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We prove several estimates for the volume, the mean width, and the value of the Wills
functional of sections of convex bodies in John's position, as well as for their polar
bodies. These estimates extend some well-known results for convex bodies in John's
position to the case of lower-dimensional sections, which had mainly been studied for
the cube and the regular simplex. Some estimates for centrally symmetric convex bodies

in minimal surface area position are also obtained.

1 Introduction and Notation

For any convex body K € R" (i.e., a compact convex set with non-empty interior), a
position of K will be any affine image of K. Every position of the Euclidean ball, BY,
is called an ellipsoid. A well-known theorem by John (see [29]) states that every convex
body K C R" has a unique maximal volume ellipsoid, £(K), contained in it. The volume

ratio of K is defined as

_ (_KL\"
v.rat(K) = m .
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Here and in what follows | - | denotes the volume of a convex body in the appropriate
dimension. Notice that the volume ratio does not depend on the position of the convex
body K.

A convex body K € R” is said to be in John's position if the maximal volume
ellipsoid contained in K is the Euclidean unit ball B}. In other words, K is in John's
position if B} is contained in K and for every non-degenerate linear map T € GL(n)
and every a € R" such that a + T(B}) € K we have that |a + T(B})| = |T(B})| < |B}|.
By the uniqueness of £(K), this position is uniquely determined up to orthogonal
transformations. Denoting by B2 the n-dimensional cube and by S,, the centered regular
simplex with inradius r(S,,) = 1 in R", it is well known that both BY and S,, are in John's
position.

Ball proved in [6] that the simplex maximizes the volume ratio among all convex
bodies in R™ and the cube maximizes the volume ratio among all the centrally symmetric
convex bodies in R™. The proof consists of the following three steps: first, since the
volume ratio of a convex body does not depend on its position, it can be assumed that
the convex body is John's position; second, substitute the convex body by a polytope that
contains the convex body and it is also in John's position; finally, obtain an upper bound
on the volume of such a polytope by using Brascamp-Lieb inequality (see Theorem 2.1
below).

Dual to John's position is the so-called Lowner’s position. A convex body is said
to be in Léwner's position if the minimal volume ellipsoid containing it is the Euclidean
unit ball. It is well known (see, for instance, [4, Proposition 4.7]) that a convex body
K € R" is in John's position if and only if K° is in Léwner's position. Here K° denotes
the polar body of K defined by

K°={xeR": (x,y)<1,Vy €K}

Ball observed in [6] that a reverse form of the Brascamp-Lieb inequality would provide
that among all convex bodies in Lowner's position the centered regular simplex Sn
with circumradius R(Sn) = 1 has the smallest volume. Moreover, among all centrally
symmetric convex bodies in Lowner's position, the E?—ball, B?, has the smallest volume.
The needed reverse form of the Brascamp-Lieb inequality was obtained by Barthe in [9]
(see Theorem 2.1 below).

Vaaler showed in [43] that if F € G,, ; is a k-dimensional linear subspace of R"

in the Grassmannian manifold G, ;, then [BY, N Fy| > |BX_|. Ball obtained in [5] a reverse

1202 1890100 60 UO Jasn (susyly Jo AlsiaAiun) Yurl-TvaH Aq papinoid $se00y AQ GG 10SE9/S L ZABU/UIWI/SE0 L 0 | /I0p/8|o1lB-00UBAPE/UIWI/WO2 dNo dlWapeae//:sdjjy Wol) papEojuUMO(]



John's and Minimal Surface Area Position 3

. . . —k .
inequality proving that |[B% N Fy| < 2"z |B’go|. He also obtained the bound

n
B, N Fy|V/* < /E|B§o|1/k, (1.1)

which is optimal if and only if k | n (see [26]).
It follows from the results of Ball [7] that the k-dimensional sections of a regular
simplex with largest volume are exactly its k-dimensional faces. Webb showed in [44]

that for every hyperplane through the origin Fy € G

n,n—1

|SnﬂFo|ﬁ < 1 In(n + 1)|Sn71|ﬁ' (1.2)
WVZnmF)m1 ) n—1

There is equality for the sections passing through the origin that contain n — 1 of the

vertices.
Dirksen proved in [15, Theorem 6.1] (see also [16]) the following estimate for the

volume of k-dimensional sections of S,, through the origin:

1 nn+1) 1k
1S, NF, /% < _ 1S, (1.3)
nono (k1 1z \ kk+1) 7

for every F, € G,, ;- Besides, this estimate is asymptotically sharp.

The proof of these volume estimates for sections of the cube and the regular
simplex follow the lines of Ball’s upper bound of the volume ratio. However, only
sections of BY, and S,,, which are two particular convex bodies, are being considered.
Passing to the general case, we observe that it is not possible to obtain an upper bound
for the volume of sections of a general centered convex body K without any additional
assumption since, considering different positions of K, we can obtain sections with
volume as large as desired. However, B%, and S,, are in John’s position. Motivated by
these, we consider convex bodies in John’s position and generalize the above results
(and other known results) to sections of such convex bodies. We also obtain some

estimates for sections of convex bodies in minimal surface area position.

1.1 Volume of sections of convex bodies in John's position

In a recent article [32], Markessinis claimed to have obtained an upper bound for the
volume of k-dimensional central sections of convex bodies in John's position. However,

although the estimate given for central sections of centrally symmetric convex bodies in
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4 D. Alonso-Gutiérrez and S. Brazitikos

John's position is correct, the proof in the not necessarily symmetric case is not correct.
In the following theorem, we give an upper bound for the volume of central (and non-

central) k-dimensional sections of an arbitrary convex body in John's position.

Theorem 1.1. Let K C R" be a convex body in John's position and F; € G,, ;. Then

1 / 1
|KﬂFO|1/k§ _ nn+ )|Sk|1/k-

Furthermore, if K is centrally symmetric

n
K N Fol % <\ [ IBEIVE

Moreover, if F; is a k-dimensional affine subspace at distance h from the origin and K

is a convex body in John's position, then

Rl=

K NFy|V* < 1S, |1/,

n 2
(n+h2)

Remark. The proofin the symmetric case is the same as the one given by Markessinis,

which follows Ball's ideas in [5]. Nevertheless, we will reproduce it for the sake of
completeness. We can also obtain it as a direct consequence of Theorem 1.5, as well
as a consequence of Theorem 8.1 below (see Section 2.6). This estimate is a sharp
generalization of Ball's estimate (1.1) for the cube. Moreover, the case k = 1 gives one
more proof of John's theorem in the symmetric case: if K is a centrally symmetric convex

body in R” whose maximal volume ellipsoid is B} then K € /nB}.

Remark. Many other generalizations and extensions of Ball's estimates for sections

of B, have been obtained, for instance, in [28], [30], or [31].

Remark. The proof in the non-symmetric case follows Dirksen’s ideas from [16].
However, the decomposition of the identity in a linear subspace of R**! in order to apply
Theorem 2.1 is not obtained by projecting the vectors in an orthonormal basis of R™**!,
It comes out by projecting the vectors providing a more general decomposition of the
identity in R™®*!. As a consequence, a different maximization problem from the one in
Dirksen'’s proof has to be considered. Notice that we recover the estimate in (1.3), which

is asymptotically sharp for the simplex. Besides, if we take non-central sections by
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n(n—k)
(k+1)

from the origin to any k-dimensional face of S,,, we obtain that

[nm+1)
KnF Vg (MDD ok
| Bl k(k—i—l)' k!

which is exactly the volume of the k-dimensional faces of S,,. The estimate for general

k-dimensional subspaces a distance h =

from the origin, which is the distance

affine subspaces can also be obtained as a direct consequence of Theorem 8.1 below.

1.2 Volume of projections of convex bodies in Lowner’s position

Let us recall that if Fy € G, is a linear subspace and K N F;, contains the origin in its
relative interior, the polar body of KNFj, in F, is Pz K°, the projection of the polar body of
K onto F,. Contrary to the case of the volume of sections of the cube, not much is known
about the projections of the cross-polytope. For example, a dual statement to Vaaler's
theorem, claiming that if Fy; € G, then |PF0(B'11)| < |B’f|, has only been confirmed if
k = 2,3, and n — 1 (see [8], [12], and [27]) and a dual statement of Ball's upper bound
|BX, N Fy| < 2”Tfk|B’go| has only been proved when k = 2 or k = n — 1 (see [12] and [27]).
Nevertheless, concerning the volume of polar bodies of sections of convex bodies in
John's position (i.e., projections of convex bodies in Léwner's position whenever they
contain the origin in its interior), it was proved by Barthe in his PhD thesis (see also [1])
that in the case of the EZ—balls, ifl<p<2andF,e G kr then

_1
2

k
1/k k(1/k
|Pg, BV > (E) BV,

™=

where Pp denotes the orthogonal projection onto F. In particular, we have the following

estimate for the projections of BY: for every F € G,,

k
[Py BIME > [ 1BV,

We obtain a similar lower bound for the volume of k-dimensional projections of

convex bodies in Léwner's position.

Theorem 1.2. Let K C R" be a convex body in Léwner’s position and Fj € G,, ;. Then

k ~
P, (K)|ME > \/;Skﬂ/’“.
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6 D. Alonso-Gutiérrez and S. Brazitikos

Furthermore, if K is centrally symmetric

k
[Py, B)[ME > \/;B’ﬂ”".

Remark. In the symmetric case, the proof follows the idea of the proof of the
aforementioned result for BI’,L. This relies on the use of the reverse Brascamp-Lieb
inequality (see Theorem 2.1 below) together with the use of a decomposition of the
identity in a linear subspace of R”. As in the proof of Theorem 1.1, unlike in the case in
which K = B}, the decomposition of the identity in the linear subspace does not arise by
projecting the canonical basis, but by projecting the vectors in a general decomposition
of the identity in R".

In the non-symmetric case, the proof follows the idea of the proof of Ball's
observation in [6] together with the reverse form of Brascamp-Lieb inequality. Again,
in this case, the decomposition of the identity in a linear subspace in R"*! arises
by projecting the vectors in a decomposition of the identity in R"*! rather than an
orthonormal basis in R**!. Some estimates of the volume of projections of the regular
simplex were obtained in [19]. However, the estimates do not rely on the use of the

reverse Brascamp-Lieb inequality.

1.3 The mean width

The mean width of a convex body K € R" is defined by
w(K) = / he (0)do (),
sn—1

where, for every x € R", hp(x) := sup{(x,y) : y € K} is the support function of K at
x and do denotes the uniform probability measure on S*~!. In [40], the authors proved
that among all centrally symmetric convex bodies in John's position in R”, w(K) is
maximized when K = BY. The not necessarily symmetric case was treated in [10], where
it was proved that among all convex bodies in John's position in R", w(K) is maximized
when K = S,,, where S,, denotes the regular simplex in John's position. If we pass to the
mean width of sections, then a direct consequence of [11, Theorem 10] is that for any

k-dimensional linear subspace F € G, ,

w(BY, NF,) < \/%w(B’;o),

and this estimate is sharp when k | n.
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John's and Minimal Surface Area Position 7

Furthermore, it was proved in [40] that among all centrally symmetric convex
bodies in Lowner’s position in R”, w(K) is minimized when K = BY. Finally, in [41], it
was proved that among all convex bodies in Léwner's position in R, w(K) is minimized
if K = S,,. We will prove the following results on the mean width of sections of convex

bodies in John's position:

Theorem 1.3. Let K C R" be a convex body in John's position and F; € G,, ;. Then

wENFy < [108T s
="k logk K

where C is an absolute constant. Furthermore, if K is centrally symmetric, then

w(K NFy) < \/%w(B’;O).

We shall also prove the following result on the mean width of projections of

convex bodies in Léwner’s position:

Theorem 1.4. Let K € R" be a convex body in Lowner's position. Then, for any

k-dimensional linear subspace F € G,, ,

k -
w(Pp, (K)) > \/;msk).

Furthermore, if K is centrally symmetric, then

k
w(Pp, (K)) > \/;w(B’D.

Remark. The proofs of the latter two theorems follow the idea of the previously
known results, by applying the Brascamp-Lieb inequality or its reverse form on a linear
subspace of R" or R™t!l However, we were not able to handle the technical problems,
arised from projecting a decomposition of the identity instead of an orthonormal
basis, in the non-symmetric case in Theorem 1.3 and a different approach was

considered.
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8 D. Alonso-Gutiérrez and S. Brazitikos
1.4 The Wills functional

For any compact convex set K C R"”, by Steiner’s formula (see [42, Equation (4.1)]), the
volume of K + tB} can be expressed as a polynomial in the variable ¢
n n .
K + tB}| = Z(‘; (i)wi(K)tl, vt >0,
1=

where the numbers W;(K) are the so-called quermafintegrals of K. We have that

Wy(K) = |K| is the volume of K, nW;(K) = |0K| is the surface area of K, and
W,_, = |Bj|lw(K) is a multiple of the mean width of K. If K is contained in a

k-dimensional subspace F, € G, j, we can compute its quermafintegrals in R", but
also its quermalintegrals with respect to the subspace F,, which we identify with Rk,
If we denote these quermafintegrals by Wi(k) (K), fori =0,...,k, we have that (see e.g.,
[39, Property 3.1])

n .
, B
Wi(k) (K) = n—k+i | 2|

% an_k+i(l<)l VO <1<k,
i 2

while W;(K) = 0 for all 0 < i < n — k. In order to avoid the issue that quermafintegrals
depend on the space where the convex body is embedded, McMullen [34] defined the

intrinsic volumes of a compact convex set K C R" as

n
i

V,(K) = w, ;(K), Y0<i<n.

By

In [45], Wills introduced the functional

WEK) =D Vi(K). (1.4)
=0

He studied it because of its possible relation with the so-called lattice-point enumerator
G(K) = #(K N Z™). It was proved in [2] that, among symmetric convex bodies in John'’s

position, W(K) is maximized if K = BY,. Here, we prove the following:

Theorem 1.5. Let K C R" be a centrally symmetric convex body in John's position.

Then, for any F;, € Gk and every A > 0,

WRENF)) <W (A/%B’go) .

1202 1890100 60 UO Jasn (susyly Jo AlsiaAiun) Yurl-TvaH Aq papinoid $se00y AQ GG 10SE9/S L ZABU/UIWI/SE0 L 0 | /I0p/8|o1lB-00UBAPE/UIWI/WO2 dNo dlWapeae//:sdjjy Wol) papEojuUMO(]



John's and Minimal Surface Area Position 9

Remark. The proof of this Theorem follows the idea of the proof of the result in [2].
What is new here is the consideration of dilations of K N F, and \/%B’go This is indeed
something different since the Wills functional is not homogeneous. Considering the
dilations is important for the applications. Indeed, as direct consequences of obtaining
Theorem 1.5 for such dilations, we can obtain the symmetric cases of Theorem 1.1 and

Theorem 1.3, providing a different proof in those cases.

We also prove the following estimate for the Wills functional of projections of

convex bodies in Léwner's position:

Theorem 1.6. Let K C R" be a centrally symmetric convex body in Lowner's position.
Then, for any Fj; € G, 4,

1
W(Pg, (K)) > wz

1.5 Sections of convex bodies in minimal surface area position

The main tool used to obtain most of the estimates above is the fact that a decomposition
of the identity operator is associated to any convex body in John's position and that this
decomposition allows the use of the Brascamp-Lieb inequality (see Theorem 2.1 below).
When K is a polytope in minimal surface area, then there is again a decomposition of the
identity associated to K (see Section 2.7). A similar use of the Brascamp-Lieb inequality,
together with an approximation by polytopes, will lead to similar estimates for sections

of convex bodies in minimal surface area position. Namely, we can prove the following:

Theorem 1.7. Let K C R"” be a convex body in minimal surface area position and let
[1K and IT*K denote its projection body and polar projection body, respectively. Then,

for any k-dimensional linear subspace F; € G,, ;, we have
nk 1
IBKlk !

(b) [Py, (MK > (%) .

Furthermore, if K is centrally symmetric, then for any k-dimensional linear subspace

(a) |H*K0F0| k'

Fy € Gy, k., we have
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10 D. Alonso-Gutiérrez and S. Brazitikos

Remark. Notice that if k = n then (a) recovers the right-hand side of (2.6), (b) recovers
the left-hand side of (2.7), (ii) recovers the estimate given by Ball’s reverse isoperimetric

inequality in [6], and (iii) recovers the estimate given in [33, Theorem 7.1].

2 Preliminaries
2.1 John'’s position

As mentioned in the introduction, a convex body is said to be in John's position if the
maximal volume ellipsoid contained in it is the Euclidean unit ball. A classical theorem
of John [29] (see also [7]) states that K is in John's position if and only if B} € K and there
exist m = O(n?) contact points {uj}].”i1 C 9K N S™! (the intersection of the boundary of

K and the Euclidean unit sphere) and {L‘J-}j"i1 with ¢; > 0 for every 1 <j < m, such that

m m m
I, = chuj Qu; chuj =0, and ch =n. (2.1)
j=1 j=1 j=1

Here I,, denotes the identity operator in R”, u; @ uj(x) = (x,u))u; for every x € R", and

the third inequality is obtained from the first one by taking traces.
Notice that, for any such decomposition of the identity, we have that for every
1<k<m

m
2 E 2 2
1= |uk| = Cj<uk,u]'> > Ck(uk, uk) = Cg.
j=1

Thus, all the numbers (cj)j”i1 are in the interval (O, 1].

2.2 Brascamp-Lieb inequality

We will make use of the Brascamp-Lieb inequality (see [13]) and the reverse Brascamp—

Lieb inequality due to Barthe (see [9]) in the following form, obtained by Ball (see [5]):

Theorem 2.1. Let m > n, {u}l’; < S™1, and {ch, < (0,11 be such that

I, = ZJ":‘I Cju; ® U;. Then, for any integrable functions {j‘} jﬂil :R — [0, 00), we have that

HfFj((X, u))dx < H fi(vdt ' (Brascamp-Lieb inequality).
R ) J - e
j= j=
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John’s and Minimal Surface Area Position 11

Besides, for any integrable functions {h; }m :R — [0,00) and h : R™ — [0, 0o0) satisfying

(20 ) Hhcj(e) forevery{@}m CR,

j=1

we have that
m Cj
/ h(x)dx > H ( / hj(t)dt) (Reverse Brascamp-Lieb inequality).
R
j=1

2.3 The regular simplex

Let Aj denote the k-dimensional regular simplex

Ay = convfey,..., e} S Hy,
where H, = {X € Rk+1L . Zk+1 x; = 1} is identified with R¥ and (kL ,ﬁ) is identi-
fied with the origin. It is well known that
o A =YRHE,
_ 1
* AN =

o R(AY =g

o Ay =—(k+ DAy

o w(Ay) x> lofk,

where a >~ b denotes the fact that there exist two positive absolute constants ¢y, c,

such that c;a < b < c,a. Thus Ay is in John's position and Ay is in Loéwner's

! r(A ) R(A )
position. Then, if S; denotes the k-dimensional simplex in John's position and Sk

denotes the k-dimensional simplex in Loéwner’s position, we have that

/ 1
= 4/ k(k + Ak and Sk = k—;(_ k'

Therefore,

/ i
1S M/* = ke + )77 and |5 |'/F = 1 /(k+1)l+%
k = .
k

()1 (k1)V®
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12 D. Alonso-Gutiérrez and S. Brazitikos

Moreover,

logk

w(S;) ~ vklogk and W(S‘k) ~ Y

2.4 Mean width

Let K C R™ be a convex body. The mean width of K is defined by
w(K) =/ hx(0)do (6),
Sn—l

where, for every 6 € S"71, hy(0) is the support function of K at  and do denotes the
uniform probability measure on S*~!. If we also assume that K contains the origin in
its interior, then hy is homogeneous of degree 1. There is a nice representation of the
mean width in terms of the standard Gaussian random vector G in R" (see, for instance,
[3, Proof of Theorem 4.2.2]):

Ehg(G) = c,w(K), (2.2)

3
—

+

)

where ¢, = Jaer = T

nigir(2)  var( . o .
= ( . Indeed, integrating in polar coordinates, one has

~| |

n
2

uxu2

© o
— — n
Ehg(G) = / hy(x )(2 )n/2 = n|Bz|/o (2 @ / hg(0)do (0)
- cn/ he(0)do (6) = ¢, w(K).
sn—1
Likewise, since for any convex body containing the origin in its interior the
support function of K° is hg. = || - ||, where || - || is the Minkowski gauge function
of K, given by
Xl :=inf{A > 0 : x € AK}
for all x € R", we have that if G is a standard Gaussian random vector in R"

E|Glx = ¢, w(K°). (2.3)

We would like to refer the reader to [11], [17], [18], or [47] for more information

on the use of the Gaussian measure of sections of convex bodies.
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John’s and Minimal Surface Area Position 13
2.5 Log-concave functions

A function f: R” — [0, c0) is called log-concave if f(x) = e V™ where v : R” — (—00, o0]
is a convex function. It is well known that any integrable log-concave function f: R"” —
[0, >0) is bounded and has moments of all orders. If K € R" is a convex body then its
indicator function xg is integrable and log-concave with integral |K|. If additionally K
is a convex body containing the origin, then e~I'l¥ is integrable and log-concave with
integral n! |K]|.

\%4

Given a log-concave function f = e™, where v : R? — (—o0, 0] is a convex

function, its polar function is the function f° : R™ — [0, co) given by
fo(x) = e*»C(V)(X),
where £(v) denotes the Legendre transform

L(v)(x) = sup((x,y) —v(y)), xeR"
yeR®

For more information on log-concave functions, we refer the reader to [14, Chapter 2].

2.6 The Wills functional

Let us recall that for any n-dimensional convex body K, its Wills functional is
defined by

WE) = " Vi(K),
=0

where V;(K) denotes the i-th intrinsic volume of K. Many properties of the Wills
functional can be found in [46], [25], [35], or [2]. For our purposes, we emphasize the

following two:

(1) (Hadwiger, see [25, (1.3)]) For any convex body K C R”?,
W(K) = / e K’ g,
Rn

where d(x, K) denotes the Euclidean distance from x to K.
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14 D. Alonso-Gutiérrez and S. Brazitikos

(2) (Hadwiger, see [25, (2.3)]) If E is a linear subspace of R?, K; € Eand K, C EL,
then

WK, x Ky) = WE)W(K,).
In particular, if K = [—a, a] C R, we have that

o0
W(l—a,al) =2a + 2/ e 7D’ qx — 2g + 1
a
and if K = aBY € R" then W(aB%) = (1 + 2a)".
Let us point out that for any A > 0

WOK) = D V,0K) =14 > MV(K).
i=0 i=1

Therefore, if two convex bodies K,L C R" verify that W(AK) < W(AL) for every A > 0,
then one immediately obtains that V,(K) < V,(L) and V;(K) <
K| < |L| and w(K) < w(L).

Notice that, for any convex body K C R", the function given by d(x, K) for every

V,(L) or, equivalently,

x € R™ is convex on R"” (see [42, Lemma 1.5.9]) and, as the square function is convex
on R, d(x,K)? is convex on R". Therefore, the first property above shows that, for any
convex body K C R", its Wills functional is the integral of the log-concave function

fx : R™ — [0, 00) given by
fie() = e mAwK,

Using a double polarity (both in the convex body and in the family of log-
concave functions), for any convex body K € R" containing the origin in its interior,
we define the log-concave function f%.. It was proved in [2, Lemma 3.1] that for every
xeR"

=1

fro(x) = e ar ~I¥le, (2.4)

The following lemma shows that if, for every A > 0, the integral of f("u{)o(x) is bounded
by the integral of £} .(x), then |K| < |L|.
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John’s and Minimal Surface Area Position 15

Lemma 2.1. LetK,L C R" be two convex bodies containing the origin in their interiors.

Assume that there exist two numbers A and A, > 0 such that, for any 1 € (0, Ay),

/ f&K)o(X)dng/ Sopye 0dx.
Rn Rn
Then [K| < A|L|.

Proof. Notice that for any convex body K C R™ containing the origin in its interior and

any A > 0O,

lx)% CIxI3 xig

/f(oxK)o(X)dX = /e‘ﬁe_‘w”wd)(: e e &
R" Rn R?

22913

_ / o2l gy

Therefore, we have that for every A € (0, Ay),

22|13 »2|x/3
el rdy < A [ e ate IXlgx
R® R™

and, taking the limit as A tends to O we obtain that

n!|K|=/ e—”X”degA/ e ¥lzdx = n1 A|L|.

2.7 Convex bodies in minimal surface area position

A convex body K C R” is said to be in minimal surface area position if it has minimal

surface area among all of its volume preserving affine images. That is, if
[0K| = min {|dT(K)| : T € SL(n)},

where SL(n) denotes the set of non-degenerate linear maps T € GL(n) with |detT| = 1.

The surface area measure of a convex body K is the measure on the sphere defined by
og(A) :=v ({x € 3K : vg(x) € A}) VABorel setin S"!,

where v denotes the Hausdorff measure on 9K and v (x) is the outer normal vector to K

at x, which is defined v-almost everywhere.
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16 D. Alonso-Gutiérrez and S. Brazitikos

The projection body INK and its polar, the polar projection body IT*K, of a convex

body K are the centrally symmetric convex bodies defined by
1
hng(X) = |XlIgegx = |X]|Per (K)| = E/Sn_l I(x,6)|dog (6),

where, for any x # 0, |P,1 (K)| denotes the (n—1)-dimensional volume of the projection of
K onto the hyperplane orthogonal to x and the last equality is the well-known Cauchy’s
formula (see, for instance, [42, Equation (5.80)]).

It was proved by Petty [36] (see also [21]) that K is in minimal surface area

position if and only if oy is isotropic, that is, if

I, =— u @ udog(u).
"= K] Jgua B HAKM)

In [22], it was observed that the latter happens if and only if 1K is in minimal mean

width position, that is,
w(IIK) = min{w(T(I1K)) : T € SL(n)}.

Notice that if K is a polytope with facets {lﬁ'j}j";1 with outer normal vectors {uj}j"il, then

the surface area measure of K is

m

ox = D_IFléy,,

j=1

where 8J- denotes the Dirac delta measure on U;. Moreover, K is in minimal surface area

position if and only if

In particular, if K is a polytope with facets {F; }m1 and outer normal vectors {u;}7" |, then

_1 r
for every x € R"

1 m
hng() = I1Xlng = 3 Z IF;1(x (2.5)
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John’s and Minimal Surface Area Position 17

It was proved in [21] that, as a consequence of a lemma obtained from the Brascamp-—

Lieb inequality (see [6]), if K is a convex body in minimal surface area position then

n

n|B} 1 4"n" 1

|BZ | P! <MK € —— ———. (2.6)
IBr1 ) oK™ n! |aK|"

Moreover, if K is a convex body in minimal surface area position, then

0KT\" B2 Y
(—) < INK| < B =% | 19K (2.7)

n n|B}|

This can be seen as a consequence of the Blaschke-Santal6 inequality and its exact
reverse for zonoids (see [23] and [38]), or as a direct consequence of the reverse form of

Brascamp-Lieb inequality (see [22]).

3 General Setting

In this section, we introduce the notation for a setting that will be used in several of our
proofs. We distinguish the cases in which we are dealing with non-symmetric convex
bodies in John's position, symmetric convex bodies in John's position, or polytopes in

minimal surface area position.

3.1 Non-symmetric convex bodies in John's position

Let K € R"™ be a (not necessarily symmetric) convex body in John's position and let
{u]-}j”i1 and {cj}j”i1 be the contact points in 9K N S*~! and positive weights satisfying
John's condition (2.1). We will denote by C € R™ the convex body

C={xeR": (x,uj) <1, V1 <j<m) (3.1)

It is easily verified that K C C. We will denote, forevery 1 <j < m,

[ V] = /nL_H(—uJ', «/Lﬁ) (S} Sn, and
_ 1

n
[ 5] TC'.

~

These vectors satisfy

m m m
L= 8w ®v;, > 8v=(0v/n+1) and > g=n+1. (3.2)
j=1

j=1 j=1
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18 D. Alonso-Gutiérrez and S. Brazitikos

Therefore, as seen in Section 2.1, 8J- € (0,1] for every 1 < j < m. Introduce the cone
Li={y=xr eR"™ :(y,v)>0,V1<j<m) (3.3)

The next lemma, which was proved in [6], relates L and C. We include its proof here for

the sake of completeness.

Lemma 3.1. Let K C R" be a convex body in John's position and let L be defined as in

equation (3.3). Then

r
L=1{(x,r) e R*1: r>O,XE—C].
l( ) N

Proof. Lety = (x,r) € L. By the definition of v; we have that foreach1 <j<m

[ n r
(y,vj) =— n——i—1<X'uj) + N

Assume that r < 0. Then, since (y, V]-) > 0 for every 1 < j < m, we have that

r .
(X,uj) + ——=20 VI<j<m.

Jvn—+1

n+1

Then, (x, uj> < 0 for every 1 < j < m. As a consequence, since {cj}j’i1 C (0,00),

which contradicts the fact that Z]"il ciu; = 0. Therefore, if y = (x,7) € L then r > 0.
For any r > 0 and every 1 < j < m we have (y,v;) > 0 if and only if (x, u;) < JLﬁ
The latter condition is true for every 1 < j < m if and only if x € JLHC'

Conversely, assume that y = (x,r) verifies that r > 0 and x € LnC, which

N
happens if and only if (x, u;) < \/Lﬁ for every 1 < j < m. Then, for every 1 < j < m,
V. vj) = = (%, up) + === >0
Vi) = — | —— X, =
Y:v nr1o T mrl
Thus, y € L. [ |
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John’s and Minimal Surface Area Position 19

Given any k-dimensional affine subspace Fj, in R" at distance h from the origin,

we will consider the linear (k + 1)-dimensional subspace in R"*!

H = span{(x,v/n) : x € Fj} € Gy 14 (3.4)

Notice that if Fy € G, is a linear subspace then H equals the cartesian product
H=FyxR={x,r) e Rl @ x e F,, r € R}. Furthermore, assume that Fj, is at distance
h from the origin and f : LN H — [0,00) is an integrable function. By Lemma 3.1, and
taking into account that R” x {0} and Py ({0} x R) provide an orthogonal decomposition
of H, we have that

2
il (3.5)

/ f(x, rdrdx = / / f(x,rdx
LNH m (CNFp) x {r}

SetJ={1<j<m: PHVJ- # 0} and, for every j € J, we define

_ _Pmyvj
* W= Pavlz
1
. xj:'” c;l|Pyv;I3 = 811Pyv;I3.

Then, we have that

jeJ jeJ

where IH denotes the identity in the linear subspace H. Furthermore, denoting by

;= ”PHV r; for every j € J, one has that for every y = (x,7) € H € R**!

Zlcjsj( ¢ Z(S y,PHV z y,PHV 28(y,v) (3.7)
j=1

jeJ jeJ
=rvn+1.
The following lemma shows that, whenever F, is a linear subspace, we have

a strictly positive lower bound for the Euclidean norm of Pyv; for every 1 < j < m.

Consequently, if F; € G ker the set J defined above equals J = {1, ..., m}.

Lemma 3.2. Let {u;}]", € S"~ (e }iZ, be such that (2.1) holds, Fy € G, H=Fy xR €
Gyl kr1r and {VJ}].:1 C S™ be defined as in (3.2). Then, for every 1 < j < m, we have

1
— < ||IPyvill2 < 1
7 < I1Pav;li3
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20 D. Alonso-Gutiérrez and S. Brazitikos

Proof. Letc= (0, ) € H and notice that forevery 1 <j<m

1
vn+l1

1 1
P .—cC),c)=(v;—c,C) = — =0
(Py(v; — ©), ¢) = (v; )= T T wrd

Since ¢ € H, we have that Pyc = c and then Pyv; = ¢ + Py (v; — ¢). Thus,

1
IPyvil5 = lic+ Pg(v; — o)l = licl3 + 1Py (v; — o)l5 = llcll; = ——.

n+1

Thus, for every 1 < j < m, we have that

1 < I1Pavilz < 1.

3.2 Symmetric convex bodies in John's position

Let K € R"™ be a centrally symmetric convex body in John's position and, like in the not

necessarily symmetric case, let {uj}J’.” and {Cj}j”:‘1 be the contact points of 3K and S"!

=1

and positive weights satisfying (2.1). We will also denote by C; the symmetric convex

body

Co={xeR": |(x,u)| <1,V1<j<m)

(3.8)

Clearly, K is a subset of Cy. If Fy € G, is a linear subspace, we set Jy = {1 <j < m :

Pgu; # 0} and for every j € J,, we define

0_ PRy n—1
¢ V= run €57 Mo

0 _ 2
o 89 =cilIPgu;l.

Then, we have that

_ 0.0 0 0_
IFo_zsjVj ®Vj and Z(Sj =k,
jedo Jjedo
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John’s and Minimal Surface Area Position 21

where I, denotes the identity operator in F,, and also

KNFyCCoNFy, = {xeFy:[(xu)l<1,V1<j<m)
= (xeFy: |(xPpu)<1,V1<j<m
= {x€F,: |(x,Pgu;)| < 1, Vj e Jy}

- {XeFO (x, v < ¢, VjeJO},

1/2
=1 _ _ (% 1
where ¢; = Pruflz = ( 5]O) for every j € J,. Furthermore,

(KNFy)° 2 (CoNFy° =Py (CH = Py (convitu; : 1 <j< mj)
= conv{+Pgu; : 1 <j<mj

= conv{:tPFOuj 1 jedg).
Thus,
KNFy CCoNFy={xeF,: |(x,v)) <t VjeJp} (3.10)
and
(KNFy)° 2 (CyNFy)° = conv{+Pp u; : JeJyt (3.11)

3.3 Polytopes in minimal surface area position

Let K be a (not necessarily centrally symmetric) polytope in minimal surface area

position with facets {F;}'Z; and outer normal vectors {uj}j’il, and let Fy € G, be a

k-dimensional linear subspace. Then,
K={xeR": (x,uj) < hg(u), V1 <j<mj

and

m m
i = 1K s

1202 1890100 60 UO Jasn (susyly Jo AlsiaAiun) Yurl-TvaH Aq papinoid $se00y AQ GG 10SE9/S L ZABU/UIWI/SE0 L 0 | /I0p/8|o1lB-00UBAPE/UIWI/WO2 dNo dlWapeae//:sdjjy Wol) papEojuUMO(]



22 D. Alonso-Gutiérrez and S. Brazitikos

where ¢; = | for every 1 < j < m. Besides (see, for instance, [24, Theorem 18.2])

J [0K|
m n m
D Gu; = K| D IFjlu;=0.
j=1 j=1
and
o n|Fj| n?|K|
— J —

Note also that if K is a centrally symmetric polytope in minimal surface area position,
with facets {15']-}].'11 and outer normal vectors {uj}j"il, and if Fy € G, is a k-dimensional
linear subspace, then

K={xeR" : |(x,upl < hg(up, V1 <j<m).

As in the case where the decomposition of the identity comes from a centrally symmetric

convex body in John's position, we set J, = {1 <j < m : Pg u; # 0} and, for every j € J,

we define
Pr u;i
0 Fo'y
) v =
Vi = TProwllz
2
0 _ 2 _ nIFllIPryu;li;
° SJ- = C]~||PF0u]~||2 =R

We have that

m
— E _ 2 0.0 0
J=1 JjeJo

G

1/2
. . o 1 _ i .
Besides, if we denote ¢; = TPry iz = ( ) for every j € J,, then

i
KNFy={xeFy: |(x, v]‘?)| < tihg(u)), Vi € Jo} (3.15)
and
P (u;
(KNFy)° = conv :I:M :1<j<m
hK(uj)
P (u;
= convqz+ 7o () tjeJdog- (3.16)
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John’s and Minimal Surface Area Position 23
4 Volume of Sections of Convex Bodies in John’s Position

In this section, we will give the proof of Theorem 1.1.

Proof of Theorem 1.1. Let us start with the symmetric case. Assume that K is
a centrally symmetric convex body in John's position and F, € G, is a linear

k-dimensional subspace. We follow the notation in Section 3.2. By (3.10), we have that

1/2
1 G . .
where ¢; = Proalz = é) for all j € J,. Therefore, by (3.9) and the Brascamp-Lieb

inequality (Theorem 2.1),

IKNFyl < |CoNFyl = /Hx[ .01 ((x, V) dx = /Hx[ g (%, V7D dx

]eJ ]eJ

59
J

<1 (f o) - T =2 11(5)

Jjedo Jjedo jedo

By the arithmetic-geometric mean inequality and (2.1), we get

i 50

C i Ci 1 1 n

J J

- < - c; < + Ci = —
N(3) <Z%5-iZo<i2a-1
Jjedo J Jjedo J Jjedo j=1

Hence,
/n

Assume now that K € R" is a (not necessarily symmetric) convex body in John's position
and Fy € G, a k-dimensional linear subspace. We follow the notation introduced in

Section 3.1. Applying Lemma 3.1, one gets

r
LﬂH:[(X,r)eFoxR :r>0,x¢€ E(COFO)].
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24 D. Alonso-Gutiérrez and S. Brazitikos

Denote s; as in (3.7). Using the Brascamp-Lieb inequality (Theorem 2.1), we get

=1
1Pervjll2

m
SIS sty o
/ e ZJ:IKJS]<YIW]>dy=/ H(X[o,oo>((y, v,)e s]<y,W])) j dy
LNH i
m Kj
=/ H(X[O,oo)((Y,PHVj))efsJ'(Y'Wj)) dy
Hj:l
m “ m 00 G
N / [1 (Xlo o) (7 WJ>)e_Sj<y'Wj>) dy <[] (/ e_sftdt)
H ' A
J=1
. 8 1P vill3
Pavs
=[] 1Pgvlly 7
j=1

On the other hand, taking into account (3.7), we see that

m )
/ e~ >t Kkis{y.w;) dy = / / e "Vt+lgxdr
LNH 0 J 5 (CNFo)

% rk s k!
:/O —|CNFyle ™" dr = ——————|CNF

nz nzn+ 1)%

KA+ 1T [CNFy
n%(n—kl)kzil |Sk|

L 31 Pavil3 .
Let us maximize Hj"il ||PHV]~||2] /"2 under the constraints

a1 < IPgvil3 <1V1<j<m,
> 8ilPyvils =k +1,
[ z_]nil 8] =n + 1,

Equivalently, let us maximize F(x,§) = % Zj"il 8]~X]~ log X; under the constraints

1 .
[ z_]n;l 8] =n + 1,
First notice that the function F(x, §) is continuous on a compact domain M in R?™, which

is given by the constraints. Therefore, it attains its maximum. For every x = (x;,...,X,,)
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John’s and Minimal Surface Area Position 25

with n+r1 <X < 1 forall 1 <j< m,letF,(8) be the function

1 m
F,(6) = 2 ZBJ-XJ- logXJ-.
j=1
Notice that F, is a convex function. Since the set

m m
A:{BERm : Zijj=k+1,25j=n+1,o<5j<1v1<j<m}

J=1 j=1

is a compact convex set, F, attains its maximum on some extreme point of A. These are

the points of intersection of the 2-dimensional faces of the cube

BeR™:0<8 <1 VI<j<m}

with the (m — 2)-dimensional affine subspace

m m
{86Rm D> sx =k 1 Za.—n+1}
: % = ' j = :

j:l j:l

Therefore, a maximizer of the function F, has to be a point of the form

8 =(,1,...,1,4,1-2,0,...,0)
e —’ N ——
n m—n—2

for some % < A < 1 (or a permutation of it), such that Zj";l SJ-X]- = k 4+ 1 is satisfied. For
every §, with % < A < 1, we will find the maximizer of the function

1 m

j=1

on the compact convex set

m
1 .
Bi={xeRM: 3 g =kt g <xy<1vI<i<m)
j=1
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If 6} is the decreasing rearrangement of §,, we can assume without loss of generality
that §, = §}. Let

_k+1
T n+1
and
- 1 1
x=11,1,...,1,
—_— n+1 n+1
k
m—k—1
We check that —— n+1 <D<1and
m
n—k
8, X; = =k+1.
Z M n+1 *
J=1
For every x = (xq,...,X,,) € B,, we have x > (xy,...,X,,), since the first k4 1 coordinates
of x are as large as they can. Here, the notation x > (x;,...,x,,) means that

. Z]mla“;} —Zm S % =k+1,
° ZJ 185,%; 221 16,;% YI<l<m.
Therefore, by the weighted Karamata's inequality (see [20]), we have that for every x € B,
F(SA x) < F(SA (%) < (Srln)ae)Z(MF(S,X).

Since

max F(§,x) < max F(SA(X),

(8,x)eM Ae[%,l],xeB;L
we see that
-k 1
max F(§,x) = max FA(X) = max —DlogD+ log
6,x)eM XE[;J] Xe[ 11 2 2( n+1) n+1

— 1p1ogp - "“Flogm + 1)
= 7% n+1 & ‘
Thus,

k+1

5IPavjl3 _ 1DlogD— log(nt1) _ (kK+1)20+D
H”PH ]|| <e gD~ 505y log =
(n + 1)Zn+D
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Since |[K N Fy| < |C N Fy|, it follows that

KnFVE < 1 /n(n+1)| 5, 1/E.
(k + 1)2k(n+1) k(k + 1)

Finally, assume now that K € R" is a (not necessarily symmetric) convex body in John's

position and Fj, is a k-dimensional affine subspace at distance h from 0. We continue to
follow the notation introduced in Section 3.1. Given the k-dimensional affine subspace
Fy, we take the linear subspace H = span{(x,4/n) : x € F} € G, as in (3.4). By

Lemma 3.1, we see that

LNH= H(X,r) eR™ :r>0xec L(Cth)].

N

Recall that J = {1 <j < m : Pyv; # 0} and s; HPHV T2

Brascamp-Lieb 1nequahty (Theorem 2.1), we have that

for all j € J. Using (3.6) and the

= Xjes KjSj (V. wj) d / , e~ Siywj) jd
/mH v = [ TT (xto.00 (. v )" dy

jeJ

/H Xi0,00) (¥, Prrvj))e YW’) dy

jeJ

/H X[ooo)(YrW))e ywj)' 4

jeJ

> star) S1BavI}
<T1( /[ erae)” =Ty
0

jeJ jeJ

Taking into account (3.5) and (3.7), we obtain

© 2
/ e > jes kjSj(y.wy) dy — / / e_rmdx n+h dr
LNH 0 ﬁ(cth) n

% rk(n 4+ h2)2
= / (+H)|00Fh|e*rvn+ldr
0 nz

(n + h?)2k!
==Y

ol |C N Fpl.
nzzm+1l) 2
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28 D. Alonso-Gutiérrez and S. Brazitikos

Since |[K N Fy| < |C N F|, we get

n%(n+1)% n
KNF,| <
| nl < k! V n + h?

or, equivalently,

Rl=

1
KNF, [k < nmn+1)x n 2 S |V
PNk pltE \n+hZ) TR

5 Volume of Projections of Convex Bodies in Léwner’s Position

In this section, we will give the proof of Theorem 1.2.
Proof of Theorem 1.2. Let us start with the symmetric case. Assume that K is a
centrally symmetric convex body in John's position and F, € G,, ; a k-dimensional linear

subspace. We follow the notation in Section 3.2. By (3.11), we get that K N F, C Cy N F.
This implies that

(KNFy° 2 (CyNFy)° = conv{+Pp u; : JeJyt

It follows that for every x € F

Mo ®) < hyar, ®) = 1%l gyamge = Inf § D Iyl = x = D ePryy;

Jjedo Jjedo
=inf 1 D loyl : x =D ajllPryusllpvy  =in ZW tx=2 ]
jedo jedo jedo I Fo T2 Jjedo
=i 019.1t. + x = 09.1/9
= inf 25]. 0;1t; : x = 251 vt
Jjedo JjeJo
z
o 1 _ ﬁ . .
where t; = TProtilz = (3}0) for all j € J,,. For every j € J,, we set

fi(®) = e i, teR.
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Then, if x = >, 3]QQJ~V](-) for some {6,};c;, < R, we have

i — Sjesy IOt < p=h
Hf}.’ 6) =e <0V L e” KnFg (%)

Using the reverse Brascamp-Lieb inequality (Theorem 2.1), one obtains

S:
k! |(KmF0)0| — / e*hKﬂFO(X)dX > H (/ e_lttjdt) J
F . R

jeJ

>
(g

[jes & 5\ 2
Je0 HjEJ() (3_])

¢\* ¢ 1 13 n
] J ] —

H(s_‘?) SPIE S R DILES I ES
Jedo \J jedo J

Taking into account that |(B’o‘o)°| = |B’f| = %, we obtain

k
(& 0 Fo)° e > \/;(B’;o)%”".

Assume now that K C R" is a (not necessarily symmetric) convex body in John's
position and F, € G, is a k-dimensional linear subspace. We follow the notation

introduced in Section 3.1. For H = Fy x R € G, ,; as in (3.4), we have that

(€N Fy)° = Py (C°) = Py, (conv{uj L 1<j< m})

= conv{PFOuj 11 <j<m}

Forany y = (x,r) € H = Fy x R, we write

Ny)=inf{> —LL_— :6,>0,y=> kow;t,
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30 D. Alonso-Gutiérrez and S. Brazitikos

where the latter infimum is understood as oo if there do not exist {Gj}j"il with 0, =0 such
that y = >, k;6;w;. Notice that for any {6, M SR,

P m
Y:ZK.Q‘W. & (x,71) Fo(u)

m K0
— ]
10Wj = Z Z =
jeJ 14/ ||Ppou]||2 j=1 n”PFouj”z +1

Ppo(u) m

iz 1r,/n||PFOuJ||2+1 iz 1 nnPFO ||2+1

& (x,r) =

Then there exist {91-}].";l C R with 0j > 0 for every 1 < j < m such that the latter equality
holds if and only if

x,r)eLl, ={(xr)eFyxR:r>0:xe-r/n(CNFy)°},

and for all such y = (x,r) € L;, we have that N(y) = r. Therefore, for every y € H,

m _ %

sup [ xi0,00@e VRIER GBS ) = N ),

y=2721 K50Wj j=1

Kj

Thus, by (3.6) and the reverse Brascamp-Lieb inequality (Theorem 2.1),

m 00 ————t Kj
/ e—N(Y)dy > H(/ e ,/nI\PFOujH%-%-l dt)
H . 0

j=1

On the one hand,
o0
/ e VW dy = / e |—r/n(CNFy°| dr = k! n¥/2|(C N Fy)°|.
H 0

On the other hand, forevery 1 <j<m

t
e s ae = fullpe, gt + 1 = VA 1Rl
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Since (K NFy)° 2 (C N Fy)°, we obtain

8l Pav;I13
(n+ D T [Pyl

k! nk/2

k+1
_ n+1 - k Kz P.v 8llPav;l3 S°
= % ~ IIHHﬂl 1S3

(KNFy)°l >

For the convex function f(x) = xlog x, we apply Jensen's inequality to get

m

8; 8;1Pgv;l3 k+1
J 2 2 J "2
E ——||Pyv;||“log || Pyv;l; = f E — | =f .
j_ln 1|| rVill” log [Py v;ll; = pa T (n 1)

Thus,

k+1

N kg1
H IP ”6 IRV _ 2t S S PP log IPavy o (KLY 2
7Y “\n+1

Therefore,
ol o K ol
[(KNFy)°|k = EISklk-

6 Mean Width of Sections of Convex Bodies in John's Position

In this section, we will prove Theorem 1.3.
Proof of Theorem 1.3. Let us start with the symmetric case. Assume that K is a
centrally symmetric convex body in John's position and Fy € G, is a k-dimensional

linear subspace. We follow the notation in Section 3.2. By (3.11), we have that KN F, €
CyNFy and

(KNFy)° 2 (CyNFy° = conv{j:PF 1 jedph
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32 D. Alonso-Gutiérrez and S. Brazitikos

It follows that for every x € F,

hgnr,X) < hgynp, (x) = inf Z o+ x = Z“J’PFouj
Jjedo jedo

=inf 2 legl s x= D elPrylv) ¢ =infy D 1A x= 2 f) ¢

Jjedo Jjedo Jjedo Jjedo

where t; 9)

forallj € J,. For every x € F,, we write x = ZJEJO 8Q(X, v;

¢ v](.’, therefore

IIP Ujli2

hxnr, %) < Zaot |(x, v (6.1)
Jjedo

If G, is a standard Gaussian random vector in F, and G, is a standard Gaussian random

vector on R¥, using (6.1), we get

Ehgng, (G1) < D 8VGENGy, vj)l =El(Gy, 1) D 80t
jedo Jjedo

1 0 1 0
= 7EIG,, > 80t = - > 8t Ehy (Gy).

Jjedo Jjedo

By Holder's inequality and (3.9),

|
Nl

1
1 < 1 1 )
RIS AR DI WP T AT
Jjedo Jjedo Jedo Jedo

1

2

— - vnk n
26| (XelPryls ) == \/;
j=1 j=1

N~

N
x|

Hence,

n

Equivalently, by (2.2),

w(K NFy) < \/%w(B’;o)

1202 1890100 60 UO Jasn (susyly Jo AlsiaAiun) Yurl-TvaH Aq papinoid $se00y AQ GG 10SE9/S L ZABU/UIWI/SE0 L 0 | /I0p/8|o1lB-00UBAPE/UIWI/WO2 dNo dlWapeae//:sdjjy Wol) papEojuUMO(]
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Let us now assume that K is a not necessarily symmetric convex body in John's position
and let Fy € G,, ;. We follow the notation introduced in Section 3.1. For every x € Fj, we

have
m m
j=1 j=1

Let 6 € S* ! NF,. By (2.1), we have ZJ-'ZI ¢jPg,u; = 0, so we may write

0=> ¢ (<0,PF0uj> - 12}3& (G,PFOuk)) Pr u;.

J=1

. . . . _ . . 0 _ Pr, uj
Setting (like in the symmetric case before) J, = {1 <j<m: Pp u; # 0} and v = HPFOOW

forj € J,, we get

w(K NFy) < w(CNFy) = / henr, ©)do (6)
Sn-1nF

m
< (0, Ppu;) — in (0,P do (6
/Sn—lmFojzl:CJ (( Fou]> lgllclélm( Fouk>) o (0)

=n max (@, —Pr u)do () <n max |{0,Pr u;)| do (0
/S”—lmFolékém( o e 47 () /sn—lmF01<k<m’( rot4el| 4o ©)

<9,v,‘g>(do(9) < n/ max (9,v,2>)do(0).

<n max ||Pg Ull, max
h /5 Fo k12 kedo sn-1ng, kedo

n_lﬁFO 1<k<m

It is a well-known fact (see, for instance, [3, Proposition 9.1.5 and Lemma 5.2.11]) that

for any {6;}¥ , € S""!, one has that

Tog IV
/ max [(6,6,)] do(0) ~ | —8=
gn—-1 1<k n

Therefore, there exists an absolute constant C; such that

1
<9,v,2>‘do(9) < cM%.

/ max
sn-1nF kedo
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Taking into account that m = O(n?) and that w(S) =~ /klogk, we obtain that there

exists an absolute constant C, > 0 such that

logn
w(K NFy) < Czk llg w(Sg).

7 Mean Width of Projections of Convex Bodies in Léwner’s Position

In this section, we will prove Theorem 1.4. We will make use of the following lemma.
Lemma 7.1. Let K C R" be a (not necessarily symmetric) convex body and F;, be a k-
dimensional affine subspace at distance h from the origin. Take some « € Rand 8 <0

Identifying the origin with the closest point in F, to 0, we identify F, with R¥ and let y;

be the k-dimensional Gaussian measure on Fj. Then,

7 po0 o (r—avnF1)?
2
n ‘; A e 2]T eﬁr«/n+1yk (%(C N Fh)) dr g

(r— adl)z
o e—
< —eﬂr k+ ( rvk+ 1A )
/0 V2 k

where C is defined as in (3.1), A, denotes the regular k-dimensional simplex as
introduced in Section 2.3, d; = ﬁ ZJEJ 8 IPg Vil and H is defined as in (3.4), §; and

v; as in (3.2), and J as in (3.6).

Proof. Following the notation introduced in Section 3.1, let L be the cone defined in
(3.3). By Lemma 3.1, we have that

LnHE={0r i r>0xe %(cth)}.

Forany«, B € R, let i, 4 be the measure on H whose density with respect to the Lebesgue

measure at a point y = (x,r) is

nynz

ity (¥) = " )k+1 ——elethrvntlgy,
T

1202 1890100 60 UO Jasn (susyly Jo AlsiaAiun) Yurl-TvaH Aq papinoid $se00y AQ GG 10SE9/S L ZABU/UIWI/SE0 L 0 | /I0p/8|o1lB-00UBAPE/UIWI/WO2 dNo dlWapeae//:sdjjy Wol) papEojuUMO(]



John’s and Minimal Surface Area Position 35

For any «, 8 € R, taking into account (3.5), we have that

r

2
® e~ r n + h?
LNH — " pardn+4l pryn+l —_(CNF d
o5 @ OVED) /O ey (enny ) [T ar
2 o] (r—a\/ﬁ)z h2
o2(n+1) ez r n+
—= v oBryn+l o NFE

Recallthat J = {1 <j<m : Pgyvj # 0}, s; = ”PHV B
Using the definition of L, the identity (3.7), and the Brascamp-Lieb inequality (Theorem

foreveryj € Jand y = (x,r) € H.

2.1), we have

Iy 13

Mo p(LNH) = /(zn)(k+1)/2

e VIl ghrynt H X10,00) (¥, V) dy
jeJ

Iyl

= € T ar/ntlgprynil
a /H(zﬂwew LV T 0,00 (v, Wiy
jeJ

2
_ Zjegkjlrwy)

e 2
N /HW eies DY [ o 00y (v, wih Ay

jeJ
Kj
— / H e(ot+/3)sj YW])X[O oo)(<y' )) dy
jeJ
Kj
tz Kj 2 m (tfotSj)
© o= o Sje iyt Sl )

< / ——eitePsitdt | =e 2 / - ePfitde
= 113 0 +2m 111 0 V2

Kj
e2(n+1) /
- S

jeJ 0 2

Therefore, for any «, 8 € R,

7 oo (r—avnF1)?
n-—+ e 2 r
N - /0 T efrvntly, (ﬁ(c N Fh)) dr

2 Kj
oo ei t—D;Sj)
< S ePsitdr
H /0 2w
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Notice that ;= m > 1 for every j € J, which implies that, for any 8 < 0, one has
Bs; < B for every j € J. Using this inequality in the second following inequality and the
Prékopa-Leindler inequality (see [37, Lemma 1.2]) in the third following inequality, we

have that for any 8 < 0

[ o o (r-avni1)?
2
n ‘; /0 e \/E eﬂr\/ n+1yk (%(C N Fh)) dr

2 Kj
_(tfosz) J
< 1 /OO C  efutdr
h jeJ 0 2
2 K; k+1
% o (t”’;sj) ! % o (t k+1 szeJ )
< ——effat| < / eftde
g /0 V2m 0 2
ad 2
k+1 ( v «/71)
= / H ——efldt
[0, oo)k+ i1
k1 _uzuz
_ / k“ H eﬁ«/k%— (t:v0) gPadi VEFT gy
d /
[7«/ﬁ i=1
where v, = (ﬁ, e, ﬁ) Therefore, for any « € R and any 8 <0
[n+h2 [> _ e
n e P T r
+ / efrvntly, (—(CﬂFh)) dr
n 0 V2r Jn
k1, utu2
< / L H eﬂ«/k—&- (t,v0) pBrds VETT g
[_ kil' ) i=1
00 2
= / ) Jz_eﬁV ltghadiVhtl,, ((t+ad ) Ak) dt
—ad,
o = ad1)2
e
Sl B A G Y
0 T
where A; denotes the regular k-dimensional simplex as introduced in Section 2.3. W
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Proof of Theorem 1.4. Let us start with the symmetric case. Assume that K is a
centrally symmetric convex body in John's position and Fy € G, ; is a k-dimensional

linear subspace. We want to prove that

w((K NFy)°) = W((ﬁB’go) )

Equivalently, by (2.3), we want to prove that

ElGlixnm, = ElGall /mp .

where G, is a standard Gaussian random vector on F, and G, is a standard Gaussian
random vector on R¥. If L € R¥ is a convex body containing the origin in its interior and

G is a standard Gaussian random vector then
o0 oo
EIGI, = / P(IGIl, > Hdt = / ye(R™ \ tL)dt, 7.1)
0 0

where y;(A) denotes the Gaussian measure of the k-dimensional set A. Therefore, the

statement we want to prove is equivalent to

/oo Vi (Fo \ t(K N Fy))dt > /Oo Vi (Rn \ t\/ﬁs{;) dt
0 0

or, equivalently,

/00(1 — (LK N Fy))dt > /OO (1 — Y (t\/EB’;o)) dt.
0 0

We are going to prove that for any ¢t > 0

Y (tK N Fy)) < v (t\/EB’;O),

which implies the latter inequality.

We follow the notation in Section 3.2. By (3.10) we have that

KNFyCCyNFy= {XGFO L (x, v < ¢, VjeJO],
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1/2
-1 (4 ]
where tJ = Prul = (5]0) for all j € J,. Therefore, for every ¢t > 0,

t(K N Fy) C t(Cy N Fy) = {XGFO 1(x,v9)| < 12, VjeJO}.

By (3.9) and the Brascamp-Lieb inequality (Theorem 2.1),

Y@K NFy)) < y(t(Cy ﬂFO)):/
Fo jeJ

. 0 0,2
B Zjedg 8 xvy)
2

O e
/Fo HX[—ttj,ttj](<X/Vj)) de

Jjedo
(x,v9)2 8
0.8 2
= [ T {rowaxvpn®e— | ax
Fo jEJO U 27
80 k
tt; e—% J 5
< ] / th =[] nati-e eh®
jedo \” 2 JjeJo
Since y, is log-concave, we obtain
k
tjcS](.) t-SJQ y
K OF) <y [ (62055 | [epend | =wm| (¢35 | B
Jjedo Jjedo
By Holder's inequality and (3.9), we have that
1/2 1/2
;57 V o) / 0 !
2% = X <pl2e] (X298
Jjedo jedo jeJo jeJo
. 1/2 1/2
< 1 50 _|n
S % 2.6 > j =V
j=1 jeJo

Thus, for every t > 0,

V(K N Fp)) < (t\/EBlgo).

0 e
H Xi—tt; et (X V) de
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Assume now that K € R” is a (not necessarily symmetric) convex body in
John's position and F, € G, is a linear subspace. Following the notation introduced
in Section 3.1, we denote by H € G, the (k + 1)-dimensional linear subspace
H = span{(x,/n) : x € F} = F; x R, as in (3.4). By Lemma 3.1, we have that

r
LﬂH:[(X,r)eFoxR : r}O,Xeﬁ(CﬂFO)}.

Using Lemma 7.1 for g = 0, the linear subspace F, € G,, ; and an arbitrary « € R,

we get
_ (r—a«/n-%—l)z B (r—ad))?

e 2 r e 2 e

where d; = ﬁzjejéjHPHlelz, 8 and v; are defined as in (3.2), and J as in (3.6).
Applying the latter inequality to —«, we also get

(r+o/mit)® (rtady)?
00 pm 00 p——m i
/ e (L(cmF))dr</ e (r\/k+1A )dr
0 V2 Yk vn 0 ~Jo 2z K K
or, equivalently,

_ (r-avnt1)? a\/ﬁ) M
——=——|-—=(CNFy % (IMVE+14,) d
[ mre(Grenm)ars [ mn )dr

Therefore, for any « € R,

_ (r-aynf1)” O‘*/W) (- adl)Z
———n | = (CNF ——n (IrVE+ 14
[ (renm)ars [ 2w ) ar

Hence,

_ (r-ayni1)” a«/W) i (= adl)z
/ Wi yk<Fo\((f<cmFo>)) / — e (RF\ iV + 1ap) dr.

Integrating in @ € R, we obtain

1 e e
NCES /_oo Yk (FO\(LL(C“FO))) r> d_l/_oo v (RE\ (rVk+1ap) dr
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Equivalently,

1 o r 1 [ k
n+1/0 yk(FO\(ﬁ(CmFO)))dr>d_l/o Vk(R \(r k+1Ak))dr,

or

n o0 1 00 &
‘/n+1/o Ve (Fo \ (F(C N Fp)) dr}m/o Vi (R \("Ak)) dr.

Using (7.1), (2.3), and the fact that K C C, we obtain

KAF)) > — [T ay
w(( 0))/d_1 mw(( )

If S; denotes the k-dimensional regular simplex in John's position, then

Vi +1)A, = S;.

Therefore, for any k-dimensional linear subspace F,;, we have

o kn+1) 1 .
w((K NFy)°) =/ Td—lw((sk) ).

By Hoélder's inequality and (3.6), we have that

1 1
m 2 2

m
diVk+1=2 81Pgvil, <[ D8] | 2 81Pavil3 | =vVn+ Dk +D).
jeJ j=1 j=1

Thus,

k
w((K NF)°) > \/;w(s;;»

8 The Wills Functional of Sections of Convex Bodies in John's Position

In this section, we will give the proof of Theorem 1.5.

Proof of Theorem 1.5. Let K be a centrally symmetric convex body in John's position

and Fy € G, a k-dimensional linear subspace. We follow the notation in Section 3.2.
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John’s and Minimal Surface Area Position 41

By (3.10), we have that for every » > 0
MK N Fp) € (Co NFo) = {x € Fy : 1x, V) <ty Vi €

C;

1/2
where t = m = (é) for all j € J,. For every j € J,, we definefj : R — [0,00) to

be the function
—nd(tv}o,P(VQ)(A(CODFO)))Z

fiv=e J vt e R,

where (VJ(-J) denotes the 1-dimensional subspace spanned by V](.J. Then,

—nd(tv](.’,P(VQ)(A(COOFO)))Z
/Rfj(t)dt - /Re j dt = W(P,0, (-(Co N Fp)))
and
Po,(1(Co N Fy)) < [ = 4ty 2ty ]
It follows that for every j € J,

/Rﬁ(t)dt <W ([—Atj,ktj] vj) = (1 + 2Atj) .

Therefore, by (3.9) and the Brascamp-Lieb inequality (Theorem 2.1),

2
/ o 2 jer Sj‘?d(<x,v;’>v;?,P(VJo)<A<comFo>>) _
Fo

0

5
<I1I (/ fJ'-(t)dt) " <1 (1 +2/\tj)8f :
jeso B

Jjedo
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By the arithmetic—geometric mean inequality, (2.1), and (3.9), we have

0
¥ 57 21
I1 (1 + zuj) <> < (1 + zuj) <1+ > ¢l1Pg,ujll,
Jjedo jeJo JjeJo
1 1
)\‘ 2 2
2
SIeg|l2g) | 2 olPruls
jeJo jeJo
1 1
2 2

N
—
+

2 [— )
~(2a] | 2 elPrwl
j=1

jeJo

1+2a

~5]

It follows that
' \/ﬂ ‘ \/ﬂ .
H(1+2uj) <(1+2x/7 ) =wlr/BS )
Jjedo

On the other hand, let x; € A(Cy N Fy). Then, for every x € F; and every j € J,,

J' JI

2 2
d ((x, V](-))VJ(.J,P(V]Q)()L(CO n Fo))) <d ((x, V0, (x,, v@)v‘?) = (x — X0, v))2.

Thus, for every x, € A(Cy N Fy) and every x € F,,

2
0 0\ .,0 0 0,2 2
> 8jd((x,vj)vj,P<V;;>(k(CODFO))) <S80 (x — x0,v9)? = |x — x, 2.
Jjedo jedo

Hence, for every x € F,,

2
> 8%d ((x, vPIV9, Plyo, ((Co 1 Fo))) < d(x, M(Cy N Fy))2.
Jjedo

Consequently,

WQR(Co NFy)) = / e~ TAxA(CoNF0))? 43
F

2
> 59d(<x,v‘?>v9,PV0 (A(CoﬁFo))) n
</e jedo °j J ) dXSW)»—BI;o.
F
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Since K N Fy € C, N Fy and by the monotonicity of the Wills functional, we get

WK N Fy)) < WA(CyNFy)) < W(/\\/%B’go). ]

The following result gives a similar upper bound for a quantity defined via a
double polarity, both on the convex body and on the log-concave function. For any k

dimensional affine subspace Fj, and any convex body K C F;, we will consider
fe@®) = eTEEE) vy e Fy,
as defined in Section 2.6.

Theorem 8.1. Let K € R" be a convex body in John's position and let F;, be a
k-dimensional affine subspace at distance h from 0. Assume that the closest point to

the origin in F; belongs to the relative interior to K N Fy,. Then, for every A > 0,

n+1
F5 ey (X)X < \/7 / dx.
/Fh (O.(KNF)) k+1Vn+h? Jg 'ﬁﬁﬁ)) k)

Here we consider K N Fj, as a subset of F;,, which we identify with R and the polarity is

taken on Fj,.
Furthermore, if K is centrally symmetric and F; € G,,  is a k-dimensional linear

subspace then, for every A > 0,

/Foﬁ(jx(KmFO))o(X)dX < /ka(k\/fl?’éo)o(x)dx'

Proof. Let K C R"” be a centrally symmetric convex body in John's position and let
Fy € Gy, ; be a k-dimensional linear subspace. From the definition of f xnr, ). and (2.4),
we have that, for every A > 0,

(0.¢]

113 I
/Ff(o)»(KmFo))O(X)dX - /e e Mhardy = [ e e e 'dtdx
0

Fo Ixlx&nFg)

HXH
/ et / = dtdx
A(KOFO)

quz

2 k/ —t/
@ L (KNFo) (\/_ )"

k —t 2
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Similarly, for every A > 0,

o ok [Tt thon i
kf(kﬂBlgo)o(X)dX_(Zn)/o e yk(m kBoo)dt.

As we have seen in the proof of Theorem 1.4, for every t > 0 and every A > 0O,

tA th  n_;

Therefore, for every A > 0,

/FOf(OA(KmFO))o (x)dx < /ka&ﬁlggo)o(x)dx.

Assume now that K C R" is a (not necessarily symmetric) convex body in John's position,
F;, is a k-dimensional affine subspace at distance h from the origin, and the closest point
to the origin in F,, belongs to the relative interior to K N F,. We will identify F, with R¥
and the closest point in Fj, to the origin in R" with the origin in F; (identified with RK).

As before, we have that, for every A > 0,

o > th
/Fhf(,\(KﬂFh))o(X)dX = (27T)k/0 e 'k (E(KﬂFh)) dt

We will follow the notation in Section 3.1. By Lemma 7.1, we have that for any « € R and

any B <0
n+h2 (r ou/n+)
N pryntl, (_(cnF )
/ e (\/_( n)

_ (= otdl )2
Y 1N/ =5 | ( k )
e rvk+ 1A
/0 V2 k

1 . .
where d; = T ZJ-EJ 8;|IPv;ll,. Integrating with respect to « € R, we see that for any
B<0,

h2
n+ / ﬂr n+1 (T(Cth)) d / efr Vi1 (r /k+1 Ak)

nn+1)
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Equivalently, changing variables u = ,/ %r, forany 8 <0

n+h2 /00 ﬁu«/n(n#—l u

Vo ( u (cmF))du / Vi ( A)du
n+1 V2 h S d \/k—i— Y V2 k )
For any A > 0, take 8 = —%,/n(nﬂ) to obtain

n.{.hZ/OOe_% ( s (CNF, ))du< ! /Ooex«ﬁn?xrn ( u A)du
Vrtt o "\ Vzm h S dWVEk+1Jo M\ V2 k)

or, equivalently, changing variables u = Av in the integral on the left-hand side and
u = Ay/n(n + 1)vin the integral on the right-hand side and renaming v as u,

/Lhz/ooe—u ( (cmF)) Y+ (%o (m— vn("Jrl)A)du
n+1 0 Yk \/_ h 1SW Yk m k .

Since vk(k + 1)A; = Si, we see that for every A > 0,

oo ur n+1/n oo ur n(n+1)
uy, (2 cnF,))du < u, (MmOt D g,
/o ¢ yk(«/Zn( ”)) “SaJkipmem o &7 (\/_2;1 k(k+ 1) k) “

Consequently, for any A > 0, taking polars with respect to the closest point in Fj, to the

origin that we assumed to belong to the relative interior of K N Fj,, we get

/ Jou&nmyye 0 dx < / Joucnmyye (0 dx
Fy, Fy,

Jnm+1) o
dy/(k + 1) (n + h2) Jrr” () Hin )

(x)dx.

For every j € J, denote Kj as in (3.6) and s; as in (3.7). Then, by (3.6), we have that

dl\/k"‘l:Z"j ZK—Z k+1.

jeJ jeJ
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Thus, for every A > 0,
n+1
-(x)dx < x)dx.
 Focknmr 0 < T i L7 ey

9 The Wills Functional of Projections of Convex Bodies in Lowner’s Position

In this section, we will give the proof of Theorem 1.6.

Proof of Theorem 1.6. Let K be a centrally symmetric convex body in John's position
and let Fy € G, ; be a k-dimensional linear subspace. We follow the notation in Section
3.2. By (3.11), we have that

(KNFy° 2 (CyNFy° = conv{j:PFOuJ-, jedy) = conv{j:||PF0 ||2 . J€dgl

Since the function d(-, (C, N Fy)°)? is convex, for any x € F, and any {07} C R such that

_ 0y +,0
X = ZJ.EJO 8]. ijj , we have that

jedo

0

8¢
d(x, KNF)°)? < dx, (CoNF))=d| D] %kOJ-VJQ, (Co N Fy)°
jeJo
1 0 0 o 2
<z > 8% (kejvj ,(Cy N Fy) )
Jjedo
1 2
< 2 >80d (kejv;.’ [ 1Pr, u; 1202, 1Py Ul v ])
je€Jo
IPrujlly o IPruillz o7\
= Z(SQd («/EG»VQ |: 0 2y0 — 20 O]) .
J JI! J'! J
s Vk vk

For every j € J,, we set

IPE uillz o PR il 2
_nd(mvo,[_ 02 o IPFo Y Vo])
fit=e ! VBT Yk ) v eR.

Moreover, for any x € Fy and any {0;};c;, € R such that x = 3>, ; 5](.)9J-VJQ, we have

0
H ffgf ©) < g7, (KNF)°)?
J
Jjedo
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Therefore, by (3.9) and the reverse Brascamp-Lieb inequality (Theorem 2.1),

WK NFy)°)

0
e TAx,(KNFo)°)? 45 > (/ t dt)
/F O I1(/ f®

jedo

_IPRgu;lz g IPRQUjl2 2
o d 1Ry l2 o I1PEq Y2 oD
= \/_ / vk J NG J dt

0
5

]EJ
~ I1Pryllz o IPrYillz g Ui
- kk/z H - \/E Vi Jk Vi
jeJdo
~ H( 2||PF0uj||2)5?> 1
k2 Z Tk/2"
K2 e vk Kkt

10 Sections of Convex Bodies in Minimal Surface Area Position

In this section, we are going to prove Theorem 1.7. Let us start assuming that K is a
centrally symmetric polytope in minimal surface area position and F, € G, ;. By an
approximation argument, the inequalities we obtain will also be true for any centrally
symmetric convex body in minimal surface area position. We will follow the notation
introduced in Section 3.3.

Let J, and, for every j € Jy, ¢, 50 and V0 be as in (3.14). Let for every j € J,
fj :R — [0, 00) be the function

—nd(tvj‘?,P(V(,)(KmFo))Z
fiv=e J vVt e R,

where (V]Q) denotes the 1-dimensional subspace spanned by VJ(-). Notice that, for every

JjelJy,

—md(tv) P o,(KNF))?
/Rfj(t)dt = /R e i dt = W(P,0,(K N Fy)).

For every j € J,, we have that

Pyo, (K NFy) € [—tth(uj), tth(uj)] v)
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where ¢ is defined as in (3.15). Then, for every j € J,

/R findt <w ([—tth(uj), tth(uj)] vj) - (1 " 2tth(uj)) ,

Therefore, by (3.14) and the Brascamp-Lieb inequality (Theorem 2.1),

2
0 0y,,0

/ e—” 2jedo 5 d(<X,Vj)Vj rP(V]())(COmFO)) B / 0))dX

Fo Fo Y

JGJO

o 0
<T1 (/Rfj(t)dt> o< 10+ 2tth(uj))8]
Jo

Jjedo
By the arithmetic—geometric mean inequality and (3.13), we have

VA
k

2 UF 1 Pg Uyl ()
= — <1+ F;|h
DD |0K| k|aK| 2 il )

Jjedo jedo

Z| g (u)) =1+2 n2|K|
k|aK| JIUK kloK|’

Thus,

59 n?|K| n“|K|
J
. . < 1+ = .
I I (1 + ZtJhK(u])) < (1 2k| |) w (kl | oo)

Jjedo

Let x, € K N F,. For every x € F, and every j € J,, we have

2 2
d ((X v; )V P, o>(KﬂF0)) <d ((X, VJ(-J)V](-), (XO,VJ(-))VJQ) = (X—XO,VJ-)Z.

J

Thus, for every x, € Cy N Fy and every x € F,

250d(x vPIvP, Py (KﬂFO)) <D 89x — x0,v9)? = Ix — x,[2.

JjeJo Jjedo
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Hence, for every x € F),

0 0,,,0 2 2
> 6% ((x, vPIv], Pyo, (K N FO)) < d(x,K NFy)2.
Jjedo

Consequently,

2
2 DI Bod((x,VQ)VQ,PVQ (KQFO))
WEKNF,) = / e~ Td(x,KNFo) dxg/ e jedo % 7Y )
Fo

Fy
n?K|
4% B ,
(k|aI<| °°)

Notice that for every A > 0 we have that AK is in minimal surface area position.

which proves (i).
Therefore, we can use (i) to get that for every A > 0

WK NFy) <W (A——Bk

As explained in Section 2.6, the last one implies that V(K N Fy) < V; (A”TZ%B’&) and

V,(KNFy) <V, (x"—,f%}_;’go) which are equivalent to (ii) and (iii), respectively.

Now, using (3.16), we observe that for every x € F,

a .
— 3 2 R 2 J
hKﬂFo(X) = inf . |OlJ| X = ‘ mPFouj'
Jjedo Jjedo J
; Z . Z 0
jedo Jjedo
z
_ 1 _ ﬁ . . .
where tj= TPro il = (3]0) for all j € J,,. For every j € J,;, we define

fi(t) = e kW) ¢ e R,

Then, if x = > ;.5 51(-)9jV](~) for some {0;};c;, < R, we have

50
[ ©)=e Zjero 116516hE (W) o—hunry (),
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Therefore, by (3.14) and the reverse Brascamp-Lieb inequality (Theorem 2.1),

5
k' (K ﬂFO)O| = / e—hKﬁFO(X)dX > H (/ elttth(uj)dt) !
Fy R

jeJ
2k
[jes, (thg @)

By the arithmetic—geometric mean inequality and (3.13),

)

89 n|F;|[|Pg, u;ll s hy ()
J JIIE Fo "N 27 K\ Sy
[1 (tfhK(”f)) < 2 gt =2 k0|aK|

jedo jedo JjeJo

no< n?|K|
< —— > |Filhg(u;) = .
k|31<|j_zl| 1 (W) k|oK]|

.. k .
Taking into account that |(B’go)°| = |B’1c | = % we obtain

k|9K|
KNF ol/k> Bk ol/k'
I( o)l —n2|K||( 00) |

which gives us (iv).

Finally, from (3.15), observe that for every t > 0
t(K N Fy) = {x € Fy : |{x,v))| < tthye(u)), V] € Jo).

By (3.14) and the Brascamp-Lieb inequality (Theorem 2.1), we have that

5}9(x,vj‘?>2
ey 27—
_ 0y, 0
et N F) = [ Tt syt et (0 v g de
Jjedo
2 89
ttihx () =% ! 50
<] / ds| =[] n ([-thc. tihewp])”
JjeJo _ttth(uj) 21 jedo
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Since the 1-dimensional Gaussian measure is log-concave, we obtain that

k
50 Ott. hK(u )
[Tn ([-thep thewp])’ < m ({252 5 T ty) [~e). €]
JjeJo eJo
89t hK(u)
= nf(t| DT g BY,
JeJo

Therefore, by (3.13),

hK(u ) n|F;| 1Py, uillhy (u)) n|F; |hK(u )

J J _ J J J
Z B Z k|dK| \Z k|0K|

jedo jedo

- ianjlhK(uj) _n® K|
b 5 k|dK| k |0K|’

Thus, for any ¢t > 0,

(t(KNFy) < t n |K'B
Vk 0)) X Vk k [0K| )"

Therefore,

KNFy°) > 2|K|B )= kK] °
w(( 0)°) =z w (k K] oo) n? K| w((BX,)),

and we obtain (v).
Let us now assume that K is a (not necessarily symmetric) polytope in minimal
surface area position and F; € G,, ;. Again, by approximation, the inequalities we obtain

will be true for any convex body. By (2.5), we have that for any x € F,

1 m
Ilerm, = EZ B w) = 5 S IP e |2, v?)

JEJO
|0K |89t

_ j 0
- Z 2n KX' Vf> ’
Jjedo

j
as in (3.14) and ¢; is defined as in (3.15). Therefore, by (3.14) and the Brascamp-Lieb

where the vectors u; are defined as in (3.12) and, for every j € Jy, SJQ and VJ(-) are defined
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inequality (Theorem 2.1),

R
19K1301; K

KUK NF,| = / eIl xnmdx _ / e Zicho T m
Fo

- n(E K&Vﬂ)ﬁf ix
H(/RQ_K ) 1;[(|8K|t)89

JeJo

- (5e) T 0m)” < ()

J€Jo

0

'Vf>‘dx

/N

To prove the remaining inequality, we start observing that P [1K = (IT*K N F(;)°. Then,

for every x € F,

|8K|89tjtj
X = inf { max Tl x= — I 2 y0
117y, rix max |1 Z )
Jedo
" . oKt .
Any decomposition of x of the form x = Zjejo SJQQJ»V]Q with 16,1 < ‘Zrltf gives a
decomposition of x of the form
|0K |89t 7 2n6;
X = Z — JIIT0 with ¢ = I
, 2n J T |0K]|t;
Jjedo J
Since max; e do |r| 1, we get that the functions hj = X[ oK1t wmy}r J € Jy, and the
T T

function h = XPg,TIK have the property that

89
0 0
2 85077 | = [11 @,

jedo Jjedo

for every {6;} C R. Hence, by (3.14) and the reverse Brascamp-Lieb inequality

jedo
(Theorem 2.1),

)4
P, TIK| = h(x)dx > (/h(t)dt) =H(| lt)

Fo Jedo

0

B (ﬁzﬂ)k};(n Fl ||)8j g (la_n|)k
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