ON THE MAXIMAL NUMBER OF FACETS OF 0/1 POLYTOPES
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ABSTRACT. We show that there exist 0/1 polytopes in R™ whose number of

n/2
facets exceeds (Jg" ) , where ¢ > 0 is an absolute constant.

1. INTRODUCTION

Let P be a polytope with non-empty interior in R™. We write f,_1(P) for the
number of its (n — 1)-dimensional faces. Consider the class of 0/1 polytopes in R™;
these are the convex hulls of subsets of {0,1}™. In this note we obtain a new lower
bound for the quantity

(1.1) g(n) := max { f,_1(P,) : P, is a 0/1 polytope in R"}.

The problem of determining the correct order of growth of g(n) as n — oo was
posed by Fukuda and Ziegler (see [4], [10]). It is currently known that g(n) <
30(n — 2)! if n is large enough (see [3]). In the other direction, Bardny and Pdr in
[1] determined that g(n) is superexponential in n: they obtained the lower bound

(12) o) (12 )/

logn

where ¢ > 0 is an absolute constant. In [5] we showed that

(13) g(n) > ( en )/

log®n

A more recent observation allows us to remove one logarithmic factor from the
estimate in (1.3).

Theorem 1.1. There exists a constant ¢ > 0 such that

(1.4) o> (12 )/

logn

The method of proof of Theorem 1.1 is probabilistic and has its origin in the work
of Dyer, Fiiredi and McDiarmid [2]. The proof is essentially the same with the one
in [5], which in turn is based on [1], with the exception of a different approach to one
estimate, summarized in Proposition 3.1 below. We consider random 41 polytopes
(i.e., polytopes whose vertices are independent and uniformly distributed vertices

Date: March 17, 2005.

2000 Mathematics Subject Classification. Primary 52B05; Secondary 52B20, 52B55.

Key words and phrases. 0/1 polytopes.

Research supported in part by the European Network PHD, FP6 Marie Curie Actions, RTN,
Contract MCRN -511953 and by the EPEAEK program “Pythagoras II”. The third named author
acknowledges support from the Greek State Scholarships Foundation.

1



2 D. GATZOURAS, A. GTANNOPOULOS, AND N. MARKOULAKIS

X; of the unit cube C' = [—1,1]"). We fix n < N < 2" and consider the random
polytope
(1.5) Ky :conv{)?l,...,)?N}.

Our main result is a lower bound on the expectation E[f,,—1(Kn)] of the number
of facets of K.

Theorem 1.2. There exist two positive constants a and b such that: for all suffi-
ciently large n, and all N satisfying n® < N < exp(bn), one has that

log N\ "/
alogn ’

(L6) Elfo (Ky)] > (

The same result was obtained in [5] under the restriction N < exp(bn/logn).
This had a direct influence on the final estimate obtained, leading to (1.3).

The note is organized as follows. In Section 2 we briefly describe the method (the
presentation is not self-contained and the interested reader should consult [1] and
[5]). In Section 3 we present the new technical step (it is based on a more general
lower estimate for the measure of the intersection of a symmetric polyhedron with
the sphere, which might be useful in similar situations). In Section 4 we use the
result of Section 3 to extend the range of N’s for which Theorem 1.2 holds true.
Theorem 1.1 easily follows.

We work in R™ which is equipped with the inner product (-,-). We denote by
||-1l2 the Euclidean norm and write B for the Euclidean unit ball and S™~! for the
unit sphere. Volume, surface area, and the cardinality of a finite set, are all denoted
by |-]. We write O(F) for the boundary of F. All logarithms are natural. Whenever
we write a ~ b, we mean that there exist absolute constants ci,co > 0 such that
cia < b < cpa. The letters ¢, ¢, c1, co etc. denote absolute positive constants, which
may change from line to line.

2. THE METHOD

The method makes essential use of two families (Q°) and (F®) (0 < 8 < log?2)

of convex subsets of the cube C' = [—1, 1], which were introduced by Dyer, Fiiredi
and McDiarmid in [2]. We briefly recall their definitions. For every & € C, set
(2.1) q(Z) := inf {Prob(f € H): T € H, H is a closed halfspace}.

The B-center of C' is the convex polytope

(2.2) QP ={Z e C: q(&) > exp(—fn)}.

Next, define f: [-1,1] — R by

(2.3) f(@)=3(1+2)log(l+ )+ (1 — z)log(1l — z)

if x € (—1,1) and f(£1) =log2, and for every & = (z1,...,2,) € C set
L_1<
(2.4) F(Z) = n Zf(%‘)
i=1

Then, F? is defined by
(2.5) FP={#eC:F{) <p}.

Since f is a strictly convex function on (—1,1), F% is convex.
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When 8 — log?2 the convex bodies Q° and F? tend to C. The main tool for
the proof of Theorem 1.2 is the fact that the two families (Q°) and (F®) are very
close, in the following sense.

Theorem 2.1. (i) Q° N (—1,1)" C F? for every 3 > 0.

(ii) There exist v € (0, 1—10) and ng = no(y) € N with the following property: If
n > ng and 4logn/n < G <log?2, then

(2.6) FPenyC cQ’
for some e < 3logn/n. O

Part (i) of Theorem 2.1 was proved in [2]. Part (ii) was proved in [5] and
strengthens a previous estimate from [1].

Fix n® < N < 2" and define a = (log N)/n. The family (Q”) is related to the
random polytope K through a lemma from [2] (the estimate for ¢ claimed below
is checked in [5]): If n is sufficiently large, one has that

(2.7) Prob(Ky 2 Q%) >1—27(""1

for some ¢ < 3logn/n.
Combining (2.7) with Theorem 2.1, one gets the following.

Lemma 2.2. Let n® < N < 2" and n > ng(vy). Then,
(2.8) Prob(Ky 2 F**NAC) >1—2"("D
for some e < 6logn/n. O

Béariany and Pér proved that Ky is weakly sandwithced between F*~¢ N ~C
and F*t9 in the sense that Ky 2 Fe ¢ N ~vC and most of the surface area of
Fot9 N 4C is outside Ky for small positive values of § (the estimate for & given
below is checked in [5]).

Lemma 2.3. Ifn > ng and o < log2 — 12n~1, then
(2.9) Prob( |O(FYNnyC N Ky| > %|8(F°‘+6) NYC|) < 1i5-
for some § < 6/n. O

We will also need the following geometric lemma from [1].

Lemma 2.4. Let v € (O L ) and assume that 8+ ¢ <log2. Then,

» 10
(2.10) |O(FP+) Ny N H| < (3¢n) /2571
for every closed halfspace H whose interior is disjoint from FP N~C. O

The strategy of Bardny and Pér (which is also followed in [5] and in the present
note) is that for a random Ky and for each halfspace H4 which is defined by
a facet A of K and has interior disjoint from Ky, we also have that H4 has
interior disjoint from F*~¢N~C (from Lemma 2.2) and hence cuts a small amount
(independent from A) of the surface of J(F*+%) N ~vC (from Lemma 2.4). Since
the surface area of 9(F**+°) N ~yC' is mostly outside Ky (from Lemma 2.3) we see
that the number of facets of K must be large, depending on the total surface
of (F**+9) N~yC. We will describe these steps more carefully in the last Section.
First, we give a new lower bound for |9(F%) N~C|.
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3. AN ADDITIONAL LEMMA
The new element in our argument is the next Proposition.

Proposition 3.1. There exists v > 0 with the following property: for every v €
(0,1) and for all n > no(7y) and B < c(y)/r one has that

(3.1) O(F7) NyC| = e(y)"H(26n) D2 gm 1,
where ¢(y) > 0 is a constant depending only on .

Proof. We first estimate the product curvature (%) of the surface F(Z) = §: in [5]
it is proved that if 8 < log2 and & € vC' with F(Z) = 3, then

(3.2) > (1- 72)"—1(26,1)@—1)/2.

r(Z)
Let § € S"~1 and write :E'(g7 ﬂ) for the point on the boundary of F? for which
nVF (& (5, B)) is a positive multiple of g. This point is well-defined and unique if
0< < |supp 5’(10g2)/n (see [1, Lemma 6.2]).

Let » > 0 be an absolute constant (which will be suitably chosen) and set
(3.3) M, = {56 Sl /nfrl e C}.
The argument given in [1, Lemma 6.3] shows that if 5 < ¢1(v)/r, then for every
0 € M, we have f(H,ﬁ) € vC'. Also, we easily check that for every 8 € M, the
condition |supp 5! > n/r is satisfied, and hence, if § < ¢1(y)/r then f(@ 5) is
well-defined and unique. We will estimate the measure of M,..

Lemma 3.2. There exists v > 0 such that: if n > 3 then
(3.4) |M,| > e~™/2|5"71,

Proof. Write =, for the standard Gaussian measure on R™ and o,, for the rotation-
ally invariant probability measure on S"~!. We use the following fact.

Fact 3.3. If K is a symmetric conver body in R™ then
(3.5) 10,(S" ' NLIK) <7,(VnK) < 0,(S" ' NeK) + e 2,

Proof of Fact 3.3. A proof appears in [7]. We sketch the proof of the right hand
side inequality (which is the one we need). Observe that

(3.6) VnK C (31v/nBY)uC (2v/nS" ' nv/nK)

where, for A C é\/ﬁS”’l, we write C(A) for the positive cone generated by A. It
follows that

(3.7) W (VIK) < 5 (LVABE) + 0 (LV/nS™ 1 /i)

where o denotes the rotationally invariant probability measure on %,/n.S"!. Now

(3.8) o(1vnS" ' NynK) = 0,(5"" ' NekK),
and a direct computation shows that
(3.9) Y (pV/nBY) < (pv/e) e P2

for all 0 < p < 1. It follows that
(3.10) Y (2vnBy) < exp(—n/2).
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From (3.7)—(3.10) we get the Fact. O
Proof of Lemma 3.2. Observe that

(3.11) M, :S”_lﬁe(\/m0>.

Hence
|gﬂfr1 = on(My) = Un(sn_lﬁe( r/(e2n)0))
> v, ((Vr/e)C) —e /2
A -,
where

(3.12) d(s) := \/LQ_W [ e~ /2t.

Observe that 2e™/2 < e="/4 for n > 3. Choose r > 0 so that

(3.13) d(vr/e) > e /4,

this is possible, since lim,_, 1o d(s) = 1. Then,

(3.14) d(yr/e)" > 2e /2

for n > 3, which completes the proof. ([l

We can now finish the proof of Proposition 3.1. Writing & for i;’(é: ﬁ) and ex-
pressing surface area in terms of product curvature (cf. [8, Theorem 4.2.4]), we can
write

B15) 10N NACl 2 [ diz (1= 2) 2o s,
M, K(T)

and the result follows. O

A general version of Lemma 3.2. The method of proof of Lemma 3.2 provides a
general lower estimate for the measure of the intersection of an arbitrary symmetric
polyhedron with the sphere. Let iy, ..., i, be non-zero vectors in R™ and consider
the symmetric polyhedron

(3.16) T= ﬂ {z: [(z,4,;)] <1}.

The following theorem of Siddk (see [9]) gives an estimate for ~, (7).
Fact 3.4 (Siddk’s lemma). If T is the symmetric polyhedron defined by (3.16) then

a0 = [Tt leadl < =TT (5 )-

o Al

We will also use an estimate which appears in [6].

Fact 3.5. There exists an absolute constant X > 0 such that, for every ty, ... ty, >
0,

(3.18) f[ld G) > exp (—Ait?) .
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Consider the parameter R = R(T) defined by

(3.19) R(T) =) |lalf3.
=1

Let s > 0. Fact 3.4 shows that

(3.20) n(sT) Zf[ <uzllz>

Then, Fact 3.5 shows that

(3.21) Y (sT) > exp (—)\Rz(T)/sz) > e M4 > 9e7 /2,
provided that n > 3 and

- 2VAR(T)

> 7\/5 .

We then apply Fact 3.3 for the polyhedron K = (s/v/n)T to get
(3.23)

On (S’”_1 N %T) > exp (—AR*(T)/s?) — exp(—n/2) > L exp (—AR*(T)/s?) .

In other words, we have proved the following.

(3.22)

Proposition 3.6. Letn > 3 and let iy, . .., U, be non-zero vectors in R™. Consider
the symmetric polyhedron

T = ﬂ {m (x, ;)| < 1},
and define
= > lll3-
i=1
Then, for all t > c¢R(T)/\/n we have that
(3.24) on (S"' N (t/Vn)T) > Lexp (—cR*(T)/t) ,

where ¢ > 0 is an absolute constant. O

4. PROOF OF THE THEOREMS

Proof of Theorem 1.2. Let v € (0,1) be the constant in Theorem 2.1. Assume
that n is large enough and set b = ¢(v)/(2r), where c¢(y) > 0 is the constant in
Proposition 3.1.

Given N with n® < N < exp(bn), let a = (log N)/n. From Lemma 2.2 there
exists € < 6logn/n such that

(4.1) KNy 2 F*"nAC

with probability greater than 1 —27"*! and from Lemma 2.3 there exists § < 6/n
such that

(4.2) (D(F*2) NyC)\ Kx| > 3|0(F**) nAC|

with probability greater than 1 — 1072. We assume that Ky satisfies both (4.1)
and (4.2) (this holds with probability greater than ).
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We apply Lemma 2.4 with 8 = a — ¢ and ( = e+ §: If A is a facet of Ky and
H 4 is the corresponding halfspace which has interior disjoint from K, then

(4.3) O(F0) N~C N Hyl < (3n(e +6)) "2 15771,

It follows that

faa(Kn) (3n(e +0) "2 1571 > S0P N C 0 Hy|
A
> [(0(F**) N C) \ K|

> o) nACl.

Since o < b= ¢(y)/(2r) and 6 < 6/n, we have o + § < ¢(7y)/r if n is large enough.
Applying Proposition 3.1 with = a + 3, we get

n— n—1
(4.4) fo1(Kn) (3n(e +0)" V2 > (c(’y) 2om) :
for sufficiently large n. Since an =log N and (¢ + 0)n < 12log n, this shows that
n/2

ci(y)log N
4.5 ne1(Kn) > | ——2—
(45) Faoal) 2 (20
with probability greater than % (I

Proof of Theorem 1.1. We can apply Theorem 1.2 with N > exp(bn) where b > 0
is an absolute constant. This shows that there exist 0/1 polytopes P in R™ with

(46) famr 2 ()

as claimed. O
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