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We prove several estimates for the volume, the mean width, and the value of the Wills

functional of sections of convex bodies in John’s position, as well as for their polar

bodies. These estimates extend some well-known results for convex bodies in John’s

position to the case of lower-dimensional sections, which had mainly been studied for

the cube and the regular simplex. Some estimates for centrally symmetric convex bodies

in minimal surface area position are also obtained.

1 Introduction and Notation

For any convex body K ⊆ R
n (i.e., a compact convex set with non-empty interior), a

position of K will be any affine image of K. Every position of the Euclidean ball, Bn
2 ,

is called an ellipsoid. A well-known theorem by John (see [29]) states that every convex

body K ⊆ R
n has a unique maximal volume ellipsoid, E(K), contained in it. The volume

ratio of K is defined as

v.rat(K) :=
( |K|

|E(K)|
)1/n

.
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2 D. Alonso-Gutiérrez and S. Brazitikos

Here and in what follows | · | denotes the volume of a convex body in the appropriate

dimension. Notice that the volume ratio does not depend on the position of the convex

body K.

A convex body K ⊆ R
n is said to be in John’s position if the maximal volume

ellipsoid contained in K is the Euclidean unit ball Bn
2 . In other words, K is in John’s

position if Bn
2 is contained in K and for every non-degenerate linear map T ∈ GL(n)

and every a ∈ R
n such that a + T(Bn

2 ) ⊆ K we have that |a + T(Bn
2 )| = |T(Bn

2 )| � |Bn
2 |.

By the uniqueness of E(K), this position is uniquely determined up to orthogonal

transformations. Denoting by Bn∞ the n-dimensional cube and by Sn the centered regular

simplex with inradius r(Sn) = 1 in R
n, it is well known that both Bn∞ and Sn are in John’s

position.

Ball proved in [6] that the simplex maximizes the volume ratio among all convex

bodies in R
n and the cube maximizes the volume ratio among all the centrally symmetric

convex bodies in R
n. The proof consists of the following three steps: first, since the

volume ratio of a convex body does not depend on its position, it can be assumed that

the convex body is John’s position; second, substitute the convex body by a polytope that

contains the convex body and it is also in John’s position; finally, obtain an upper bound

on the volume of such a polytope by using Brascamp–Lieb inequality (see Theorem 2.1

below).

Dual to John’s position is the so-called Löwner’s position. A convex body is said

to be in Löwner’s position if the minimal volume ellipsoid containing it is the Euclidean

unit ball. It is well known (see, for instance, [4, Proposition 4.7]) that a convex body

K ⊆ R
n is in John’s position if and only if K◦ is in Löwner’s position. Here K◦ denotes

the polar body of K defined by

K◦ = {x ∈ R
n : 〈x, y〉 � 1 , ∀ y ∈ K}.

Ball observed in [6] that a reverse form of the Brascamp–Lieb inequality would provide

that among all convex bodies in Löwner’s position the centered regular simplex S̃n

with circumradius R(S̃n) = 1 has the smallest volume. Moreover, among all centrally

symmetric convex bodies in Löwner’s position, the �n
1 -ball, Bn

1 , has the smallest volume.

The needed reverse form of the Brascamp–Lieb inequality was obtained by Barthe in [9]

(see Theorem 2.1 below).

Vaaler showed in [43] that if F0 ∈ Gn,k is a k-dimensional linear subspace of R
n

in the Grassmannian manifold Gn,k, then |Bn∞ ∩ F0| � |Bk∞|. Ball obtained in [5] a reverse
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John’s and Minimal Surface Area Position 3

inequality proving that |Bn∞ ∩ F0| � 2
n−k

2 |Bk∞|. He also obtained the bound

|Bn∞ ∩ F0|1/k �
√

n

k
|Bk∞|1/k, (1.1)

which is optimal if and only if k | n (see [26]).

It follows from the results of Ball [7] that the k-dimensional sections of a regular

simplex with largest volume are exactly its k-dimensional faces. Webb showed in [44]

that for every hyperplane through the origin F0 ∈ Gn,n−1,

|Sn ∩ F0| 1
n−1 � 1

(
√

2n(n + 1))
1

n−1

√
n(n + 1)

n − 1
|Sn−1| 1

n−1 . (1.2)

There is equality for the sections passing through the origin that contain n − 1 of the

vertices.

Dirksen proved in [15, Theorem 6.1] (see also [16]) the following estimate for the

volume of k-dimensional sections of Sn through the origin:

|Sn ∩ F0|1/k � 1

(k + 1)
n−k

2k(n+1)

√
n(n + 1)

k(k + 1)
|Sk|1/k (1.3)

for every F0 ∈ Gn,k. Besides, this estimate is asymptotically sharp.

The proof of these volume estimates for sections of the cube and the regular

simplex follow the lines of Ball’s upper bound of the volume ratio. However, only

sections of Bn∞ and Sn, which are two particular convex bodies, are being considered.

Passing to the general case, we observe that it is not possible to obtain an upper bound

for the volume of sections of a general centered convex body K without any additional

assumption since, considering different positions of K, we can obtain sections with

volume as large as desired. However, Bn∞ and Sn are in John’s position. Motivated by

these, we consider convex bodies in John’s position and generalize the above results

(and other known results) to sections of such convex bodies. We also obtain some

estimates for sections of convex bodies in minimal surface area position.

1.1 Volume of sections of convex bodies in John’s position

In a recent article [32], Markessinis claimed to have obtained an upper bound for the

volume of k-dimensional central sections of convex bodies in John’s position. However,

although the estimate given for central sections of centrally symmetric convex bodies in
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4 D. Alonso-Gutiérrez and S. Brazitikos

John’s position is correct, the proof in the not necessarily symmetric case is not correct.

In the following theorem, we give an upper bound for the volume of central (and non-

central) k-dimensional sections of an arbitrary convex body in John’s position.

Theorem 1.1. Let K ⊆ R
n be a convex body in John’s position and F0 ∈ Gn,k. Then

|K ∩ F0|1/k � 1

(k + 1)
n−k

2k(n+1)

√
n(n + 1)

k(k + 1)
|Sk|1/k.

Furthermore, if K is centrally symmetric

|K ∩ F0|1/k �
√

n

k
|Bk∞|1/k.

Moreover, if Fh is a k-dimensional affine subspace at distance h from the origin and K

is a convex body in John’s position, then

|K ∩ Fh|1/k �

√√√√n(n + 1)1+ 1
k

k(k + 1)1+ 1
k

(
n

n + h2

) 1
2k |Sk|1/k.

Remark. The proof in the symmetric case is the same as the one given by Markessinis,

which follows Ball’s ideas in [5]. Nevertheless, we will reproduce it for the sake of

completeness. We can also obtain it as a direct consequence of Theorem 1.5, as well

as a consequence of Theorem 8.1 below (see Section 2.6). This estimate is a sharp

generalization of Ball’s estimate (1.1) for the cube. Moreover, the case k = 1 gives one

more proof of John’s theorem in the symmetric case: if K is a centrally symmetric convex

body in R
n whose maximal volume ellipsoid is Bn

2 then K ⊆ √
nBn

2 .

Remark. Many other generalizations and extensions of Ball’s estimates for sections

of Bn∞ have been obtained, for instance, in [28], [30], or [31].

Remark. The proof in the non-symmetric case follows Dirksen’s ideas from [16].

However, the decomposition of the identity in a linear subspace of Rn+1 in order to apply

Theorem 2.1 is not obtained by projecting the vectors in an orthonormal basis of Rn+1.

It comes out by projecting the vectors providing a more general decomposition of the

identity in R
n+1. As a consequence, a different maximization problem from the one in

Dirksen’s proof has to be considered. Notice that we recover the estimate in (1.3), which

is asymptotically sharp for the simplex. Besides, if we take non-central sections by
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John’s and Minimal Surface Area Position 5

k-dimensional subspaces a distance h =
√

n(n−k)
(k+1)

from the origin, which is the distance

from the origin to any k-dimensional face of Sn, we obtain that

|K ∩ Fh|1/k �
√

n(n + 1)

k(k + 1)
|Sk|1/k,

which is exactly the volume of the k-dimensional faces of Sn. The estimate for general

affine subspaces can also be obtained as a direct consequence of Theorem 8.1 below.

1.2 Volume of projections of convex bodies in Löwner’s position

Let us recall that if F0 ∈ Gn,k is a linear subspace and K ∩ F0 contains the origin in its

relative interior, the polar body of K∩F0 in F0 is PF0
K◦, the projection of the polar body of

K onto F0. Contrary to the case of the volume of sections of the cube, not much is known

about the projections of the cross-polytope. For example, a dual statement to Vaaler’s

theorem, claiming that if F0 ∈ Gn,k then |PF0
(Bn

1 )| � |Bk
1|, has only been confirmed if

k = 2, 3, and n − 1 (see [8], [12], and [27]) and a dual statement of Ball’s upper bound

|Bn∞ ∩ F0| ≤ 2
n−k

2 |Bk∞| has only been proved when k = 2 or k = n − 1 (see [12] and [27]).

Nevertheless, concerning the volume of polar bodies of sections of convex bodies in

John’s position (i.e., projections of convex bodies in Löwner’s position whenever they

contain the origin in its interior), it was proved by Barthe in his PhD thesis (see also [1])

that in the case of the �n
p-balls, if 1 � p � 2 and F0 ∈ Gn,k, then

|PF0
(Bn

p)|1/k �
(

k

n

) 1
p − 1

2 |Bk
p|1/k,

where PF0
denotes the orthogonal projection onto F0. In particular, we have the following

estimate for the projections of Bn
1 : for every F0 ∈ Gn,k

|PF0
(Bn

1 )|1/k �
√

k

n
|Bk

1|1/k.

We obtain a similar lower bound for the volume of k-dimensional projections of

convex bodies in Löwner’s position.

Theorem 1.2. Let K ⊆ R
n be a convex body in Löwner’s position and F0 ∈ Gn,k. Then

|PF0
(K)|1/k �

√
k

n
|S̃k|1/k.
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6 D. Alonso-Gutiérrez and S. Brazitikos

Furthermore, if K is centrally symmetric

|PF0
(K)|1/k �

√
k

n
|Bk

1|1/k.

Remark. In the symmetric case, the proof follows the idea of the proof of the

aforementioned result for Bn
p . This relies on the use of the reverse Brascamp–Lieb

inequality (see Theorem 2.1 below) together with the use of a decomposition of the

identity in a linear subspace of Rn. As in the proof of Theorem 1.1, unlike in the case in

which K = Bn
p , the decomposition of the identity in the linear subspace does not arise by

projecting the canonical basis, but by projecting the vectors in a general decomposition

of the identity in R
n.

In the non-symmetric case, the proof follows the idea of the proof of Ball’s

observation in [6] together with the reverse form of Brascamp–Lieb inequality. Again,

in this case, the decomposition of the identity in a linear subspace in R
n+1 arises

by projecting the vectors in a decomposition of the identity in R
n+1 rather than an

orthonormal basis in R
n+1. Some estimates of the volume of projections of the regular

simplex were obtained in [19]. However, the estimates do not rely on the use of the

reverse Brascamp–Lieb inequality.

1.3 The mean width

The mean width of a convex body K ⊆ R
n is defined by

w(K) =
∫

Sn−1
hK(θ)dσ(θ),

where, for every x ∈ R
n, hK(x) := sup{〈x, y〉 : y ∈ K} is the support function of K at

x and dσ denotes the uniform probability measure on Sn−1. In [40], the authors proved

that among all centrally symmetric convex bodies in John’s position in R
n, w(K) is

maximized when K = Bn∞. The not necessarily symmetric case was treated in [10], where

it was proved that among all convex bodies in John’s position in R
n, w(K) is maximized

when K = Sn, where Sn denotes the regular simplex in John’s position. If we pass to the

mean width of sections, then a direct consequence of [11, Theorem 10] is that for any

k-dimensional linear subspace F0 ∈ Gn,k,

w(Bn∞ ∩ F0) �
√

n

k
w(Bk∞),

and this estimate is sharp when k | n.
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John’s and Minimal Surface Area Position 7

Furthermore, it was proved in [40] that among all centrally symmetric convex

bodies in Löwner’s position in R
n, w(K) is minimized when K = Bn

1 . Finally, in [41], it

was proved that among all convex bodies in Löwner’s position in R
n, w(K) is minimized

if K = S̃n. We will prove the following results on the mean width of sections of convex

bodies in John’s position:

Theorem 1.3. Let K ⊆ R
n be a convex body in John’s position and F0 ∈ Gn,k. Then

w(K ∩ F0) � C
n

k

√
log n

log k
w(Sk),

where C is an absolute constant. Furthermore, if K is centrally symmetric, then

w(K ∩ F0) �
√

n

k
w(Bk∞).

We shall also prove the following result on the mean width of projections of

convex bodies in Löwner’s position:

Theorem 1.4. Let K ⊆ R
n be a convex body in Löwner’s position. Then, for any

k-dimensional linear subspace F0 ∈ Gn,k,

w(PF0
(K)) �

√
k

n
w(S̃k).

Furthermore, if K is centrally symmetric, then

w(PF0
(K)) �

√
k

n
w(Bk

1).

Remark. The proofs of the latter two theorems follow the idea of the previously

known results, by applying the Brascamp–Lieb inequality or its reverse form on a linear

subspace of R
n or R

n+1. However, we were not able to handle the technical problems,

arised from projecting a decomposition of the identity instead of an orthonormal

basis, in the non-symmetric case in Theorem 1.3 and a different approach was

considered.
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8 D. Alonso-Gutiérrez and S. Brazitikos

1.4 The Wills functional

For any compact convex set K ⊆ R
n, by Steiner’s formula (see [42, Equation (4.1)]), the

volume of K + tBn
2 can be expressed as a polynomial in the variable t

|K + tBn
2 | =

n∑
i=0

(
n

i

)
Wi(K)ti, ∀t � 0,

where the numbers Wi(K) are the so-called quermaßintegrals of K. We have that

W0(K) = |K| is the volume of K, nW1(K) = |∂K| is the surface area of K, and

Wn−1 = |Bn
2 |w(K) is a multiple of the mean width of K. If K is contained in a

k-dimensional subspace F0 ∈ Gn,k, we can compute its quermaßintegrals in R
n, but

also its quermaßintegrals with respect to the subspace F0, which we identify with R
k.

If we denote these quermaßintegrals by W(k)

i (K), for i = 0, . . . , k, we have that (see e.g.,

[39, Property 3.1])

W(k)

i (K) =
n

n−k+i
k
i

|Bi
2|

|Bn−k+i
2 |Wn−k+i(K), ∀0 � i � k,

while Wi(K) = 0 for all 0 � i < n − k. In order to avoid the issue that quermaßintegrals

depend on the space where the convex body is embedded, McMullen [34] defined the

intrinsic volumes of a compact convex set K ⊆ R
n as

Vi(K) =
n
i

|Bn−i
2 |Wn−i(K), ∀0 � i � n.

In [45], Wills introduced the functional

W(K) =
n∑

i=0

Vi(K). (1.4)

He studied it because of its possible relation with the so-called lattice-point enumerator

G(K) = #(K ∩ Z
n). It was proved in [2] that, among symmetric convex bodies in John’s

position, W(K) is maximized if K = Bn∞. Here, we prove the following:

Theorem 1.5. Let K ⊆ R
n be a centrally symmetric convex body in John’s position.

Then, for any F0 ∈ Gn,k and every λ � 0,

W(λ(K ∩ F0)) � W
(

λ

√
n

k
Bk∞

)
.
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John’s and Minimal Surface Area Position 9

Remark. The proof of this Theorem follows the idea of the proof of the result in [2].

What is new here is the consideration of dilations of K ∩ F0 and
√

n
k Bk∞. This is indeed

something different since the Wills functional is not homogeneous. Considering the

dilations is important for the applications. Indeed, as direct consequences of obtaining

Theorem 1.5 for such dilations, we can obtain the symmetric cases of Theorem 1.1 and

Theorem 1.3, providing a different proof in those cases.

We also prove the following estimate for the Wills functional of projections of

convex bodies in Löwner’s position:

Theorem 1.6. Let K ⊆ R
n be a centrally symmetric convex body in Löwner’s position.

Then, for any F0 ∈ Gn,k,

W(PF0
(K)) � 1

kk/2
.

1.5 Sections of convex bodies in minimal surface area position

The main tool used to obtain most of the estimates above is the fact that a decomposition

of the identity operator is associated to any convex body in John’s position and that this

decomposition allows the use of the Brascamp–Lieb inequality (see Theorem 2.1 below).

When K is a polytope in minimal surface area, then there is again a decomposition of the

identity associated to K (see Section 2.7). A similar use of the Brascamp–Lieb inequality,

together with an approximation by polytopes, will lead to similar estimates for sections

of convex bodies in minimal surface area position. Namely, we can prove the following:

Theorem 1.7. Let K ⊆ R
n be a convex body in minimal surface area position and let

�K and �∗K denote its projection body and polar projection body, respectively. Then,

for any k-dimensional linear subspace F0 ∈ Gn,k, we have

(a) |�∗K ∩ F0| � 4knk

k!
1

|∂K|k ,

(b) |PF0
(�K)| �

( |∂K|
n

)k
.

Furthermore, if K is centrally symmetric, then for any k-dimensional linear subspace

F0 ∈ Gn,k, we have

(i) W(K ∩ F0) � W
(

n2

k
|K|
|∂K|B

k∞
)
,

(ii) |K ∩ F0|1/k � n2

k
|K|
|∂K| |Bk∞|1/k,

(iii) w(K ∩ F0) � n2

k
|K|
|∂K|w(Bk∞),

(iv) |(K ∩ F0)◦|1/k � k
n2

|∂K|
|K| |(Bk∞)◦|1/k,

(v) w((K ∩ F0)◦) � k
n2

|∂K|
|K| w((Bk∞)◦).
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10 D. Alonso-Gutiérrez and S. Brazitikos

Remark. Notice that if k = n then (a) recovers the right-hand side of (2.6), (b) recovers

the left-hand side of (2.7), (ii) recovers the estimate given by Ball’s reverse isoperimetric

inequality in [6], and (iii) recovers the estimate given in [33, Theorem 7.1].

2 Preliminaries

2.1 John’s position

As mentioned in the introduction, a convex body is said to be in John’s position if the

maximal volume ellipsoid contained in it is the Euclidean unit ball. A classical theorem

of John [29] (see also [7]) states that K is in John’s position if and only if Bn
2 ⊆ K and there

exist m = O(n2) contact points {uj}m
j=1 ⊆ ∂K ∩ Sn−1 (the intersection of the boundary of

K and the Euclidean unit sphere) and {cj}m
j=1 with cj > 0 for every 1 � j � m, such that

In =
m∑

j=1

cjuj ⊗ uj,
m∑

j=1

cjuj = 0, and
m∑

j=1

cj = n. (2.1)

Here In denotes the identity operator in R
n, uj ⊗ uj(x) = 〈x, uj〉uj for every x ∈ R

n, and

the third inequality is obtained from the first one by taking traces.

Notice that, for any such decomposition of the identity, we have that for every

1 � k � m

1 = |uk|2 =
m∑

j=1

cj〈uk, uj〉2 � ck〈uk, uk〉2 = ck.

Thus, all the numbers (cj)
m
j=1 are in the interval (0, 1].

2.2 Brascamp–Lieb inequality

We will make use of the Brascamp–Lieb inequality (see [13]) and the reverse Brascamp–

Lieb inequality due to Barthe (see [9]) in the following form, obtained by Ball (see [5]):

Theorem 2.1. Let m ≥ n, {uj}m
j=1 ⊆ Sn−1, and {cj}m

j=1 ⊆ (0, 1] be such that

In = ∑m
j=1 cjuj ⊗ uj. Then, for any integrable functions {fj}m

j=1 : R → [0, ∞), we have that

∫
Rn

m∏
j=1

f
cj

j (〈x, uj〉)dx �
m∏

j=1

(∫
R

fj(t)dt
)cj

(Brascamp–Lieb inequality).
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John’s and Minimal Surface Area Position 11

Besides, for any integrable functions {hj}m
j=1 : R → [0, ∞) and h : Rn → [0, ∞) satisfying

h
( m∑

j=1

θjcjuj

)
�

m∏
j=1

h
cj

j (θj) for every {θj}m
j=1 ⊆ R,

we have that

∫
Rn

h(x)dx �
m∏

j=1

(∫
R

hj(t)dt
)cj

(Reverse Brascamp–Lieb inequality).

2.3 The regular simplex

Let �k denote the k-dimensional regular simplex

�k = conv{e1, . . . , ek+1} ⊆ H0,

where H0 =
{
x ∈ R

k+1 :
∑k+1

i=1 xi = 1
}

is identified with R
k and

(
1

k+1 , . . . , 1
k+1

)
is identi-

fied with the origin. It is well known that

• |�k| =
√

k+1
k! ,

• r(�k) = 1√
k(k+1)

,

• R(�k) =
√

k
k+1 ,

• �◦
k = −(k + 1)�k.

• w(�k) �
√

log k
k ,

where a � b denotes the fact that there exist two positive absolute constants c1, c2

such that c1a � b � c2a. Thus, 1
r(�k)

�k is in John’s position and 1
R(�k)

�k is in Löwner’s

position. Then, if Sk denotes the k-dimensional simplex in John’s position and S̃k

denotes the k-dimensional simplex in Löwner’s position, we have that

Sk = √
k(k + 1)�k and S̃k =

√
k + 1

k
�k.

Therefore,

|Sk|1/k =
√

k(k + 1)1+ 1
k

(k! )1/k
and |S̃k|1/k = 1

(k! )1/k

√
(k + 1)1+ 1

k

k
.
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12 D. Alonso-Gutiérrez and S. Brazitikos

Moreover,

w(Sk) � √
k log k and w(S̃k) �

√
log k

k
.

2.4 Mean width

Let K ⊆ R
n be a convex body. The mean width of K is defined by

w(K) =
∫

Sn−1
hK(θ)dσ(θ),

where, for every θ ∈ Sn−1, hK(θ) is the support function of K at θ and dσ denotes the

uniform probability measure on Sn−1. If we also assume that K contains the origin in

its interior, then hK is homogeneous of degree 1. There is a nice representation of the

mean width in terms of the standard Gaussian random vector G in R
n (see, for instance,

[3, Proof of Theorem 4.2.2]):

EhK(G) = cnw(K), (2.2)

where cn = n|Bn
2 |	

(
n+1

2

)
√

2πn/2 =
√

2	
(

n+1
2

)
	( n

2 )
. Indeed, integrating in polar coordinates, one has

EhK(G) =
∫
Rn

hK(x)
e− ‖x‖2

2
2

(2π)n/2 dx = n|Bn
2 |

∫ ∞

0
rn e− r2

2

(2π)n/2

∫
Sn−1

hK(θ)dσ(θ)

= cn

∫
Sn−1

hK(θ)dσ(θ) = cnw(K).

Likewise, since for any convex body containing the origin in its interior the

support function of K◦ is hK◦ = ‖ · ‖K , where ‖ · ‖K is the Minkowski gauge function

of K, given by

‖x‖K := inf{λ > 0 : x ∈ λK}

for all x ∈ R
n, we have that if G is a standard Gaussian random vector in R

n

E‖G‖K = cnw(K◦). (2.3)

We would like to refer the reader to [11], [17], [18], or [47] for more information

on the use of the Gaussian measure of sections of convex bodies.
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John’s and Minimal Surface Area Position 13

2.5 Log-concave functions

A function f : Rn → [0, ∞) is called log-concave if f (x) = e−v(x) where v : Rn → (−∞, ∞]

is a convex function. It is well known that any integrable log-concave function f : Rn →
[0, ∞) is bounded and has moments of all orders. If K ⊆ R

n is a convex body then its

indicator function χK is integrable and log-concave with integral |K|. If additionally K

is a convex body containing the origin, then e−‖·‖K is integrable and log-concave with

integral n! |K|.
Given a log-concave function f = e−v, where v : R

n → (−∞, ∞] is a convex

function, its polar function is the function f ◦ : Rn → [0, ∞) given by

f ◦(x) = e−L(v)(x),

where L(v) denotes the Legendre transform

L(v)(x) = sup
y∈Rn

(〈x, y〉 − v(y)), x ∈ R
n.

For more information on log-concave functions, we refer the reader to [14, Chapter 2].

2.6 The Wills functional

Let us recall that for any n-dimensional convex body K, its Wills functional is

defined by

W(K) =
n∑

i=0

Vi(K),

where Vi(K) denotes the i-th intrinsic volume of K. Many properties of the Wills

functional can be found in [46], [25], [35], or [2]. For our purposes, we emphasize the

following two:

(1) (Hadwiger, see [25, (1.3)]) For any convex body K ⊆ R
n,

W(K) =
∫
Rn

e−πd(x,K)2
dx,

where d(x, K) denotes the Euclidean distance from x to K.
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14 D. Alonso-Gutiérrez and S. Brazitikos

(2) (Hadwiger, see [25, (2.3)]) If E is a linear subspace of Rn, K1 ⊆ E and K2 ⊆ E⊥,

then

W(K1 × K2) = W(K1)W(K2).

In particular, if K = [−a, a] ⊆ R, we have that

W([−a, a]) = 2a + 2
∫ ∞

a
e−π(x−a)2

dx = 2a + 1

and if K = aBn∞ ⊆ R
n then W(aBn∞) = (1 + 2a)n.

Let us point out that for any λ > 0

W(λK) =
n∑

i=0

Vi(λK) = 1 +
n∑

i=1

λiVi(K).

Therefore, if two convex bodies K, L ⊆ R
n verify that W(λK) � W(λL) for every λ � 0,

then one immediately obtains that Vn(K) � Vn(L) and V1(K) � V1(L) or, equivalently,

|K| � |L| and w(K) � w(L).

Notice that, for any convex body K ⊆ R
n, the function given by d(x, K) for every

x ∈ R
n is convex on R

n (see [42, Lemma 1.5.9]) and, as the square function is convex

on R, d(x, K)2 is convex on R
n. Therefore, the first property above shows that, for any

convex body K ⊆ R
n, its Wills functional is the integral of the log-concave function

fK : Rn → [0, ∞) given by

fK(x) = e−πd(x,K)2
.

Using a double polarity (both in the convex body and in the family of log-

concave functions), for any convex body K ⊆ R
n containing the origin in its interior,

we define the log-concave function f ◦
K◦ . It was proved in [2, Lemma 3.1] that for every

x ∈ R
n

f ◦
K◦(x) = e− ‖x‖2

2
4π

−‖x‖K . (2.4)

The following lemma shows that if, for every λ � 0, the integral of f ◦
(λK)◦(x) is bounded

by the integral of f ◦
(λL)◦(x), then |K| � |L|.
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John’s and Minimal Surface Area Position 15

Lemma 2.1. Let K, L ⊆ R
n be two convex bodies containing the origin in their interiors.

Assume that there exist two numbers A and λ0 > 0 such that, for any λ ∈ (0, λ0),

∫
Rn

f ◦
(λK)◦(x)dx � A

∫
Rn

f ◦
(λL)◦(x)dx.

Then |K| � A|L|.

Proof. Notice that for any convex body K ⊆ R
n containing the origin in its interior and

any λ > 0,

∫
Rn

f ◦
(λK)◦(x)dx =

∫
Rn

e− ‖x‖2
2

4π e−‖x‖λK dx =
∫
Rn

e− ‖x‖2
2

4π e− ‖x‖K
λ dx

= λn
∫
Rn

e− λ2‖x‖2
2

4π e−‖x‖K dx.

Therefore, we have that for every λ ∈ (0, λ0),

∫
Rn

e− λ2‖x‖2
2

4π e−‖x‖K dx � A
∫
Rn

e− λ2‖x‖2
2

4π e−‖x‖Ldx

and, taking the limit as λ tends to 0 we obtain that

n! |K| =
∫
Rn

e−‖x‖K dx � A
∫
Rn

e−‖x‖Ldx = n! A|L|.
�

2.7 Convex bodies in minimal surface area position

A convex body K ⊆ R
n is said to be in minimal surface area position if it has minimal

surface area among all of its volume preserving affine images. That is, if

|∂K| = min {|∂T(K)| : T ∈ SL(n)} ,

where SL(n) denotes the set of non-degenerate linear maps T ∈ GL(n) with |detT| = 1.

The surface area measure of a convex body K is the measure on the sphere defined by

σK(A) := ν
({x ∈ ∂K : νK(x) ∈ A}) ∀A Borel set in Sn−1,

where ν denotes the Hausdorff measure on ∂K and νK(x) is the outer normal vector to K

at x, which is defined ν-almost everywhere.
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16 D. Alonso-Gutiérrez and S. Brazitikos

The projection body �K and its polar, the polar projection body �∗K, of a convex

body K are the centrally symmetric convex bodies defined by

h�K(x) = ‖x‖�∗K = |x||Px⊥(K)| = 1

2

∫
Sn−1

|〈x, θ〉|dσK(θ),

where, for any x �= 0, |Px⊥(K)| denotes the (n−1)-dimensional volume of the projection of

K onto the hyperplane orthogonal to x and the last equality is the well-known Cauchy’s

formula (see, for instance, [42, Equation (5.80)]).

It was proved by Petty [36] (see also [21]) that K is in minimal surface area

position if and only if σK is isotropic, that is, if

In = n

|∂K|
∫

Sn−1
u ⊗ udσK(u).

In [22], it was observed that the latter happens if and only if �K is in minimal mean

width position, that is,

w(�K) = min{w(T(�K)) : T ∈ SL(n)}.

Notice that if K is a polytope with facets {Fj}m
j=1 with outer normal vectors {uj}m

j=1, then

the surface area measure of K is

σK =
m∑

j=1

|Fj|δuj
,

where δj denotes the Dirac delta measure on uj. Moreover, K is in minimal surface area

position if and only if

In =
m∑

j=1

n|Fj|
|∂K| uj ⊗ uj.

In particular, if K is a polytope with facets {Fj}m
j=1 and outer normal vectors {uj}m

j=1, then

for every x ∈ R
n

h�K(x) = ‖x‖�∗K = 1

2

m∑
j=1

|Fj||〈x, uj〉|. (2.5)
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John’s and Minimal Surface Area Position 17

It was proved in [21] that, as a consequence of a lemma obtained from the Brascamp–

Lieb inequality (see [6]), if K is a convex body in minimal surface area position then

|Bn
2 |

(
n|Bn

2 |
|Bn−1

2 |

)n
1

|∂K|n � |�∗K| � 4nnn

n!

1

|∂K|n . (2.6)

Moreover, if K is a convex body in minimal surface area position, then

( |∂K|
n

)n

� |�K| � |Bn
2 |

(
|Bn−1

2 |
n|Bn

2 |

)n

|∂K|n. (2.7)

This can be seen as a consequence of the Blaschke–Santaló inequality and its exact

reverse for zonoids (see [23] and [38]), or as a direct consequence of the reverse form of

Brascamp–Lieb inequality (see [22]).

3 General Setting

In this section, we introduce the notation for a setting that will be used in several of our

proofs. We distinguish the cases in which we are dealing with non-symmetric convex

bodies in John’s position, symmetric convex bodies in John’s position, or polytopes in

minimal surface area position.

3.1 Non-symmetric convex bodies in John’s position

Let K ⊆ R
n be a (not necessarily symmetric) convex body in John’s position and let

{uj}m
j=1 and {cj}m

j=1 be the contact points in ∂K ∩ Sn−1 and positive weights satisfying

John’s condition (2.1). We will denote by C ⊆ R
n the convex body

C = {x ∈ R
n : 〈x, uj〉 � 1, ∀1 � j � m}. (3.1)

It is easily verified that K ⊆ C. We will denote, for every 1 � j � m,

• vj =
√

n
n+1 (−uj,

1√
n
) ∈ Sn, and

• δj = n+1
n cj.

These vectors satisfy

In+1 =
m∑

j=1

δjvj ⊗ vj,
m∑

j=1

δjvj =
(
0,

√
n + 1

)
and

m∑
j=1

δj = n + 1. (3.2)
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18 D. Alonso-Gutiérrez and S. Brazitikos

Therefore, as seen in Section 2.1, δj ∈ (0, 1] for every 1 � j � m. Introduce the cone

L := {y = (x, r) ∈ R
n+1 : 〈y, vj〉 ≥ 0, ∀ 1 � j � m}. (3.3)

The next lemma, which was proved in [6], relates L and C. We include its proof here for

the sake of completeness.

Lemma 3.1. Let K ⊆ R
n be a convex body in John’s position and let L be defined as in

equation (3.3). Then

L =
{
(x, r) ∈ R

n+1 : r � 0, x ∈ r√
n

C
}

.

Proof. Let y = (x, r) ∈ L. By the definition of vj we have that for each 1 � j � m

〈y, vj〉 = −
√

n

n + 1
〈x, uj〉 + r√

n + 1
.

Assume that r < 0. Then, since 〈y, vj〉 � 0 for every 1 � j � m, we have that

−
√

n

n + 1
〈x, uj〉 + r√

n + 1
� 0 ∀1 � j � m.

Then, 〈x, uj〉 < 0 for every 1 � j � m. As a consequence, since {cj}m
j=1 ⊆ (0, ∞),

m∑
j=1

cj〈x, uj〉 < 0,

which contradicts the fact that
∑m

j=1 cjuj = 0. Therefore, if y = (x, r) ∈ L then r � 0.

For any r � 0 and every 1 � j � m we have 〈y, vj〉 � 0 if and only if 〈x, uj〉 � r√
n

.

The latter condition is true for every 1 � j � m if and only if x ∈ r√
n

C.

Conversely, assume that y = (x, r) verifies that r � 0 and x ∈ r√
n

C, which

happens if and only if 〈x, uj〉 � r√
n

for every 1 � j � m. Then, for every 1 � j � m,

〈y, vj〉 = −
√

n

n + 1
〈x, uj〉 + r√

n + 1
� 0.

Thus, y ∈ L. �
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John’s and Minimal Surface Area Position 19

Given any k-dimensional affine subspace Fh in R
n at distance h from the origin,

we will consider the linear (k + 1)-dimensional subspace in R
n+1

H = span{(x,
√

n
)

: x ∈ Fh} ∈ Gn+1,k+1. (3.4)

Notice that if F0 ∈ Gn,k is a linear subspace then H equals the cartesian product

H = F0 × R = {(x, r) ∈ R
n+1 : x ∈ F0, r ∈ R}. Furthermore, assume that Fh is at distance

h from the origin and f : L ∩ H → [0, ∞) is an integrable function. By Lemma 3.1, and

taking into account that Rn × {0} and PH({0} × R) provide an orthogonal decomposition

of H, we have that

∫
L∩H

f (x, r)drdx =
∫ ∞

0

∫
r√
n

(C∩Fh)×{r}
f (x, r)dx

√
n + h2

n
dr. (3.5)

Set J = {1 � j � m : PHvj �= 0} and, for every j ∈ J, we define

• wj = PHvj
‖PHvj‖2

,

• κj = n+1
n cj‖PHvj‖2

2 = δj‖PHvj‖2
2.

Then, we have that

IH =
∑
j∈J

κjwj ⊗ wj and
∑
j∈J

κj = k + 1, (3.6)

where IH denotes the identity in the linear subspace H. Furthermore, denoting by

sj = 1
‖PHvj‖2

for every j ∈ J, one has that for every y = (x, r) ∈ H ⊆ R
n+1

∑
j∈J

κjsj〈y, wj〉 =
∑
j∈J

δj〈y, PHvj〉 =
m∑

j=1

δj〈y, PHvj〉 =
m∑

j=1

δj〈y, vj〉 (3.7)

= r
√

n + 1.

The following lemma shows that, whenever F0 is a linear subspace, we have

a strictly positive lower bound for the Euclidean norm of PHvj for every 1 � j � m.

Consequently, if F0 ∈ Gn,k, the set J defined above equals J = {1, . . . , m}.

Lemma 3.2. Let {uj}m
j=1 ⊆ Sn−1, {cj}m

j=1 be such that (2.1) holds, F0 ∈ Gn,k, H = F0 × R ∈
Gn+1,k+1, and {vj}m

j=1 ⊆ Sn be defined as in (3.2). Then, for every 1 � j � m, we have

1

n + 1
� ‖PHvj‖2

2 � 1.
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20 D. Alonso-Gutiérrez and S. Brazitikos

Proof. Let c =
(
0, 1√

n+1

)
∈ H and notice that for every 1 � j � m

〈PH(vj − c), c〉 = 〈vj − c, c〉 = 1

n + 1
− 1

n + 1
= 0.

Since c ∈ H, we have that PHc = c and then PHvj = c + PH(vj − c). Thus,

‖PHvj‖2
2 = ‖c + (PH(vj − c))‖2

2 = ‖c‖2
2 + ‖PH(vj − c)‖2

2 ≥ ‖c‖2
2 = 1

n + 1
.

Thus, for every 1 � j � m, we have that

1

n + 1
� ‖PHvj‖2

2 � 1.

�

3.2 Symmetric convex bodies in John’s position

Let K ⊆ R
n be a centrally symmetric convex body in John’s position and, like in the not

necessarily symmetric case, let {uj}m
j=1 and {cj}m

j=1 be the contact points of ∂K and Sn−1

and positive weights satisfying (2.1). We will also denote by C0 the symmetric convex

body

C0 = {x ∈ R
n : |〈x, uj〉| � 1, ∀ 1 � j � m}. (3.8)

Clearly, K is a subset of C0. If F0 ∈ Gn,k is a linear subspace, we set J0 = {1 � j � m :

PF0
uj �= 0} and for every j ∈ J0, we define

• v0
j = PF0 uj

‖PF0 uj‖2
∈ Sn−1 ∩ F0,

• δ0
j = cj‖PF0

uj‖2
2.

Then, we have that

IF0
=

∑
j∈J0

δ0
j v0

j ⊗ v0
j and

∑
j∈J0

δ0
j = k, (3.9)
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John’s and Minimal Surface Area Position 21

where IF0
denotes the identity operator in F0, and also

K ∩ F0 ⊆ C0 ∩ F0 = {x ∈ F0 : |〈x, uj〉| � 1, ∀1 � j � m}
= {x ∈ F0 : |〈x, PF0

uj〉| � 1, ∀1 � j � m}
= {x ∈ F0 : |〈x, PF0

uj〉| � 1, ∀j ∈ J0}
=

{
x ∈ F0 : |〈x, v0

j 〉| � tj, ∀j ∈ J0

}
,

where tj = 1
‖PFuj‖2

=
(

cj

δ0
j

)1/2

for every j ∈ J0. Furthermore,

(K ∩ F0)◦ ⊇ (C0 ∩ F0)◦ = PF0
(C◦

0) = PF0

(
conv{±uj : 1 � j � m})

= conv{±PF0
uj : 1 � j � m}

= conv{±PF0
uj : j ∈ J0}.

Thus,

K ∩ F0 ⊆ C0 ∩ F0 = {
x ∈ F0 : |〈x, v0

j 〉| � tj, ∀j ∈ J0

}
(3.10)

and

(K ∩ F0)◦ ⊇ (C0 ∩ F0)◦ = conv{±PF0
uj : j ∈ J0}. (3.11)

3.3 Polytopes in minimal surface area position

Let K be a (not necessarily centrally symmetric) polytope in minimal surface area

position with facets {Fj}m
j=1 and outer normal vectors {uj}m

j=1, and let F0 ∈ Gn,k be a

k-dimensional linear subspace. Then,

K = {x ∈ R
n : 〈x, uj〉 � hK(uj), ∀ 1 � j � m}

and

In =
m∑

j=1

n|Fj|
|∂K| uj ⊗ uj =

m∑
j=1

cjuj ⊗ uj, (3.12)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab273/6380155 by Access provided by H

EAL-Link (U
niversity of Athens) user on 09 O

ctober 2021



22 D. Alonso-Gutiérrez and S. Brazitikos

where cj = n|Fj|
|∂K| for every 1 � j � m. Besides (see, for instance, [24, Theorem 18.2])

m∑
j=1

cjuj = n

|∂K|
m∑

j=1

|Fj|uj = 0.

and

∑
j=1

cjhK(uj) =
m∑

j=1

n|Fj|
|∂K| hK(uj) = n2|K|

|∂K| . (3.13)

Note also that if K is a centrally symmetric polytope in minimal surface area position,

with facets {Fj}m
j=1 and outer normal vectors {uj}m

j=1, and if F0 ∈ Gn,k is a k-dimensional

linear subspace, then

K = {x ∈ R
n : |〈x, uj〉| � hK(uj), ∀ 1 � j � m}.

As in the case where the decomposition of the identity comes from a centrally symmetric

convex body in John’s position, we set J0 = {1 � j � m : PF0
uj �= 0} and, for every j ∈ J0,

we define

• v0
j = PF0 uj

‖PF0 uj‖2
,

• δ0
j = cj‖PF0

uj‖2
2 = n|Fj|‖PF0 uj‖2

2
|∂K| .

We have that

IF0
=

m∑
j=1

cjPF0
uj ⊗ PF0

uj =
∑
j∈J0

δ0
j v0

j ⊗ v0
j . (3.14)

Besides, if we denote tj = 1
‖PF0 uj‖2

=
(

cj

δ0
j

)1/2

for every j ∈ J0, then

K ∩ F0 = {x ∈ F0 : |〈x, v0
j 〉| � tjhK(uj), ∀ j ∈ J0} (3.15)

and

(K ∩ F0)◦ = conv

{
±PF0

(uj)

hK(uj)
: 1 � j � m

}

= conv

{
±PF0

(uj)

hK(uj)
: j ∈ J0

}
. (3.16)
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John’s and Minimal Surface Area Position 23

4 Volume of Sections of Convex Bodies in John’s Position

In this section, we will give the proof of Theorem 1.1.

Proof of Theorem 1.1. Let us start with the symmetric case. Assume that K is

a centrally symmetric convex body in John’s position and F0 ∈ Gn,k is a linear

k-dimensional subspace. We follow the notation in Section 3.2. By (3.10), we have that

K ∩ F0 ⊆ C0 ∩ F0 = {
x ∈ F0 : |〈x, v0

j 〉| � tj, ∀j ∈ J0

}
,

where tj = 1
‖PF0 uj‖2

=
(

cj

δ0
j

)1/2

for all j ∈ J0. Therefore, by (3.9) and the Brascamp–Lieb

inequality (Theorem 2.1),

|K ∩ F0| � |C0 ∩ F0| =
∫

F0

∏
j∈J0

χ[−tj,tj](〈x, v0
j 〉)dx =

∫
F0

∏
j∈J0

χ
δ0
j

[−tj,tj]
(〈x, v0

j 〉)dx

�
∏
j∈J0

(∫
R

χ[−tj,tj](t)
)δ0

j =
∏
j∈J0

(2tj)
δ0
j = 2k

∏
j∈J0

(
cj

δ0
j

) δ0
j
2

.

By the arithmetic-geometric mean inequality and (2.1), we get

∏
j∈J0

(
cj

δ0
j

) δ0
j
k

�
∑
j∈J0

δ0
j

k

cj

δ0
j

= 1

k

∑
j∈J0

cj �
1

k

m∑
j=1

cj = n

k
.

Hence,

|K ∩ F0|1/k � 2

√
n

k
=

√
n

k
|Bk∞|1/k.

Assume now that K ⊆ R
n is a (not necessarily symmetric) convex body in John’s position

and F0 ∈ Gn,k a k-dimensional linear subspace. We follow the notation introduced in

Section 3.1. Applying Lemma 3.1, one gets

L ∩ H =
{
(x, r) ∈ F0 × R : r � 0, x ∈ r√

n
(C ∩ F0)

}
.
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24 D. Alonso-Gutiérrez and S. Brazitikos

Denote sj = 1
‖PHvj‖2

as in (3.7). Using the Brascamp–Lieb inequality (Theorem 2.1), we get

∫
L∩H

e−∑m
j=1 κjsj〈y,wj〉dy =

∫
H

m∏
j=1

(
χ[0,∞)(〈y, vj〉)e−sj〈y,wj〉

)κj
dy

=
∫

H

m∏
j=1

(
χ[0,∞)(〈y, PHvj〉)e−sj〈y,wj〉

)κj
dy

=
∫

H

m∏
j=1

(
χ[0,∞)(〈y, wj〉)e−sj〈y,wj〉

)κj
dy �

m∏
j=1

(∫ ∞

0
e−sjtdt

)κj

=
m∏

j=1

‖PHvj‖δj‖PHvj‖2
2

2 .

On the other hand, taking into account (3.7), we see that

∫
L∩H

e−∑m
j=1 κjsj〈y,wj〉dy =

∫ ∞

0

∫
r√
n

(C∩F0)

e−r
√

n+1dxdr

=
∫ ∞

0

rk

n
k
2

|C ∩ F0|e−r
√

n+1dr = k!

n
k
2 (n + 1)

k+1
2

|C ∩ F0|

= k
k
2 (k + 1)

k+1
2

n
k
2 (n + 1)

k+1
2

|C ∩ F0|
|Sk| .

Let us maximize
∏m

j=1 ‖PHvj‖δj‖PHvj‖2
2

2 under the constraints

• 1
n+1 � ‖PHvj‖2

2 � 1 ∀1 � j � m,

• ∑m
j=1 δj‖PHvj‖2

2 = k + 1,

• ∑m
j=1 δj = n + 1,

• 0 � δj � 1.

Equivalently, let us maximize F(x, δ) = 1
2

∑m
j=1 δjxj log xj under the constraints

• 1
n+1 � xj � 1 ∀1 � j � m,

• ∑m
j=1 δjxj = k + 1,

• ∑m
j=1 δj = n + 1,

• 0 � δj � 1.

First notice that the function F(x, δ) is continuous on a compact domain M in R
2m, which

is given by the constraints. Therefore, it attains its maximum. For every x = (x1, . . . , xm)
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John’s and Minimal Surface Area Position 25

with 1
n+1 � xj � 1 for all 1 � j � m, let Fx(δ) be the function

Fx(δ) = 1

2

m∑
j=1

δjxj log xj.

Notice that Fx is a convex function. Since the set

A =
{
δ ∈ R

m :
m∑

j=1

δjxj = k + 1,
m∑

j=1

δj = n + 1, 0 � δj � 1 ∀1 � j � m
}

is a compact convex set, Fx attains its maximum on some extreme point of A. These are

the points of intersection of the 2-dimensional faces of the cube

{δ ∈ R
m : 0 � δj � 1 ∀1 � j � m}

with the (m − 2)-dimensional affine subspace

{
δ ∈ R

m :
m∑

j=1

δjxj = k + 1,
m∑

j=1

δj = n + 1
}
.

Therefore, a maximizer of the function Fx has to be a point of the form

δλ = (1, 1, . . . , 1︸ ︷︷ ︸
n

, λ, 1 − λ, 0, . . . , 0︸ ︷︷ ︸
m−n−2

)

for some 1
2 � λ � 1 (or a permutation of it), such that

∑m
j=1 δjxj = k + 1 is satisfied. For

every δλ with 1
2 � λ � 1, we will find the maximizer of the function

Fδλ
(x) = 1

2

m∑
j=1

δjxj log xj

on the compact convex set

Bλ =
{
x ∈ R

m :
m∑

j=1

δλ,jxj = k + 1,
1

n + 1
� xj � 1 ∀1 � j � m

}
.
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26 D. Alonso-Gutiérrez and S. Brazitikos

If δ∗
λ is the decreasing rearrangement of δλ, we can assume without loss of generality

that δλ = δ∗
λ. Let

D = k + 1

n + 1

and

x̃ =

⎛
⎜⎜⎝1, 1, . . . , 1︸ ︷︷ ︸

k

, D,
1

n + 1
, . . . ,

1

n + 1︸ ︷︷ ︸
m−k−1

⎞
⎟⎟⎠ .

We check that 1
n+1 � D � 1 and

m∑
j=1

δλ,jx̃j = k + D + n − k

n + 1
= k + 1.

For every x = (x1, . . . , xm) ∈ Bλ, we have x̃ � (x1, . . . , xm), since the first k + 1 coordinates

of x̃ are as large as they can. Here, the notation x̃ � (x1, . . . , xm) means that

• ∑m
j=1 δλ,jx̃j = ∑m

j=1 δλ,jxj = k + 1,

• ∑l
j=1 δλ,jx̃j �

∑l
j=1 δλ,jxj ∀1 � l � m.

Therefore, by the weighted Karamata’s inequality (see [20]), we have that for every x ∈ Bλ

Fδλ
(x) � Fδλ

(x̃) � max
(δ,x)∈M

F(δ, x).

Since

max
(δ,x)∈M

F(δ, x) � max
λ∈[ 1

2 ,1],x∈Bλ

Fδλ
(x),

we see that

max
(δ,x)∈M

F(δ, x) = max
λ∈[ 1

2 ,1]
Fδλ

(x̃) = max
λ∈[ 1

2 ,1]

{
1

2
D log D + n − k

2(n + 1)
log

(
1

n + 1

)}

= 1

2
D log D − n − k

n + 1
log(n + 1).

Thus,

m∏
j=1

‖PHvj‖δj‖PHvj‖2
2

2 � e
1
2 D log D− n−k

2(n+1)
log(n+1) = (k + 1)

k+1
2(n+1)

(n + 1)
n+1

2(n+1)

.
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John’s and Minimal Surface Area Position 27

Since |K ∩ F0| ≤ |C ∩ F0|, it follows that

|K ∩ F|1/k � 1

(k + 1)
n−k

2k(n+1)

√
n(n + 1)

k(k + 1)
|Sk|1/k.

Finally, assume now that K ⊆ R
n is a (not necessarily symmetric) convex body in John’s

position and Fh is a k-dimensional affine subspace at distance h from 0. We continue to

follow the notation introduced in Section 3.1. Given the k-dimensional affine subspace

Fh, we take the linear subspace H = span{(x,
√

n) : x ∈ Fh} ∈ Gn+1,k+1 as in (3.4). By

Lemma 3.1, we see that

L ∩ H =
{
(x, r) ∈ R

n+1 : r � 0, x ∈ r√
n

(C ∩ Fh)

}
.

Recall that J = {1 � j � m : PHvj �= 0} and sj = 1
‖PHvj‖2

for all j ∈ J. Using (3.6) and the

Brascamp–Lieb inequality (Theorem 2.1), we have that

∫
L∩H

e−∑
j∈J κjsj〈y,wj〉dy =

∫
H

∏
j∈J

(
χ[0,∞)(〈y, vj〉)e−sj〈y,wj〉

)κj
dy

=
∫

H

∏
j∈J

(
χ[0,∞)(〈y, PHvj〉)e−sj〈y,wj〉

)κj
dy

=
∫

H

∏
j∈J

(
χ[0,∞)(〈y, wj〉)e−sj〈y,wj〉

)κj
dy

�
∏
j∈J

(∫ ∞

0
e−sjtdt

)κj

=
∏
j∈J

‖PHvj‖δj‖PHvj‖2
2

2 � 1.

Taking into account (3.5) and (3.7), we obtain

∫
L∩H

e−∑
j∈J κjsj〈y,wj〉dy =

∫ ∞

0

∫
r√
n

(C∩Fh)

e−r
√

n+1dx

√
n + h2

n
dr

=
∫ ∞

0

rk(n + h2)
1
2

n
k+1

2

|C ∩ Fh|e−r
√

n+1dr

= (n + h2)
1
2 k!

n
k+1

2 (n + 1)
k+1

2

|C ∩ Fh|.
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Since |K ∩ Fh| ≤ |C ∩ Fh|, we get

|K ∩ Fh| � n
k
2 (n + 1)

k+1
2

k!

√
n

n + h2

or, equivalently,

|K ∩ Fh|1/k �

√√√√n(n + 1)1+ 1
k

k(k + 1)1+ 1
k

(
n

n + h2

) 1
2k |Sk|1/k.

�

5 Volume of Projections of Convex Bodies in Löwner’s Position

In this section, we will give the proof of Theorem 1.2.

Proof of Theorem 1.2. Let us start with the symmetric case. Assume that K is a

centrally symmetric convex body in John’s position and F0 ∈ Gn,k a k-dimensional linear

subspace. We follow the notation in Section 3.2. By (3.11), we get that K ∩ F0 ⊆ C0 ∩ F0.

This implies that

(K ∩ F0)◦ ⊇ (C0 ∩ F0)◦ = conv{±PF0
uj : j ∈ J0}.

It follows that for every x ∈ F0

hK∩F0
(x) � hC0∩F0

(x) = ‖x‖(C0∩F0)◦ = inf

⎧⎨
⎩∑

j∈J0

|αj| : x =
∑
j∈J0

αjPF0
uj

⎫⎬
⎭

= inf

⎧⎨
⎩∑

j∈J0

|αj| : x =
∑
j∈J0

αj‖PF0
uj‖2v0

j

⎫⎬
⎭ = inf

⎧⎨
⎩∑

j∈J0

|βj|
‖PF0

uj‖2
: x =

∑
j∈J0

βjv
0
j

⎫⎬
⎭

= inf

⎧⎨
⎩∑

j∈J0

δ0
j |θj|tj : x =

∑
j∈J0

δ0
j θjv

0
j

⎫⎬
⎭ ,

where tj = 1
‖PF0 uj‖2

=
(

cj

δ0
j

) 1
2

for all j ∈ J0. For every j ∈ J0, we set

fj(t) := e−|t|tj , t ∈ R.
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Then, if x = ∑
j∈J0

δ0
j θjv

0
j for some {θj}j∈J0

⊆ R, we have

∏
j∈J0

f
δ0
j

j (θj) = e−∑
j∈J0

δj|θj|tj � e−hK∩F0 (x).

Using the reverse Brascamp–Lieb inequality (Theorem 2.1), one obtains

k! |(K ∩ F0)◦| =
∫

F
e−hK∩F0 (x)dx �

∏
j∈J

(∫
R

e−|t|tjdt
)δj

= 2k∏
j∈J0

t
δj

j

= 2k

∏
j∈J0

(
cj
δj

) δj
2

.

As we have seen in the proof of Theorem 1.1

∏
j∈J0

(
cj

δ0
j

) δj
k

�
∑
j∈J0

δ0
j

k

cj

δ0
j

= 1

k

∑
j∈J0

cj �
1

k

m∑
j=1

cj = n

k
.

Taking into account that |(Bk∞)◦| = |Bk
1| = 2k

k! , we obtain

|(K ∩ F0)◦|1/k �
√

k

n
|(Bk∞)◦|1/k.

Assume now that K ⊆ R
n is a (not necessarily symmetric) convex body in John’s

position and F0 ∈ Gn,k is a k-dimensional linear subspace. We follow the notation

introduced in Section 3.1. For H = F0 × R ∈ Gn+1,k+1 as in (3.4), we have that

(C ∩ F0)◦ = PF0
(C◦) = PF0

(
conv{uj : 1 � j � m}

)
= conv{PF0

uj : 1 � j � m}.

For any y = (x, r) ∈ H = F0 × R, we write

N(y) = inf

⎧⎨
⎩

m∑
j=1

κjθj√
n‖PF0

uj‖2
2 + 1

: θj � 0, y =
m∑

j=1

κjθjwj

⎫⎬
⎭ ,
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30 D. Alonso-Gutiérrez and S. Brazitikos

where the latter infimum is understood as ∞ if there do not exist {θj}m
j=1 with θj � 0 such

that y = ∑m
j=1 κjθjwj. Notice that for any {θj}m

j=1 ⊆ R,

y =
∑
j∈J

κjθjwj ⇔ (x, r) =
⎛
⎝−

m∑
j=1

κjθjPF0
(uj)√

‖PF0
uj‖2

2 + 1
n

,
m∑

j=1

κjθj√
n‖PF0

uj‖2
2 + 1

⎞
⎠

⇔ (x, r) =
⎛
⎝−r

√
n

m∑
j=1

κjθjPF0
(uj)

r
√

n‖PF0
uj‖2

2 + 1
,

m∑
j=1

κjθj√
n‖PF0

uj‖2
2 + 1

⎞
⎠ .

Then there exist {θj}m
j=1 ⊆ R with θj ≥ 0 for every 1 � j � m such that the latter equality

holds if and only if

(x, r) ∈ L1 := {
(x, r) ∈ F0 × R : r ≥ 0 : x ∈ −r

√
n(C ∩ F0)◦

}
,

and for all such y = (x, r) ∈ L1, we have that N(y) = r. Therefore, for every y ∈ H,

sup
y=∑m

j=1 κjθjwj

m∏
j=1

⎛
⎝χ[0,∞)(θj)e

− θj√
n‖PF0

uj‖2
2+1

⎞
⎠κj

= e−N(y).

Thus, by (3.6) and the reverse Brascamp–Lieb inequality (Theorem 2.1),

∫
H

e−N(y)dy �
m∏

j=1

(∫ ∞

0
e
− t√

n‖PF0
uj‖2

2+1 dt

)κj

.

On the one hand,

∫
H

e−N(y)dy =
∫ ∞

0
e−r

∣∣−r
√

n(C ∩ F0)◦
∣∣dr = k! nk/2|(C ∩ F0)◦|.

On the other hand, for every 1 � j � m,

∫ ∞

0
e
− t√

n‖PF0
uj‖2

2+1 dt =
√

n‖PF0
uj‖2

2 + 1 = √
n + 1‖PHvj‖2.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab273/6380155 by Access provided by H

EAL-Link (U
niversity of Athens) user on 09 O

ctober 2021
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Since (K ∩ F0)◦ ⊇ (C ∩ F0)◦, we obtain

|(K ∩ F0)◦| �
(n + 1)

k+1
2

∏m
j=1 ‖PHvj‖δj‖PHvj‖2

2
2

k! nk/2

=
(

n + 1

k + 1

) k+1
2

(
k

n

)k/2 m∏
j=1

‖PHvj‖δj‖PHvj‖2
2

2 |S◦
k|.

For the convex function f (x) = x log x, we apply Jensen’s inequality to get

m∑
j=1

δj

n + 1
‖PHvj‖2 log ‖PHvj‖2

2 ≥ f

⎛
⎝ m∑

j=1

δj‖PHvj‖2
2

n + 1

⎞
⎠ = f

(
k + 1

n + 1

)
.

Thus,

m∏
j=1

‖PHvj‖δj‖PHvj‖2
2

2 = e
n+1

2
∑m

j=1
δj

n+1 ‖PHvj‖2 log ‖PHvj‖2
2 ≥

(
k + 1

n + 1

) k+1
2

.

Therefore,

|(K ∩ F0)◦| 1
k �

√
k

n
|S◦

k| 1
k .

�

6 Mean Width of Sections of Convex Bodies in John’s Position

In this section, we will prove Theorem 1.3.

Proof of Theorem 1.3. Let us start with the symmetric case. Assume that K is a

centrally symmetric convex body in John’s position and F0 ∈ Gn,k is a k-dimensional

linear subspace. We follow the notation in Section 3.2. By (3.11), we have that K ∩ F0 ⊆
C0 ∩ F0 and

(K ∩ F0)◦ ⊇ (C0 ∩ F0)◦ = conv{±PF0
uj : j ∈ J0}.
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It follows that for every x ∈ F0

hK∩F0
(x) � hC0∩F0

(x) = inf

⎧⎨
⎩∑

j∈J0

|αj| : x =
∑
j∈J0

αjPF0
uj

⎫⎬
⎭

= inf

⎧⎨
⎩∑

j∈J0

|αj| : x =
∑
j∈J0

αj‖PF0
uj‖2v0

j

⎫⎬
⎭ = inf

⎧⎨
⎩∑

j∈J0

|βj|tj : x =
∑
j∈J0

βjv
0
j

⎫⎬
⎭ ,

where tj = 1
‖PF0 uj‖2

for all j ∈ J0. For every x ∈ F0, we write x = ∑
j∈J0

δ0
j 〈x, v0

j 〉v0
j , therefore

hK∩F0
(x) �

∑
j∈J0

δ0
j tj|〈x, v0

j 〉|. (6.1)

If G1 is a standard Gaussian random vector in F0 and G2 is a standard Gaussian random

vector on R
k, using (6.1), we get

EhK∩F0
(G1) �

∑
j∈J0

δ0
j tjE|〈G1, vj〉| = E|〈G2, e1〉|

∑
j∈J0

δ0
j tj

= 1

k
E‖G2‖1

∑
j∈J0

δ0
j tj = 1

k

∑
j∈J0

δ0
j tjEhBk∞(G2).

By Hölder’s inequality and (3.9),

1

k

∑
j∈J0

δ0
j tj = 1

k

∑
j∈J0

cj‖PF0
uj‖2 � 1

k

⎛
⎝∑

j∈J0

cj

⎞
⎠

1
2
⎛
⎝∑

j∈J0

cj‖PF0
uj‖2

2

⎞
⎠

1
2

� 1

k

⎛
⎝ m∑

j=1

cj

⎞
⎠

1
2
⎛
⎝ m∑

j=1

cj‖PF0
uj‖2

2

⎞
⎠

1
2

=
√

nk

k
=

√
n

k
.

Hence,

EhK∩F0
(G1) �

√
n

k
EhBk∞(G2).

Equivalently, by (2.2),

w(K ∩ F0) �
√

n

k
w(Bk∞).
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John’s and Minimal Surface Area Position 33

Let us now assume that K is a not necessarily symmetric convex body in John’s position

and let F0 ∈ Gn,k. We follow the notation introduced in Section 3.1. For every x ∈ F0, we

have

hK∩F0
(x) � hC∩F0

(x) = inf

⎧⎨
⎩

m∑
j=1

aj : x =
m∑

j=1

ajPF0
uj, aj � 0

⎫⎬
⎭ .

Let θ ∈ Sn−1 ∩ F0. By (2.1), we have
∑m

j=1 cjPF0
uj = 0, so we may write

θ =
m∑

j=1

cj

(〈
θ , PF0

uj

〉
− min

1�k�m

〈
θ , PF0

uk

〉)
PF0

uj.

Setting (like in the symmetric case before) J0 = {1 � j � m : PF0
uj �= 0} and v0

j = PF0 uj
‖PF0 uj‖2

for j ∈ J0, we get

w(K ∩ F0) � w(C ∩ F0) =
∫

Sn−1∩F0

hC∩F0
(θ)dσ(θ)

�
∫

Sn−1∩F0

m∑
j=1

cj

(
〈θ , PF0

uj〉 − min
1�k�m

〈θ , PF0
uk〉

)
dσ(θ)

= n
∫

Sn−1∩F0

max
1�k�m

〈θ , −PF0
uk〉dσ(θ) � n

∫
Sn−1∩F0

max
1�k�m

∣∣〈θ , PF0
uk〉∣∣dσ(θ)

� n
∫

Sn−1∩F0

max
1�k�m

‖PF0
uk‖2 max

k∈J0

∣∣∣〈θ , v0
k〉
∣∣∣dσ(θ) � n

∫
Sn−1∩F0

max
k∈J0

∣∣∣〈θ , v0
k〉
∣∣∣dσ(θ).

It is a well-known fact (see, for instance, [3, Proposition 9.1.5 and Lemma 5.2.11]) that

for any {θi}N
i=1 ⊆ Sn−1, one has that

∫
Sn−1

max
1�k�N

∣∣〈θ , θk〉∣∣dσ(θ) �
√

log N

n
.

Therefore, there exists an absolute constant C1 such that

∫
Sn−1∩F

max
k∈J0

∣∣∣〈θ , v0
k〉
∣∣∣dσ(θ) � C1

√
log m

k
.
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Taking into account that m = O(n2) and that w(Sk) � √
k log k, we obtain that there

exists an absolute constant C2 > 0 such that

w(K ∩ F0) � C2
n

k

√
log n

log k
w(Sk).

�

7 Mean Width of Projections of Convex Bodies in Löwner’s Position

In this section, we will prove Theorem 1.4. We will make use of the following lemma.

Lemma 7.1. Let K ⊆ R
n be a (not necessarily symmetric) convex body and Fh be a k-

dimensional affine subspace at distance h from the origin. Take some α ∈ R and β � 0.

Identifying the origin with the closest point in Fh to 0, we identify Fh with R
k and let γk

be the k-dimensional Gaussian measure on Fh. Then,

√
n + h2

n

∫ ∞

0

e− (r−α
√

n+1)
2

2√
2π

eβr
√

n+1γk

(
r√
n

(C ∩ Fh)

)
dr �

�
∫ ∞

0

e− (r−αd1)2

2√
2π

eβr
√

k+1γk

(
r
√

k + 1�k

)
dr,

where C is defined as in (3.1), �k denotes the regular k-dimensional simplex as

introduced in Section 2.3, d1 = 1√
k+1

∑
j∈J δj‖PHvj‖2, and H is defined as in (3.4), δj and

vj as in (3.2), and J as in (3.6).

Proof. Following the notation introduced in Section 3.1, let L be the cone defined in

(3.3). By Lemma 3.1, we have that

L ∩ H =
{
(x, r) : r � 0, x ∈ r√

n
(C ∩ Fh)

}
.

For any α, β ∈ R, let μα,β be the measure on H whose density with respect to the Lebesgue

measure at a point y = (x, r) is

dμα,β(y) = e− ‖y‖2
2

2

(2π)
k+1

2

e(α+β)r
√

n+1dy.
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John’s and Minimal Surface Area Position 35

For any α, β ∈ R, taking into account (3.5), we have that

μα,β(L ∩ H) =
∫ ∞

0

e− r2
2√

2π
eαr

√
n+1eβr

√
n+1γk

(
r√
n

(C ∩ Fh)

)√
n + h2

n
dr

= e
α2(n+1)

2

∫ ∞

0

e− (r−α
√

n+1)
2

2√
2π

eβr
√

n+1γk

(
r√
n

(C ∩ Fh)

)√
n + h2

n
dr.

Recall that J = {1 � j � m : PHvj �= 0}, sj = 1
‖PHvj‖2

for every j ∈ J and y = (x, r) ∈ H.

Using the definition of L, the identity (3.7), and the Brascamp–Lieb inequality (Theorem

2.1), we have

μα,β(L ∩ H) =
∫

H

e− ‖y‖2
2

2

(2π)(k+1)/2
eαr

√
n+1eβr

√
n+1

∏
j∈J

χ[0,∞)(〈y, vj〉)dy

=
∫

H

e− ‖y‖2
2

2

(2π)(k+1)/2
eαr

√
n+1eβr

√
n+1

∏
j∈J

χ[0,∞)(〈y, wj〉)dy

=
∫

H

e−
∑

j∈J κj〈y,wj〉2
2

(2π)(k+1)/2
e
∑

j∈J κj(α+β)sj〈y,wj〉 ∏
j∈J

χ[0,∞)(〈y, wj〉)dy

=
∫

H

∏
j∈J

⎛
⎜⎝e− 〈y,wj〉2

2√
2π

e(α+β)sj〈y,wj〉χ[0,∞)(〈y, wj〉)
⎞
⎟⎠

κj

dy

�
∏
j∈J

⎛
⎝∫ ∞

0

e− t2
2√

2π
eαsjteβsjtdt

⎞
⎠κj

= e
α2 ∑

j∈J κjs2
j

2

m∏
j=1

⎛
⎜⎝∫ ∞

0

e−
(
t−αsj

)2

2√
2π

eβsjtdt

⎞
⎟⎠

κj

= e
α2(n+1)

2
∏
j∈J

⎛
⎜⎝∫ ∞

0

e−
(
t−αsj

)2

2√
2π

eβsjtdt

⎞
⎟⎠

κj

Therefore, for any α, β ∈ R,

√
n + h2

n

∫ ∞

0

e− (r−α
√

n+1)
2

2√
2π

eβr
√

n+1γk

(
r√
n

(C ∩ Fh)

)
dr

�
∏
j∈J

⎛
⎜⎝∫ ∞

0

e−
(
t−αsj

)2

2√
2π

eβsjtdt

⎞
⎟⎠

κj

.
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36 D. Alonso-Gutiérrez and S. Brazitikos

Notice that sj = 1
‖PHvj‖2

� 1 for every j ∈ J, which implies that, for any β � 0, one has

βsj � β for every j ∈ J. Using this inequality in the second following inequality and the

Prékopa–Leindler inequality (see [37, Lemma 1.2]) in the third following inequality, we

have that for any β � 0

√
n + h2

n

∫ ∞

0

e− (r−α
√

n+1)
2

2√
2π

eβr
√

n+1γk

(
r√
n

(C ∩ Fh)

)
dr

�
∏
j∈J

⎛
⎜⎝∫ ∞

0

e−
(
t−αsj

)2

2√
2π

eβsjtdt

⎞
⎟⎠

κj

�
∏
j∈J

⎛
⎜⎝∫ ∞

0

e−
(
t−αsj

)2

2√
2π

eβtdt

⎞
⎟⎠

κj

�

⎛
⎜⎝∫ ∞

0

e−
(
t− α

k+1
∑

j∈J κjsj

)2

2√
2π

eβtdt

⎞
⎟⎠

k+1

=
∫

[0,∞)k+1

k+1∏
i=1

e−
(

ti−
αd1√
k+1

)2

2√
2π

eβtidt

=
∫
[
− αd1√

k+1
,∞

)k+1

k+1∏
i=1

e− ‖t‖2
2

2√
2π

eβ
√

k+1〈t,v0〉eβαd1
√

k+1dt,

where v0 =
(

1√
k+1

, . . . , 1√
k+1

)
. Therefore, for any α ∈ R and any β � 0,

√
n + h2

n

∫ ∞

0

e− (r−α
√

n+1)
2

2√
2π

eβr
√

n+1γk

(
r√
n

(C ∩ Fh)

)
dr

�
∫
[
− αd1√

k+1
,∞

)k+1

k+1∏
i=1

e− ‖t‖2
2

2√
2π

eβ
√

k+1〈t,v0〉eβαd1
√

k+1dt

=
∫ ∞

−αd1

e− t2
2√

2π
eβ

√
k+1teβαd1

√
k+1γk

(
(t + αd1)

√
k + 1�k

)
dt

=
∫ ∞

0

e− (r−αd1)2

2√
2π

eβ
√

k+1rγk

(
r
√

k + 1�k

)
dr,

where �k denotes the regular k-dimensional simplex as introduced in Section 2.3. �
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John’s and Minimal Surface Area Position 37

Proof of Theorem 1.4. Let us start with the symmetric case. Assume that K is a

centrally symmetric convex body in John’s position and F0 ∈ Gn,k is a k-dimensional

linear subspace. We want to prove that

w((K ∩ F0)◦) � w

((√
n

k
Bk∞

)◦)
.

Equivalently, by (2.3), we want to prove that

E‖G1‖K∩F0
� E‖G2‖√ n

k Bk∞ ,

where G1 is a standard Gaussian random vector on F0 and G2 is a standard Gaussian

random vector on R
k. If L ⊆ R

k is a convex body containing the origin in its interior and

G is a standard Gaussian random vector then

E‖G‖L =
∫ ∞

0
P(‖G‖L � t)dt =

∫ ∞

0
γk(Rn \ tL)dt, (7.1)

where γk(A) denotes the Gaussian measure of the k-dimensional set A. Therefore, the

statement we want to prove is equivalent to

∫ ∞

0
γk(F0 \ t(K ∩ F0))dt �

∫ ∞

0
γk

(
R

n \ t

√
n

k
Bk∞

)
dt

or, equivalently,

∫ ∞

0
(1 − γk(t(K ∩ F0))dt �

∫ ∞

0

(
1 − γk

(
t

√
n

k
Bk∞

))
dt.

We are going to prove that for any t � 0

γk(t(K ∩ F0)) � γk

(
t

√
n

k
Bk∞

)
,

which implies the latter inequality.

We follow the notation in Section 3.2. By (3.10) we have that

K ∩ F0 ⊆ C0 ∩ F0 =
{
x ∈ F0 : |〈x, v0

j 〉| � tj, ∀j ∈ J0

}
,
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38 D. Alonso-Gutiérrez and S. Brazitikos

where tj = 1
‖PF0 uj‖2

=
(

cj

δ0
j

)1/2

for all j ∈ J0. Therefore, for every t � 0,

t(K ∩ F0) ⊆ t(C0 ∩ F0) =
{
x ∈ F0 : |〈x, v0

j 〉| � ttj, ∀j ∈ J0

}
.

By (3.9) and the Brascamp–Lieb inequality (Theorem 2.1),

γk(t(K ∩ F0)) � γk(t(C0 ∩ F0)) =
∫

F0

⎛
⎝∏

j∈J

χ[−ttj,ttj](〈x, v0
j 〉)

⎞
⎠ e− ‖x‖2

2
2

(2π)k/2
dx

=
∫

F0

⎛
⎝∏

j∈J0

χ[−ttj,ttj](〈x, v0
j 〉)

⎞
⎠ e−

∑
j∈J0

δ0
j 〈x,v0

j 〉2
2

(2π)k/2
dx

=
∫

F0

∏
j∈J0

⎛
⎜⎝χ[−ttj,ttj](〈x, v0

j 〉)e− 〈x,v0
j 〉2

2√
2π

⎞
⎟⎠

δ0
j

dx

�
∏
j∈J0

⎛
⎝∫ ttj

−ttj

e− t2
2√

2π
dt

⎞
⎠δ0

j

=
⎛
⎝∏

j∈J0

γ1(ttj[−e1, e1])
δ0
j
k

⎞
⎠k

.

Since γ1 is log-concave, we obtain

γk(t(K ∩ F0)) � γ1

⎛
⎝
⎛
⎝t

∑
j∈J0

tjδ
0
j

k

⎞
⎠ [−e1, e1]

⎞
⎠k

= γk

⎛
⎝
⎛
⎝t

∑
j∈J0

tjδ
0
j

k

⎞
⎠Bk∞

⎞
⎠ .

By Hölder’s inequality and (3.9), we have that

∑
j∈J0

tjδ
0
j

k
=

∑
j∈J0

√
cjδ

0
j

k
� 1

k

⎛
⎝∑

j∈J0

cj

⎞
⎠1/2 ⎛

⎝∑
j∈J0

δ0
j

⎞
⎠1/2

� 1

k

⎛
⎝ m∑

j=1

cj

⎞
⎠1/2 ⎛

⎝∑
j∈J0

δ0
j

⎞
⎠1/2

=
√

n

k
.

Thus, for every t � 0,

γk(t(K ∩ F0)) � γk

(
t

√
n

k
Bk∞

)
.
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John’s and Minimal Surface Area Position 39

Assume now that K ⊆ R
n is a (not necessarily symmetric) convex body in

John’s position and F0 ∈ Gn,k is a linear subspace. Following the notation introduced

in Section 3.1, we denote by H ∈ Gn+1,k+1 the (k + 1)-dimensional linear subspace

H = span{(x,
√

n) : x ∈ F} = F0 × R, as in (3.4). By Lemma 3.1, we have that

L ∩ H =
{
(x, r) ∈ F0 × R : r � 0, x ∈ r√

n
(C ∩ F0)

}
.

Using Lemma 7.1 for β = 0, the linear subspace F0 ∈ Gn,k and an arbitrary α ∈ R,

we get

∫ ∞

0

e− (r−α
√

n+1)
2

2√
2π

γk

(
r√
n

(C ∩ F0)

)
dr �

∫ ∞

0

e− (r−αd1)2

2√
2π

γk

(
r
√

k + 1�k

)
dr,

where d1 = 1√
k+1

∑
j∈J δj‖PHvj‖2, δj and vj are defined as in (3.2), and J as in (3.6).

Applying the latter inequality to −α, we also get

∫ ∞

0

e− (r+α
√

n+1)
2

2√
2π

γk

(
r√
n

(C ∩ F0)

)
dr �

∫ ∞

0

e− (r+αd1)2

2√
2π

γk

(
r
√

k + 1�k

)
dr

or, equivalently,

∫ 0

−∞
e− (r−α

√
n+1)

2

2√
2π

γk

( |r|√
n

(C ∩ F0)

)
dr �

∫ 0

−∞
e− (r−αd1)2

2√
2π

γk

(
|r|

√
k + 1�k

)
dr.

Therefore, for any α ∈ R,

∫ ∞

−∞
e− (r−α

√
n+1)

2

2√
2π

γk

( |r|√
n

(C ∩ F0)

)
dr �

∫ ∞

−∞
e− (r−αd1)2

2√
2π

γk

(
|r|

√
k + 1�k

)
dr.

Hence,

∫ ∞

−∞
e− (r−α

√
n+1)

2

2√
2π

γk(F0 \
(( |r|√

n
(C ∩ F0)

))
dr �

∫ ∞

−∞
e− (r−αd1)2

2√
2π

γk

(
R

k \ (|r|
√

k + 1�k)
)

dr.

Integrating in α ∈ R, we obtain

1√
n + 1

∫ ∞

−∞
γk

(
F0 \

( |r|√
n

(C ∩ F0)

))
dr � 1

d1

∫ ∞

−∞
γk

(
R

k \ (|r|
√

k + 1�k)
)

dr.
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Equivalently,

1√
n + 1

∫ ∞

0
γk

(
F0 \

(
r√
n

(C ∩ F0)

))
dr � 1

d1

∫ ∞

0
γk

(
R

k \ (r
√

k + 1�k)
)

dr,

or

√
n

n + 1

∫ ∞

0
γk

(
F0 \ (

r(C ∩ F0)
))

dr � 1

d1

√
k + 1

∫ ∞

0
γk

(
R

k \ (r�k)
)

dr.

Using (7.1), (2.3), and the fact that K ⊆ C, we obtain

w((K ∩ F0)◦) � 1

d1

√
n + 1

n(k + 1)
w((�k)◦).

If Sk denotes the k-dimensional regular simplex in John’s position, then

√
k(k + 1)�k = Sk.

Therefore, for any k-dimensional linear subspace F0, we have

w((K ∩ F0)◦) �
√

k(n + 1)

n

1

d1
w((Sk)◦).

By Hölder’s inequality and (3.6), we have that

d1

√
k + 1 =

∑
j∈J

δj‖PHvj‖2 �

⎛
⎝ m∑

j=1

δj

⎞
⎠

1
2
⎛
⎝ m∑

j=1

δj‖PHvj‖2
2

⎞
⎠

1
2

= √
(n + 1)(k + 1).

Thus,

w((K ∩ F0)◦) �
√

k

n
w(S◦

k).

�

8 The Wills Functional of Sections of Convex Bodies in John’s Position

In this section, we will give the proof of Theorem 1.5.

Proof of Theorem 1.5. Let K be a centrally symmetric convex body in John’s position

and F0 ∈ Gn,k a k-dimensional linear subspace. We follow the notation in Section 3.2.
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John’s and Minimal Surface Area Position 41

By (3.10), we have that for every λ � 0

λ(K ∩ F0) ⊆ λ(C0 ∩ F0) =
{
x ∈ F0 : |〈x, v0

j 〉| � λtj, ∀j ∈ J0

}
,

where tj = 1
‖PF0 uj‖2

=
(

cj

δ0
j

)1/2

for all j ∈ J0. For every j ∈ J0, we define fj : R → [0, ∞) to

be the function

fj(t) = e
−πd(tv0

j ,P〈v0
j 〉(λ(C0∩F0)))2

∀t ∈ R,

where 〈v0
j 〉 denotes the 1-dimensional subspace spanned by v0

j . Then,

∫
R

fj(t)dt =
∫
R

e
−πd(tv0

j ,P〈v0
j 〉(λ(C0∩F0)))2

dt = W(P〈v0
j 〉(λ(C0 ∩ F0)))

and

P〈v0
j 〉(λ(C0 ∩ F0)) ⊆ [ − λtj, λtj

]
vj.

It follows that for every j ∈ J0,

∫
R

fj(t)dt � W
([

−λtj, λtj

]
vj

)
=

(
1 + 2λtj

)
.

Therefore, by (3.9) and the Brascamp–Lieb inequality (Theorem 2.1),

∫
F0

e
−π

∑
j∈J0

δ0
j d

(
〈x,v0

j 〉v0
j ,P〈v0

j 〉(λ(C0∩F0))

)2

=
∫

F0

∏
j∈J0

f
δ0
j

j (〈x, v0
j 〉)dx

�
∏
j∈J0

(∫
R

fj(t)dt
)δ0

j

�
∏
j∈J0

(
1 + 2λtj

)δ0
j

.
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42 D. Alonso-Gutiérrez and S. Brazitikos

By the arithmetic–geometric mean inequality, (2.1), and (3.9), we have

∏
j∈J0

(
1 + 2λtj

) δ0
j
k �

∑
j∈J0

δ0
j

k

(
1 + 2λtj

)
� 1 + 2λ

k

∑
j∈J0

cj‖PF0
uj‖2

� 1 + 2λ

k

⎛
⎝∑

j∈J0

cj

⎞
⎠

1
2
⎛
⎝∑

j∈J0

cj‖PF0
uj‖2

2

⎞
⎠

1
2

� 1 + 2λ

k

⎛
⎝ m∑

j=1

cj

⎞
⎠

1
2
⎛
⎝∑

j∈J0

cj‖PF0
uj‖2

2

⎞
⎠

1
2

= 1 + 2λ

√
n

k
.

It follows that

∏
j∈J0

(
1 + 2λtj

)δ0
j �

(
1 + 2λ

√
n

k

)k

= W
(

λ

√
n

k
Bk∞

)
.

On the other hand, let x0 ∈ λ(C0 ∩ F0). Then, for every x ∈ F0 and every j ∈ J0,

d
(
〈x, v0

j 〉v0
j , P〈v0

j 〉(λ(C0 ∩ F0))
)2

� d
(
〈x, v0

j 〉v0
j , 〈x0, v0

j 〉v0
j

)2 = 〈x − x0, vj〉2.

Thus, for every x0 ∈ λ(C0 ∩ F0) and every x ∈ F0,

∑
j∈J0

δ0
j d

(
〈x, v0

j 〉v0
j , P〈v0

j 〉(λ(C0 ∩ F0))
)2

�
∑
j∈J0

δ0
j 〈x − x0, v0

j 〉2 = |x − x0|2.

Hence, for every x ∈ F0,

∑
j∈J0

δ0
j d

(
〈x, v0

j 〉v0
j , P〈v0

j 〉(λ(C0 ∩ F0))
)2

� d(x, λ(C0 ∩ F0))2.

Consequently,

W(λ(C0 ∩ F0)) =
∫

F
e−πd(x,λ(C0∩F0))2

dx

�
∫

F
e
−π

∑
j∈J0

δ0
j d

(
〈x,v0

j 〉v0
j ,P〈v0

j 〉(λ(C0∩F0))

)2

dx � W
(

λ

√
n

k
Bk∞

)
.
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John’s and Minimal Surface Area Position 43

Since K ∩ F0 ⊆ C0 ∩ F0 and by the monotonicity of the Wills functional, we get

W(λ(K ∩ F0)) � W(λ(C0 ∩ F0)) � W
(

λ

√
n

k
Bk∞

)
. �

The following result gives a similar upper bound for a quantity defined via a

double polarity, both on the convex body and on the log-concave function. For any k

dimensional affine subspace Fh and any convex body K ⊆ Fh, we will consider

fK(x) = e−πd2(x,K) ∀x ∈ Fh,

as defined in Section 2.6.

Theorem 8.1. Let K ⊆ R
n be a convex body in John’s position and let Fh be a

k-dimensional affine subspace at distance h from 0. Assume that the closest point to

the origin in Fh belongs to the relative interior to K ∩ Fh. Then, for every λ > 0,

∫
Fh

f ◦
(λ(K∩Fh))◦(x)dx � n + 1

k + 1

√
n

n + h2

∫
Rk

f ◦(
λ

√
n(n+1)
k(k+1)

Sk

)◦(x)dx.

Here we consider K ∩ Fh as a subset of Fh, which we identify with R
k and the polarity is

taken on Fh.

Furthermore, if K is centrally symmetric and F0 ∈ Gn,k is a k-dimensional linear

subspace then, for every λ > 0,∫
F0

f ◦
(λ(K∩F0))◦(x)dx �

∫
Rk

f ◦(
λ
√

n
k Bk∞

)◦(x)dx.

Proof. Let K ⊆ R
n be a centrally symmetric convex body in John’s position and let

F0 ∈ Gn,k be a k-dimensional linear subspace. From the definition of f ◦
(λ(K∩F0))◦ and (2.4),

we have that, for every λ > 0,

∫
F0

f ◦
(λ(K∩F0))◦(x)dx =

∫
F0

e− ‖x‖2
2

4π e−‖x‖λ(K∩F0)dx =
∫

F0

e− ‖x‖2
2

4π

∫ ∞

‖x‖λ(K∩F0)

e−tdtdx

=
∫ ∞

0
e−t

∫
tλ(K∩F0)

e− ‖x‖2
2

4π dtdx

= (2π)k
∫ ∞

0
e−t

∫
tλ√
2π

(K∩F0)

e− ‖x‖2
2

2

(
√

2π)k
dxdt

= (2π)k
∫ ∞

0
e−tγk

(
tλ√
2π

(K ∩ F0)

)
dt.
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Similarly, for every λ > 0,

∫
Rk

f ◦(
λ
√

n
k Bk∞

)◦(x)dx = (2π)k
∫ ∞

0
e−tγk

(
tλ√
2π

√
n

k
Bk∞

)
dt.

As we have seen in the proof of Theorem 1.4, for every t � 0 and every λ > 0,

γk

(
tλ√
2π

(K ∩ F0)

)
� γk

(
tλ√
2π

√
n

k
Bk∞

)
.

Therefore, for every λ > 0,

∫
F0

f ◦
(λ(K∩F0))◦(x)dx �

∫
Rk

f ◦(
λ
√

n
k Bk∞

)◦(x)dx.

Assume now that K ⊆ R
n is a (not necessarily symmetric) convex body in John’s position,

Fh is a k-dimensional affine subspace at distance h from the origin, and the closest point

to the origin in Fh belongs to the relative interior to K ∩ Fh. We will identify Fh with R
k

and the closest point in Fh to the origin in R
n with the origin in Fh (identified with R

k).

As before, we have that, for every λ > 0,

∫
Fh

f ◦
(λ(K∩Fh))◦(x)dx = (2π)k

∫ ∞

0
e−tγk

(
tλ√
2π

(K ∩ Fh)

)
dt.

We will follow the notation in Section 3.1. By Lemma 7.1, we have that for any α ∈ R and

any β � 0,

√
n + h2

n

∫ ∞

0

e− (r−α
√

n+1)
2

2√
2π

eβr
√

n+1γk

(
r√
n

(C ∩ Fh)

)
dr �

∫ ∞

0

e− (r−αd1)2

2√
2π

eβr
√

k+1γk

(
r
√

k + 1�k

)
dr,

where d1 = 1√
k+1

∑
j∈J δj‖PHvj‖2. Integrating with respect to α ∈ R, we see that for any

β � 0,

√
n + h2

n(n + 1)

∫ ∞

0
eβr

√
n+1γk

(
r√
n

(C ∩ Fh)

)
dr � 1

d1

∫ ∞

0
eβr

√
k+1γk

(
r
√

k + 1�k

)
dr.
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John’s and Minimal Surface Area Position 45

Equivalently, changing variables u =
√

n
2π

r, for any β � 0,

√
n + h2

n + 1

∫ ∞

0
e

βu
√

n(n+1)√
2π γk

(
u√
2π

(C ∩ Fh)

)
du � 1

d1

√
k + 1

∫ ∞

0
e

βu√
2π γk

(
u√
2π

�k

)
du.

For any λ > 0, take β = −1
λ

√
2π

n(n+1)
to obtain

√
n + h2

n + 1

∫ ∞

0
e− u

λ γk

(
u√
2π

(C ∩ Fh)

)
du � 1

d1

√
k + 1

∫ ∞

0
e

−u
λ
√

n(n+1) γk

(
u√
2π

�k

)
du,

or, equivalently, changing variables u = λv in the integral on the left-hand side and

u = λ
√

n(n + 1)v in the integral on the right-hand side and renaming v as u,

√
n + h2

n + 1

∫ ∞

0
e−uγk

(
uλ√
2π

(C ∩ Fh)

)
du �

√
n(n + 1)

d1s
√

k + 1

∫ ∞

0
e−uγk

(
uλ

√
n(n + 1)√

2π
�k

)
du.

Since
√

k(k + 1)�k = Sk, we see that for every λ > 0,

∫ ∞

0
e−uγk

(
uλ√
2π

(C ∩ Fh)

)
du � (n + 1)

√
n

d1

√
(k + 1)(n + h2)

∫ ∞

0
e−uγk

(
uλ√
2π

√
n(n + 1)

k(k + 1)
Sk

)
du.

Consequently, for any λ > 0, taking polars with respect to the closest point in Fh to the

origin that we assumed to belong to the relative interior of K ∩ Fh, we get

∫
Fh

f ◦
(λ(K∩Fh))◦(x)dx �

∫
Fh

f ◦
(λ(C∩Fh))◦(x)dx

�
√

n(n + 1)

d1

√
(k + 1)(n + h2)

∫
Rk

f ◦(
λ

√
n(n+1)
k(k+1)

Sk

)◦(x)dx.

For every j ∈ J, denote κj as in (3.6) and sj as in (3.7). Then, by (3.6), we have that

d1

√
k + 1 =

∑
j∈J

κjsj �
∑
j∈J

κj =
m∑

j=1

= k + 1.
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Thus, for every λ > 0,

∫
Fh

f ◦
(λ(K∩Fh))◦(x)dx � n + 1

k + 1

√
n

n + h2

∫
Rk

f ◦(
λ

√
n(n+1)
k(k+1)

Sk

)◦(x)dx.

�

9 The Wills Functional of Projections of Convex Bodies in Löwner’s Position

In this section, we will give the proof of Theorem 1.6.

Proof of Theorem 1.6. Let K be a centrally symmetric convex body in John’s position

and let F0 ∈ Gn,k be a k-dimensional linear subspace. We follow the notation in Section

3.2. By (3.11), we have that

(K ∩ F0)◦ ⊇ (C0 ∩ F0)◦ = conv{±PF0
uj, j ∈ J0} = conv{±‖PF0

uj‖2vj, j ∈ J0}.

Since the function d(·, (C0 ∩ F0)◦)2 is convex, for any x ∈ F0 and any {θj}j∈J0
⊆ R such that

x = ∑
j∈J0

δ0
j θjv

0
j , we have that

d(x, (K ∩ F0)◦)2 � d(x, (C0 ∩ F0)◦)2 = d

⎛
⎝∑

j∈J0

δ0
j

k
kθjv

0
j , (C0 ∩ F0)◦

⎞
⎠2

� 1

k

∑
j∈J0

δ0
j d

(
kθjv

0
j , (C0 ∩ F0)◦

)2

� 1

k

∑
j∈J0

δ0
j d

(
kθjv

0
j ,

[
−‖PF0

uj‖2v0
j , ‖PF0

uj‖2v0
j

])2

=
∑
j∈J0

δ0
j d

(√
kθjv

0
j ,

[
−‖PF0

uj‖2√
k

v0
j ,

‖PF0
uj‖2√
k

v0
j

])2

.

For every j ∈ J0, we set

fj(t) = e
−πd

(√
ktv0

j ,
[
− ‖PF0

uj‖2√
k

v0
j ,

‖PF0
uj‖2√
k

v0
j

])2

, ∀t ∈ R.

Moreover, for any x ∈ F0 and any {θj}j∈J0
⊆ R such that x = ∑

j∈J0
δ0

j θjv
0
j , we have

∏
j∈J0

f
δ0
j

j (θj) � e−πd(x,(K∩F0)◦)2
.
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Therefore, by (3.9) and the reverse Brascamp–Lieb inequality (Theorem 2.1),

W((K ∩ F0)◦) =
∫

F0

e−πd(x,(K∩F0)◦)2
dx �

∏
j∈J0

(∫
R

fj(t)dt
)δ0

j

=
∏
j∈J0

⎛
⎝ 1√

k

∫
R

e
−πd

(
tv0

j ,
[
− ‖PF0

uj‖2√
k

v0
j ,

‖PF0
uj‖2√
k

v0
j

])2

dt

⎞
⎠δ0

j

= 1

kk/2

∏
j∈J0

W
([

−‖PF0
uj‖2√
k

v0
j ,

‖PF0
uj‖2√
k

v0
j

])δ0
j

= 1

kk/2

∏
j∈J0

(
1 + 2‖PF0

uj‖2√
k

)δ0
j

� 1

kk/2
.

�

10 Sections of Convex Bodies in Minimal Surface Area Position

In this section, we are going to prove Theorem 1.7. Let us start assuming that K is a

centrally symmetric polytope in minimal surface area position and F0 ∈ Gn,k. By an

approximation argument, the inequalities we obtain will also be true for any centrally

symmetric convex body in minimal surface area position. We will follow the notation

introduced in Section 3.3.

Let J0 and, for every j ∈ J0, cj, δ0
j , and v0

j be as in (3.14). Let for every j ∈ J0,

fj : R → [0, ∞) be the function

fj(t) = e
−πd(tv0

j ,P〈v0
j 〉(K∩F0))2

∀t ∈ R,

where 〈v0
j 〉 denotes the 1-dimensional subspace spanned by v0

j . Notice that, for every

j ∈ J0,

∫
R

fj(t)dt =
∫
R

e
−πd(tv0

j ,P〈v0
j 〉(K∩F))2

dt = W(P〈v0
j 〉(K ∩ F0)).

For every j ∈ J0, we have that

P〈v0
j 〉(K ∩ F0) ⊆

[
−tjhK(uj), tjhK(uj)

]
v0

j ,
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where tj is defined as in (3.15). Then, for every j ∈ J0,

∫
R

fj(t)dt � W
([

−tjhK(uj), tjhK(uj)
]

vj

)
=

(
1 + 2tjhK(uj)

)
.

Therefore, by (3.14) and the Brascamp–Lieb inequality (Theorem 2.1),

∫
F0

e
−π

∑
j∈J0

δ0
j d

(
〈x,v0

j 〉v0
j ,P〈v0

j 〉(C0∩F0)

)2

=
∫

F0

∏
j∈J0

f
δ0
j

j (〈x, v0
j 〉)dx

�
∏
j∈J0

(∫
R

fj(t)dt
)δ0

j

�
∏
j∈J0

(
1 + 2tjhK(uj)

)δ0
j

.

By the arithmetic–geometric mean inequality and (3.13), we have

∏
j∈J0

(
1 + 2tjhK(uj)

) δ0
j
k �

∑
j∈J0

δ0
j

k

(
1 + 2tjhK(uj)

)

= 1 + 2

k

∑
j∈J0

n|Fj|‖PF0
uj‖2hK(uj)

|∂K| � 1 + 2n

k|∂K|
∑
j∈J0

|Fj|hK(uj)

� 1 + 2n

k|∂K|
m∑

j=1

|Fj|hK(uj) = 1 + 2
n2|K|
k|∂K| .

Thus,

∏
j∈J0

(
1 + 2tjhK(uj)

)δ0
j �

(
1 + 2

n2|K|
k|∂K|

)k

= W
(

n2|K|
k|∂K|B

k∞
)

.

Let x0 ∈ K ∩ F0. For every x ∈ F0 and every j ∈ J0, we have

d
(
〈x, v0

j 〉v0
j , P〈v0

j 〉(K ∩ F0)
)2

� d
(
〈x, v0

j 〉v0
j , 〈x0, v0

j 〉v0
j

)2 = 〈x − x0, vj〉2.

Thus, for every x0 ∈ C0 ∩ F0 and every x ∈ F0,

∑
j∈J0

δ0
j d

(
〈x, v0

j 〉v0
j , P〈v0

j 〉(K ∩ F0)
)2

�
∑
j∈J0

δ0
j 〈x − x0, v0

j 〉2 = |x − x0|2.
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Hence, for every x ∈ F0,

∑
j∈J0

δ0
j d

(
〈x, v0

j 〉v0
j , P〈v0

j 〉(K ∩ F0)
)2

� d(x, K ∩ F0)2.

Consequently,

W(K ∩ F0) =
∫

F0

e−πd(x,K∩F0)2
dx �

∫
F0

e
−π

∑
j∈J0

δ0
j d

(
〈x,v0

j 〉v0
j ,P〈v0

j 〉(K∩F0)

)2

dx

� W
(

n2|K|
k|∂K|B

k∞
)

,

which proves (i).

Notice that for every λ � 0 we have that λK is in minimal surface area position.

Therefore, we can use (i) to get that for every λ � 0

W(λ(K ∩ F0)) � W
(

λ
n2

k

|K|
|∂K|B

k∞
)

.

As explained in Section 2.6, the last one implies that V1(K ∩ F0) � V1

(
λn2

k
|K|
|∂K|B

k∞
)

and

Vn((K ∩ F0) � Vn

(
λn2

k
|K|
|∂K|B

k∞
)
, which are equivalent to (ii) and (iii), respectively.

Now, using (3.16), we observe that for every x ∈ F0

hK∩F0
(x) = inf

⎧⎨
⎩∑

j∈J0

|αj| : x =
∑
j∈J0

αj

hK(uj)
PF0

uj

⎫⎬
⎭

= inf

⎧⎨
⎩∑

j∈J0

|βj|tjhK(uj) : x =
∑
j∈J0

βjv
0
j

⎫⎬
⎭ ,

where tj = 1
‖PF0 uj‖2

=
(

cj

δ0
j

) 1
2

for all j ∈ J0. For every j ∈ J0, we define

fj(t) := e−|t|tjhK(uj), t ∈ R.

Then, if x = ∑
j∈J0

δ0
j θjv

0
j for some {θj}j∈J0

⊆ R, we have

∏
j∈J0

f
δ0
j

j (θj) = e−∑
j∈J0

δj|θj|tjhK(uj) � e−hK∩F0 (x).
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Therefore, by (3.14) and the reverse Brascamp–Lieb inequality (Theorem 2.1),

k! |(K ∩ F0)◦| =
∫

F0

e−hK∩F0 (x)dx �
∏
j∈J

(∫
R

e−|t|tjhK(uj)dt
)δj

= 2k∏
j∈J0

(tjhK(uj))
δj

.

By the arithmetic–geometric mean inequality and (3.13),

∏
j∈J0

(
tjhK(uj)

) δ0
j
k �

∑
j∈J0

δ0
j

k
tjhK(uj) =

∑
j∈J0

n|Fj|‖PF0
uj‖2hK(uj)

k|∂K|

� n

k|∂K|
m∑

j=1

|Fj|hK(uj) = n2|K|
k|∂K| .

Taking into account that |(Bk∞)◦| = |Bk
1| = 2k

k! , we obtain

|(K ∩ F0)◦|1/k � k|∂K|
n2|K| |(B

k∞)◦|1/k,

which gives us (iv).

Finally, from (3.15), observe that for every t � 0

t(K ∩ F0) = {x ∈ F0 : |〈x, v0
j 〉| � ttjhK(uj), ∀ j ∈ J0}.

By (3.14) and the Brascamp–Lieb inequality (Theorem 2.1), we have that

γk(t(K ∩ F0)) =
∫
Rn

∏
j∈J0

χ[−ttjhK(uj),ttjhK(uj)](〈x, v0
j 〉)e−∑

j∈J0

δ0
j 〈x,v0

j 〉2
2

(2π)k/2
dx

�
∏
j∈J0

⎛
⎝∫ ttjhK(uj)

−ttjhK(uj)

e− s2
2√

2π
ds

⎞
⎠δ0

j

=
∏
j∈J0

γ1

([
−ttjhK(uj), ttjhK(uj)

])δ0
j

.
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Since the 1-dimensional Gaussian measure is log-concave, we obtain that

∏
j∈J0

γ1

([
−ttjhK(uj), ttjhK(uj)

])δ0
j � γ1

⎛
⎝
⎛
⎝∑

j∈J0

δ0
j ttjhK(uj)

k

⎞
⎠ [−e1, e1]

⎞
⎠k

= γk

⎛
⎝t

⎛
⎝∑

j∈J0

δ0
j tjhK(uj)

k

⎞
⎠Bk∞

⎞
⎠ .

Therefore, by (3.13),

∑
j∈J0

δ0
j tjhK(uj)

k
=

∑
j∈J0

n|Fj|‖PF0
uj‖2hK(uj)

k|∂K| �
∑
j∈J0

n|Fj|hK(uj)

k|∂K|

�
m∑

j=1

n|Fj|hK(uj)

k|∂K| = n2

k

|K|
|∂K| .

Thus, for any t ≥ 0,

γk(t(K ∩ F0)) � γk

(
t
n2

k

|K|
|∂K|B

k∞
)

.

Therefore,

w((K ∩ F0)◦) � w

((
n2

k

|K|
|∂K|B

k∞
)◦)

= k

n2

|∂K|
|K| w((Bk∞)◦),

and we obtain (v).

Let us now assume that K is a (not necessarily symmetric) polytope in minimal

surface area position and F0 ∈ Gn,k. Again, by approximation, the inequalities we obtain

will be true for any convex body. By (2.5), we have that for any x ∈ F0,

‖x‖�∗K∩F0
= 1

2

m∑
j=1

|Fj||〈x, uj〉| = 1

2

∑
j∈J0

|Fj|‖PF0
uj‖2

∣∣∣〈x, v0
j

〉∣∣∣
=

∑
j∈J0

|∂K|δ0
j tj

2n

∣∣∣〈x, v0
j

〉∣∣∣ ,

where the vectors uj are defined as in (3.12) and, for every j ∈ J0, δ0
j and v0

j are defined

as in (3.14) and tj is defined as in (3.15). Therefore, by (3.14) and the Brascamp–Lieb
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inequality (Theorem 2.1),

k! |�∗K ∩ F0| =
∫

F0

e−‖x‖�∗K∩F0
dx =

∫
F0

e
−∑

j∈J0

|∂K|δ0
j tj

2n

∣∣∣〈x,v0
j

〉∣∣∣
dx

=
∫

F0

∏
j∈J0

(
e
− |∂K|tj

2n

∣∣∣〈x,v0
j

〉∣∣∣)δ0
j

dx

�
∏
j∈J0

(∫
R

e− |∂K|tj
2n tdt

)δ0
j =

∏
j∈J0

(
4n

|∂K|tj

)δ0
j

=
(

4n

|∂K|
)k ∏

j∈J0

(
‖PF0

uj‖
)δ0

j �
(

4n

|∂K|
)k

.

To prove the remaining inequality, we start observing that PF0
�K = (�∗K ∩ F0)◦. Then,

for every x ∈ F0,

‖x‖PF0�K = inf

⎧⎨
⎩max

j∈J0

|τj| : x =
∑
j∈J0

|∂K|δ0
j tjτj

2n
v0

j

⎫⎬
⎭ .

Any decomposition of x of the form x = ∑
j∈J0

δ0
j θjv

0
j with |θj| � |∂K|tj

2n gives a

decomposition of x of the form

x =
∑
j∈J0

|∂K|δ0
j tjτj

2n
v0

j with τj = 2nθj

|∂K|tj
.

Since maxj∈J0
|τj| � 1, we get that the functions hj = χ[

− |∂K|tj
2n ,

|∂K|tj
2n

], j ∈ J0, and the

function h = χPF0�K have the property that

h

⎛
⎝∑

j∈J0

δ0
j θjv

0
j

⎞
⎠ �

∏
j∈J0

h
δ0
j

j (θj),

for every {θj}j∈J0
⊆ R. Hence, by (3.14) and the reverse Brascamp–Lieb inequality

(Theorem 2.1),

|PF0
�K| =

∫
F0

h(x)dx �
∏
j∈J0

(∫
R

hj(t)dt
)δ0

j =
∏
j∈J0

( |∂K|tj

n

)δ0
j

=
( |∂K|

n

)k ∏
j∈J0

(
1

‖PF0
uj‖

)δ0
j

�
( |∂K|

n

)k

.
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