Title: Berry–Esseen Bounds for random tensors.

Speaker: Konstantinos Tyros

Abstract: Let d, n be positive integers and let $\mathbf{X} = \langle X_i : i \in [n]^d \rangle$ be a symmetric and exchangeable random tensor with entries of bounded third moment that vanish on diagonal indices. We obtain estimates for the Kolmogorov distance to appropriately chosen gaussians, of linear functions $\sum_{i \in [n]^d} \theta_i X_i$ of the random tensor \mathbf{X} . Our approach requires the development of a combinatorial CLT for high-dimensional tensors which provides quantitative normality of statistics of the form $\sum_{(i_1,\ldots,i_d)\in [n]^d} \boldsymbol{\zeta}(i_1,\ldots,i_d,\pi(i_1),\ldots,\pi(i_d))$, where $\boldsymbol{\zeta}: [n]^d \times [n]^d \to \mathbb{R}$ is a deterministic real tensor, and π is a random permutation uniformly distributed on the symmetric group \mathbb{S}_n . The latter result extends classical work of Bolthausen, who covered the case d = 1, and more recent work of Barbour/Chen who treated the case d = 2. If time permits, we will see some applications of the above results. This is a joint work with P. Dodos.