < y (XD} (3.29)

Notice that by virtue of (3.28a) and definitions (3.15b), (3.29k 0t , respectively, it
follows that the regior_; is positively invariant (the cage| = 0 impliesz = 0, which is

the equilibrium position of (3.9)). As long as the trajectory of the solution of (3.9) remains
outsideL; we obtain using (3.15b), (3.28b) and (3.29) that

d
D* (¢ O1z)]) < =% " O1zODp (6> OIz0)]) . (3:30)
Let B(t, to, r) denote the unique solution of the following initial value problem:

W = —p (¢*Dw)
weNR wtg) =r > 0. (3.31)

Indeed, by virtue of inequality (3.24) and Lemma 2.9, we guarantee that
Bgt.tor) S {D(t, to, Xo; (0, d)), [X0] <1, (8, d) € Mp} (3.32)

where &(t, tg, Xo; (9, d)) denotes the solution of (3.2) initiated frory € K" at time
to > O and corresponding to inp@, d) € Mp. Furthermore, differential inequality (3.30)
implies (by virtue of the comparison principle in Khalil, 1996):

P (®)|20)] < y (B, to, y M@  (to)|2(t0) )
as long as the trajectory of (3.9) remains outdide (3.33)

Thus by (3.14a), (3.16a), (3.16c) and (3.33) we obtain the estimate for the solution of (3.9):

XM < G1(pM®)7 (B(t, to, ¥y ~H(#" (1) G3(¢ (1) |X(10)])))))
as long as the trajectory of (3.9) remains outdide (3.34)

Moreover, by virtue of (3.32), (3.33) and the facts tk&i(-), y(-) € Keom (1) > 1
and using property (iv) of Lemma 2.6, we obtain that the following estimate holds for
Gg = 61037:

sup{|X(®)l; [Xol < s, (6, d) € Mp}

< Ge (¢(®) sup|2(t, o x0: 0, )I: ol < ¥~ (G361 (10)9)) , 6. o) € Mo )
as long as the trajectory of (3.9) remains outdige (3.35)

Let us denote by < +oo the first time that the solution is enterihg . Notice that for
allt > T, by positive invariance ot, the solution remains inside;. Moreover, there
exists an inpui#, d) € Mp such that componemnt(t) of the solutionk(t) of (3.9) satisfies
X(t) = &, T, x(T); (4,d)),forallt > T.

Lett > to be arbitrary. We distinguish the cases:
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(@) T = to. Inthis case we havi(t)| < sup]|@(t, to, Xo; (0, d))|; (#,d) € Mp} and
consequently using (3.16b) we obtain the estimate:

sup{|X(®); [Xol <'s, (0, d) € Mp} <
G2 (¢ (t) sup{| 2(t, to. Xo; (0, d))I; [Xol < s, (6, d) € Mp}).

(b) T ¢ [to, t]. Inthis case estimate (3.35) holds.
(c) to < T < t.Inthis case we have:

X < supf|2(t, T, x(T); 0, d)I; T € [to, t], (0, d) € Mp}

(3.36)

By definition (3.29) and continuity of the solution we also have for the case
©): y(Ix(M)]) = ¢*(T)|z(T)|. Moreover, estimate (3.33) implieg”(T)|z(T)| <
y(B(T, to, ¥y~ L(¢*(t0)|20]))). These estimates in conjunction with (3.16b), (3.16c) give

sup{|X(t)]; [%ol <'s, (6, d) € Mp} < Go(¢(t) supl ) (3.37a)

| = {|§5(t, T,x(T); (6,d))|; T € [to, t], (8,d) € Mp,

X1 < B (T to. 77 (#" ©G36 (t0)9)) |. (3.37h)

Inclusion (3.32) in conjunction with estimate (3.37) and the fact @gt) € K¢on and
¢ (t) > 1, shows that the following estimate holds for case (c):

sup{|X(t)|; [%ol < s, (9, d) € Mp}
< Ga(¢(t) sup{| (t, to, Xo; (0, d)); X0l < ¥~ (G3(¢* L (t0)9)), (0, d) € Mp}).
(3.38)

Combining estimates (3.35), (3.36) and (3.38) for the cases (a), (b) and (c), respectively,
we obtain the desired inequality (3.11) for

G(s) := 2Gy(s) + Gg(S) (3.39a)

E(to, s) := max|s, y*l(Gg(qs/”l(to)s))} . (3.39b)

Indeed, by virtue of property (ii) of Lemma 2.6, we ha@&.) € Kcon. The proof is
complete. O

The following lemma provides a sufficient condition for hypothesis (H2). In fact,
Lemma 3.2 shows that hypothesis (H2) is the analogue of the hypothesis of local
exponential stability made in Jiargjal. (1994), Tsinias (1996) for the autonomous case.

LEMMA 3.2 Supposethat € Ky is alocally Lipschitz function that satisfiegs) > As,
Vs € [0, n], for some constantg, A > 0. Then (H2) is satisfied.

Proof. Clearly,y~1(s) < A~1s, for all s € [0, y(1)] and consequently the function
9(s) = SURyygs ”_i(”) is continuous on(0, +00), positive and non-decreasing with
g(s) < A~ 1foralls € (0, y(n)]. Definingg(0) := limg_ o+ g(s), we havey ~1(s) <
g(s)s, for all s > 0. We also definé(s) := 5'“ g(r)dr, which satisfiedh(s) > g(s), for
all s > 0 and notice that the functiop(s) := h(s)s is of classK¢on. Combining, we get
y~1(s) < p(s), for all s > 0, which implies (H2). O
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4. Applicationsto time-varying control systems

We are now ready to apply induction using Lemma 3.1 and the method of integrator
backstepping for the stabilization of system (1.3).

PROPGSITION 4.1 Consider system (1.3), where= (X1, ...X))" € %", 0 € 2 C N,

{2 being a compact sef; andg; are measurable with respectttg> 0, continuous with
respect t&@ € 2 and locally Lipschitz with respect t(x1, ...X;), uniformly in 6 € (2,

fori = 1,...,n. Suppose that there exist functiopss K*, a € K¢op, cOnstants > 0,

K > 0, such that the following hold for aft, x,0) e Rt x K" x 2 andi =1,...,n:

[fi(t, 0, X1, ..., %) <al@®)|(Xt, ..., %) 4.1)

1
K& (D) S G0, X, ... . X) < () +ald®)f(Xe, ... . X)]). (4.2)

Then for every locally Lipschitz functiod’(-) € K there exists & mappingk :
R x R — N with k(-, 0) = 0, a functionn € Kgon and a constanp > 0, with

k(t, )| < 7 (@P®)Ix]), V(t, x) € R x K" (4.3)
such that 0= )" is p-RGAS for the following system:

X =fit,0, Xy, ..., %) +0®,0,X, ..., X)X+1 I=1...,n

Xnt1 = K(t, X) +dI"(]x]) (4.4)

with (6,d) € D := 2 x [—1, 1] as input. Moreover, wheg (-) is bounded then the
mappingk can be chosen to be independent.of

Proof. The proof of the general case is based on Lemma 3.1 and follows by using standard
induction arguments like those given in Jiagtgal. (1994). For reasons of simplicity we
consider the case = 2. The general case follows similarly by induction. First we consider
the one-dimensional subsystem

Xy = f1(t, 0, x1) + 01(t, 0, X1)%2
with x2 as input.

(4.5)
Let M > 0. We define
as):=A+sas) + @A+ M)s (4.6)

which obviously by Lemma 2.6 is of clason. By Lemma 2.8 there exists an odd function
¥() € C®M), afunctionB(-) € K¢onand a constanR; > 0 such that

aes) < y(s) < B(s), vs=>0 (4.7a)

dy
' as (©)

< R+ B(s), Vs = 0. (4.7b)
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Furthermore, since (-) € K*, there exists a constant> 1 such that

ams zr((tt)) = (4.7c)
We set
kat, X0) == =¥ (L + K¢+ (0)x0) (4.8)
or for the case of boundegl(-) € K* with Rz := sup > ¢ (1):
ka(t, 1) = k() = =y (L + K)RFT +oxy) (4.8)

where K, § are the constants involved in (4.2). Obviousy(-) is a function of class
C®MT x N) with ky(-,0) = 0. It follows from (4.2), (4.6), (4.7a) and definition (4.8),
the fact thaty (-) is odd andp(t) > 1forallt > 0, as well as (iv) of Lemma 2.6, that the
following inequality holds for allt, 8, x1) € KT x 2 x %

s a(t, 0, xpku(t x0) < =& (9 Oal) < —M¢" D xal = L+ xaDa@ Olxah
—¢()Xa|. (4.9)
Moreover, inequalities (4.7a)—(4.7c) and definition (4.8) imply the existence of constants

Rs > 1,0 > 1and afunctiort () € Kcon, such that the following inequalities hold for all
(t, Xp) € Rt x N

ok -
|k1<t,xl>|+’8—tl<t,xl> <t (wixal) (4.10a)
‘a—k%t x| < +¢ (dal) (4.10)
ax1 PRAYDARESS 1 .
o (t) := Reg” (1). (4.10¢)

We claim that Oe % is ¢p-RGAS for the closed-loop system (4.5) with = Kki(t, x1) +
dix1|, d € [—1, 1]. In order to prove this claim, notice that by (4.1), (4.2) and (4.9) we
have for allx; # 0,t > 0and(9,d) € D = 2 x [-1, 1]:
d
i [X1] = sgn(x1) f (t, 0, X1) + sgn(x1)g(t, 0, x1)ka(t, X1) + sgnxy)g(t, 6, x1)d[x1|
< =Mo" (O)[x1].

Sincex; = 0 isthe equilibrium point of the closed-loop system (4.5) wigh= kq(t, X1) +
dixi1|,d € [—1, 1] we get

DT |x1(t)] < —M¢" (t)|x1(t)|, forall t > to. (4.11)
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The differential inequality (4.11) and the comparison lemma in Khalil (1996) give for all
g=>0,s>0:

sup{g9®Ixa)]; [Xa(to)| <, (6, d) € MD}<¢q(t0)eXp< /t<|\/|¢ (r )—Q%> )S-

(4.12)

By (4.7c¢) it follows that for everyy > 0O there exists a finite tim& := T(q) > 0, such

that Mo (t) > fr((tt)) for all t > T. This implies f;"* <M¢r (t) — %) dr = +oo
for all g > 0 and consequently by (4.12), we have that Ot is $-RGAS for the closed-
loop system (4.5) withko = Kki(t, X1) + d|x1], d € [—1, 1]. By (ii) of Lemma 2.4 and
definition (4.10c) it also follows that @ 9t is ¢-RGAS for the closed-loop system (4.5)
with Xo = kq(t, X1) +d|x1],d € [-1, 1].

Consider next the two-dimensional subsystem

Xy = f1(t, 6, x0) + 91(t, 0, X)) %2
X2 = fa(t, 0, X1, X2) + 91, 6, X1, X2)X3
with x3 as input.

We apply Lemma 3.1 for this system. Clearly, by the previous analysis hypothesis (H1) is
satisfied forg(-) € K* as defined by (4.10c)(s) := s andu = 0. Hypothesis (H2) is
trivially satisfied, while hypotheses (H3) and (H4) are consequences of inequalities (4.1),
(4.2), (4.10a), (4.10b). The desired conclusion follows from the application of Lemma 3.1.
The proof is complete. O

The following proposition is concerned with the problem of partial-state robust
feedback stabilization of uncertain nonlinear time-varying systems. It is the analogue
of Corollary 3.4 in [11] and Theorem 2.4 in [12], although here we consider uncertain
systems. Its proof follows directly by induction and Lemmas 3.1 and 3.2.

PROPGCSITION 4.2 Consider the system (1.4), whezee %™, X = (X1,...%X))" € 0",
benRNcK, Nisa compact setfj(i =0,...,n)andg;(i = 1,...,n) are measurable
with respect ta > 0, C° with respect t@ e £ and locally Lipschitz with respect 1@, x),
uniformly in 6 € {2. Suppose that there exist functiopss K*, a € K¢op, coOnstants > 0
andK > 0, such that the following hold for allt, z, X, 8) € RT x RM x K" x 2 and
i=1...,n

[ fo(t. 6. 2, x0)| < al@®| (@', x1)|) (4.13)
Ifi(t, 0,2, X1, ..., x)| <al@®)|@", X1, ... . %)) (4.14)

1
re0) <Ot,60,2%,...,%) <o) +alp®|@, X1, ..., x)]. (4.15)

Suppose, furthermore, thatDR™ is p-RGAS for the following system

7= fo <t 6.7, dgi'ft'))) (4.16)
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with (0,d) € D := 2 x [—1, 1] as input, wherg. > 0 andy € K, is a locally Lipschitz
function that satisfies the following inequality for certain constgnt$ > 0:

As < y(s), Vs e [0, n]. (4.17)

Then for every locally Lipschitz functiod’(-) € K there exists & mappingk :
RT x R — R with k(-, 0) = 0, such that 0= R™ x R" is p-RGAS for the following
system:

z= fo(t, 0,2 x1)
Xi=fit,0,z,x1,...,x)+0t,0,zx,....,%)X41 i=1...,n (4.18)
Xnt1 = K(t, X) + dI'(|(z, X))

with (6,d) € D := 2 x [—1, 1] as input. Moreover, wheg (-) is bounded then the
mappingk can be chosen to be independent.of

ExamMPLE 4.3 Consider the system:

z=—2tz+ 01(t) exp(ut)x
X = expat)f2(t)w(z, x) +u (4.19)
(z,X) e N2t >0, ue M, 0 = (6, 6) € BO,r)

wherea, r, u > 0 are known constantsy(z, x) is a locally Lipschitz function satisfying
w(0,0) = 0 andé denotes the vector of the uncertain parameters of the system. It is
immediate to verify that @& % is &-RGAS for the subsystem

7= —2tz+ 6 ()d(t)|z| (4.20)

where|d(t)] < 1. Indeed, for everyf(-),d(-)) € Mg(o’r)x[_m] the solution of (4.20)
satisfies the estimate

2] < explr t - o) — (12 - ) } 1201

Thus by Proposition 4.2 there exist<C& mappingk : it x R — R with k(-,0) = 0
with such that the origin for (4.19) with = k(t, x) is €-RGAS.

5. Applicationsto autonomous control systems

In this section we study the applications of time-varying feedback laws to autonomous
control systems. We first consider the case (1.5). We establish that the use of time-varying
feedback can robustly ‘accelerate’ the rate of convergence of the solution to the equilibrium
point. This is shown by the following corollary, which is an immediate consequence of
Proposition 4.1 and Lemma 2.7.

COROLLARY 5.1 Consider system (1.5), where= (X1, ...xn)T € R", 60 € 2 C €w, 0
being a compact sef; andg; are continuous with respect #oe {2 and locally Lipschitz
with respect taxy, ... X;), uniformly in 6 € £, with f;(0,0,...,0) = 0, forallg € 12,
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fori =1,...,n. Suppose that there exists a constant 0 such that the following hold
forall (x,0) e A" x Landi =1,... ,n:

1

K <O, X1, ..., %) (5.1)

Then for everyp(-) € K* andI'(-) € Ky being locally Lipschitz, there exists @*
mappingk : K+t x K" — R with k(-, 0) = 0, a functiony(-) € K¢onand a constanp > 0,
with

k(t, x)] < 7 (sPM®)IX]), Y(t, x) € R x K" (5.2)

such that 0= %" is p-RGAS for the following system witl, d) € D := 2 x [-1, 1] as
input:

Xi=fi0,X1,..., %)+ 0O, X1, ..., %)X4+1 i=21...,n

Xna1 = K(t, X) + dI'(]X]). (5.3)

Proof. Let ¢(-) € K*. Since eachf; andg; is locally Lipschitz, uniformly in6 € {2,

Lemma 2.7 implies that there exists a functiane Kcon, such that the following
inequalities hold for allt, 0, x) e #™ x 2 x R"andi =1,...,n:

[fi(0, X1, ..., %)l <a((Xe, ..., X)) <al@®[(Xg, ..., %) (5.4a)

1910, X1, ..., %) —0(0,0,.... 0] <adXx, ..., x)) <a@O(x, ..., x)D.

(5.4b)
Furthermore, inequality (5.1) gives foe=1, ..., n:
1 1
—— < =<0 CL XD, .

Inequalities (5.4a)—(5.4c) establish that all hypotheses of Proposition 4.1 are fulfilled for
@(t) = Rp(t), whereR := 1+Supc i1 nGi(©.0,...,0).Notice that it holdse(t) >

¢(t) for all t > 0. Therefore for every locally Lipschitz functiafi(-) € Ko, there exists

a C™ mappingk : Rt x R" — R, afunction () € Kcon, aconstantp > 0, with

Ik(t, X)| < 7j(@" (t)|x]), such that = %" is ¢-RGAS for (3.63) with(6, d) € 2 x [—1, 1]

as input. Consequently, by Lemma 2.4 and inequality > #(t), it follows that 0Oe R"

is -RGAS for (5.3) with(9, d) € 2 x [—1, 1] as input. Moreover, (5.2) is satisfied for
n(s) := 7(RPs). O

REMARK 5.2 Notice that the origin for system (1.5) cannot becaprRGAS for¢ (t) =
exp(t) with the application of locally Lipschitz static time-invariant feedback (i.e. the rate
of convergence to G= R" of the solution of the closed-loop system (1.5) with a static
locally Lipschitz time-invariant feedback cannot be ‘faster’ than the exponential rate).

ExampLE 5.3 Consider the two dimensional system

X1 = 0()XZ + X2
Xo=uU (5.5)
(X1, %X2) € W2, u e f
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whered(.) : it — [—1,1]is an_unknown time-varying parameter. lget) € K* be
a function that satisfies lig, ;o % = 0, for some constant > 1. Then Oe %2 is
#-RGAS for the following system witi®, d) € [—1, 1] as input:

X1 = 0()XZ + X2

%2 = K(t. x1. x2) + d(®) x| + d(®)]xe| (5-6)

where k(t, x1, X2) is the C* time-varying feedback law, defined for somd@ > O
sufficiently large, by the following relation:

k(t, X1, X2) := —M¢Z (t) (z+ 22 + 2°)

Z:= X+ 39" (1) (x1 + x3). 6.7)

Notice that for the selection(t) = 1 € K*, the feedback law defined by (5.7) is actually
time-invariant and guarantees uniform global asymptotic stability of the origin for system
(5.6).

Next we consider the problem of partial-state feedback stabilization of autonomous
systems of the form (1.6). In the literature the usual assumption is that subsystem (1.6a)
is ISS with (x, u) as input. Here we intend to relax this hypothesis, by making use of
time-varying feedback of the form = k(t, x).

THEOREM5.4 Consider the system (1.6) and suppose that there exists a cokstan,
such that the following hold for allx, 8) € %" x 2 andi =1,...,n:

% <G, X1, ..., %). (5.8)
Furthermore suppose that the subsystem fp(z, X, u) is forward complete with(x, u)
as input and that & R™ is GAS for the systenz = fo(z, 0, 0). Then for every locally
Lipschitz functionI'(-) € Ko there exists &£ mappingk : %t x K" — 9%, with
k(t,0) = 0, for allt > 0, such that G= ™ x R" is RGAS for the following system with
0,d) e D := 2 x[—1, 1] as input:

z= fo(z, X, )
Xi=fi@, X, ..., X)+0, X, ..., X)Xi+1 i=1...,n (5.9)
U= Xnt1 = K(t, X) +dI'(]x]).

Proof. The proof is divided into three parts.

Firstpart. Weobtain estimates for the solutiart) of the subsystem (1.6a), witl, u) €
RN x N as input.

Second part.  We design a feedback law(t, x), such that Oc R" is p-RGAS for the
subsystem (1.6b) witk,1 = k(t, X) 4+ dI'(|x]), for an appropriate choice gf € K*.

Third part. We prove that 0= ™ x R" is RGAS for (5.9).
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First part

Since 0c R™Mis GAS for the subsystetn= fo(z, 0, 0), then in Angeliet al. (2000, Lemma
IV.10) and Sontag (1998, Theorem 3), there exists a smooth fun¢tion" — R+, K
functionsay, a, A, 8, such that for allz, x, u) € iM x R" x R we have

ai1(|z)) < V(2 < ax(|z) (5.10q)

AY
37 @ fo(z, X, u) < =V (@ + 11z (| (x, W]). (5.10b)

Furthermore, in Angeli & Sontag (1999, Corollary 2.11), there exists a smooth and proper
functionW : )\" — Rt and functionsaz, as, o of classK, and a constanR > 0, such
that for all(z, x, u) € ™M x K" x R we have

az(|z])) < W2 <as(|z)) + R (5.10c)

2—?(2) fo(z, X, u) < W(2) + o (J(X, W]). (5.10d)

Notice that by virtue of (5.10c), (5.10d) the solutia(t) initiated atz(tp) = zg of the
subsystem (1.6a) satisfies
t
ag(|z(t)]) < exp(t — to)as(|zol) + R) +/ expit — 7)o (|(X(7), u(r))de, Vvt > to.
to
(5.11)

On the other hand, by (5.10a), (5.10b) and (5.11) we obtain the estimaigsior=
A(Zagl(Zs)) and for all¢ € [to, t]:

ar(|z(t)]) < exp(—(t — &))az(|z(é)))

t T
+/Stk (/to exp(t — S)o (|(X(s), U(S))I)dS) 8(J(X(7), u(r))dr (5.12)

+ L L (exp(r — to) @a(lzol) + RNS(I(X(x), u(x)de, Wt > .

Second part

In Sontag (1998, Corollary 10), there exist functiapnsgz, 1 € Koo N C*((0, +00)),
such that

o(rs) < qu(r)ou(s), vr,s =0 (5.13a)
5(rs) < oz(r)ge(s), vr,s=>0 (5.13b)
x(rs) < u(r)u(s), vr,s = 0. (5.13c)

Without loss of generality, we may assume tqi'?lil, qgl € Koo NC*((0, +00)). Define
1 1

+ '
1 - —
q (exp—t)) gt (%)

o) =1+ (5.14a)
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Notice thatp € K. Consequently, by Lemma 2.2, there exists K* such that

$(t) = (1), vt > 0. (5.14b)

Furthermore, by (5.8) and Corollary 5.1, we have that for every locally Lipschitz function
I'(:) € Ky there exists £ mappingk : it x ®R" — R, afunctionn € Q, aconstant
p > 0, with

k(t, x)] <7 (sPM®IX]), Y(t, x) € R x K" (5.15)

such that 0= %" is p-RGAS for the following system witl, d) € D := 2 x [-1, 1] as
input:

Xi = fi(03xlv-~-sxi)+gi(9sxlv"'sxi)xi+l i=1,...,n

Xni1 = K(t, X) + dI'(|x]). (5.16)

Third part

Since isp-RGAS for (5.16) with input6, d) € Mp, by Lemma 2.4 it follows that there
exist aK L function¢ and aK * function 8, such that

PPTLOIXM)] < ¢ (B(to)IXol, t — o), Vit = to (5.17)

wherep > 0 is the constant involved in (5.15). Moreover, applying Lemma 2.7 for the
even extension of '(-) on (which is locally Lipschitz), we find that there exists a function
I'() € K¢onsuch that

I's) < I'(s), ¥s> 0. (5.18)

Inequalities (5.15), (5.17), (5.18) and the fact that) € Kcon, imply that the following
estimate holds for all > t:

[(X(), u®)| < [x@®)| + IU(t)|~= IX®)] + [K(t, X () +dE) I (IXE)D]

< XM+ 71 (@POIXM®) + LX)

dn o ar o p
< <1+ o (PPOIXM®)]) + & (¢ (t)|X(t)|)>¢ OIxM®)]
1
WH (B(to)I%ol) ¢ (B(to)[Xol, t — to) (5.19)

whereH (s) := 1+ s (¢C(s, O))+ (;(s 0)) is a continuous, positive and non-decreasing
function. By (5. 13a) and (5.19) |t foIIows that

/ exp(t — s)o (|(X(s), u(s))ds < exp(r)dy (Z (ﬂ(to)lxol))/ i1 <¢( )) ds, VT > 1o

to

whereZ(s) := H(s)¢(s,0), Z € K. On the other hand (5.14) implies thad (%) <
exp(—t), which in conjunction with the latter inequality gives

/t exp(t — s)o (|(X(s), u(s))ds < exp(r)ds (Z (B(to)[Xol)) , VT = to. (5.20)
0
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The above inequality, combined with (5.12), (5.13b), (5.13c) and (5.19) gives forall
[to, t]:

ay(|z(D)]) < exp(—(t — &)az(1z(§)1)

(5.21a)
+02 (Z (B(to)[X0l)) [11 (A1 (Z (B(to) [X0]))) + 1 (@a(lzo]) + R I (L, &)
t 1
I(t,&) = / w(exp(r))oe <—> dr. (5.21b)
£ #(7)

As previously, using (5.14) we may establish tha@exp(t))ap (ﬁ) < exp(—t) and thus

ar(|z)) < exp(—(t —&)ax(|z(5)) +
+exp(—§)qz2 (Z (B(to) [xal)) [N« (01 (Z (B(to) [%al))) 1 (aa(|Z0l) + R)]
forall £ € [to, t] andt > &. (5.22)

The inequality above and (5.17) imply thatcOR™ x %" is RGAS for (5.9). In order to
establish this fact, notice that, by virtue of (5.17) and (5.22), fofralk 0 andr > O, it
holds

sup{|(z(t), x()[; (0, d) € Mp, t > to, [(20, X0)| < T, to € [0, T]} < G(B(T)r) (5.23a)

G(s) 1= £(s,0) +a; " (a2(S) + G2 (Z() [ (A1 (Z(9) +  (R+au(s)])  (5.23b)

whereG is a classK function. This establishes stability. In order to prove attractivity
lete > 0,r > 0andT > 0. There exists & = 1(¢, T,r) > T, such that

exp(—&)(Z(BMINIu@u(Z(BMIr)) + n@ar) + R < a(e), forall & > 7. It
follows from (5.17), (5.22) and (5.23) that for &lE> t it holds

sup{|(z(t), x(t)|; (0, d) € Mp, [(z0, X0)| <T,to € [0, T]}
<CBMILt—T) +ag (exp(—(t — 1))a(G(BTIN) + a1(e)).

This proves tha% “T sup{|(z(t), x(t))]; (8,d) € Mp, |(zg, X0)| <T,tp [0, T]} < e.
— 400
<

Sinces > 0Qisarbitrary we have thatltIiT sup|(z(t), x()[; (0,d) € Mp, |(zo, X0)| < T,
— 100
to € [0, T]} = 0. The proof is complete. O
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Appendix

Proof of Lemma 2.2 The implications (i)—(iii) are obvious. We only prove the last
statement of the lemma. Define the function

wo=| o he ois-t (A1)
Clearlyu(-) € Ky and satisfies
pt) <un(e), vt =0. (A.2)
Define the function
0 if s=0
p(s) == { m if 0<s. (A.3)

Again we have thap(-) € Ky and !et,é(~) € Ky NC®((0, +00)) be a function with
%(S) > 1foralls > 0and limg_, o+ @ = +00, that satisfieg(s) > p(s) forall s > 0.
Thus by (A.3) we have

<P ¥s>0 =pu(d)< 1

_ _r
pt (%) pt(e)

vt > 0. (A.4)
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Define

1
Aty
Sincep(r) € Koo N C((0, +00)) with d (s) > 1forall s > 0, we easily establish that

() € C®M™) and thatp(-) is non- decreasmg Furthermore, su’%e(s) 1 for all

s > 0and lims_ ¢+ 28 = 400, it follows that 0< dp (s) < 1, for alls > 0. This fact

and definition (A.5) imply

dé - dpTt
5= "’2(‘)?(8 Ye

o) := (A.5)

b < grme™.

1
EZ0)
(using the implied inequalitg—1(s) < sforall s > 0) thaté(t) > & > 1, forallt >
Consequently, we conclude that) € K*. Moreover, by (A.2), (A.4) and definition (A.5)
we get thaip (t) < ¢(t), for all t > 0. The proof is complete. O

The latter inequality gives lim, 100 —— dt (t) = 0. Notice that we can easily establish

Proof of Lemma 2.4. Implications (i) and (ii) are immediate consequences of the definition
of »-RGAS and the fact thap(t) > 1, for allt > 0. We focus on implication (iii). Let
p > 0and consider the time-varying transformation

z:=¢P)x. (A.6)

Clearly, z(t) satisfies the following system of differential equations:

1(9)
ze®"t>0,deD.

_ o0 p _z
z=0p zZ+¢ (t)f(t,¢p(t),d>

The fact that 0= R" is p-RGAS for (1.1) and definition (A.6) imply that & R" is RGAS
for the system above witth as input. Furthermore, Proposition 2.2 in Karafyllis & Tsinias
(2002b) guarantees the existence ¢ b functiono (-) and aK ™ function 8(-) such that

2] <o (Atlzol.t —to) , Yt > to. (A7)

The desired (2.2) is a consequence of inequality (A.7), definition (A.6) and the selection
B = BL)PP).

Proof of Lemma 2.6. The statements (i)—(ii) are obvious. We prove statements (iii)—(iv).
(i) Define the function

y(s) :=s+ sup |a(r)|. (A.8)
0<t<s

Clearlyy € CO(%*) and is strictly increasing with

a(s) < y(s), vs> 0. (A.9)
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Leth : % — 9%t be aC™ function withh(s) = 0if s ¢ (0,1) and [, h(s)ds =
fol h(s)ds = 1. Define the function

1
7(S) ::/ y(w)h(w — s)dw = / y (s + w)h(w)dw. (A.10)
%R 0

Clearlyy e C*®(%™), isnon-decreasing and satisfies
y(s) <y(s) <y(s+1), Vs> 0. (A.11)

Letr > O be an arbitrary constant and define the following functions:

(;—J;(r)+1 if 0<s<r
3(s) ;= dy . (A.12)
sup —(r)+1 if s>r
r<r<s ds
S
B(s) = / S(w)dw. (A.13)
0

Since by definition (A.12)§ is continuous, non-decreasing and satisfigs > 1,Vs > 0,
we have thap € K¢on. Notice that fors > r we get by (A.12) and (A.13)

S
B(S) >f sw)dw > 7(5) — 7(1)
r

and the latter inequality in conjunction with (A.9) and (A.11) implies th@) < R+ (s),
Vs> 0,forR=y(r).

(iv) Inequality (2.3a) is a consequence of the inequdlity) < a(rs), which holds for
all A > lands > 0. The right-hand side of inequality (2.3b) is a well-known property of
the functions of clas&. The left-hand side of inequality (2.3b) is a consequence of the
inequalitya(s;) < a(sy + s2), which holds for alls; > 0 ands, > 0.

The proof is complete. O

Proof of Lemma 2.7. Sincef is locally Lipschitz inx, uniformly in 9, there exist constants
L,r > 0, such that

[f@,x)] < L|X|, V8 € 2, for |x| <. (A.14)
Consider the function

B(S) = fu;?”(e’ X)|. (A.15)
IXI<s

Clearly, the mapping(-) is continuous and non-decreasing wit0) = 0. Furthermore
by (A.14) we have

B(s) < Ls, for s<r. (A.16)
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Clearly the functior; (s) = 2 szsﬂ(w)dw belongs to the clask, N C1((0, +00)) and
satisfies; (s) > B(s) for all s > 0. Define the functions:

3i ( ) for 0<s< %
5(S) := sup d¢ ( ) for s> r (A.17)
= > -
I’?grgs dS 2
S
a(s) := AS+/ 8(w)dw (A.18)
0
5= maxlL 41,2 (5) (A.19)
= , r{ 5) [ .

Sinces is a continuous, non-decreasing function we have ghat K¢on. We claim that
(2.4) is satisfied. Notice that(s) > As > (L + 1)s and consequently for alk| < r and
0 € {2, weobtain using (A.14)

10,1 < LIx| < a(x).

On the other hand, fa > % by (A.17) and (A.19) we have that

2 S r Sde¢
a) =As+/ 8(w)dw+/ 5 (w)cw >A§+/ S > 9 > O
0 5 5

The proof is complete. O

Proof of Lemma 2.8. Leth : it — R+ be aC™ function that satisfiel(s) = 0, Vs ¢
(0,1) and [y, h(s)ds = fol h(s)ds = 1. Define

acs) := f a(wh(u —s)du —/ a(uh(u)du. (A.20)
Rt "+
Notice thata(0) = 0 anda € C*° (% T). Furthermore, we have

1
acs) = / (a(s+ w) — a(w))h(w)dw. (A.22)
0

Clearly by virtue of (2.3b) of Lemma 2.6 and (A.21), it follows that (2.5) holds. Moreover

by (A.21) we get
—( )—/ d—(s+ w)h(w)dw (A.22)

which implies thatg—i1 (s) is non-decreasing and positive. Therefare KconN C®(RH).
DefineR := g—g(Zr) for somer > 0 and notice that we also have

a(s) < Rs, Vse [0, 2r]. (A.23)
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Finally, define

i Rs for 0<s<r
B(s) = (A.24)

Rs + ex ! 1 aks) fors>r
- — — >T.

P rs—r
Clearly 8 € C*® (%) and its odd extensiof(-) is also a smooth function dh. Moreover

by (2.5), (A.23) and definition (A.24) we have thats) < B(s), Vs > 0. By virtue of (i)
of Lemma 2.6, there exid?! > 0 ands € Kc¢on SUch thatg—‘;‘ (s) < M + é(s) and since

SUR-o = exp(—%) < 4, we can easily verify that (2.6) and (2.7) are satisfied for

R:=R+M exp<%>

y(s) == Sexp<r}> (4(s) + 8(5)) + Rs.

The proof is complete. O

Proof of Lemma 2.9. In order to prove (2.10), let > 0,tg > 0,t > tg and notice that for
the solutionB(t, tg, r) of (2.11) we have

%ﬁ(t —1,t0,1) =p(@pt —v)B(t —7,10,1)), VT € [0, t — to]. (A.25)

Let a vectorx € Eﬁ(t,to,r) be the initial condition for the problem

-
E(T) =—ft—-r1¢&d) (A.26)
&0 =x,deD,7>0.

This is the time-reversed system (1.1). It is clear by virtue of (2.8) that the following
differential inequality is satisfied:

DHIE(D)| < p(¢(t — DIE@D, Y € [0, 1]. (A.27)

It follows by (A.25), (A.27) and the comparison Lemma in Khalil (1996), that
lE()] < Bt — 7,10, 1), VT € [0, t —to]. (A.28)
Sincep(to, to, r) = r, inequality (A.28) shows that there exists € B, andd € Mp such

thati(t, to, Xo; d) = X and it is given byxg = &(t — tp) for the particulad € Mp. Since
X € Bgt.to,r) is arbitrary, it follows that (2.10) holds. The proof is complete. O



