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Abstract

In this paper we study the finite dimensionality of the global attractor for the
following system of Klein-Gordon-Schrödinger type

iψt + κψxx + iαψ = ϕψ + f,

ϕtt − ϕxx + ϕ+ λϕt = −Reψx + g,

ψ(x, 0) = ψ0(x), ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x),

ψ(x, t) = ϕ(x, t) = 0, x ∈ ∂Ω, t > 0,

where x ∈ Ω, t > 0, κ > 0, α > 0, λ > 0, f and g are driving terms and
Ω is a bounded interval of IR. With the help of the Lyapunov exponents we
give an estimate of the upper bound of its Hausdorff and Fractal dimension.

1 Introduction

The aim of this paper is to prove the finite dimensionality of the global attractor
for the following Klein-Gordon-Schrödinger type system

iψt + κψxx + iαψ = ϕψ + f, (1.1)

ϕtt − ϕxx + ϕ+ λϕt = −Reψx + g, (1.2)

ψ(x, 0) = ψ0(x), ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), (1.3)

ψ(x, t) = ϕ(x, t) = 0, x ∈ ∂Ω, t > 0, (1.4)
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where x ∈ Ω, t > 0, κ > 0, α > 0, λ > 0, Ω is a bounded interval of IR and f and g
are the driving terms. The variable ψ stands for the dimensionless low frequency
electron field, whereas the (real) variable ϕ denotes the dimensionless low fre-
quency density. System (1.1)-(1.4) describes the nonlinear interaction between high
frequency electron waves and low frequency ion plasma waves in a homogeneous
magnetic field, adapted to model the UHH plasma heating scheme. This modeling
process appeared for first time in the work [12] (see also [15]), where for the undriven
case (f ≡ 0, g ≡ 0) the global existence and uniqueness of the solutions were proved
and necessary conditions were established for the system to manifest exponential en-
ergy decay. These results were extended by the authors to the more realistic driven
case system (1.1) - (1.4) (see, [13]), where the driving terms f, g ∈ L2(Ω). Here the
existence of a global attractor is derived in the space (H1

0 (Ω) ∩H2(Ω))2 ×H1
0 (Ω),

which attracts all bounded sets of (H1
0 (Ω)∩H2(Ω))2×H1

0 (Ω) in the norm topology.
To this end, some useful estimates on the solutions of the system (1.1) - (1.4) are
derived in (H1

0 (Ω)∩H2(Ω))2×H1
0 (Ω). Then, based on a method first introduced by

John Ball in [1], the continuous dependence of the solutions on the initial data in the
space (H1

0 (Ω)∩H2(Ω))2×H1
0 (Ω) is proved and the asymptotic compactness of the

dynamical system is shown. Finally, the existence of a global attractor is established.

Xanthopoulos and Zouraris in a recently published paper (see [16]) propose a linearly
implicit finite difference method to approximate the solution of the system (1.1) -
(1.4), the convergence of which is ensured by deriving a second order error estimate
in a discrete energy norm that is stronger than the discrete maximum norm. The
numerical implementation of the method gives a computational confirmation of its
order of convergence and recovers known theoretical results for the behavior of the
solution, while revealing additional nonlinear features.

The finite dimensionality of an attractor has been extensively studied. The dimen-
sion of an attractor is one of the few mathematical information one may have on
the geometry of such (invariant) sets. While on the physical and numerical side, the
dimension gives an idea of the necessary number of degrees of freedom of a system
and therefore the size of the computations needed for its numerical simulation.

To estimate upper bounds for the Hausdorff and Fractal dimensions various proper-
ties of local and global Lyapunov exponents are used. Both of these notions where
implemented in the study of the Hausdorff dimension of a global attractor for the
2D Navier-Stokes equations (see [2], [3]). Later on, global Lyapunov exponents be-
came the standard tools to study attractors for the dissipative partial differential
equations, see [14]. The global Lyapunov exponents measure, uniformly over the
attractor, the exponential rate of change of solutions with respect to time. In [6] the



Finite Dimensionality of a Klein-Gordon-Schrödinger Type System 3

authors successively replaced the global Lyapunov exponents with the Local ones
which measure the exponential rate of the growth along a single trajectory which
simplifies the task of estimating the dimension of an attractor.

General results on the dimension of attractors were proved in [8] for a weakly damped
driven Schrödinger one-dimensional equation defined in Ω (bounded) ⊂ IR. Later
the authors of [9] followed similar arguments with the ones introduced in [3] proving
the finite dimensionality of a global attractor for a nonlinear wave equation. Based
on the results of [3] the authors of [10] derive an upper bound for the dimension
of an attractor for the Navier-Stokes equation in space dimension three as well as
improve previous results on the lower and upper bounds for the two-dimensional
case. In [7] the long time behaviour of solutions for a Zakharov system in a bounded
domain is studied and by using the linearized flow and Lyapunov exponents, the
existence of a weak global attractor with a finite fractal and Hausdorff dimension is
proved. A later work by [11] improves the previous results by showing the existence
of a strong global attractor equivalent to the weak one.

The rest of the paper is divided into three parts. In Section 2, we study the lin-
earization of the system (1.1)-(1.4) and obtain the energy estimates necessary to find
bounds for the dimension of the attractor in the space E1 = (H1

0 (Ω)∩H2(Ω))2(Ω)×
H1

0 (Ω). In Section 3, we apply the general method based on the uniform Lyapunov
exponents and find upper bounds for the Hausdorff and Fractal dimension of the
attractor X1 in E1. Finally, taking into consideration the results of [11] and [13]
we prove that Xw

1 = X1 Two main questions are raised a) is there any rela-
tion between the dimensions of the two sets Xw

1 and X1? and b) is it possible to
estimate a positive lower bound for the dimensions of the attractors Xw

1 and/or X1?

Notation : Denote by Hs both the standard real and complex Sobolev spaces.
For simplicity reasons sometimes we use Hs, Ls for Hs(Ω), Ls(Ω) and ||.||, (., .)

for the norm and the inner product of L2(Ω), respectively.

∫
dx denotes the

integration over the domain Ω. Finally, C is a general symbol for any positive
constant.

2 Energy Estimates

Let A be the unbounded linear operator defined by

Au = −uxx, D(A) = H2(Ω) ∩H1
0 (Ω).
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Since the embedding of D(A) into L2(Ω) is compact, A−1 is a compact, self
adjoint operator on L2(Ω). Therefore there exists a Hilbert basis on L2(Ω) made
of eigenvectors of A. Let {λi}∞i=0 denote the nondecreasing sequence of eigenvalues
counting multiplicities

0 5 λ1 5 λ2 5 ... 5 λj 5 ...→ +∞, as j → ∞,

with corresponding orthonormalized eigenvectors {wj}∞j=0. The following product
spaces will be proved useful

E0 = H1
0 (Ω)×H1

0 (Ω)× L2(Ω),

E1 = (H1
0 (Ω) ∩H2(Ω))2(Ω)×H1

0 (Ω).

It is well known that the embedding E1 ↪→ E0 is compact.

Let us introduce the transformation θ = ϕt + δϕ, where θ is real and δ a small
positive constant to be specified later. Then, the system (1.1)-(1.2) takes the form

iψt + κψxx + iαψ = ϕψ + f, (2.1)

ϕt + δϕ = θ, (2.2)

θt + (λ− δ)θ − ϕxx + (1− δ(λ− δ))ϕ = −Reψx + g. (2.3)

Also the initial and boundary conditions (1.3)-(1.4) become

ψ(x, 0) = ψ0(x), ϕ(x, 0) = ϕ0(x), θ(x, 0) = θ0(x), x ∈ Ω, (2.4)

ψ(x, t) = ϕ(x, t) = 0, x ∈ ∂Ω, t > 0. (2.5)

The linearization of (2.1)-(2.3) is the following system

ivt + κvxx + iαv = uψ + vϕ, (2.6)

ut + δu = F, (2.7)

Ft + (λ− δ)F − uxx + (1− δ(λ− δ))u = −Re vx, (2.8)

where (ψ, ϕ, θ) = S(t)(ψ0, ϕ0, θ0), with (ψ0, ϕ0, θ0) ∈ E1, (v0, u0, F0) ∈ E1 and S(t)
is defined as in [13]. Since (ψ, ϕ, θ) ∈ L∞(IR+; E1), one may prove that (v, u, F )
admits a unique solution in L∞(IR+; E1) (see [13]).

Let (v(t), u(t), F (t)) = DS(t)(ψ0, ϕ0, θ0)(v0, u0, F0), where DS(t)(ψ0, ϕ0, θ0) is the
differential of S(t) at the point (ψ0, ϕ0, θ0). The following lemma shows that S(t)
is uniformly differentiable on bounded sets of E1. This fact is important for the
proof of the finite dimensionality of the global attractor. The proof of the lemma
may be omitted as it follows the same techniques as in [[13], Lemma 3.3]
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Lemma 2.1 Let R, T be two positive constants. Then there exists a constant
C(R, T ) such that for every (ψi

0, ϕ
i
0, θ

i
0) with

||(ψi
0, ϕ

i
0, θ

i
0)||E1 ≤ R, i = 1, 2 for every |t| ≤ T,

we have

||S(t)(ψ2
0, ϕ

2
0, θ

2
0)− S(t)(ψ1

0, ϕ
1
0, θ

1
0)−DS(t)(ψ1

0, ϕ
1
0, θ

1
0)(ψ0, ϕ0, θ0)||E1

≤ C||(ψ0, ϕ0, θ0)||2E1 ,
(2.9)

where

ψ0 = ψ2
0 − ψ1

0, ϕ0 = ϕ2
0 − ϕ1

0, θ0 = θ20 − θ10.

It will be convenient to rewrite the system (2.6)-(2.8) by using the following change
of variables

p = eσtv, q = eσtu, G = eσtF.

Then the linearized system (2.6)-(2.8) can be rewritten in the form

ipt + κpxx + i(α− σ)p = qψ + pϕ, (2.10)

qt + (δ − σ)q = G, (2.11)

Gt + (λ− σ − δ)G− qxx + (1− δ(λ− δ))q = −Repx. (2.12)

Let µ, ν be positive constants large enough to be fixed later in the proof (see
relation 2.29). Then the following energy equivalence is of basic importance for the
continuation of the discussion

Proposition 2.2 Let α, δ, λ satisfy the following relations

δ − 2κα < 0, 3δ − 2λ < 0, 1− δ(λ− δ) > 0, (2.13)

and introduce a new parameter σ such that σ < min(α/2, δ/4). Then the following
energy estimates are valid

min(
κ2

2
,
ν

2
)(||pxx||2+||Gx||2+||qxx||2) ≤ Q(t) ≤ max(µ, ν)(||pxx||2+||Gx||2+||qxx||2),

where

Q(t) = κ2||pxx||2 − 2κRe

∫
qψp̄xx − 2κRe

∫
pϕp̄xx +

ν

2
||Gx||2 +

ν

2
||qxx||2

+ ν
δ

8
||qx||2 +

µ

2
||p||2.
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Proof Take in L2 the scalar product of equation (2.10) by p̄. The imaginary part
of the resulting relation forms the first energy equation

1

2

d

dt
||p||2 + (α− σ)||p||2 = Im

∫
qψp̄. (2.14)

Next, multiplying equation (2.10) by p̄xx,t + αp̄xx in L2 and taking the real part
we have the second energy equation

1

2

d

dt
κ||pxx||2 + κα||pxx||2 = Re

∫
qψp̄xx,t + αRe

∫
qψp̄xx +Re

∫
pϕp̄xx,t

+ αRe

∫
pϕp̄xx. (2.15)

But
d

dt

∫
qψp̄xx =

∫
qtψp̄xx +

∫
qψtp̄xx +

∫
qψp̄xx,t. (2.16)

Substitution of the above relation (2.16) into equation (2.15) produces

1

2

d

dt
κ||pxx||2 + κα||pxx||2 =

d

dt

∫
qψp̄xx −

∫
qtψp̄xx −

∫
qψtp̄xx

+ αRe

∫
qψp̄xx +Re

∫
pϕp̄xx,t + αRe

∫
pϕp̄xx.

(2.17)

Also, we have

κ

∫
Gψp̄xx =

∫
qG|ψ|2 +

∫
Gψpϕ

and

d

dt

∫
pϕp̄xx =

∫
ptϕp̄xx +

∫
pϕtp̄xx +

∫
pϕp̄xx,t. (2.18)

Now, ∫
ptϕp̄xx = (α− σ)Re

∫
pϕp̄xx − Im

∫
qψϕp̄xx − Im

∫
p|ϕ|2p̄xx. (2.19)

Hence relation (2.15) becomes

1

2

d

dt

(
κ2||pxx||2 − 2κRe

∫
qψp̄xx − 2κRe

∫
pϕp̄xx

)
+ κ2α||pxx||2

= κ(2α− σ)Re

∫
pϕp̄xx + κ(α + δ)Re

∫
qψp̄xx + κRe

∫
qψtp̄xx

− κRe

∫
|ψ|2Gq − κRe

∫
Gψpϕ− κIm

∫
qψϕp̄xx

− κIm

∫
p|ϕ|2p̄xx + κRe

∫
pϕtp̄xx.

(2.20)
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To proceed, we multiply relation (2.12) by −Gxx and integrate to obtain the third
energy equation

1

2

d

dt

(
||Gx||2 + ||qxx||2 +

δ

4
||qx||2

)
+(λ− σ − δ)||Gx||2

+ (δ − σ)||qxx||2 +
δ

4
(δ − σ)||qx||2 ≤ −Re

∫
pxxGx.

(2.21)

Combination of the energy estimates in the following way

µ× (2.14) + 2× (2.20) + ν × (2.21),

leads to the definition of the energy functional

Q(t) =κ2||pxx||2 − 2κRe

∫
qψp̄xx − 2κRe

∫
pϕp̄xx +

ν

2
||Gx||2 +

ν

2
||qxx||2

+ ν
δ

8
||qx||2 +

µ

2
||p||2,

which satisfies

d

dt
Q(t) + 2κ2α||pxx||2 + ν(λ− σ − δ)||Gx||2 + ν(δ − σ)||qxx||2

+ ν
δ

4
(δ − σ)||qx||2 + µ(α− σ)||p||2 ≤ A,

(2.22)

where

A =: 2κ(2α− σ)Re

∫
pϕp̄xx + 2κ(α + δ)Re

∫
qψp̄xx + 2κRe

∫
qψtp̄xx

− 2κRe

∫
|ψ|2Gq − 2κRe

∫
Gψpϕ− 2κIm

∫
qψϕp̄xx

− 2κIm

∫
p|ϕ|2p̄xx + 2κRe

∫
pϕtp̄xx − ν Re

∫
pxxGx + µ Im

∫
qψp̄.

(2.23)

Majorization of A produces the following inequality

A ≤2|2α− σ|
∣∣∣∣∫ pϕp̄xx

∣∣∣∣+ 2|α + δ|
∣∣∣∣∫ qψp̄xx

∣∣∣∣+ 2

∣∣∣∣∫ qψtp̄xx

∣∣∣∣
− 2

∣∣∣∣∫ |ψ|2Gq
∣∣∣∣− 2

∣∣∣∣∫ Gψpϕ

∣∣∣∣− 2

∣∣∣∣∫ qψϕp̄xx

∣∣∣∣− 2

∣∣∣∣∫ p|ϕ|2p̄xx
∣∣∣∣

+ 2

∣∣∣∣∫ pϕtp̄xx

∣∣∣∣− |ν|
∣∣∣∣∫ pxxGx

∣∣∣∣+ |µ|
∣∣∣∣∫ qψp̄

∣∣∣∣.
(2.24)
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A further mazorization of A is obtained by applying Hölder inequality in the right
hand side of the relation (2.24)

A ≤2κ|2α− σ| ||p|| ||ϕ||∞ ||pxx||+ 2κ|α+ δ| ||q|| ||ψ||∞ ||pxx||
+ 2κ||q|| ||ψt|| ||pxx|| − 2κ||ψ||2∞ ||G|| ||q|| − 2κ||ψ||∞ ||ϕ||∞ ||G|| ||p||
− 2κ||ψ||∞ ||ϕ||∞ ||q|| ||pxx|| − 2κ||ϕ||2∞ ||p|| ||pxx||
+ 2κ||ϕt|| ||p|| ||pxx|| − |ν| ||pxx|| ||Gx||+ |µ| ||q|| ||ψ||∞ ||p||,

(2.25)

where the integrals in (2.24) have been evaluated as follows∣∣∣∣∫ pϕp̄xx

∣∣∣∣ ≤ ||p|| ||ϕ||∞ ||pxx|| ≤
c2

2
||px||2||ϕ||2∞ +

1

2
||pxx||2,∣∣∣∣∫ qψp̄xx

∣∣∣∣ ≤ ||q|| ||ψ||∞ ||pxx|| ≤ c||qx|| ||ψ||∞ ||pxx|| ≤
1

2
||pxx||2 +

c2

2
||qx||2||ψ||2∞,∣∣∣∣∫ |ψ|2Gq

∣∣∣∣ ≤ ||q|| ||ψ||2∞ ||G|| ≤ c||qx|| ||ψ||2∞ ||Gx|| ≤
c2

2
||qx||2 ||ψ||4∞ +

1

2
||Gx||2,∣∣∣∣∫ Gψpϕ

∣∣∣∣ ≤ c||ϕ||∞||ψ||∞ ||Gx|| ||p|| ≤
1

2
||Gx||2 +

c2

2
||ϕ||2∞||ψ||2∞||px||2,∣∣∣∣∫ qψtp̄xx

∣∣∣∣ ≤ c||qx|| ||ψt||∞ ||pxx|| ≤
c2

2
||qx||2 ||ψt||2∞ +

1

2
||pxx||2,∣∣∣∣∫ qψϕp̄xx

∣∣∣∣ ≤ ||ϕ||∞ ||ψ||∞ ||qx|| ||pxx|| ≤
1

2
||pxx||2 +

c2

2
||ϕ||2∞ ||ψ||2∞ ||qx||2,∣∣∣∣∫ p|ϕ|2p̄xx

∣∣∣∣ ≤ c||ϕ||2∞ ||px|| ||pxx|| ≤
1

2
||pxx||2 +

c2

2
||ϕ||4∞ ||px||2,∣∣∣∣∫ pϕtp̄xx

∣∣∣∣ ≤ c||px|| ||ϕt||∞ ||pxx|| ≤
1

2
||pxx||2 +

c2

2
||ϕt||2 ||px||2,∣∣∣∣∫ pxxGx

∣∣∣∣ ≤ ||Gx|| ||pxx|| ≤
1

2
||pxx||2 +

1

2
||Gx||2,∣∣∣∣∫ qψp̄

∣∣∣∣ ≤ c||qx|| ||ψ||∞ ||p|| ≤ c2

2
||ψ||2∞||qx||2 +

1

2
||p||2.

Here we have used the compact embeddings H1 ↪→ L2, E1 ↪→ E0 and the fact
that the assumption (ψ0, ϕ0, θ0) ∈ E1 implies that the solution (ψ, ϕ, θ) ∈ E1 (see,
[13]). Therefore ||ψ||, ||ϕ||, ||ψt|| ||ϕt|| are time-uniform bounded. Hence there
exist some constants c0, c1 > 0, where c0 = c0(κ, δ, α, σ, ||ψ||, ||ψt||, ||ϕ||) and
c1 = c1(α, σ, ν, ||ψ||, ||ϕt||, ||ϕ||) such that relation (2.25) obtains the form

A ≤ c0||qx||2 + c1||px||2 + ν
δ

4
||Gx||2 + δκ||pxx||2 + µ

α

2
||p||2. (2.26)
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From the inequalities (2.21) and (2.24) we obtain

d

dt
Q(t) + κ(2κα− δ)||pxx||2 + ν(λ− σ − δ − δ

4
)||Gx||2 + ν(δ − σ)||qxx||2

+ ν
δ

4
(δ − σ)||qx||2 + µ(α− σ − α

2
)||p||2 ≤ c0||qx||2 + c1||px||2.

(2.27)

Until now there has been no condition imposed on σ. Considering the estimates
made for δ in (2.13) and taking δ small enough, one may choose σ < min{α/2, δ/4}.
Thereby, we have λ−σ− δ− δ

4
= λ−σ− 5δ

4
> 0, α−σ− α

2
= α

2
−σ > 0, δ−σ > 0

and 2κα− δ > 0. Therefore it is clear that

d

dt
Q(t) ≤ c0||qx||2 + c1||px||2 ≤ c2(||qx||2 + ||px||2), (2.28)

where c2 = max{c0, c1}. For well chosen µ, ν it can be proven that the norm
introduced by the functional Q1/2 is equivalent to the norm of E1. That is taking
into consideration the definition of Q1/2 the following integrals need to be evaluated

2κ

∣∣∣∣∫ qψp̄xx

∣∣∣∣ ≤ 2κc||qx|| ||ψ||∞ ||pxx|| ≤
ν

8
||qx||2 +

8κ2c2||ψ||2∞||pxx||2

ν

and

2κ

∣∣∣∣∫ pϕp̄xx

∣∣∣∣ ≤ 2κ||ϕ||∞||p|| ||pxx|| ≤
µ

2
||p||2 + 2κ2||ϕ||2∞||pxx||2

µ
.

Consequently we obtain the following minorization

Q(t) ≥
(
κ2 − 8κ2c2||ψ||2∞

ν
− 2κ2||ϕ||2∞

µ

)
||pxx||2 +

ν

2
||Gx||2 +

ν

2
||qxx||2.

Since ||ψ||2∞, ||ϕ||2∞ lie in a uniform in time bounded set then for large enough µ, ν
we may have

κ2 − 8κ2c2||ψ||2∞
ν

− 2κ2||ϕ||2∞
µ

≥ κ2

2
, for all t ≥ 0. (2.29)

This infers that Q(t) ≥ c(||pxx||2+ ||Gx||2+ ||qxx||2) with c = min{ν/2, κ2/2}. On
the other hand the following is also true

Q(t) ≤ |Q(t)| ≤ max{µ, ν}(||pxx||2 + ||Gx||2 + ||qxx||2).

Hence

c(||pxx||2 + ||Gx||2 + ||qxx||2) ≤ Q(t) ≤ c
′
(||pxx||2 + ||Gx||2 + ||qxx||2), (2.30)

where c
′
= max{µ, ν}. Thus the functional Q(t)1/2 defines a norm equivalent to

the norm of E1. ▹
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3 Upper Bounds on the Dimension of Attractor

Let us define the following bilinear form associated to the energy functional Q(t):

q(t; ζ1, ζ2) =κ
2

∫
px,1p̄x,2 − 2κ Re

∫
q1ψp̄xx,2 − 2κ Re

∫
q2ψp̄xx,1

− 2κRe

∫
p1ϕp̄xx,2 − 2κRe

∫
p2ϕp̄xx,1 +

ν

2

∫
Gx,1Ḡx,2

+
ν

2

∫
qxx,1q̄xx,2 + ν

δ

8

∫
qx,1q̄x,2 +

µ

2

∫
p1p̄2,

(3.1)

where ζi = (pi, qi, Gi), i = 1, 2 are the solutions of the linear system (2.10)-(2.12).
Consider an invariant set X1 which is bounded in E1. Our aim is to study how
the operator DS(t)(ψ0, ϕ0, θ0)(ψ0, ϕ0, θ0) transforms m-dimensional volumes in E1.

Introduce the operator L ∈ L(E1), where the exterior product ∧mL is m-linear
and continuous from the space Em

1 to ∧mE1. Let ω2
m(L) denote the norm of the

mth exterior product of L in ∧mE1:

ω2
m(L) = || ∧m L||2L(∧mE1). (3.2)

The norm ω2
m(L) is defined by

|| ∧m L||2L(∧mE1) = ||Lξ1 ∧ ... ∧ Lξm||2E1 , (3.3)

where
||Lξ1 ∧ ... ∧ Lξm||2E1 = sup

Gram(ξ1,...,ξm)=1

Gram(Lξ1, ..., Lξm). (3.4)

The Gram denotes the Gram determinant, i.e.,

Gram(Lξ1, ..., Lξm) = det
1≤i, j≤m

(Lξi, Lξj), (3.5)

where the supremum is taken over all {ξi}mi=1 with det1≤i, j≤m(ξ
i, ξj)E0 ≤ 1. For a

detailed presentation of ideas related to this subject we refer to [8].

Consider next, m linearly independent elements V 1
0 , ..., V

m
0 ∈ E1, and denote by

V (t) the solution of the system (2.10)-(2.12). Now according to the above arguments
we set V i(t) = Lξi = DS(t)(η)V i

0 , where η = (ψ0, ϕ0, θ0). The Gram determinant
represents the square of m! times the volume of the m-dimensional polyhedron
defined by the vectors V 1(t), ..., V m(t). The next result states that, for sufficiently
large m, the volume of the m-dimensional polyhedron, decays exponentially, as
t→ +∞.
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Theorem 3.1 Let X1 be an invariant set which is bounded in E1. There exist
two constants C1 > 0 and C2 > 0, such that for every V0 ∈ X1, m ≥ 1 and
t ≥ 0,

||V 1(t) ∧ ... ∧ V m(t)||2E1

≤ ||V 1
0 (t) ∧ ... ∧ V m

0 (t)||2E1C
m
2 exp

(
C1Sλ − 2σm

)
t, for all V i

0 (t) ∈ E1,
(3.6)

where V i(t) = DS(t)(η)V i
0 and η = (ψ0, ϕ0, θ0).

Proof As mentioned earlier (p, q,G) = eσt(u, v, F ). We set w(t) = eσt(u, v, F ) =
eσtV (t). Then (V i, V j) = e−2σt(wi(t), wj(t)) and therefore the following equality
holds

det
1≤i, j≤m

(V i, V j) = e−2mσt det
1≤i, j≤m

(wi(t), wj(t)).

The next step is to introduce the Gram determinants

Gm(t) = det
1≤i, j≤m

(wi(t), wj(t))

and
Hm(t) = det

1≤i, j≤m
q(t;wi(t), wj(t)),

where q(t;wi(t), wj(t)) is the bilinear form which is associated to the quadratic
form Q(t) (see equation (3.1)). Hence taking into consideration the definition of
Gm(t) above and equation (3.4) concludes that

||V 1(t) ∧ ... ∧ V m(t)||2E1 = e−2mσtGm(t). (3.7)

But also from relation (2.30) we get

cmGm(t) ≤ Hm(t) ≤ c
′mGm(t). (3.8)

Therefore it is equivalent to estimate the two Gram determinants Hm(t) and Gm(t).
The Gram determinant of m vectors in a Hilbert space with scalar product (., .)
is also the determinant of the quadratic form on IRm

(x1, ..., xm) →
(( m∑

j=1

xjw
j(t),

m∑
j=1

xjw
j(t)

))
.

Taking into consideration the quantities Hm(t), Gm(t) and the fact that the above
determinant is equal to the product of the m eigenvalues of the quadratic form one
obtains

det
1≤i, j≤m

(wi(t), wj(t)) =
m∏
i=1

λi(t). (3.9)
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Hence for any subset G of IRm, with dimG = l and any x ∈ G \{0} the relation
above becomes

det
1≤i, j≤m

(wi(t), wj(t)) ≤
m∏
i=1

max
G ⊂ IRm

dimG = l

min
x ∈ G∑m

i=1 x
2
i = 1

q

(
t;

m∑
j=1

xjw
j(t),

m∑
j=1

xjw
j(t)

)
, (3.10)

where the mini-max principle is applied. For the continuation of the proof procedure the
following estimation of the Gram determinant Hm(t) is necessary

Lemma 3.2 Assume that Ψ and Ψ1 are two bilinear symmetric forms on IRm and
assume that Ψ is definite and positive. Then denoting by {κl}ml=1 the ordered eigenvalues
of Ψ1 with respect to Ψ, i.e.,

κl = max
F ⊂ IRm

dimF = l

min
r ∈ F
r ̸= 0

Ψ1(r, r)

Ψ(r, r)
, (3.11)

for every family {ψ1, ...ψm}, we have

m∑
l=1

det
1≤i, j≤m

{Ψ(ξi, ξj)l} =

( m∑
l=1

κl

)
det

1≤i, j≤m
{Ψ(ξi, ξj)}, (3.12)

where

Ψ(ξi, ξj)l = (1− δkj)Ψ(ξi, ξj) + δkj
d

dt
Ψ1(ξ

i, ξj), (3.13)

in which case the symbol of Kronecker is defined by

δkj =

{
1, j = l;
0, j ̸= l.

Proof See [8, Lemma 3.2]. ▹

In order to estimate the time derivative of Hm(t) one may use the classical rule of
differentiation to obtain

d

dt
Hm(t) =

m∑
k=1

det
1≤i, j≤m

(
(1− δkj)q(t;w

i(t), wj(t)) + δkj
d

dt
q(t;wi(t), wj(t))

)
. (3.14)

Due to equation (3.1) the last quantity on the right hand side of relation (3.14) becomes

d

dt
q(t;wi(t), wj(t)) =

1

4

d

dt
Q(t;wi(t) + wj(t))− 1

4

d

dt
Q(t;wi(t)− wj(t)). (3.15)

Introduce the following quantity:

d

dt
q(t;wi(t), wj(t)) =

R(t;wi(t) + wj(t))−R(t;wi(t)− wj(t))

4
= ρ(t;wi(t), wj(t)),
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where R(t) =
dQ(t)

dt
and ρ is the bilinear form associated to R. Therefore relations

(3.12), (3.14) and (3.15) give

d

dt
Hm(t) =

( m∑
l=1

κl

)
Hm(t), (3.16)

where

κl = max
G ⊂ IRm

dimG = l

min
x ∈ G
x ̸= 0

R(t;
∑m

j=1 xjw
j(t))

Q(t;
∑m

j=1 xjw
j(t))

(1 ≤ l ≤ m) (3.17)

and Q(t;
∑m

j=1 xjw
j(t)) ̸= 0. Now according to relation (2.27) we have that

R(t; (p, q,G)) ≤ c2(||px||2 + ||qx||2).

But the norms ||px||2 + ||qx||2 can be written as (K(p, q,G), (p, q,G))E1 , where K is
defined by

K(ξ1, ξ2, ξ3) = ((−∆)−1ξ1, (−∆)−1ξ2, 0), with ξ = (ξ1, ξ2, ξ3) ∈ E1.

Since Ω is bounded one may prove that K is a compact symmetric operator. Conse-
quently, using this last remark and relation (2.30) we obtain

d

dt
Hm(t) ≤ Hm(t)

m∑
l=1

max
G ⊂ IRm

dimG = l

min
x ∈ G
x ̸= 0

c2(K(
∑m

j=1 xjw
j),

∑m
j=1 xjw

j)E1

c||
∑m

j=1 xjw
j ||2E1

. (3.18)

Notice that F ⊂ IRm, dim F = l is given. Then for x ∈ F, the
∑m

j=1 xjw
j(t) span a

space F (t) ⊂ E1 with dimension l so that

min
x ∈ F
x ̸= 0

c2(K(
∑m

j=1 xjw
j),

∑m
j=1 xjw

j)E1

c||
∑m

j=1 xjw
j ||2E1

≤ max
F ⊂ E1

dimF = l

min
ξ ∈ F
ξ ̸= 0

(K(ξ), ξ)E1
||ξ||2E1

. (3.19)

Now, the right hand side of inequality (3.19) is the l-th eigenvalue of K, denoted by κl.
But, according to the definition of K, it can be shown that κl = (λl)

−1, where λl is
the l-th eigenvalue of the Laplacian operator. Hence relation (3.16) becomes

d

dt
Hm(t) ≤ C1

( m∑
l=1

λ−1
l

)
Hm(t), (3.20)

where C1 =
c2
c

and λl = C0l
2L−2. Then Gronwall’s Lemma implies

Hm(t) ≤ Hm(0)exp

(
C1Sλt

)
,
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where Sλ =
∑m

l=1 λ
−1
l . Therefore inequality (3.8) gives

Gm(t) ≤ 1

cm
Hm(0)exp

(
C1Sλt

)
and

Gm(t) ≤
(
c
′

c

)m

Gm(0)exp

(
C1Sλt

)
.

But according to the definition of Gm(t)

det
1≤i, j≤m

(V i, V j)E1 ≤ C2Gm(0)exp

(
C1Sλ − 2σm

)
t, (3.21)

where C2 =

(
c
′

c

)m

. Finally using relations (3.7) and (3.21) we have

||V 1(t) ∧ ... ∧ V m(t)||2E1 ≤ ||V 1
0 (t) ∧ ... ∧ V m

0 (t)||2E1C2 exp

(
C1Sλ − 2σm

)
t, (3.22)

for all V m
0 ∈ E1. Hence the proof of Theorem 3.1 is completed. ▹

Let

ω̄m(L) = sup
x∈X1

ωm(L), (3.23)

where the quantity ωm(L) is introduced in relation (3.2). Define the uniform Lyapunov
exponents on the invariant set X1 by

µ1 = Logω̄1, µj = Logω̄j − Logω̄j−1, j ≥ 2. (3.24)

Hence we can state the following.

Theorem 3.3 If for some m ≥ 0

µ1 + µ2 + ...+ µm+1 < 0, (3.25)

then the global attractor X1 of the Klein-Gordon-Schrödinger type system has finite
fractal and Hausdorff dimension in E1

dH(X) ≤ m+ 1, with mσ >
C1Sλ
2

, σ < min(
α

2
,
δ

4
)

and

dF ≤ (m+ 1)max

(
1 +

|µ1 + µ2 + ...+ µl|
|µ1 + µ2 + ...+ µm+1|

)
.
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Proof From relations (3.2)-(3.7) we know that

ω2
m(L) = sup

Gram(ξ1,...,ξm)=1

Gram(Lξ1, ..., Lξm) = sup
Gram(ξ1,...,ξm)=1

det
1≤i, j≤m

(Lξi, Lξj).

For fixed t0 > 0, consider the mapping S = S(nt0), where n ≥ 1 will be chosen later.
Let

L = DS(nt0)(m0, n0, E0), U0 = (m0, n0, E0), V i(t) = DS(nt0)U0 × V i
0 .

Taking into consideration relation (3.21) and (3.23) gives

ω̄m(L((m0, n0, E0))) ≤ C
1/2
2 exp

((
C1Sλ − 2σm

)
nt0
2

)
.

But the right hand side is independent of (m0, n0, E0) ∈ X1 hence one may deduce that

ω̄m(L) ≤ sup
x∈X1

C
1/2
2 exp

((
C1Sλ − 2σm

)
nt0
2

)
.

For fix m ∈ IN such that mσ >
C1Sλ
2

and sufficiently large n, there exists n0 such

that for S = S(n0, t0)
ω̄m < 1.

Therefore hypothesis (3.25) is satisfied and the proof of Theorem 3.3 is completed. ▹

To complete the present work we point out two open problems, which are of independent
interest.

Remark 3.4 (Open Problem I) Flahaut [7] studied the Zakharov system in one dimen-
sion, where she succeeded to prove the existence of a Global Attractor in the weak topology.
Her results were later improved by Goubet and Moise [11], where they proved the existence
of a Global Attractor for the same system in the strong topology. Furthermore, they proved
that the Strong and the Weak Attractors are equivalent, namely

Pw
1 = P1 = Pw

2 = P2,

where Pw
1 ,P1 ∈ D(A1/2)×D(A)×D(A3/2) and Pw

2 ,P2 ∈ D(A3/2)×D(A2)×D(A5/2),
where A is the Laplacian operator. We conjecture that following the reasoning of the
above mentioned authors we may prove that Xw

1 = X1, for the system (2.1)-(2.5). It
seems that the investigation of the relationship between Hausdorff and Fractal Dimensions
of the two attractors Xw

1 , X1 is an interesting open problem.

Remark 3.5 (Open Problem II) So far we have proved the existence of an upper bound
for the Hausdorff and Fractal dimensions of the global (strong) attractor X1 ∈ E1. The
study of the existence of a positive lower bound for Hausdorff and Fractal Dimensions of
the system (2.1)-(2.5) seems to be an other difficult but interesting open question.
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