ON THE MAXIMAL NUMBER OF FACETS OF 0/1 POLYTOPES

D. GATZOURAS, A. GIANNOPOULOS, AND N. MARKOULAKIS

Abstract. We show that there exist $0 / 1$ polytopes in \mathbb{R}^{n} whose number of facets exceeds $\left(\frac{c n}{\log n}\right)^{n / 2}$, where $c>0$ is an absolute constant.

1. Introduction

Let P be a polytope with non-empty interior in \mathbb{R}^{n}. We write $f_{n-1}(P)$ for the number of its $(n-1)$-dimensional faces. Consider the class of $0 / 1$ polytopes in \mathbb{R}^{n}; these are the convex hulls of subsets of $\{0,1\}^{n}$. In this note we obtain a new lower bound for the quantity

$$
\begin{equation*}
g(n):=\max \left\{f_{n-1}\left(P_{n}\right): P_{n} \text { is a } 0 / 1 \text { polytope in } \mathbb{R}^{n}\right\} \tag{1.1}
\end{equation*}
$$

The problem of determining the correct order of growth of $g(n)$ as $n \rightarrow \infty$ was posed by Fukuda and Ziegler (see [4], [10]). It is currently known that $g(n) \leq$ $30(n-2)$! if n is large enough (see [3]). In the other direction, Bárány and Pór in [1] determined that $g(n)$ is superexponential in n : they obtained the lower bound

$$
\begin{equation*}
g(n) \geq\left(\frac{c n}{\log n}\right)^{n / 4} \tag{1.2}
\end{equation*}
$$

where $c>0$ is an absolute constant. In [5] we showed that

$$
\begin{equation*}
g(n) \geq\left(\frac{c n}{\log ^{2} n}\right)^{n / 2} \tag{1.3}
\end{equation*}
$$

A more recent observation allows us to remove one logarithmic factor from the estimate in (1.3).

Theorem 1.1. There exists a constant $c>0$ such that

$$
\begin{equation*}
g(n) \geq\left(\frac{c n}{\log n}\right)^{n / 2} \tag{1.4}
\end{equation*}
$$

The method of proof of Theorem 1.1 is probabilistic and has its origin in the work of Dyer, Füredi and McDiarmid [2]. The proof is essentially the same with the one in [5], which in turn is based on [1], with the exception of a different approach to one estimate, summarized in Proposition 3.1 below. We consider random ± 1 polytopes (i.e., polytopes whose vertices are independent and uniformly distributed vertices

[^0]\vec{X}_{i} of the unit cube $\left.C=[-1,1]^{n}\right)$. We fix $n<N \leq 2^{n}$ and consider the random polytope
\[

$$
\begin{equation*}
K_{N}=\operatorname{conv}\left\{\vec{X}_{1}, \ldots, \vec{X}_{N}\right\} \tag{1.5}
\end{equation*}
$$

\]

Our main result is a lower bound on the expectation $\mathbb{E}\left[f_{n-1}\left(K_{N}\right)\right]$ of the number of facets of K_{N}.

Theorem 1.2. There exist two positive constants a and buch that: for all sufficiently large n, and all N satisfying $n^{a} \leq N \leq \exp (b n)$, one has that

$$
\begin{equation*}
\mathbb{E}\left[f_{n-1}\left(K_{N}\right)\right] \geq\left(\frac{\log N}{a \log n}\right)^{n / 2} \tag{1.6}
\end{equation*}
$$

The same result was obtained in [5] under the restriction $N \leq \exp (b n / \log n)$. This had a direct influence on the final estimate obtained, leading to (1.3).

The note is organized as follows. In Section 2 we briefly describe the method (the presentation is not self-contained and the interested reader should consult [1] and [5]). In Section 3 we present the new technical step (it is based on a more general lower estimate for the measure of the intersection of a symmetric polyhedron with the sphere, which might be useful in similar situations). In Section 4 we use the result of Section 3 to extend the range of N 's for which Theorem 1.2 holds true. Theorem 1.1 easily follows.

We work in \mathbb{R}^{n} which is equipped with the inner product $\langle\cdot, \cdot\rangle$. We denote by $\|\cdot\|_{2}$ the Euclidean norm and write B_{2}^{n} for the Euclidean unit ball and S^{n-1} for the unit sphere. Volume, surface area, and the cardinality of a finite set, are all denoted by $|\cdot|$. We write $\partial(F)$ for the boundary of F. All logarithms are natural. Whenever we write $a \simeq b$, we mean that there exist absolute constants $c_{1}, c_{2}>0$ such that $c_{1} a \leq b \leq c_{2} a$. The letters $c, c^{\prime}, c_{1}, c_{2}$ etc. denote absolute positive constants, which may change from line to line.

2. The method

The method makes essential use of two families $\left(Q^{\beta}\right)$ and $\left(F^{\beta}\right)(0<\beta<\log 2)$ of convex subsets of the cube $C=[-1,1]^{n}$, which were introduced by Dyer, Füredi and McDiarmid in [2]. We briefly recall their definitions. For every $\vec{x} \in C$, set

$$
\begin{equation*}
q(\vec{x}):=\inf \{\operatorname{Prob}(\vec{X} \in H): \vec{x} \in H, H \text { is a closed halfspace }\} . \tag{2.1}
\end{equation*}
$$

The β-center of C is the convex polytope

$$
\begin{equation*}
Q^{\beta}=\{\vec{x} \in C: q(\vec{x}) \geq \exp (-\beta n)\} \tag{2.2}
\end{equation*}
$$

Next, define $f:[-1,1] \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
f(x)=\frac{1}{2}(1+x) \log (1+x)+\frac{1}{2}(1-x) \log (1-x) \tag{2.3}
\end{equation*}
$$

if $x \in(-1,1)$ and $f(\pm 1)=\log 2$, and for every $\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \in C$ set

$$
\begin{equation*}
F(\vec{x})=\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right) \tag{2.4}
\end{equation*}
$$

Then, F^{β} is defined by

$$
\begin{equation*}
F^{\beta}=\{\vec{x} \in C: F(\vec{x}) \leq \beta\} . \tag{2.5}
\end{equation*}
$$

Since f is a strictly convex function on $(-1,1), F^{\beta}$ is convex.

When $\beta \rightarrow \log 2$ the convex bodies Q^{β} and F^{β} tend to C. The main tool for the proof of Theorem 1.2 is the fact that the two families $\left(Q^{\beta}\right)$ and $\left(F^{\beta}\right)$ are very close, in the following sense.
Theorem 2.1. (i) $Q^{\beta} \cap(-1,1)^{n} \subseteq F^{\beta}$ for every $\beta>0$.
(ii) There exist $\gamma \in\left(0, \frac{1}{10}\right)$ and $n_{0}=n_{0}(\gamma) \in \mathbb{N}$ with the following property: If $n \geq n_{0}$ and $4 \log n / n \leq \beta<\log 2$, then

$$
\begin{equation*}
F^{\beta-\varepsilon} \cap \gamma C \subseteq Q^{\beta} \tag{2.6}
\end{equation*}
$$

for some $\varepsilon \leq 3 \log n / n$.
Part (i) of Theorem 2.1 was proved in [2]. Part (ii) was proved in [5] and strengthens a previous estimate from [1].

Fix $n^{8} \leq N \leq 2^{n}$ and define $\alpha=(\log N) / n$. The family $\left(Q^{\beta}\right)$ is related to the random polytope K_{N} through a lemma from [2] (the estimate for ε claimed below is checked in [5]): If n is sufficiently large, one has that

$$
\begin{equation*}
\operatorname{Prob}\left(K_{N} \supseteq Q^{\alpha-\varepsilon}\right)>1-2^{-(n-1)} \tag{2.7}
\end{equation*}
$$

for some $\varepsilon \leq 3 \log n / n$.
Combining (2.7) with Theorem 2.1, one gets the following.
Lemma 2.2. Let $n^{8} \leq N \leq 2^{n}$ and $n \geq n_{0}(\gamma)$. Then,

$$
\begin{equation*}
\operatorname{Prob}\left(K_{N} \supseteq F^{\alpha-\varepsilon} \cap \gamma C\right)>1-2^{-(n-1)} \tag{2.8}
\end{equation*}
$$

for some $\varepsilon \leq 6 \log n / n$.
Bárány and Pór proved that K_{N} is weakly sandwithced between $F^{\alpha-\varepsilon} \cap \gamma C$ and $F^{\alpha+\delta}$ in the sense that $K_{N} \supseteq F^{\alpha-\varepsilon} \cap \gamma C$ and most of the surface area of $F^{\alpha+\delta} \cap \gamma C$ is outside K_{N} for small positive values of δ (the estimate for δ given below is checked in [5]).

Lemma 2.3. If $n \geq n_{0}$ and $\alpha<\log 2-12 n^{-1}$, then

$$
\begin{equation*}
\operatorname{Prob}\left(\left|\partial\left(F^{\alpha+\delta}\right) \cap \gamma C \cap K_{N}\right| \geq \frac{1}{2}\left|\partial\left(F^{\alpha+\delta}\right) \cap \gamma C\right|\right) \leq \frac{1}{100} \tag{2.9}
\end{equation*}
$$

for some $\delta \leq 6 / n$.
We will also need the following geometric lemma from [1].
Lemma 2.4. Let $\gamma \in\left(0, \frac{1}{10}\right)$ and assume that $\beta+\zeta<\log 2$. Then,

$$
\begin{equation*}
\left|\partial\left(F^{\beta+\zeta}\right) \cap \gamma C \cap H\right| \leq(3 \zeta n)^{(n-1) / 2}\left|S^{n-1}\right| \tag{2.10}
\end{equation*}
$$

for every closed halfspace H whose interior is disjoint from $F^{\beta} \cap \gamma C$.
The strategy of Bárány and Pór (which is also followed in [5] and in the present note) is that for a random K_{N} and for each halfspace H_{A} which is defined by a facet A of K_{N} and has interior disjoint from K_{N}, we also have that H_{A} has interior disjoint from $F^{\alpha-\varepsilon} \cap \gamma C$ (from Lemma 2.2) and hence cuts a small amount (independent from A) of the surface of $\partial\left(F^{\alpha+\delta}\right) \cap \gamma C$ (from Lemma 2.4). Since the surface area of $\partial\left(F^{\alpha+\delta}\right) \cap \gamma C$ is mostly outside K_{N} (from Lemma 2.3) we see that the number of facets of K_{N} must be large, depending on the total surface of $\partial\left(F^{\alpha+\delta}\right) \cap \gamma C$. We will describe these steps more carefully in the last Section. First, we give a new lower bound for $\left|\partial\left(F^{\beta}\right) \cap \gamma C\right|$.

3. An additional Lemma

The new element in our argument is the next Proposition.
Proposition 3.1. There exists $r>0$ with the following property: for every $\gamma \in$ $(0,1)$ and for all $n \geq n_{0}(\gamma)$ and $\beta<c(\gamma) / r$ one has that

$$
\begin{equation*}
\left|\partial\left(F^{\beta}\right) \cap \gamma C\right| \geq c(\gamma)^{n-1}(2 \beta n)^{(n-1) / 2}\left|S^{n-1}\right| \tag{3.1}
\end{equation*}
$$

where $c(\gamma)>0$ is a constant depending only on γ.
Proof. We first estimate the product curvature $\kappa(\vec{x})$ of the surface $F(\vec{x})=\beta$: in [5] it is proved that if $\beta<\log 2$ and $\vec{x} \in \gamma C$ with $F(\vec{x})=\beta$, then

$$
\begin{equation*}
\frac{1}{\kappa(\vec{x})} \geq\left(1-\gamma^{2}\right)^{n-1}(2 \beta n)^{(n-1) / 2} \tag{3.2}
\end{equation*}
$$

Let $\vec{\theta} \in S^{n-1}$ and write $\vec{x}(\vec{\theta}, \beta)$ for the point on the boundary of F^{β} for which $n \nabla F(\vec{x}(\vec{\theta}, \beta))$ is a positive multiple of $\vec{\theta}$. This point is well-defined and unique if $0<\beta<|\operatorname{supp} \vec{\theta}|(\log 2) / n($ see [1, Lemma 6.2]).

Let $r>0$ be an absolute constant (which will be suitably chosen) and set

$$
\begin{equation*}
M_{r}=\left\{\vec{\theta} \in S^{n-1}: \sqrt{n / r} \vec{\theta} \in C\right\} \tag{3.3}
\end{equation*}
$$

The argument given in [1, Lemma 6.3] shows that if $\beta<c_{1}(\gamma) / r$, then for every $\vec{\theta} \in M_{r}$ we have $\vec{x}(\vec{\theta}, \beta) \in \gamma C$. Also, we easily check that for every $\vec{\theta} \in M_{r}$ the condition $|\operatorname{supp} \vec{\theta}| \geq n / r$ is satisfied, and hence, if $\beta<c_{1}(\gamma) / r$ then $\vec{x}(\vec{\theta}, \beta)$ is well-defined and unique. We will estimate the measure of M_{r}.

Lemma 3.2. There exists $r>0$ such that: if $n \geq 3$ then

$$
\begin{equation*}
\left|M_{r}\right| \geq e^{-n / 2}\left|S^{n-1}\right| \tag{3.4}
\end{equation*}
$$

Proof. Write γ_{n} for the standard Gaussian measure on \mathbb{R}^{n} and σ_{n} for the rotationally invariant probability measure on S^{n-1}. We use the following fact.

Fact 3.3. If K is a symmetric convex body in \mathbb{R}^{n} then

$$
\begin{equation*}
\frac{1}{2} \sigma_{n}\left(S^{n-1} \cap \frac{1}{2} K\right) \leq \gamma_{n}(\sqrt{n} K) \leq \sigma_{n}\left(S^{n-1} \cap e K\right)+e^{-n / 2} \tag{3.5}
\end{equation*}
$$

Proof of Fact 3.3. A proof appears in [7]. We sketch the proof of the right hand side inequality (which is the one we need). Observe that

$$
\begin{equation*}
\sqrt{n} K \subseteq\left(\frac{1}{e} \sqrt{n} B_{2}^{n}\right) \cup C\left(\frac{1}{e} \sqrt{n} S^{n-1} \cap \sqrt{n} K\right) \tag{3.6}
\end{equation*}
$$

where, for $A \subseteq \frac{1}{e} \sqrt{n} S^{n-1}$, we write $C(A)$ for the positive cone generated by A. It follows that

$$
\begin{equation*}
\gamma_{n}(\sqrt{n} K) \leq \gamma_{n}\left(\frac{1}{e} \sqrt{n} B_{2}^{n}\right)+\sigma\left(\frac{1}{e} \sqrt{n} S^{n-1} \cap \sqrt{n} K\right) \tag{3.7}
\end{equation*}
$$

where σ denotes the rotationally invariant probability measure on $\frac{1}{e} \sqrt{n} S^{n-1}$. Now

$$
\begin{equation*}
\sigma\left(\frac{1}{e} \sqrt{n} S^{n-1} \cap \sqrt{n} K\right)=\sigma_{n}\left(S^{n-1} \cap e K\right) \tag{3.8}
\end{equation*}
$$

and a direct computation shows that

$$
\begin{equation*}
\gamma_{n}\left(\rho \sqrt{n} B_{2}^{n}\right) \leq(\rho \sqrt{e})^{n} e^{-\rho^{2} n / 2} \tag{3.9}
\end{equation*}
$$

for all $0<\rho \leq 1$. It follows that

$$
\begin{equation*}
\gamma_{n}\left(\frac{1}{e} \sqrt{n} B_{2}^{n}\right) \leq \exp (-n / 2) \tag{3.10}
\end{equation*}
$$

From (3.7)-(3.10) we get the Fact.
Proof of Lemma 3.2. Observe that

$$
\begin{equation*}
M_{r}=S^{n-1} \cap e\left(\sqrt{r /\left(e^{2} n\right)} C\right) \tag{3.11}
\end{equation*}
$$

Hence

$$
\begin{aligned}
\frac{\left|M_{r}\right|}{\left|S^{n-1}\right|}=\sigma_{n}\left(M_{r}\right) & =\sigma_{n}\left(S^{n-1} \cap e\left(\sqrt{r /\left(e^{2} n\right)} C\right)\right) \\
& \geq \gamma_{n}((\sqrt{r} / e) C)-e^{-n / 2} \\
& =d(\sqrt{r} / e)^{n}-e^{-n / 2}
\end{aligned}
$$

where

$$
\begin{equation*}
d(s):=\frac{1}{\sqrt{2 \pi}} \int_{-s}^{s} e^{-t^{2} / 2} d t \tag{3.12}
\end{equation*}
$$

Observe that $2 e^{-n / 2}<e^{-n / 4}$ for $n \geq 3$. Choose $r>0$ so that

$$
\begin{equation*}
d(\sqrt{r} / e)>e^{-1 / 4} \tag{3.13}
\end{equation*}
$$

this is possible, since $\lim _{s \rightarrow+\infty} d(s)=1$. Then,

$$
\begin{equation*}
d(\sqrt{r} / e)^{n}>2 e^{-n / 2} \tag{3.14}
\end{equation*}
$$

for $n \geq 3$, which completes the proof.
We can now finish the proof of Proposition 3.1. Writing \vec{x} for $\vec{x}(\vec{\theta}, \beta)$ and expressing surface area in terms of product curvature (cf. [8, Theorem 4.2.4]), we can write

$$
\begin{equation*}
\left|\partial\left(F^{\beta}\right) \cap \gamma C\right| \geq \int_{M_{r}} \frac{1}{\kappa(\vec{x})} d \vec{\theta} \geq e^{-n / 2}\left(1-\gamma^{2}\right)^{n-1}(2 \beta n)^{(n-1) / 2}\left|S^{n-1}\right| \tag{3.15}
\end{equation*}
$$

and the result follows.
A general version of Lemma 3.2. The method of proof of Lemma 3.2 provides a general lower estimate for the measure of the intersection of an arbitrary symmetric polyhedron with the sphere. Let $\vec{u}_{1}, \ldots, \vec{u}_{m}$ be non-zero vectors in \mathbb{R}^{n} and consider the symmetric polyhedron

$$
\begin{equation*}
T=\bigcap_{j=1}^{m}\left\{x:\left|\left\langle x, \vec{u}_{i}\right\rangle\right| \leq 1\right\} \tag{3.16}
\end{equation*}
$$

The following theorem of Sidák (see [9]) gives an estimate for $\gamma_{n}(T)$.
Fact 3.4 (Sidák's lemma). If T is the symmetric polyhedron defined by (3.16) then

$$
\begin{equation*}
\gamma_{n}(T) \geq \prod_{i=1}^{m} \gamma_{n}\left(\left\{x:\left|\left\langle x, \vec{u}_{i}\right\rangle\right| \leq 1\right\}\right)=\prod_{i=1}^{m} d\left(\frac{1}{\left\|\vec{u}_{i}\right\|_{2}}\right) \tag{3.17}
\end{equation*}
$$

We will also use an estimate which appears in [6].
Fact 3.5. There exists an absolute constant $\lambda>0$ such that, for every $t_{1}, \ldots, t_{m}>$ 0 ,

$$
\begin{equation*}
\prod_{i=1}^{m} d\left(\frac{1}{t_{i}}\right) \geq \exp \left(-\lambda \sum_{i=1}^{m} t_{i}^{2}\right) \tag{3.18}
\end{equation*}
$$

Consider the parameter $R=R(T)$ defined by

$$
\begin{equation*}
R^{2}(T)=\sum_{i=1}^{m}\left\|\vec{u}_{i}\right\|_{2}^{2} \tag{3.19}
\end{equation*}
$$

Let $s>0$. Fact 3.4 shows that

$$
\begin{equation*}
\gamma_{n}(s T) \geq \prod_{i=1}^{m} d\left(\frac{s}{\left\|\vec{u}_{i}\right\|_{2}}\right) \tag{3.20}
\end{equation*}
$$

Then, Fact 3.5 shows that

$$
\begin{equation*}
\gamma_{n}(s T) \geq \exp \left(-\lambda R^{2}(T) / s^{2}\right) \geq e^{-n / 4} \geq 2 e^{-n / 2} \tag{3.21}
\end{equation*}
$$

provided that $n \geq 3$ and

$$
\begin{equation*}
s \geq \frac{2 \sqrt{\lambda} R(T)}{\sqrt{n}} \tag{3.22}
\end{equation*}
$$

We then apply Fact 3.3 for the polyhedron $K=(s / \sqrt{n}) T$ to get

$$
\begin{equation*}
\sigma_{n}\left(S^{n-1} \cap \frac{e s}{\sqrt{n}} T\right) \geq \exp \left(-\lambda R^{2}(T) / s^{2}\right)-\exp (-n / 2) \geq \frac{1}{2} \exp \left(-\lambda R^{2}(T) / s^{2}\right) \tag{3.23}
\end{equation*}
$$

In other words, we have proved the following.
Proposition 3.6. Let $n \geq 3$ and let $\vec{u}_{1}, \ldots, \vec{u}_{m}$ be non-zero vectors in \mathbb{R}^{n}. Consider the symmetric polyhedron

$$
T=\bigcap_{j=1}^{m}\left\{x:\left|\left\langle x, \vec{u}_{i}\right\rangle\right| \leq 1\right\}
$$

and define

$$
R^{2}(T)=\sum_{i=1}^{m}\left\|\vec{u}_{i}\right\|_{2}^{2}
$$

Then, for all $t \geq c R(T) / \sqrt{n}$ we have that

$$
\begin{equation*}
\sigma_{n}\left(S^{n-1} \cap(t / \sqrt{n}) T\right) \geq \frac{1}{2} \exp \left(-c R^{2}(T) / t^{2}\right) \tag{3.24}
\end{equation*}
$$

where $c>0$ is an absolute constant.

4. Proof of the theorems

Proof of Theorem 1.2. Let $\gamma \in(0,1)$ be the constant in Theorem 2.1. Assume that n is large enough and set $b=c(\gamma) /(2 r)$, where $c(\gamma)>0$ is the constant in Proposition 3.1.

Given N with $n^{8} \leq N \leq \exp (b n)$, let $\alpha=(\log N) / n$. From Lemma 2.2 there exists $\varepsilon \leq 6 \log n / n$ such that

$$
\begin{equation*}
K_{N} \supseteq F^{\alpha-\varepsilon} \cap \gamma C \tag{4.1}
\end{equation*}
$$

with probability greater than $1-2^{-n+1}$, and from Lemma 2.3 there exists $\delta \leq 6 / n$ such that

$$
\begin{equation*}
\left|\left(\partial\left(F^{\alpha+\delta}\right) \cap \gamma C\right) \backslash K_{N}\right| \geq \frac{1}{2}\left|\partial\left(F^{\alpha+\delta}\right) \cap \gamma C\right| \tag{4.2}
\end{equation*}
$$

with probability greater than $1-10^{-2}$. We assume that K_{N} satisfies both (4.1) and (4.2) (this holds with probability greater than $\frac{1}{2}$).

We apply Lemma 2.4 with $\beta=\alpha-\varepsilon$ and $\zeta=\varepsilon+\delta$: If A is a facet of K_{N} and H_{A} is the corresponding halfspace which has interior disjoint from K_{N}, then

$$
\begin{equation*}
\left|\partial\left(F^{\alpha+\delta}\right) \cap \gamma C \cap H_{A}\right| \leq(3 n(\varepsilon+\delta))^{(n-1) / 2}\left|S^{n-1}\right| \tag{4.3}
\end{equation*}
$$

It follows that

$$
\begin{aligned}
f_{n-1}\left(K_{N}\right)(3 n(\varepsilon+\delta))^{(n-1) / 2}\left|S^{n-1}\right| & \geq \sum_{A}\left|\partial\left(F^{\alpha+\delta}\right) \cap \gamma C \cap H_{A}\right| \\
& \geq\left|\left(\partial\left(F^{\alpha+\delta}\right) \cap \gamma C\right) \backslash K_{N}\right| \\
& \geq \frac{1}{2}\left|\partial\left(F^{\alpha+\delta}\right) \cap \gamma C\right|
\end{aligned}
$$

Since $\alpha \leq b=c(\gamma) /(2 r)$ and $\delta \leq 6 / n$, we have $\alpha+\delta \leq c(\gamma) / r$ if n is large enough. Applying Proposition 3.1 with $\beta=\alpha+\delta$, we get

$$
\begin{equation*}
f_{n-1}\left(K_{N}\right)(3 n(\varepsilon+\delta))^{(n-1) / 2} \geq(c(\gamma) \sqrt{2 \alpha n})^{n-1} \tag{4.4}
\end{equation*}
$$

for sufficiently large n. Since $\alpha n=\log N$ and $(\varepsilon+\delta) n \leq 12 \log n$, this shows that

$$
\begin{equation*}
f_{n-1}\left(K_{N}\right) \geq\left(\frac{c_{1}(\gamma) \log N}{\log n}\right)^{n / 2} \tag{4.5}
\end{equation*}
$$

with probability greater than $\frac{1}{2}$.
Proof of Theorem 1.1. We can apply Theorem 1.2 with $N \geq \exp (b n)$ where $b>0$ is an absolute constant. This shows that there exist $0 / 1$ polytopes P in \mathbb{R}^{n} with

$$
\begin{equation*}
f_{n-1}(P) \geq\left(\frac{c n}{\log n}\right)^{n / 2} \tag{4.6}
\end{equation*}
$$

as claimed.

References

1. I. Bárány and A. Pór, On $0-1$ polytopes with many facets, Adv. Math. 161 (2001), 209-228.
2. M. E. Dyer, Z. Füredi and C. McDiarmid, Volumes spanned by random points in the hypercube, Random Structures Algorithms 3 (1992), 91-106.
3. T. Fleiner, V. Kaibel and G. Rote, Upper bounds on the maximal number of faces of $0 / 1$ polytopes, European J. Combin. 21 (2000), 121-130.
4. K. Fukuda, Frequently Asked Questions in Polyhedral Computation (available at http://www.ifor.math.ethz.ch/staff/fukuda/polyfaq/polyfaq.html).
5. D. Gatzouras, A. Giannopoulos and N. Markoulakis, Lower bound for the maximal number of facets of a 0/1 polytope, Discrete Comput. Geom. (to appear).
6. A. Giannopoulos, On some vector balancing problems, Studia Math. 122 (1997), 225-234.
7. B. Klartag and R. Vershynin, Small ball probability and Dvoretzky theorem, preprint.
8. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications 44, Cambridge University Press, Cambridge, 1993.
9. Z. Sidák, On multivariate normal probabilities of rectangles: their dependence on correlation, Ann. Math. Statist. 39 (1968), 1425-1434.
10. G. M. Ziegler, Lectures on $0 / 1$ polytopes, in "Polytopes-Combinatorics and Computation" (G. Kalai and G. M. Ziegler, Eds.), pp. 1-44.

Department of Mathematics, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece. E-mail: gatzoura@aua.gr

Department of Mathematics, University of Athens, Panepistimiopolis 157 84, Athens, Greece. E-mail: apgiannop@math.uoa.gr

Department of Mathematics, University of Crete, Iraklion 714 09, Crete, Greece. E-mail: math2002@math.uoc.gr

[^0]: Date: March 17, 2005.
 2000 Mathematics Subject Classification. Primary 52B05; Secondary 52B20, 52B55.
 Key words and phrases. 0/1 polytopes.
 Research supported in part by the European Network PHD, FP6 Marie Curie Actions, RTN, Contract MCRN -511953 and by the EPEAEK program "Pythagoras II". The third named author acknowledges support from the Greek State Scholarships Foundation.

