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a b s t r a c t

Robustness is established for the predictor feedback for linear time-invariant systems with respect
to possibly time-varying perturbations of the input delay, with a constant nominal delay. The prior
results have addressed qualitatively constant delay perturbations (robustness of stability in L2 norm
of actuator state) and delay perturbations with restricted rate of change (robustness of stability in H1

norm of actuator state). The present work provides simple formulas that allow direct and accurate
computation of the least upper bound of the magnitude of the delay perturbation for which the
exponential stability in supremum norm on the actuator state is preserved. While the prior work has
employed Lyapunov–Krasovskii functionals constructed via backstepping, the present work employs
a particular form of small-gain analysis. Two cases are considered: the case of measurable (possibly
discontinuous) time-varying perturbations and the case of constant perturbations.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Linear predictor feedback has been used widely for the stabi-
lization of linear time-invariant systems with constant input de-
lays. Artstein in Artstein (1982) was the first to provide a rigorous
extension of the so-called Smith predictor (see Krstic, 2009 and
the discussion therein). Many applications and extensions of the
linear predictor feedback have appeared in the literature (see for
instance Lozano, Castillo, Garcia, & Dzul, 2004, Mazenc, Mondie, &
Francisco, 2004, Mirkin & Raskin, 2003, Niculescu, 2001). More re-
cently, research efforts have been focused on nonlinear extensions
of predictor-based feedback for nonlinear systems with input de-
lays (see Bekiaris-Liberis & Krstic, 2013, Karafyllis, 2011, Karafyl-
lis & Krstic, 2012; Krstic, 2004, 2008, 2009, 2010a), on the imple-
mentation issues of linear predictor feedback (see Zhong &Mirkin,
2002, Zhong, 2004, Zhong, 2010 and references therein) and on dif-
ferent types of linear predictor feedback (see Zhou, Lin, & Duan,
2012).

However, the study of robustness properties of the linear
predictor feedback with respect to perturbations of the input

✩ The material in this paper was not presented at any conference. This paper was
recommended for publication in revised form by Associate Editor Hiroshi Ito, under
the direction of Editor Andrew R. Teel.
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(M. Krstic).
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delay are rather scarce. To the best of our knowledge, the first
robustness study for perturbations of the input delay appeared
in Krstic (2008), where Lyapunov techniques were employed.
An alternative delay-robustness result for constant delays was
presented in Section 5.3 in Krstic (2009). The efforts were
continued in Bekiaris-Liberis and Krstic (2013), where Lyapunov
functionals were proposed for the robustness study for time-
varying delays and perturbations. The results in Bekiaris-Liberis
and Krstic (2013) showed that, not only themagnitude but also the
rate of change of the delay perturbation may be important for the
robustness analysis. The norm on the actuator state in which the
stability was studied was L2 in Krstic (2008) and H1 in [10, Section
5.3] and Bekiaris-Liberis and Krstic (2013).

In this work, we consider the system:

ẋ(t) = Ax(t) + Bu(t − r − εd(t))
x(t) ∈ ℜ

n, u(t) ∈ ℜ
m, d(t) ∈ [−1, 1], for t ≥ 0, a.e. (1.1)

where 0 < ε ≤ r are constants. The linear predictor feedback is
based on the constant nominal value of the delay r > 0:

u(t) = k exp(Ar)x(t) + k
 t+r

t
exp(A(t + r − s))

× Bu(s − r)ds, for t ≥ 0 (1.2)

where k ∈ ℜ
m×n is a constant matrix such that the matrix (A +

Bk) is Hurwitz. We show that, provided that ε > 0 is sufficiently
small, there exist constants Q , σ > 0 such that for all x0 ∈ ℜ

n,
u0 ∈ C0 ([−r − ε, 0]; ℜ

m) with u0(0) = k exp(Ar)x0 + k
 0
−r
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exp(−As)Bu0(s)ds the solution (x(t), u(t)) ∈ ℜ
n

× ℜ
m of (1.1),

(1.2) with initial condition x(0) = x0, u(t) = u0(t) for t ∈

[−r − ε, 0] satisfies the following exponential stability estimate
in the supremum norm of the actuator state:

|x(t)| + max
t−ε−r≤s≤t

(|u(s)|)

≤ Q exp (−σ t)


|x0| + max
−ε−r≤s≤0

(|u0(s)|)


, ∀t ≥ 0 (1.3)

for arbitrary disturbance d : ℜ+ → [−1, 1] that belongs to one of
the following classes:

(1) The perturbation d : ℜ+ → [−1, 1] is an arbitrary measurable
function, i.e., d ∈ L∞ (ℜ+; [−1, 1]) (Theorem 2.1).

(2) The perturbation d : ℜ+ → [−1, 1] is constant (Corollary 2.3).

Clearly, (1.3) shows robust global exponential stability for the
closed-loop system (1.1), (1.2). The estimation of ε > 0 will be
given by explicit inequalities, which are derived by small-gain
arguments. The inequalities can be used easily by the control
practitioner in order to guarantee the successful application of the
linear predictor feedback control strategy.

Notation. Throughout the paper we adopt the following
notation:

∗ For a vector x ∈ ℜ
n we denote by |x| its usual Euclidean norm,

by x′ its transpose. For a real matrix A ∈ ℜ
n×m, A′

∈ ℜ
m×n de-

notes its transpose and |A| := sup { |Ax| ; x ∈ ℜ
n , |x| = 1 } is

its induced norm. I ∈ ℜ
n×n denotes the identity matrix.

∗ ℜ+ denotes the set of non-negative real numbers.
∗ Let I ⊆ ℜ be an interval and U ⊆ ℜ

m be a set. By L∞ (I;U)
we denote the space of measurable and essentially bounded
functions u( · ) defined on I and taking values in U ⊆ ℜ

m. By
supt∈I |u(t)| we denote the essential supremum for a function
u ∈ L∞ (I;U). For u ∈ L∞(I;U) we denote by ∥u∥ the
essential supremum of u on I ⊆ ℜ. If I ⊆ ℜ is an unbounded
interval, then by L∞

loc (I;U) we denote the space of measurable
and locally essentially bounded functions u( · ) defined on I and
taking values in U ⊆ ℜ

m. By C0 (I;U) we denote the space
of continuous functions u( · ) defined on I and taking values in
U ⊆ ℜ

m.

Throughout the paper, all differential equationswith right hand
sides which are measurable in t ≥ 0 are required to hold almost
everywhere (a.e.). Moreover, all quantities involving point values
of measurable functions are assumed to hold almost everywhere.
This happens because the measurable functions are equivalent
classes of functions (which are insensitive to variations on a
measure zero set).

2. Main results

Arbitrary measurable perturbations d ∈ L∞ (ℜ+; [−1, 1]) of
the delay canbe considered for system (1.1). Indeed,wenotice that,
this fact follows from the consideration of system (1.1) with

u̇(t) = k exp(Ar) (Ax(t) + Bu(t − r − εd(t)) − Bu(t − r))

+ kA
 0

−r
exp(−As)Bu(t + s)ds + kBu(t). (2.1)

Differential equation (2.1) is obtained by formally differentiat-
ing (1.2) with respect to t ≥ 0. System (1.1) with (2.1) is a lin-
ear autonomous system described by Retarded Functional Differ-
ential Equations with disturbance d ∈ L∞ (ℜ+; [−1, 1]) and state
space ℜ

n
× C0 ([−r − ε, 0]; ℜ

m) and satisfies all hypotheses (S1),
(S2), (S3), (S4) in Karafyllis and Jiang (2011) for the existence and
uniqueness of solutions, for the robustness of the equilibriumpoint

and for the ‘‘Boundedness-Implies-Continuation’’ property. If we
define the subspace

S :=


(x, u) ∈ ℜ

n
× C0 

[−r − ε, 0]; ℜ
m

:

u(0) = k exp(Ar)x + k
 0

−r
exp(−As)Bu(s)ds

 (2.2)

thenwe are in a position to guarantee that S is a positively invariant
set for system (1.1) with (2.1). Moreover, every solution of (1.1)
with (2.1) and initial condition (x0, u0) ∈ S is a solution of
(1.1), (1.2) and every solution of (1.1), (1.2) with initial condition
(x0, u0) ∈ S is a solution of (1.1) with (2.1). Finally, we notice
that, there exist constants M, L > 0 such that for every ε > 0,
x0 ∈ ℜ

n, u0 ∈ C0 ([−r − ε, 0]; ℜ
m) , d ∈ L∞ (ℜ+; [−1, 1]) with

u0(0) = k exp(Ar)x0+k
 0
−r exp(−As)Bu0(s)ds the unique solution

x ∈ C0 (ℜ+; ℜ
n) , u ∈ C0 ([−r − ε, +∞); ℜ

m) of system (1.1),
(1.2) with initial conditions x(0) = x0, u(t) = u0(t) for t ∈

[−r − ε, 0] satisfies the exponential growth estimate:

|x(t)| + |u(t)| ≤ M exp (Lt)


|x0| + max
−r−ε≤s≤0

|u0(s)|


,

∀t ≥ 0. (2.3)

The existence of constants M, L > 0 satisfying estimate (2.3)
follows directly from the integral representation of the solution of
(1.1) with (2.1) and the Gronwall–Bellman Lemma.

It should be noticed that, discontinuities of u(t) cannot
be handled in this framework: the initial condition u0 ∈

C0 ([−r − ε, 0]; ℜ
m)must be continuous andmust satisfy (1.2) for

t = 0. The reason for this regularity requirement is that, the right
hand side of (1.1) and (2.1) must be measurable in t ≥ 0. Since the
disturbance d ∈ L∞ (ℜ+; [−1, 1]) is measurable, the only way to
guarantee this regularity requirement is to demand continuity of
u(t) (the composition of a continuous function with a measurable
one gives a measurable function).

Our main result is the following theorem, which provides
an explicit inequality for the magnitude ε > 0 of the delay
perturbation under which robust global exponential stability for
the closed-loop system (1.1), (1.2) is guaranteed.

Theorem 2.1. Consider system (1.1), (1.2), where 0 < ε ≤ r
are constants, A ∈ ℜ

n×n, B ∈ ℜ
n×m, k ∈ ℜ

m×n and (A +

Bk) is Hurwitz. There exist constants Q , σ > 0 such that for all
d ∈ L∞ (ℜ+; [−1, 1]) , x0 ∈ ℜ

n, u0 ∈ C0 ([−r − ε, 0]; ℜ
m)

with u0(0) = k exp(Ar)x0 + k
 0
−r exp(−As)Bu0(s)ds the solution

(x(t), u(t)) ∈ ℜ
n
× ℜ

m of (1.1), (1.2) with initial condition x(0) =

x0, u(t) = u0(t) for t ∈ [−r − ε, 0] satisfies estimate (1.3), provided
that the following inequality holds:

Θ |exp(Ar)Bk| (exp (|A + Bk| ε) − exp (−λε)) < λ (2.4)

where Θ, λ > 0 are the constants satisfying |exp ((A + Bk) t)| ≤

Θ exp (−λt) for all t ≥ 0. Moreover, if n = 1 then the
inequality (2.4) can be replaced by the inequality

2 |Bk| exp(Ar) (1 − exp (− |A + Bk| ε)) < |A + Bk| . (2.5)

Remark 2.2. Since the left hand-side of inequality (2.4) becomes
zero for ε = 0, by continuity, there exists ε > 0 (sufficiently small)
such that inequality (2.4) holds. The least upper bound value for
ε > 0 can be determined numerically.

For the case of constant perturbations of the delay, we obtain
the following result.
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Corollary 2.3. Consider the system

ẋ(t) = Ax(t) + Bu(t − τ)

x(t) ∈ ℜ
n, u(t) ∈ ℜ

m (2.6)

with (1.2), where τ , r ≥ 0 are constants, A ∈ ℜ
n×n, B ∈ ℜ

n×m, k ∈

ℜ
m×n and (A + Bk) is Hurwitz. The zero solution of the closed-loop

system is Globally Exponentially Stable if and only if all roots of the
following equation:

det (sI − (A + Bk) + exp(Ar)Bk
× (exp (−rs) − exp (−τ s))) = 0 (2.7)

have negative real parts.

Let Fr ⊆ ℜ+ denote the set of all τ ≥ 0, for which the
roots of Eq. (2.7) have negative real parts, for fixed r ≥ 0, A ∈

ℜ
n×n, B ∈ ℜ

n×m and k ∈ ℜ
m×n. The reader should notice that

Theorem 2.1 guarantees that there exists ε ∈ (0, r] such that for
all (r − ε, r + ε) ⊆ Fr . However, Corollary 2.3 does not guarantee
that Fr ⊆ ℜ+ is a convex set of ℜ+, i.e., an interval. Indeed, one
cannot exclude the possibility of having two delays τ2 > τ1 in Fr
and a delay value τ ∈ (τ1, τ2) with τ ∉ Fr . The structure and the
topological properties of the set Fr ⊆ ℜ+ are open problems.

The following example illustrates the use of inequality (2.5) and
Corollary 2.3.

Example 2.4. Consider the scalar system

ẋ(t) = x(t) + u(t − 1 − εd(t))
with x(t) ∈ ℜ, u(t) ∈ ℜ, d(t) ∈ [−1, 1] (2.8)

where ε > 0. For this example A = 1 = B = r and we may choose
k = −p, where p > 1. Theorem2.1 guarantees that the closed-loop
system (2.8) with

u(t) = −pe x(t) − p
 1

0
exp(s)u(t − s)ds (2.9)

and d ∈ L∞ (ℜ+; [−1, 1]) is robustly globally exponentially stable
provided that ε > 0 satisfies

ε <
1

p − 1
ln


2pe

2pe − p + 1


. (2.10)

In other words, system (2.8) with (2.9) is robustly globally
exponentially stable provided that τ(t) ∈ (τmin, τmax), where
τ(t) = 1 + εd(t), τmin = 1 − ε, τmax = 1 + ε and ε =

1
p−1 ln


2pe

2pe−p+1


.

On the other hand, if constant delay perturbations are
considered, then the roots of the equation s + (p − 1) +

p exp (1 − τ s) − p exp (1 − s) = 0 must have negative real parts.
For every value of p > 1 there exist delay values 0 < τmin <
1 < τmax such that if τ ∈ (τmin, τmax) then all roots of the equation
s+ (p−1)+p exp (1 − τ s)−p exp (1 − s) = 0 have negative real
parts. In order to determine the range of values of τ for which the
roots of the equation s+(p−1)+p exp (1 − τ s)−p exp (1 − s) = 0
have negative real parts, we determine the curves in the parameter
plane (the (p, τ ) plane) composed of points for which there exists
ω ∈ ℜ such thatωj+(p−1)+p exp (1 − τωj)−p exp (1 − ωj) = 0,
where j is the imaginary unit. The procedure that we follow for
every p > 1, is:

(i) first we find numerically all solutions ω ∈ (0, 2pe) of the
equation (p − 1) cos(ω) − ω sin(ω) =

(p−1)2+ω2

2pe (which is

obtained from the equations cos(ωτ) − cos(ω) = −
p−1
pe and

sin(ωτ) − sin(ω) =
ω
pe ),

(ii) for every ω ∈ (0, 2pe) found from the previous step, we
determine the unique solution φ ∈ ℜ of the equations
cos(φ) = cos(ω) −

p−1
pe and sin(φ) = sin(ω) +

ω
pe ,

(iii) we find the positive solutions of τ =
φ+2kπ

ω
, where k is an

arbitrary integer, and
(iv) finally, we collect all positive values of τ =

φ+2kπ
ω

from the
previous step and we find the highest value of τ that is less
than 1 (this is τmin) and the lowest value of τ that is higher
than 1 (this is τmax).

The results are shown in Fig. 1 both for time-varying delay
perturbations which are measurable (where τmin = 1 − ε,
τmax = 1 + ε and ε =

1
p−1 ln


2pe

2pe−p+1


) and for constant delay

perturbations.
The bounds for the magnitude of the delay perturbation

obtained from (2.10) are about 50% of the bounds obtained
for constant perturbations. However, this is expected since
(2.10) applies for time-varying delay perturbations which are
measurable. Moreover, notice that, the curves of τmin and τmax
obtained for constant perturbations are not perfectly symmetric
around 1. �

The proof of Theorem 2.1 relies on the following theorem.

Theorem 2.5. Consider the system

ẋ(t) = Ax(t) + q(t)C (x(t − r − εd(t)) − x(t − r))
x(t) ∈ ℜ

n, d(t) ∈ [−1, 1], q(t) ∈ [−1, 1],

for t ≥ 0, a.e. (2.11)

where d ∈ L∞ (ℜ+; [−1, 1]) , q ∈ L∞ (ℜ+; [−1, 1]) , A, C ∈ ℜ
n×n

are constant matrices, r ≥ ε ≥ 0 are constants and A ∈ ℜ
n×n is

Hurwitz. Suppose that

Θ |C | (exp (|A| ε) − exp (−λε)) < λ (2.12)

where Θ, λ > 0 are constants satisfying |exp (At)| ≤ Θ exp (−λt)
for all t ≥ 0. Then there exist constants Q , σ > 0 such that
for all d ∈ L∞ (ℜ+; [−1, 1]) , q ∈ L∞ (ℜ+; [−1, 1]) , x0 ∈

C0 ([−r − ε, 0]; ℜ
n) the solution x(t) ∈ ℜ

n of (2.11) with initial
condition x(t) = x0(t) for t ∈ [−r − ε, 0] that corresponds to inputs
d ∈ L∞ (ℜ+; [−1, 1]) , q ∈ L∞ (ℜ+; [−1, 1]), satisfies the following
estimate

|x(t)| ≤ Q exp (−σ t) ∥x0∥ , ∀t ≥ 0. (2.13)

Moreover, if n = 1 then inequality (2.12) can be replaced by the
inequality

2 |C | (1 − exp (− |A| ε)) < |A| . (2.14)

The proof of Theorem2.5 is based on a small-gain argument and
is provided in the following section. The small-gain argument for
the proof of Theorem 2.5 was inspired by the results contained
in Teel (1998), but the methodology of the proof is essentially
different from that followed in Teel (1998).

Finally, the proofs of Theorem 2.1 and Corollary 2.3 are based
on the following result, which has its own interest.

Proposition 2.6. Consider system (1.1), (1.2), where 0 < ε ≤ r are
constants, A ∈ ℜ

n×n, B ∈ ℜ
n×m, k ∈ ℜ

m×n and (A + Bk) is Hurwitz.
Let Ω ⊆ L∞ (ℜ+; [−1, 1]) be a set of time-varying inputs which is
invariant under time translation, i.e., if d ∈ Ω then for every s > 0
the input d̃ : ℜ+ → [−1, 1] defined by d̃(t) = d(t + s) for all
t ≥ 0 is in Ω ⊆ L∞ (ℜ+; [−1, 1]). There exist constants Q , σ > 0
such that for all d ∈ Ω, x0 ∈ ℜ

n, u0 ∈ C0 ([−r − ε, 0]; ℜ
m)

with u0(0) = k exp(Ar)x0 + k
 0
−r exp(−As)Bu0(s)ds the solution

(x(t), u(t)) ∈ ℜ
n
× ℜ

m of (1.1), (1.2) with initial condition x(0) =
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Fig. 1. τmin and τmax for the closed-loop system (2.8) with (2.9). The solid line is for
measurable delay perturbations as calculated by (2.10) and the dashed line is for
constant delay perturbations.

x0, u(t) = u0(t) for t ∈ [−r − ε, 0] satisfies estimate (1.3), if and
only if there exist constants Q̃ , σ̃ > 0 such that for all d ∈ Ω, p0 ∈

C0 ([−r − ε, 0]; ℜ
n), the solution p(t) ∈ ℜ

n of

ṗ(t) = (A + Bk)p(t) + exp(Ar)
× Bk (p(t − r − εd(t)) − p(t − r)) (2.15)

with initial condition p(t) = p0(t) for t ∈ [−r − ε, 0] corresponding
to input d ∈ Ω satisfies the following estimate

|p(t)| ≤ Q̃ exp (−σ̃ t) max
−ε−r≤s≤0

(|p0(s)|) , ∀t ≥ 0. (2.16)

Remark 2.7. The proof of Theorem 2.1 relies on showing the
exponential stability properties of the system (2.15), where
p(t) = exp(Ar)x(t) +

 t+r
t exp(A(t + r − s))Bu(s − r)ds is the

‘‘predictor state’’. The exponential stability properties of system
(2.15) are guaranteed by means of Theorem 2.5. On the other
hand Example 2.4 showed that the allowable magnitude for time-
varying delay perturbations which are measurable is less than the
magnitude obtained for constant perturbations from Corollary 2.3.
We do not know if the conservatism is due to the small-gain
approach (which is used for the proof of Theorem 2.5) or if the
conservatism is due to the possibility that the stability analysis
for delay perturbations depends not only on the magnitude of the
perturbation but also on the rate of change of the perturbation. The
latter implies that the rate of change of the perturbation may be
important in stability analysis. Indeed, the recent work (Bekiaris-
Liberis & Krstic, 2013) has provided the construction of a Lyapunov
functional for delay perturbationswith constrained rate and recent
results in Cloosterman, van de Wouw, Heemels, and Nijmeijer
(2009) have showed that time-varying delays aremore demanding
than constant (uncertain) delays.Moreover, it should benoted that,
for the time-varying delay perturbations with sufficiently small
rate of change there exists a function φ : ℜ+ → [0, r + ε],
which satisfies φ(t) = r + εd (t + φ(t)) for all t ≥ 0: these
are exactly the class of delays considered in Krstic (2010b) for
which the following linear time-varying predictor feedback can be
applied for the stabilization of (1.1):

u(t) = k exp(Aφ(t))x(t) + k
 t+φ(t)

t
exp(A(t + φ(t) − s))

× Bu(s − r − εd(s))ds, for t ≥ 0 (2.17)

provided that the function d : ℜ+ → [−1, 1] is known.

3. Proofs of main results

We start with the proof of Theorem 2.5.

Proof of Theorem 2.5. If (2.12) holds, then (by continuity) there
exists σ ∈ (0, λ) such that:

exp (σ (r + ε))
Θ |C |

λ − σ


1 − exp (−(λ − σ)ε)

+ (exp (|A| ε) − 1)


< 1. (3.1)

Let d ∈ L∞ (ℜ+; [−1, 1]) , q ∈ L∞ (ℜ+; [−1, 1]) , x0 ∈

C0 ([−r − ε, 0]; ℜ
n) be arbitrary and consider the solution x(t) ∈

ℜ
n of (2.11) with initial condition x(t) = x0(t) for t ∈ [−r −

ε, 0] that corresponds to inputs d ∈ L∞ (ℜ+; [−1, 1]) , q ∈

L∞ (ℜ+; [−1, 1]). We define:

v(t) = x(t − r) − x(t − r − εd(t)) (3.2)
∥x∥[t1,t2] := max

t1≤s≤t2
(exp (σ s) |x(s)|) ,

∥v∥[t1,t2] := sup
t1≤s≤t2

(exp (σ s) |v(s)|) (3.3)

for every t1 ≤ t2 and we distinguish the following cases:
Case 1: d(t) ≤ 0. In this case, the following formula holds for

the solution of system (2.11) for almost all t ≥ r:

−v(t) = (exp (Aε |d(t)|) − I) x(t − r)

−

 t−r−εd(t)

t−r
exp (A(t − r − εd(t) − s)) q(s)Cv(s)ds.

(3.4)

Using the fact that |exp (At)| ≤ Θ exp (−λt) for all t ≥ 0 and
the fact that |exp(At) − I| ≤ exp (|A| |t|) − 1, for all t ∈ ℜ, we
obtain from (3.4) for almost all t ≥ r:

|v(t)| exp (σ t) ≤ exp (σ r) (exp (|A| ε) − 1) |x(t − r)|

× exp (σ (t − r)) + Θ exp (σ r)
1 − exp (−(λ − σ)ε)

λ − σ

× |C | sup
t−r≤s≤t−r+ε

(exp (σ s) |v(s)|) . (3.5)

Indeed, using the fact that |exp (At)| ≤ Θ exp (−λt) for all
t ≥ 0, we get: t−r−εd(t)

t−r
exp (A(t − r − εd(t) − s)) q(s)Cv(s)ds


≤

 t−r−εd(t)

t−r
|exp (A(t − r − εd(t) − s))| |q(s)| |C | |v(s)| ds

≤ |C |

 t−r−εd(t)

t−r
|exp (A(t − r − εd(t) − s))| |v(s)| ds

≤ |C | Θ

 t−r−εd(t)

t−r
exp (−λ(t − r − εd(t) − s)) |v(s)| ds

≤ |C | Θ exp (−λ(t − r − εd(t)))

×

 t−r−εd(t)

t−r
exp ((λ − σ)s) exp (σ s) |v(s)| ds

≤ |C | Θ exp (−λ(t − r − εd(t)))

×

 t−r−εd(t)

t−r
exp ((λ − σ)s) ds sup

t−r≤s≤t−r+ε
(exp (σ s) |v(s)|)

≤ |C | Θ exp (−σ(t − r))
1 − exp (−(λ − σ)ε)

λ − σ

× sup
t−r≤s≤t−r+ε

(exp (σ s) |v(s)|) .

The above inequality in conjunction with (3.4) and the fact that
| exp(At) − I| ≤ exp(|A||t|) − 1, for all t ∈ ℜ, implies (3.5).
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A direct consequence of definition (3.3) and inequality (3.5) is
the following inequality which holds for all t ≥ r:

∥v∥[r,t] ≤ exp (σ r) (exp (|A| ε) − 1) ∥x∥[0,t−r]

+ Θ exp (σ r)
1 − exp (−(λ − σ)ε)

λ − σ
|C | ∥v∥[0,t−r+ε] . (3.6)

Case 2: d(t) ≥ 0. In this case, the following formula holds for
the solution of system (3.13) for almost all t ≥ r + ε:

v(t) = (exp (Aε |d(t)|) − I) x(t − r − εd(t))

−

 t−r

t−r−εd(t)
exp (A(t − r − s)) q(s)Cv(s)ds. (3.7)

Similarly as in the previous case, using (3.7), we show that the
following inequality holds for all t ≥ r + ε:

∥v∥[r+ε,t] ≤ exp (σ (r + ε)) (exp (|A| ε) − 1) ∥x∥[0,t−r]

+ Θ exp (σ (r + ε))
1 − exp (−(λ − σ)ε)

λ − σ
|C | ∥v∥[0,t−r] . (3.8)

Consequently, we conclude from (3.6) and (3.8) that the
following inequality holds for all t ≥ r + ε:

∥v∥[r+ε,t] ≤ exp (σ (r + ε)) (exp (|A| ε) − 1) ∥x∥[0,t−r]

+ Θ exp (σ (r + ε))
1 − exp (−(λ − σ)ε)

λ − σ

× |C | ∥v∥[0,t−r+ε] . (3.9)

Using the fact that |exp (At)| ≤ Θ exp (−λt) for all t ≥ 0
and the variations of constants formula x(t) = exp (At) x(0) − t
0 exp (A(t − s)) q(s)Cv(s)ds for all t ≥ 0, we obtain the estimate:

|x(t)| exp (σ t) ≤ Θ exp (−(λ − σ)t) |x(0)|

+ Θ
1 − exp (−(λ − σ)t)

λ − σ
|C | sup

0≤s≤t
(exp (σ s) |v(s)|) ,

for all t ≥ 0. (3.10)

Definition (3.3) and inequality (3.10) in conjunction with the
fact that σ ∈ (0, λ) imply the following inequality:

∥x∥[0,t] ≤ Θ |x(0)| +
Θ |C |

λ − σ
∥v∥[0,t] , for all t ≥ 0. (3.11)

Combining (3.9) and (3.11), we obtain for all t ≥ r + ε:

∥v∥[r+ε,t] ≤ exp (σ (r + ε)) (exp (|A| ε) − 1) Θ |x(0)|

+ exp (σ (r + ε))
Θ |C |

λ − σ


1 − exp (−(λ − σ)ε)

+ (exp (|A| ε) − 1)

∥v∥[0,t] . (3.12)

Inequality (3.1) in conjunction with (3.12), implies the follow-
ing inequality for all t ≥ 0:

∥v∥[0,t] ≤ exp (σ (r + ε))

×
exp (|A| ε) − 1

1 − δ
Θ |x(0)| + ∥v∥[0,r+ε] (3.13)

where

δ := exp (σ (r + ε))
Θ |C |

λ − σ


1 − exp (−(λ − σ)ε)

+ (exp (|A| ε) − 1)


< 1.

Indeed, the equality ∥v∥[0,t] = max

∥v∥[0,r+ε] , ∥v∥[r+ε,t]


allows us to consider two cases:

• Case 1: ∥v∥[0,t] = ∥v∥[0,r+ε]. In this case (3.12), in
conjunction with the fact that δ := exp (σ (r + ε))

Θ|C |

λ−σ

(1 − exp (−(λ − σ)ε) + (exp (|A| ε) − 1))<1, implies (3.13).
• Case 2: ∥v∥[0,t] = ∥v∥[r+ε,t]. In this case (3.12) implies

∥v∥[r+ε,t] ≤ exp (σ (r + ε))
exp(|A|ε)−1

1−δ
Θ |x(0)| and conse-

quently (3.13) holds.

Inequality (3.13) in conjunction with (3.11) and the fact that
there exist constants L,M > 0 such that all solutions of (2.11)
satisfy the estimate |x(t)| ≤ M exp(Lt)max−r−ε≤s≤0 |x(s)| and
in conjunction with the fact that ∥v∥[0,r+ε] ≤ 2 exp (σ (r + ε))
∥x∥[0,r+ε] + max−r−ε≤s≤0 |x(s)|


(a direct consequence of defini-

tion (3.2)) imply that there exists a constant Q > 0 such that esti-
mate (2.13) holds.

If n = 1 then Θ = 1 and λ = |A|. If (2.14) holds then (by
continuity) there exists σ ∈ (0, |A|) such that δ :=

|C | exp(σ (r+ε))

|A|−σ

(2 − exp (−(|A| − σ)ε) − exp (− |A| ε)) < 1. Moreover, inequali-
ties (3.6) and (3.8) are replaced by the following inequalities:

∥v∥[r,t] ≤ exp (σ r) (1 − exp (− |A| ε)) ∥x∥[0,t−r]

+ exp (σ r)
1 − exp (−(|A| − σ)ε)

|A| − σ
|C | ∥v∥[0,t−r+ε]

∥v∥[r+ε,t] ≤ exp (σ (r + ε)) (1 − exp (− |A| ε)) ∥x∥[0,t−r]
+ exp (σ (r + ε))

×
1 − exp (−(|A| − σ)ε)

|A| − σ
|C | ∥v∥[0,t−r] .

It follows that, the inequality (3.9) is replaced by

∥v∥[r+ε,t] ≤ exp (σ (r + ε)) (1 − exp (− |A| ε)) ∥x∥[0,t−r]

+ exp (σ (r + ε))

×
1 − exp (−(|A| − σ)ε)

|A| − σ
|C | ∥v∥[0,t−r+ε] . (3.14)

Combining (3.14) with (3.11) and Θ = 1, λ = |A|, we obtain
the estimate:

∥v∥[r+ε,t] ≤ exp (σ (r + ε)) (1 − exp (− |A| ε)) |x(0)|

+
|C | exp (σ (r + ε))

|A| − σ


2 − exp (−(|A| − σ)ε)

− exp (− |A| ε)

∥v∥[0,t] .

Since

δ :=
|C | exp (σ (r + ε))

|A| − σ


2 − exp (−(|A| − σ)ε)

− exp (− |A| ε)


< 1,

the above inequality implies the inequality ∥v∥[0,t] ≤ exp
(σ (r + ε))

1−exp(−|A|ε)

1−δ
|x(0)| + ∥v∥[0,r+ε]. The previous inequal-

ity in conjunction with (3.11) and the fact that there exist
constants L,M > 0 such that all solutions of (3.13) sat-
isfy the estimate |x(t)| ≤ M exp(Lt)max−r−ε≤s≤0 |x(s)| and in
conjunction with the fact that ∥v∥[0,r+ε] ≤ 2 exp (σ (r + ε))
∥x∥[0,r+ε] + max−r−ε≤s≤0 |x(s)|


(a direct consequence of defini-

tion (3.2)) imply that there exists a constant Q > 0 such that esti-
mate (2.13) holds. The proof is complete. �

We are now ready to provide the proof of Theorem 2.1.

Proof of Theorem 2.1. Proposition 2.6 with Ω = L∞(ℜ+;

[−1, 1]) guarantees the conclusion of the theorem provided
that system (2.15) is robustly globally exponentially stable.
Theorem 2.5 with A ∈ ℜ

n×n replaced by (A + Bk) and C =

exp(Ar)Bk guarantees the robust global exponential stability of
system (2.15) provided that (2.4) or (2.5) hold. The proof is
complete. �
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Next, we provide the proof of Corollary 2.3.

Proof of Corollary 2.3. Corollary 6.1 on p. 215 in Hale and Lunel
(1993) implies that: all roots of Eq. (2.7) have negative real parts
if and only if the zero solution is Globally Exponentially Stable for
the system:

ṗ(t) = (A + Bk)p(t) + exp(Ar)Bk (p(t − τ) − p(t − r)) . (3.15)

The rest of the proof is a direct consequence of Proposition 2.6
with Ω ⊂ L∞ (ℜ+; [−1, 1]) being the set of constant functions
which are identically equal to 1 or −1 and τ = r ± ε. The proof is
complete. �

Proof of Proposition 2.6. Let arbitrary (x0, u0) ∈ S (where S is
defined by (2.2)), d ∈ Ω and consider the solution (x(t), u(t)) ∈

ℜ
n

× ℜ
m of (1.1), (1.2) with initial conditions x(0) = x0, u(t) =

u0(t) for t ∈ [−r − ε, 0] corresponding to d ∈ Ω . Define for all
t ≥ 0:

p(t) = exp(Ar)x(t) +

 t+r

t
exp(A(t + r − s))Bu(s − r)ds. (3.16)

Notice that, (1.2) and definition (3.16) imply that the following
equality holds for all t ≥ 0:

u(t) = kp(t), for all t ≥ 0. (3.17)

By using (1.1) and definition (3.16), it follows that the following
differential equation holds for almost all t ≥ 0:

ṗ(t) = exp(Ar)Ax(t) + exp(Ar)Bu(t − r − εd(t))
+ A (p(t) − exp(Ar)x(t))
+ Bu(t) − exp(Ar)Bu(t − r). (3.18)

Using the identity A exp(Ar) = exp(Ar)A and (3.17) it follows
that, the following differential equation holds for almost all t ≥

r + ε:

ṗ(t) = (A + Bk)p(t) + exp(Ar)
× Bk (p(t − r − εd(t)) − p(t − r)) . (3.19)

Since Ω ⊆ L∞ (ℜ+; [−1, 1]) is a set of time-varying inputs
which is invariant under time translation (which implies that the
input defined by d̃(t) = d(t + r + ε) is in Ω ⊆ L∞ (ℜ+; [−1, 1]))
and since (2.16) holds for certain constants Q̃ , σ̃ > 0, it follows
that the following inequality holds:

|p(t)| ≤ Q̃ exp (−σ̃ (t − r − ε)) max
0≤s≤r+ε

|p(s)| ,

∀t ≥ r + ε. (3.20)

Using (3.20) in conjunction with (3.16), (3.17), (2.3) and the
following equality:

x(t) = exp(−Ar)p(t) −

 t+r

t
exp(A(t − s))Bkp(s − r)ds (3.21)

which holds for all t ≥ r and is a direct consequence of
(3.16) and (3.17), we obtain (1.3) with σ := σ̃ and Q := M
exp (2(L + σ̃ + |A|)(r + ε))
(1 + r |Bk| + |k|) Q̃ (1 + r |B|) + 1


.

Conversely, let arbitrary p0 ∈ C0 ([−r − ε, 0]; ℜ
n) , d ∈ Ω

and consider the solution p(t) ∈ ℜ
n of (2.15), (1.2) with initial

condition p(t) = p0(t) for t ∈ [−r − ε, 0] corresponding to
d ∈ Ω . Define u0(t) = kp0(t) for t ∈ [−r − ε, 0] and x0 =

exp(−Ar)

p(0) −

 0
−r exp(−As)Bu0(s)ds


. Notice that, (x0, u0) ∈

S (where S is definedby (2.2)). Therefore, the solution (x(t), u(t)) ∈

ℜ
n
×ℜ

m of (1.1), (1.2)with initial condition x(0) = x0, u(t) = u0(t)
for t ∈ [−r − ε, 0] satisfies the estimate (1.3) for certain constants

Q , σ > 0. Notice that, the solution (x(t), u(t)) ∈ ℜ
n

× ℜ
m

of (1.1), (1.2) with initial condition x(0) = x0, u(t) = u0(t)
for t ∈ [−r − ε, 0] satisfies (3.17) and (3.21) for all t ≥ 0.
Consequently, (3.16) holds for all t ≥ 0. Estimate (2.16) with Q̃ :=

Q exp (2 |A| r) (1 + r |B|) (1 + r |Bk| exp (|A| r) + |k|) and σ̃ := σ
is a direct consequence of (1.3), (3.16) and the definitions x0 =

exp(−Ar)

p(0) −

 0
−r exp(−As)Bu0(s)ds


and u0(t) = kp0(t) for

t ∈ [−r − ε, 0]. The proof is complete. �

4. Concluding remarks

We have provided formulas that allow us to compute estimates
of the least upper boundof themagnitude of the delay perturbation
that does not destroy the exponential stability properties of
the closed-loop system (1.1) with (1.2). Two cases have been
considered: the case of measurable perturbations and the case of
constant perturbations. As in Krstic (2008), where a Lyapunov
analysis in L2 is pursued, our stability analysis in C0 separately
considers positive and negative perturbations of the delay,
whereas the Lyapunov analyses in H1 in Section 5.3 in Krstic
(2009), and in Bekiaris-Liberis and Krstic (2013) simultaneously
tackle positive and negative perturbations on the delay.

The obtained formulas can be used easily by the control
practitioner in order to estimate the delay error that can be
tolerated. For the case of measurable time-varying perturbations,
the magnitude of the delay perturbation ε > 0 must satisfy the
inequality (2.4) (or (2.5) if n = 1). All quantities involved in the
inequality (2.4) can be computed easily using software packages
to compute the norms of matrices exp(Ar)Bk ∈ ℜ

n×n, (A + Bk) ∈

ℜ
n×n and to determine the constants Θ, λ > 0 by finding a

symmetric positive definitematrix P ∈ ℜ
n×n and a constantµ > 0

that satisfies P(A + Bk) + (A + Bk)′P + 2µP ≤ 0 and P ≥ I (select
λ = µ and Θ =

√
|P|).

An example showed that the allowable magnitude of measur-
able delay perturbation is less than the magnitude obtained for
constant perturbations from Corollary 2.3. We do not know if the
conservatism is due to the small-gain approach (which is used for
the proof of Theorem 2.5) or if the conservatism is due to the pos-
sibility that the stability analysis for delay perturbations depends
not only on the magnitude of the perturbation but also on the rate
of change of the perturbation. The latter implies that, the rate of
change of the perturbation may be important in stability analy-
sis. There are recent results in Cloosterman et al. (2009) which
show that time-varying delays are more demanding than con-
stant (uncertain) delays and recent Lyapunov-based stability stud-
ies in Bekiaris-Liberis and Krstic (2013) which utilize the rate of
change of the delay. It remains an open problem to construct more
accurate expressions for the tolerance of the delay errorwhichmay
involve the rate of change of the delay perturbation.

Another class of open problems is the extension of the
robustness analysis to different types of linear predictor feedback.
For example, the linear predictor feedback proposed in Zhou et al.
(2012) can be, in principle, studied in the same way.
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