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Abstract. We show that there exist 0/1 polytopes in R
n whose number of

facets exceeds
(

cn
log n

)n/2

, where c > 0 is an absolute constant.

1. Introduction

Let P be a polytope with non-empty interior in R
n. We write fn−1(P ) for the

number of its (n− 1)-dimensional faces. Consider the class of 0/1 polytopes in R
n;

these are the convex hulls of subsets of {0, 1}n. In this note we obtain a new lower
bound for the quantity

(1.1) g(n) := max
{

fn−1(Pn) : Pn is a 0/1 polytope in R
n
}

.

The problem of determining the correct order of growth of g(n) as n → ∞ was
posed by Fukuda and Ziegler (see [4], [10]). It is currently known that g(n) ≤
30(n − 2)! if n is large enough (see [3]). In the other direction, Bárány and Pór in
[1] determined that g(n) is superexponential in n: they obtained the lower bound

(1.2) g(n) ≥
(

cn

log n

)n/4

,

where c > 0 is an absolute constant. In [5] we showed that

(1.3) g(n) ≥
(

cn

log2 n

)n/2

.

A more recent observation allows us to remove one logarithmic factor from the
estimate in (1.3).

Theorem 1.1. There exists a constant c > 0 such that

(1.4) g(n) ≥
(

cn

log n

)n/2

.

The method of proof of Theorem 1.1 is probabilistic and has its origin in the work
of Dyer, Füredi and McDiarmid [2]. The proof is essentially the same with the one
in [5], which in turn is based on [1], with the exception of a different approach to one
estimate, summarized in Proposition 3.1 below. We consider random ±1 polytopes
(i.e., polytopes whose vertices are independent and uniformly distributed vertices
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~Xi of the unit cube C = [−1, 1]n). We fix n < N ≤ 2n and consider the random
polytope

(1.5) KN = conv{ ~X1, . . . , ~XN}.
Our main result is a lower bound on the expectation E[fn−1(KN )] of the number
of facets of KN .

Theorem 1.2. There exist two positive constants a and b such that: for all suffi-

ciently large n, and all N satisfying na ≤ N ≤ exp(bn), one has that

(1.6) E[fn−1(KN )] ≥
(

log N

a log n

)n/2

.

The same result was obtained in [5] under the restriction N ≤ exp(bn/ log n).
This had a direct influence on the final estimate obtained, leading to (1.3).

The note is organized as follows. In Section 2 we briefly describe the method (the
presentation is not self-contained and the interested reader should consult [1] and
[5]). In Section 3 we present the new technical step (it is based on a more general
lower estimate for the measure of the intersection of a symmetric polyhedron with
the sphere, which might be useful in similar situations). In Section 4 we use the
result of Section 3 to extend the range of N ’s for which Theorem 1.2 holds true.
Theorem 1.1 easily follows.

We work in R
n which is equipped with the inner product 〈·, ·〉. We denote by

‖·‖2 the Euclidean norm and write Bn
2 for the Euclidean unit ball and Sn−1 for the

unit sphere. Volume, surface area, and the cardinality of a finite set, are all denoted
by | · |. We write ∂(F ) for the boundary of F . All logarithms are natural. Whenever
we write a ≃ b, we mean that there exist absolute constants c1, c2 > 0 such that
c1a ≤ b ≤ c2a. The letters c, c′, c1, c2 etc. denote absolute positive constants, which
may change from line to line.

2. The method

The method makes essential use of two families (Qβ) and (F β) (0 < β < log 2)
of convex subsets of the cube C = [−1, 1]n, which were introduced by Dyer, Füredi
and McDiarmid in [2]. We briefly recall their definitions. For every ~x ∈ C, set

(2.1) q(~x) := inf
{

Prob
(

~X ∈ H
)

: ~x ∈ H, H is a closed halfspace
}

.

The β-center of C is the convex polytope

(2.2) Qβ = {~x ∈ C : q(~x) ≥ exp(−βn)}.
Next, define f : [−1, 1] → R by

(2.3) f(x) = 1
2 (1 + x) log(1 + x) + 1

2 (1 − x) log(1 − x)

if x ∈ (−1, 1) and f(±1) = log 2, and for every ~x = (x1, . . . , xn) ∈ C set

(2.4) F (~x) =
1

n

n
∑

i=1

f(xi).

Then, F β is defined by

(2.5) F β = {~x ∈ C : F (~x) ≤ β}.
Since f is a strictly convex function on (−1, 1), F β is convex.
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When β → log 2 the convex bodies Qβ and F β tend to C. The main tool for
the proof of Theorem 1.2 is the fact that the two families (Qβ) and (F β) are very
close, in the following sense.

Theorem 2.1. (i) Qβ ∩ (−1, 1)n ⊆ F β for every β > 0.

(ii) There exist γ ∈
(

0, 1
10

)

and n0 = n0(γ) ∈ N with the following property: If

n ≥ n0 and 4 log n/n ≤ β < log 2, then

(2.6) F β−ε ∩ γC ⊆ Qβ

for some ε ≤ 3 log n/n. ¤

Part (i) of Theorem 2.1 was proved in [2]. Part (ii) was proved in [5] and
strengthens a previous estimate from [1].

Fix n8 ≤ N ≤ 2n and define α = (log N)/n. The family (Qβ) is related to the
random polytope KN through a lemma from [2] (the estimate for ε claimed below
is checked in [5]): If n is sufficiently large, one has that

(2.7) Prob
(

KN ⊇ Qα−ε
)

> 1 − 2−(n−1)

for some ε ≤ 3 log n/n.
Combining (2.7) with Theorem 2.1, one gets the following.

Lemma 2.2. Let n8 ≤ N ≤ 2n and n ≥ n0(γ). Then,

(2.8) Prob
(

KN ⊇ Fα−ε ∩ γC
)

> 1 − 2−(n−1)

for some ε ≤ 6 log n/n. ¤

Bárány and Pór proved that KN is weakly sandwithced between Fα−ε ∩ γC
and Fα+δ in the sense that KN ⊇ Fα−ε ∩ γC and most of the surface area of
Fα+δ ∩ γC is outside KN for small positive values of δ (the estimate for δ given
below is checked in [5]).

Lemma 2.3. If n ≥ n0 and α < log 2 − 12n−1, then

(2.9) Prob
(

|∂(Fα+δ) ∩ γC ∩ KN | ≥ 1
2 |∂(Fα+δ) ∩ γC|

)

≤ 1
100 .

for some δ ≤ 6/n. ¤

We will also need the following geometric lemma from [1].

Lemma 2.4. Let γ ∈
(

0, 1
10

)

and assume that β + ζ < log 2. Then,

(2.10) |∂(F β+ζ) ∩ γC ∩ H| ≤ (3ζn)(n−1)/2|Sn−1|
for every closed halfspace H whose interior is disjoint from F β ∩ γC. ¤

The strategy of Bárány and Pór (which is also followed in [5] and in the present
note) is that for a random KN and for each halfspace HA which is defined by
a facet A of KN and has interior disjoint from KN , we also have that HA has
interior disjoint from Fα−ε ∩γC (from Lemma 2.2) and hence cuts a small amount
(independent from A) of the surface of ∂(Fα+δ) ∩ γC (from Lemma 2.4). Since
the surface area of ∂(Fα+δ) ∩ γC is mostly outside KN (from Lemma 2.3) we see
that the number of facets of KN must be large, depending on the total surface
of ∂(Fα+δ) ∩ γC. We will describe these steps more carefully in the last Section.
First, we give a new lower bound for |∂(F β) ∩ γC|.
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3. An additional lemma

The new element in our argument is the next Proposition.

Proposition 3.1. There exists r > 0 with the following property: for every γ ∈
(0, 1) and for all n ≥ n0(γ) and β < c(γ)/r one has that

(3.1) |∂(F β) ∩ γC| ≥ c(γ)n−1(2βn)(n−1)/2|Sn−1|,
where c(γ) > 0 is a constant depending only on γ.

Proof. We first estimate the product curvature κ(~x) of the surface F (~x) = β: in [5]
it is proved that if β < log 2 and ~x ∈ γC with F (~x) = β, then

(3.2)
1

κ(~x)
≥

(

1 − γ2
)n−1

(2βn)(n−1)/2.

Let ~θ ∈ Sn−1 and write ~x
(

~θ, β
)

for the point on the boundary of F β for which

n∇F
(

~x
(

~θ, β
))

is a positive multiple of ~θ. This point is well-defined and unique if

0 < β <
∣

∣ supp ~θ
∣

∣(log 2)/n (see [1, Lemma 6.2]).
Let r > 0 be an absolute constant (which will be suitably chosen) and set

(3.3) Mr =
{

~θ ∈ Sn−1 :
√

n/r ~θ ∈ C
}

.

The argument given in [1, Lemma 6.3] shows that if β < c1(γ)/r, then for every
~θ ∈ Mr we have ~x

(

~θ, β
)

∈ γC. Also, we easily check that for every ~θ ∈ Mr the

condition
∣

∣ supp ~θ
∣

∣ ≥ n/r is satisfied, and hence, if β < c1(γ)/r then ~x
(

~θ, β
)

is
well-defined and unique. We will estimate the measure of Mr.

Lemma 3.2. There exists r > 0 such that: if n ≥ 3 then

(3.4) |Mr| ≥ e−n/2|Sn−1|.
Proof. Write γn for the standard Gaussian measure on R

n and σn for the rotation-
ally invariant probability measure on Sn−1. We use the following fact.

Fact 3.3. If K is a symmetric convex body in R
n then

(3.5) 1
2 σn

(

Sn−1 ∩ 1
2K

)

≤ γn(
√

nK) ≤ σn(Sn−1 ∩ eK) + e−n/2.

Proof of Fact 3.3. A proof appears in [7]. We sketch the proof of the right hand
side inequality (which is the one we need). Observe that

(3.6)
√

nK ⊆
(

1
e

√
nBn

2

)

∪ C
(

1
e

√
nSn−1 ∩

√
nK

)

where, for A ⊆ 1
e

√
nSn−1, we write C(A) for the positive cone generated by A. It

follows that

(3.7) γn(
√

nK) ≤ γn

(

1
e

√
nBn

2

)

+ σ
(

1
e

√
nSn−1 ∩

√
nK

)

where σ denotes the rotationally invariant probability measure on 1
e

√
nSn−1. Now

(3.8) σ
(

1
e

√
nSn−1 ∩

√
nK

)

= σn(Sn−1 ∩ eK),

and a direct computation shows that

(3.9) γn

(

ρ
√

nBn
2

)

≤ (ρ
√

e)ne−ρ2n/2

for all 0 < ρ ≤ 1. It follows that

(3.10) γn

(

1
e

√
nBn

2

)

≤ exp(−n/2).
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From (3.7)–(3.10) we get the Fact. ¤

Proof of Lemma 3.2. Observe that

(3.11) Mr = Sn−1 ∩ e
(

√

r/(e2n) C
)

.

Hence

|Mr|
|Sn−1| = σn(Mr) = σn

(

Sn−1 ∩ e
(
√

r/(e2n) C
)

)

≥ γn

(

(
√

r/e)C
)

− e−n/2

= d
(√

r/e
)n − e−n/2,

where

(3.12) d(s) :=
1√
2π

∫ s

−s

e−t2/2dt.

Observe that 2e−n/2 < e−n/4 for n ≥ 3. Choose r > 0 so that

(3.13) d
(√

r/e
)

> e−1/4;

this is possible, since lims→+∞ d(s) = 1. Then,

(3.14) d
(√

r/e
)n

> 2e−n/2

for n ≥ 3, which completes the proof. ¤

We can now finish the proof of Proposition 3.1. Writing ~x for ~x
(

~θ, β
)

and ex-
pressing surface area in terms of product curvature (cf. [8, Theorem 4.2.4]), we can
write

(3.15) |∂(F β) ∩ γC| ≥
∫

Mr

1

κ(~x)
d~θ ≥ e−n/2

(

1 − γ2
)n−1

(2βn)(n−1)/2|Sn−1|,

and the result follows. ¤

A general version of Lemma 3.2. The method of proof of Lemma 3.2 provides a
general lower estimate for the measure of the intersection of an arbitrary symmetric
polyhedron with the sphere. Let ~u1, . . . , ~um be non-zero vectors in R

n and consider
the symmetric polyhedron

(3.16) T =

m
⋂

j=1

{

x : |〈x, ~ui〉| ≤ 1
}

.

The following theorem of Sidák (see [9]) gives an estimate for γn(T ).

Fact 3.4 (Sidák’s lemma). If T is the symmetric polyhedron defined by (3.16) then

(3.17) γn(T ) ≥
m
∏

i=1

γn({x : |〈x, ~ui〉| ≤ 1}) =

m
∏

i=1

d

(

1

‖~ui‖2

)

.

We will also use an estimate which appears in [6].

Fact 3.5. There exists an absolute constant λ > 0 such that, for every t1, . . . , tm >
0,

(3.18)

m
∏

i=1

d

(

1

ti

)

≥ exp

(

−λ

m
∑

i=1

t2i

)

.
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Consider the parameter R = R(T ) defined by

(3.19) R2(T ) =

m
∑

i=1

‖~ui‖2
2.

Let s > 0. Fact 3.4 shows that

(3.20) γn(sT ) ≥
m
∏

i=1

d

(

s

‖~ui‖2

)

.

Then, Fact 3.5 shows that

(3.21) γn(sT ) ≥ exp
(

−λR2(T )/s2
)

≥ e−n/4 ≥ 2e−n/2,

provided that n ≥ 3 and

(3.22) s ≥ 2
√

λR(T )√
n

.

We then apply Fact 3.3 for the polyhedron K = (s/
√

n)T to get
(3.23)

σn

(

Sn−1 ∩ es√
n

T

)

≥ exp
(

−λR2(T )/s2
)

− exp(−n/2) ≥ 1
2 exp

(

−λR2(T )/s2
)

.

In other words, we have proved the following.

Proposition 3.6. Let n ≥ 3 and let ~u1, . . . , ~um be non-zero vectors in R
n. Consider

the symmetric polyhedron

T =
m
⋂

j=1

{

x : |〈x, ~ui〉| ≤ 1
}

,

and define

R2(T ) =

m
∑

i=1

‖~ui‖2
2.

Then, for all t ≥ cR(T )/
√

n we have that

(3.24) σn

(

Sn−1 ∩ (t/
√

n)T
)

≥ 1
2 exp

(

−cR2(T )/t2
)

,

where c > 0 is an absolute constant. ¤

4. Proof of the theorems

Proof of Theorem 1.2. Let γ ∈ (0, 1) be the constant in Theorem 2.1. Assume
that n is large enough and set b = c(γ)/(2r), where c(γ) > 0 is the constant in
Proposition 3.1.

Given N with n8 ≤ N ≤ exp(bn), let α = (log N)/n. From Lemma 2.2 there
exists ε ≤ 6 log n/n such that

(4.1) KN ⊇ Fα−ε ∩ γC

with probability greater than 1− 2−n+1, and from Lemma 2.3 there exists δ ≤ 6/n
such that

(4.2) |(∂(Fα+δ) ∩ γC) \ KN | ≥ 1
2 |∂(Fα+δ) ∩ γC|

with probability greater than 1 − 10−2. We assume that KN satisfies both (4.1)
and (4.2) (this holds with probability greater than 1

2 ).
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We apply Lemma 2.4 with β = α − ε and ζ = ε + δ: If A is a facet of KN and
HA is the corresponding halfspace which has interior disjoint from KN , then

(4.3) |∂(Fα+δ) ∩ γC ∩ HA| ≤
(

3n(ε + δ)
)(n−1)/2 |Sn−1|.

It follows that

fn−1(KN )
(

3n(ε + δ)
)(n−1)/2 |Sn−1| ≥

∑

A

|∂(Fα+δ) ∩ γC ∩ HA|

≥
∣

∣

(

∂(Fα+δ) ∩ γC
)

\ KN

∣

∣

≥ 1
2 |∂(Fα+δ) ∩ γC|.

Since α ≤ b = c(γ)/(2r) and δ ≤ 6/n, we have α + δ ≤ c(γ)/r if n is large enough.
Applying Proposition 3.1 with β = α + δ, we get

(4.4) fn−1(KN )
(

3n(ε + δ)
)(n−1)/2 ≥

(

c(γ)
√

2αn
)n−1

,

for sufficiently large n. Since αn = log N and (ε + δ)n ≤ 12 log n, this shows that

(4.5) fn−1(KN ) ≥
(

c1(γ) log N

log n

)n/2

with probability greater than 1
2 . ¤

Proof of Theorem 1.1. We can apply Theorem 1.2 with N ≥ exp(bn) where b > 0
is an absolute constant. This shows that there exist 0/1 polytopes P in R

n with

(4.6) fn−1(P ) ≥
(

cn

log n

)n/2

,

as claimed. ¤

References
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