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Abstract

The envelope, E(A), of a complex square matrix A is a region in the complex
plane that contains the spectrum of A and is contained in the numerical range
of A. The envelope is compact but not necessarily convex or connected. The
connected components of E(A) have the potential of isolating the eigenvalues of
A, leading us to study its geometry, boundary, and number of components. We
also examine the envelope of normal matrices and similarities. In the process, we
observe that E(A) contains the 2-rank numerical range of A.
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1 Introduction

The envelope of a complex square matrix A, denoted by E(A), is an eigenvalue con-
tainment region that was introduced in [14]. Evidently, the envelope represents a
theoretically, computationally and visually attractive way to localize the spectrum of
A by isolating the eigenvalues in its connected components.

The concept and definition of the envelope are based on an inequality proven in
[1] that the (real and imaginary parts of the) eigenvalues of A must satisfy. This
inequality allows one to replace the half-plane to the left of the largest eigenvalue of
the hermitian part of A by a smaller region that contains the spectrum of A. Thus,
upon rotating a matrix A through all angles in [0, 2π), the envelope arises as a region
that contains the eigenvalues and is contained in the numerical range, F (A). The
precise definition and illustrations of E(A) can be found in Section 3.

The rendering of E(A) is akin to the process for F (A), essentially requiring knowl-
edge of the first but also the second largest eigenvalues of the hermitian part of eiθA
for a range of angles in [0, 2π).
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The envelope has properties similar to F (A), e.g., it is compact, invariant un-
der unitary similarities and homogeneous; it is not, however, necessarily convex or
connected. The aim of this paper is to further understand the properties and fea-
tures of E(A) as they pertain to its geometry, boundary, number of components,
and containment of eigenvalues. In particular, we study the case of normal matrices
and eigenvalues, and make comparisons to the numerical range. In the process, we
discover that the envelope contains the 2-rank numerical range of A introduced in [2].

This paper is organized as follows. In Section 2, we describe the notions relevant
to the definition and study of the envelope. In Section 3, the envelope is defined for-
mally, its basic properties are reviewed, and its relation to the 2-rank numerical range
is established. Section 4 contains results on extremal eigenvalues, normal matrices
(Subsection 4.1) and similarities (Subsection 4.2), and the effects of such assumptions
on the geometry of the envelope are examined. Finally, a result on the eigenvectors of
the right-most eigenvalues is given in Section 5, and some conclusions are presented
in Section 6.

2 Definitions and preliminaries

Let A ∈ Cn×n (n ≥ 2) be an n×n complex matrix with spectrum σ(A). Consider the
hermitian and skew-hermitian parts of A, H(A) = (A+A∗)/2 and S(A) = (A−A∗)/2,
respectively, and let δ1(A) ≥ δ2(A) ≥ · · · ≥ δn(A) denote the eigenvalues of H(A)
in a nonincreasing order. Let also y1 ∈ Cn be a unit (with respect to the Euclidean
vector norm) eigenvector of H(A) corresponding to δ1(A).

2.1 The standard numerical range

The numerical range (also known as the field of values) of A is defined as

F (A) = {v∗Av ∈ C : v ∈ C
n with v∗v = 1} .

It is a compact and convex subset of C that contains σ(A) and is a useful concept in
understanding matrices and operators; see [6, Chapter 1] and the references therein.

For an angle θ ∈ [0, 2π), we consider the largest eigenvalue δ1(e
i θA) and an as-

sociated unit eigenvector y1(θ) of the hermitian matrix H(ei θA). Then, the point
zθ = y1(θ)

∗Ay1(θ) lies on the boundary of F (A), denoted by ∂F (A), and the line
Lθ = {e−i θ(δ1(e

i θA)+i t) : t ∈ R} is tangential to ∂F (A) at zθ [6, 7]. Furthermore, Lθ

defines the closed half-plane Hin(A, θ) =
{
e−i θ(s + i t) : s, t ∈ R with s ≤ δ1(e

i θA)
}
,

which contains F (A). Hence, F (A) can be written as an infinite intersection of closed
half-planes [6, Theorem 1.5.12], namely,

F (A) =
⋂

θ∈[0,2π)

{
e−i θ(s + i t) : s, t ∈ R with s ≤ δ1(e

i θA)
}

=
⋂

θ∈[0,2π)

Hin(A, θ). (1)
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2.2 The k-rank numerical range

For 1 ≤ k ≤ n − 1, the k-rank numerical range of matrix A ∈ Cn×n is defined as

Λk(A) =
{
µ ∈ C : PAP = µP for some rank-k orthogonal projection P ∈ C

n×n
}

=
{

µ ∈ C : X∗AX = µIk for some X ∈ C
n×k such that X∗X = Ik

}
,

and is a natural generalization of the standard numerical range, in the sense that
Λ1(A) coincides with F (A). This set was introduced in [2] and has attracted attention
because of its role in quantum information theory; specifically, it is closely connected
to the construction of quantum error correction codes for noisy quantum channels
(see [2, 3, 8] and the references therein). The range Λk(A) is a compact and convex
subset of the complex plane [16] and is given by the explicit formula [11, Theorem
2.2]

Λk(A) =
⋂

θ∈[0,2π)

{
e−i θ(s + i t) : s, t ∈ R with s ≤ δk(e

i θA)
}

. (2)

Moreover, Λk(A) is invariant under unitary similarity and satisfies Λn−1(A) ⊆ Λn−2(A)
⊆ · · · ⊆ Λ2(A) ⊆ Λ1(A) = F (A). For k ≥ 2, Λk(A) does not necessarily contain all of
the eigenvalues of A and, in fact, may be empty [10].

If the matrix A ∈ Cn×n is normal with (not necessarily distinct) eigenvalues
λ1, λ2, . . . , λn, then (2) implies that (see Corollary 2.4 of [11])

Λk(A) =
⋂

1≤j1<j2<···<jn−k+1≤n

conv
{
λj1 , λj2 , . . . , λjn−k+1

}
, (3)

where conv{·} denotes the convex hull. Efficient techniques to generate Λk(A) for
normal A, using half-planes determined by the eigenvalues instead of formula (3), are
proposed in [4].

2.3 The cubic curve Γ(A)

For matrix A ∈ Cn×n, define the nonnegative quantities v(A) = ‖S(A)y1‖2
2 and

u(A) = Im(y∗1S(A)y1) ≤ ‖S(A)y1‖2 =
√

v(A), where ‖ · ‖2 denotes the spectral
matrix norm (i.e., the norm subordinate to the Euclidean vector norm). Adam and
Tsatsomeros [1], extending a methodology of [12], derived the following theorem.

Theorem 2.1. [1, Theorem 3.1] Let A ∈ Cn×n. Then, for every eigenvalue λ ∈ σ(A),

(Reλ−δ2(A))(Imλ−u(A))2 ≤ (δ1(A)−Reλ)[v(A)−u(A)2+(Reλ−δ2(A))(Reλ−δ1(A))].

Motivated by the above result, the authors of [1] introduced and studied the
algebraic curve

Γ(A) =
{
s + i t : s, t ∈ R, (δ2(A) − s)[(δ1(A) − s)2 + (u(A) − t)2]

+ (δ1(A) − s)(v(A) − u(A)2) = 0
}

.
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This is a cubic algebraic curve in s, t ∈ R (a suggested general reference on this type
of curves is [13]), which defines the region

Γin(A) =
{
s + i t : s, t ∈ R, (δ2(A) − s)[(δ1(A) − s)2 + (u(A) − t)2]

+ (δ1(A) − s)(v(A) − u(A)2) ≥ 0
}

.

By Theorem 2.1, it follows that σ(A) ⊂ Γin(A). If s > δ1(A) or s < δ2(A),
then s + i t cannot satisfy the defining equation of Γ(A) (always for s, t ∈ R), and
thus, the curve Γ(A) lies in the vertical zone {z ∈ C : δ2(A) ≤ Re z ≤ δ1(A)}. As
a consequence, (2) yields Λ2(A) ⊆ Γin(A). It is also straightforward to verify that
Γ(A) is symmetric with respect to the horizontal line L = {z ∈ C : Im z = u(A)}
which it intercepts at the point δ1(A) + i u(A), and is asymptotic to the vertical line
{z ∈ C : Re z = δ2(A)}. Apparently, the point δ1(A) + i u(A) is a right most point of
Γ(A) and F (A). Furthermore, if ∂F (A) has a flat portion (i.e., a non-degenerate line
segment) on the vertical line L0 = {z ∈ C : Re z = δ1(A)}, then Lemma 1.5.7 of [6]
implies that δ1(A) = δ2(A), in which case the curve Γ(A) reduces to the line L0 and
the region Γin(A) coincides with the half-plane Hin(A, 0).

When δ1(A) > δ2(A), δ1(A) + i u(A) is the unique right most point of Γ(A) (i.e.,
the only point of the curve with real part equal to δ1(A)). Moreover, the vertical line
L0 is tangential to Γ(A) at δ1(A) + i u(A). This means that L0 is a common tangent
to the curve Γ(A) and the numerical range F (A) at δ1(A) + i u(A).

For t = u(A) and δ2(A) < s < δ1(A), the defining equation of Γ(A) becomes

(δ1(A) − s)[s2 − (δ1(A) + δ2(A))s + δ1(A)δ2(A) + v(A) − u(A)2] = 0,

and the discriminant of its quadratic factor is ∆ = (δ1(A)−δ2(A))2−4(v(A)−u(A)2).
Hence, we have the following cases [1, 14], which are illustrated in Figure 1 for three
appropriately chosen 9 × 9 matrices (the eigenvalues are marked as +’s)1.

(a) If ∆ < 0, then Γ(A) intercepts the horizontal line L only once, at δ1(A) + i u(A),
and is an unbounded simple open curve which has all the eigenvalues of A lying
to its left.

(b) If ∆ = 0, then Γ(A) intercepts L at δ1(A)+δ2(A)
2 + i u(A) and δ1(A) + i u(A),

where the first point (double root) is the node point (cusp) of Γ(A).

(c) If ∆ > 0, then Γ(A) comprises two branches, a closed bounded branch that lies

in the vertical zone
{

z ∈ C : δ1(A)+δ2(A)+
√

∆
2 ≤ Re z ≤ δ1(A)

}
, intercepts L at

δ1(A)+δ2(A)+
√

∆
2 +i u(A) and δ1(A)+ i u(A) and encompasses exactly one eigen-

value of matrix A which is simple [14, Theorem 3.2], and an open unbounded

branch which lies in
{

z ∈ C : δ2(A) ≤ Re z ≤ δ1(A)+δ2(A)−
√

∆
2

}
, intercepts L at

δ1(A)+δ2(A)−
√

∆
2 + i u(A) and has the remaining eigenvalues of A to its left.

1 These three possible cases and configurations of Γ(A) are paramount to the geometric features of
the envelope discussed subsequently, so we choose to repeat here part of the illustrations and analysis
found in [1, 14].
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Figure 1: The cases of Γ(A) with ∆ < 0 (left), ∆ = 0 (middle), and ∆ > 0 (right).

3 The envelope E(A)

Motivated by (1) and the fact that for every θ ∈ [0, 2π),

σ(A) = e−i θσ(ei θA) ⊆ e−i θΓin(ei θA) ⊆ Hin(A, θ), (4)

the cubic envelope (or simply, the envelope) of A was defined in [14] as the set

E(A) =
⋂

θ∈[0,2π)

e−i θΓin(ei θA). (5)

Next, it is formally shown that E(A) lies in the (convex) numerical range F (A) =
Λ1(A) and that it contains the (convex) 2-rank numerical range Λ2(A), as well as the
spectrum σ(A). (Recall that Λ2(A) does not necessarily contain σ(A).)

Theorem 3.1. Let A ∈ Cn×n. Then the following hold:

σ(A) ⊆ E(A) =
⋂

θ∈[0,2π)

e−i θΓin(ei θA) ⊆
⋂

θ∈[0,2π)

Hin(A, θ) = F (A) (6)

and

Λ2(A) =
⋂

θ∈[0,2π)

{
e−i θ(s + i t) : s, t ∈ R with s ≤ δ2(e

i θA)
}

⊆
⋂

θ∈[0,2π)

e−i θΓin(ei θA) = E(A).

Proof. The relations in (6) follow by (1), (4) and (5). The rest of the relations in this
theorem follow by (2) and (5).

We continue by establishing that the envelope, being an infinite intersection of
complex regions, can be approximated to arbitrary precision by finite intersections.
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This indeed provides the foundation for our method to render the envelope. Recall
that for two compact subsets Ω1 and Ω2 of a metric space (X ,ρ), the Hausdorff
distance between Ω1 and Ω2 is defined by

dH(Ω1, Ω2) = max

{
max
x1∈Ω1

min
x2∈Ω2

ρ(x1, x2), max
x2∈Ω2

min
x1∈Ω1

ρ(x1, x2)

}
.

For any x0 ∈ X and δ > 0, we define the open ball B(x0, δ) = {x ∈ X : ρ(x0, x) < δ}.
Adopting arguments from the proof of [9, Lemma 2.5], we obtain the following general
result.

Lemma 3.2. Let {Ga : a ∈ A} be an infinite family of closed subsets of Cn, such
that the set F =

⋂
a∈A

Ga is non-empty and compact. Then, for every ε > 0, there exist

a1, a2, . . . , ak ∈ A such that

dH


F ,

k⋂

j=1

Gaj


 ≤ ε.

Proof. Let ε > 0. Since F is compact, there is a compact set Ω ⊂ Cn such that
F +B(0, ε) lies in the interior of Ω. Then the set Ω\(F +B(0, ε)) is compact and lies
in the union

⋃
a∈A

(Cn\Ga). As a consequence, compactness implies that there exist

a1, a2, . . . , ak ∈ A such that

Ω\(F + B(0, ε)) ⊆
k⋃

j=1

(
C

n\Gaj

)
.

Thus,

F ⊆
k⋂

j=1

Gaj
⊆ F + B(0, ε),

and the proof is complete.

The above lemma yields readily the following desired approximation result, which
can be modified to also hold for the numerical range and the k-rank numerical range.

Corollary 3.3. Let A ∈ Cn×n. Then, for every ε > 0, there exist θ1, θ2, . . . , θk ∈
[0, 2π) such that

dH


E(A),

k⋂

j=1

e−i θjΓin(ei θjA)


 ≤ ε.

Example 3.4. Consider the 4 × 4 complex matrix

A =




14 + i 19 −4 − i −55 − i 13 −32 + i 13
27 + i 2 14 − i 25 64 72
54 + i 47 − i 3 14 + i 44 −32 − i 42

76 73 4 − i 2 −11 + i 24


 .
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Figure 2: The sets F (A) (left), E(A) (middle), and Λ2(A) (right).

The numerical range of A is drawn as the intersection of 120 closed half-planes on the
left of Figure 2. In the middle part of the figure, E(A) is the unshaded region2 resulting
from having drawn 120 curves e−i θΓ(ei θA). In both of these parts, the eigenvalues are
marked as +’s. In the right part of Figure 2, Λ2(A) is the unshaded region resulting
from having sketched 120 lines (applying (2)), and does not contain any eigenvalue
of A. Notice that the cubic envelope E(A) consists of two connected components, is
a significantly improved localization of the spectrum σ(A) as compared to F (A), and
clearly contains Λ2(A). Finally, notice that the numerical range of A appears in our
plot of the envelope (middle part) as a by-product; specifically, F (A) is depicted as
the outer outlined region.

The envelope E(A) is compact, since it is a closed subset of the compact numerical
range F (A). It is not necessarily convex or connected, as illustrated by Example
3.4. It satisfies, however, some of the basic properties of F (A), Λk(A) and, more
importantly, of σ(A) listed next (see [14]).

(P1) Γ(AT ) = Γ(A), Γ(A∗) = Γ(A) = Γ(A), E(AT ) = E(A) and E(A∗) = E(A) =
E(A). In particular, if A ∈ Rn×n, then the curve Γ(A) and the envelope E(A)
are symmetric with respect to the real axis.

(P2) For any unitary matrix U ∈ Cn×n, Γ(U∗AU) = Γ(A) and E(U∗AU) = E(A).

(P3) For any b ∈ C, Γ(A + bIn) = Γ(A) + b and E(A + bIn) = E(A) + b (where In

denotes the n × n identity matrix).

(P4) For any real r > 0 and any a ∈ C, Γ(rA) = r Γ(A) and E(aA) = a E(A).

By Properties (P1) and (P2), it is clear that for any unitary matrix U ∈ Cn×n,
the linear mappings A 7→ U∗AU and A 7→ U∗AT U preserve the envelope.

2 A Matlab function for rendering the envelope E(A), which is based on
the defining relation (5) of the envelope and has been used in our numerical
experiments, can be found in http://www.math.ntua.gr/∼ppsarr/envelope.m and
http://www.math.wsu.edu/faculty/tsat/files/matlab/envelope.m.
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Recall that an eigenvalue λ0 ∈ σ(A) is called normal if its algebraic and geometric
multiplicities are equal and the eigenvectors of A corresponding to λ0 are orthogonal to
the eigenvectors corresponding to any other eigenvalue of A. By Theorem 1.6.6 of [6],
every eigenvalue of A that lies on the boundary of F (A) is a normal eigenvalue of A.
Moreover, the non-differentiable points (corners) of ∂F (A) are necessarily eigenvalues
of A [6, Theorem 1.6.3].

Suppose now that δ1(A) + i u(A) is an eigenvalue of A. Then, δ1(A) + i u(A) is a
normal eigenvalue of A that lies on ∂F (A). Furthermore, δ1(A) + i u(A), δ1(A) and
i u(A) are eigenvalues of A, H(A) and S(A), respectively, and they share the same
eigenspace. If, in addition, δ1(A) is a simple eigenvalue of H(A), then v(A)−u(A)2 =
0, and the cubic curve Γ(A) reduces to the union of the point δ1(A) + i u(A) and
the vertical line {z ∈ C : Re z = δ2(A)}. Otherwise, i.e., when δ1(A) + i u(A) is a
normal eigenvalue of A on ∂F (A) and δ1(A) is a multiple eigenvalue of H(A), the
curve Γ(A) reduces to the vertical line {z ∈ C : Re z = δ1(A)} and Γin(A) coincides
with Hin(A, 0). As a consequence, we have the following.

Proposition 3.5. [14, Proposition 5.1] Let λ0 be a simple eigenvalue of A on the
boundary of F (A). If λ0 does not lie on a flat portion of ∂F (A), or it is a non-
differentiable point of ∂F (A), then λ0 is an isolated point of the envelope E(A).

4 Normal matrices and similarity

Let σ(A) = {λ1, λ2, . . . , λn} be the spectrum of matrix A ∈ Cn×n (n ≥ 2), where
multiple eigenvalues (if any) are listed in successive positions. Consider the diagonal
matrix D(A) = diag{λ1, λ2, . . . , λn}. We call an eigenvalue λj of A extremal if λj is
a vertex of the convex hull of σ(A), denoted by conv{σ(A)}.

4.1 The envelope of normal matrices

Suppose that A is normal. Then the numerical range F (A) coincides with the convex
hull of σ(A) [6, Property 1.2.9]. If λ̂1, λ̂2, . . . , λ̂k are the simple extremal eigenvalues
of A, then Proposition 3.5 implies that λ̂1, λ̂2, . . . , λ̂k are isolated points of the cubic
envelope E(A). Since A is normal, by Property (P2), and without loss of generality,
we may assume that A is diagonal. Then for every θ ∈ [0, 2π), ei θA is also diagonal,
and δ1(e

i θA) + i u(ei θA), δ1(e
i θA) and i u(ei θA) are eigenvalues of ei θA, H(ei θA)

and S(ei θA), respectively, having the same eigenspace. If, in addition, δ1(e
i θA) is

a simple eigenvalue of H(ei θA), then v(ei θA) − u(ei θA)2 = 0, and the cubic curve
Γ(ei θA) reduces to the union of the point δ1(e

i θA)+i u(ei θA) and the vertical line {z ∈
C : Re z = δ2(e

i θA)}. Otherwise, i.e., when A is normal and δ1(e
i θA) is a multiple

eigenvalue of H(ei θA), Γ(ei θA) reduces to the vertical line {z ∈ C : Re z = δ1(e
i θA)}

and Γin(ei θA) coincides with the closed half-plane Hin(ei θA, 0) (i.e., e−i θΓin(ei θA)
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coincides with Hin(A, θ)). Hence, recalling (2), we have

E(A) \ {λ̂1, λ̂2, . . . , λ̂k} =


 ⋂

θ∈[0,2π)

e−i θΓin(ei θA)


 \ {λ̂1, λ̂2, . . . , λ̂k}

=
⋂

θ∈[0,2π)

{
e−i θ(s + i t) : s, t ∈ R with s ≤ δ2(e

i θA)
}

= Λ2(A),

where Λ2(A) is explicitly described by (3). In [4], it is obtained that if the normal
matrix A has m distinct eigenvalues, then Λ2(A) is either an empty set, a singleton,
a line segment, or a nondegenerate convex polygon with at most m vertices (which
vertices are not necessarily eigenvalues of A), and efficient ways to generate it are
proposed.

The above discussion yields directly the following result (see also Corollary 2.3
and Theorem 2.4 of [2]).

Theorem 4.1. Suppose A ∈ Cn×n is a normal matrix, and λ̂1, λ̂2, . . . , λ̂k are (exactly)
the simple extremal eigenvalues of A. Then Λ2(A) ∩ {λ̂1, λ̂2, . . . , λ̂k} = ∅ and

E(A) = Λ2(A) ∪ {λ̂1, λ̂2, . . . , λ̂k}.

Corollary 4.2. Let A ∈ Cn×n be a normal matrix.

(i) If all the eigenvalues of A are simple and extremal, then Λ2(A) ∩ σ(A) = ∅ and
E(A) = Λ2(A) ∪ σ(A).

(ii) If all the extremal eigenvalues of A are multiple, then E(A) = Λ2(A) = conv{σ(A)}
= F (A). In particular, for any a ∈ C, E(aIn) = Λ2(aIn) = F (aIn) = {a}.

(iii) If n = 2 or 3, then E(A) = σ(A).

(iv) Let n = 4, and suppose that all the eigenvalues of A are extremal. If all the
eigenvalues are simple, then E(A)\Λ2(A) = σ(A) (see (i)) and Λ2(A) is a sin-
gleton. If exactly one of the eigenvalues is double, then Λ2(A) coincides with
this double eigenvalue and E(A) = σ(A).

Corollary 4.3. Let A ∈ Cn×n be a hermitian matrix (i.e., A = H(A)), with eigen-
values δ1(A) ≥ δ2(A) ≥ · · · ≥ δn(A). Then,

E(A) = {δn(A)} ∪ [δn−1(A), δ2(A)] ∪ {δ1(A)} ⊆ [δn(A), δ1(A)] = F (A).

Example 4.4. Consider the diagonal matrices

D1 = diag{1, 2, 3, 4}, D2 = diag{1, 1, 2, 3, 4},

D3 = diag{i 3, 5, 2 + i 3, 1 − i 2,−3} and D4 = diag{i 3, i 3, 5, 2 + i 3, 1 − i 2, 3}.
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Figure 3: The envelopes of the diagonal matrices D3 (left) and D4 (right).

The envelopes of D1 and D2 are

E(D1) = Λ2(D1)∪{1, 4} = [2, 3]∪{1, 4} and E(D2) = Λ2(D2)∪{4} = [1, 3]∪{4},

and clearly verify Corollary 4.3. The envelopes of D3 and D4 are depicted in the left
and right parts of Figure 3, respectively, where the eigenvalues are marked as ∗’s and
the dotted lines are auxiliary. The polygons Λ2(D3) and Λ2(D4) are shaded, and the
envelopes E(D3) and E(D4) confirm Theorem 4.1; in particular, E(D3) illustrates case
(i) of Corollary 4.2. Note also that the scalar i 3 is a multiple eigenvalue of D4, and as
a consequence, the eigenvalue 1− i 2 ∈ σ(D4) does not give rise to an edge of Λ2(D4).

4.2 Similarity classes

Every Jordan matrix is (diagonally) similar to a bidiagonal matrix with the modulii
of its nonzero entries on the super-diagonal arbitrarily small [15, p. 21]. For example,
for a k × k Jordan block associated to a scalar λ ∈ C and any nonzero α ∈ C, we
have the similarity




α−1 0 . . . 0

0 α−2
. . .

...
...

. . .
. . . 0

0 . . . 0 α−k







λ 1 . . . 0

0 λ
. . .

...
...

. . .
. . . 1

0 . . . 0 λ







α 0 . . . 0

0 α2
. . .

...
...

. . .
. . . 0

0 . . . 0 αk


 =




λ α . . . 0

0 λ
. . .

...
...

. . .
. . . α

0 . . . 0 λ


.

As a consequence, the continuity of the numerical range of a general matrix A ∈ Cn×n

with respect to the entries of A yields [5]

⋂ {
F (R−1AR) : R ∈ C

n×n, det(R) 6= 0
}

= conv{σ(A)}. (7)

An analogous result holds for the envelope.

Theorem 4.5. For any matrix A ∈ Cn×n, we have

⋂ {
Γin(R−1AR) : R ∈ C

n×n, det(R) 6= 0
}

⊆ Γin(D(A)) (8)
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and ⋂ {
E(R−1AR) : R ∈ C

n×n, det(R) 6= 0
}

⊆ E(D(A)). (9)

Proof. If A is diagonalizable, then there exists a nonsingular matrix R ∈ Cn×n such
that R−1AR = D(A), and the result is apparent.

Suppose that A is not diagonalizable. By the definition of the cubic envelope, we
have

⋂ {
E(R−1AR) : R ∈ C

n×n, det(R) 6= 0
}

=
⋂ {

e−i θΓin(ei θR−1AR) : R ∈ C
n×n, det(R) 6= 0, θ ∈ [0, 2π)

}

=
⋂

θ∈[0,2π)

⋂ {
e−i θΓin(ei θR−1AR) : R ∈ C

n×n, det(R) 6= 0
}

and
E(D(A)) =

⋂ {
e−i θΓin(ei θD(A)) : θ ∈ [0, 2π)

}
.

Thus, it is enough to prove the first inclusion relation of the theorem. In particular,
we consider a scalar µ ∈ C \Γin(D(A)), and we will verify that µ /∈ Γin(R−1AR) for
some nonsingular R ∈ Cn×n.

If δ1(D(A)) is a simple eigenvalue of H(D(A)), then µ lies to the right of the
vertical line {z ∈ C : Re z = δ2(D(A))}, where δ2(D(A)) coincides with the real
part of the second right most eigenvalue of D(A) and A. Moreover, µ is different
than δ1(D(A)) + i u(D(A)) (that is, the right most eigenvalue of D(A) and A). As
mentioned above (see also the discussion in [15, p. 21]), for any ε > 0, there is a
nonsingular Rε ∈ Cn×n such that R−1

ε ARε is a bidiagonal matrix with the modulii
of its nonzero entries on the super-diagonal less than or equal to ε. The continuity
of eigenvalues, eigenvectors and norms as functions of the matrix entries implies that
for sufficiently small ε > 0, v(R−1

ε ARε)− u(R−1
ε ARε)

2 and |δ2(R
−1
ε ARε)− δ2(D(A))|

can be arbitrarily small. As a consequence, the curve Γ(R−1
ε ARε) can be assumed to

be disconnected, with its unbounded open branch arbitrarily close to the vertical line
{z ∈ C : Re z = δ2(D(A))} and its bounded closed branch arbitrarily close to the
singleton {δ1(D(A)) + i u(D(A))}. Hence, there is a nonsingular R ∈ Cn×n such that
µ /∈ Γin(R−1AR).

If δ1(D(A)) is a multiple eigenvalue of H(D(A)), then µ lies to the right of the
vertical line {z ∈ C : Re z = δ1(D(A))}. We can now apply the above continuity
arguments to obtain that for appropriate nonsingular R ∈ Cn×n, the real numbers
δ1(D(A)), δ1(H(R−1AR)) and δ2(H(R−1AR)) can be arbitrarily close. As a conse-
quence, Γ(R−1AR) can be arbitrarily close to Γ(D(A)) = {z ∈ C : Re z = δ1(D(A))},
and the proof is complete.

The inclusion relation (9) in the above theorem and the equality (7) yield the
following corollary.
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Corollary 4.6. If λ̂1, λ̂2, . . . , λ̂k are the simple extremal eigenvalues of A ∈ Cn×n,
then

σ(A) ⊆
⋂ {

E(R−1AR) : R ∈ C
n×n, det(R) 6= 0

}

⊆ E(D(A)) = Λ2(D(A)) ∪ {λ̂1, λ̂2, . . . , λ̂k}
⊆ conv{σ(A)} =

⋂ {
F (R−1AR) : R ∈ C

n×n, det(R) 6= 0
}

⊆ F (A).
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Figure 4: Numerical ranges (left) and envelopes (right) of similar matrices.

Example 4.7. Recall the diagonal matrix D3 = diag{i 3, 5, 2 + i 3, 1 − i 2,−3} in
Example 4.4 and the envelope E(D3) in the right part of Figure 3. In Figure 4,
the numerical ranges (left part) and the envelopes (right part) of 60 randomly chosen
matrices similar to D3 are depicted. The unshaded region in the left part of the figure
is an estimation of conv{σ(D3)} (the eigenvalues are marked as ∗’s), confirming (7),
and the unshaded region in the left part is an estimation of the polygon Λ2(D3),
verifying Theorem 4.5. As expected, since all the eigenvalues are extremal, they are
not visible in the right part of Figure 4.

Remark 4.8. One can easily construct a non-normal matrix A ∈ Cn×n such that
the curve Γ(A) comprises two branches and δ2(A) is an eigenvalue of H(A) of al-
gebraic multiplicity n − 1 (see [12, Example 3.4]). Then δ2(A) < δ1(A), and at
least two eigenvalues of A lie in the interior of the numerical range F (A) [6, Theo-
rem 1.6.6] and have their real parts lying in the open (real) interval (δ2(A), δ1(A)).
As a consequence, the real part of at least one eigenvalue of A lies in the interval(
δ2(A), (δ1(A) + δ2(A) −

√
∆ )/2

]
, and thus, δ2(D(A)) > δ2(A). Hence, Γin(D(A)) 6⊆

Γin(A), and we conclude that the inclusion relation (8) cannot be replaced by equal-
ity. On the other hand, it is not known whether the inclusion relation (9) for the
envelope always holds as an equality or not.
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5 On the eigenvectors of the right most eigenvalues

Perhaps the most interesting configuration of the curve Γ(A) is when it consists of two
branches. The closed branch must then contain a simple eigenvalue λ1 of matrix A,
and thus, it forces the envelope E(A) to have a connected component that contains λ1.
In this section, we examine the relation (angle) among the eigenvectors corresponding
to λ1 and the right most eigenvalue of the hermitian part.

For any two vectors x, y ∈ Cn, consider the (real) cosine of their angle given by

cos(x̂, y) =
|y∗x|

‖x‖2‖y‖2
.

Note that this definition ignores the direction of the vectors and describes the (acute)
angle between the one-dimensional subspaces span{x} and span{y}.

Consider now a matrix A ∈ Cn×n with the discriminant ∆ = (δ1(A) − δ2(A))2 −
4(v(A) − u(A)2) being positive. By Theorem 3.2 of [14], the cubic curve Γ(A) has a
closed branch, and exactly one eigenvalue of A which (is simple and) lies inside or on
this closed branch of Γ(A).

Theorem 5.1. Let A ∈ Cn×n be such that ∆ > 0, and let δ1(A) be a simple eigenvalue
of H(A) with an associated unit eigenvector y1 ∈ Cn. Let also λ1 be the simple
eigenvalue of A that lies inside or on the closed branch of Γ(A) (i.e., λ1 is the right
most eigenvalue of A), and assume that Re λ1 6= δ1(A). Then, for any unit eigenvector
x1 ∈ Cn of A corresponding to the eigenvalue λ1,

cos(x̂1, y1) ≥
√

1

2
+

√
(δ1(A) − δ2(A))2 − 4(v(A) − u(A)2)

2(δ1(A) − δ2(A))
≥

√
2

2
= cos

(π

4

)
.

Proof. Let x1 ∈ Cn be a unit eigenvector of A corresponding to λ1 ∈ σ(A). This vector
is written in the form x1 = ŷ1 + v1, where ŷ1 ∈ span{y1} (i.e., ŷ1 is an eigenvector of
H(A) corresponding to δ1(A)) and v1 lies in the orthogonal complement of span{y1},
span{y1}⊥. Since x1 is unit, it follows

λ1 = x∗
1Ax1

= (ŷ1 + v1)
∗H(A)(ŷ1 + v1) + x∗

1K(A)x1

= v∗1H(A)v1 + δ1(A)‖ŷ1‖2
2 + x∗

1K(A)x1,

where δn(A)(1 − ‖ŷ1‖2
2) ≤ v∗1H(A)v1 ≤ δ2(A)(1 − ‖ŷ1‖2

2).

It is clear that Re λ1 = v∗1H(A)v1 + δ1(A)‖ŷ1‖2
2 (for example, see [6]), and hence,

δn(A)(1 − ‖ŷ1‖2
2) + δ1(A)‖ŷ1‖2

2 ≤ Re λ1 ≤ δ2(A)(1 − ‖ŷ1‖2
2) + δ1(A)‖ŷ1‖2

2.

Recall also that since ∆ > 0, we have

δ1(A) + δ2(A) +
√

∆

2
≤ Re λ1 ≤ δ1(A).
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As a consequence,

δ1(A) + δ2(A) +
√

∆

2
≤ δ2(A)(1 − ‖ŷ1‖2

2) + δ1(A)‖ŷ1‖2
2,

or equivalently,
√

(δ1(A) − δ2(A))2 − 4(v(A) − u(A)2) ≤ (δ1(A) − δ2(A))(2‖ŷ1‖2
2 − 1).

Hence, it follows that

‖ŷ1‖2 ≥
√

1

2
+

√
(δ1(A) − δ2(A))2 − 4(v(A) − u(A)2)

2(δ1(A) − δ2(A))
≥

√
2

2
.

The proof is completed by observing that ‖ŷ1‖2 = |y∗1x1| = cos(x̂1, y1).

6 Conclusions

The envelope of a matrix A is an infinite intersection of regions defined by cubic curves
and it contains the eigenvalues of A. In this paper, we proved that the envelope can
indeed be approximated to arbitrary precision by a finite number of intersections,
thus justifying our methodology to visually render the envelope. Since the envelope is
typically neither convex nor connected, it is important to understand the properties
of eigenvalues that are either isolated points of the envelope or are contained in its
connected components. In this respect, we studied the geometry of the envelope in
the fundamental case of normal matrices and under similarities. We also examined
the angle among the eigenvector of the rightmost eigenvalue of A contained in a
connected component of the envelope and the eigenvector of the largest eigenvalue
of the hermitian part. Finally, we established that the envelope contains the 2-rank
numerical range of A. Illustrative examples were provided, along with access to a
Matlab function for rendering the envelope of a matrix.
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