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REVERSE LOOMIS-WHITNEY INEQUALITIES VIA

ISOTROPICITY

DAVID ALONSO-GUTIÉRREZ AND SILOUANOS BRAZITIKOS

Abstract. Given a centered convex body K ⊆ R
n, we study the optimal value

of the constant Λ̃(K) such that there exists an orthonormal basis {wi}
n

i=1
for

which the following reverse dual Loomis-Whitney inequality holds:

|K|n−1
6 Λ̃(K)

n∏

i=1

|K ∩ w
⊥

i |.

We prove that Λ̃(K) 6 (CLK)n for some absolute C > 1 and that this estimate
in terms of LK , the isotropic constant ofK, is asymptotically sharp in the sense
that there exists another absolute constant c > 1 and a convex body K such

that (cLK)n 6 Λ̃(K) 6 (CLK)n. We also prove more general reverse dual
Loomis-Whitney inequalities as well as reverse restricted versions of Loomis-
Whitney and dual Loomis-Whitney inequalities.

1. Introduction and notation

The classical Loomis-Whitney inequality [11] states that given a fixed orthonor-
mal basis {ei}ni=1, for any convex body K ⊆ R

n we have that

(1.1) |K| 6
n
∏

i=1

|Pe⊥
i
K| 1

n−1 ,

where | · | denotes the volume (i.e., the Lebesgue measure) in the corresponding
subspace and, for any k-dimensional linear subspace H ∈ Gn,k, PH denotes the
orthogonal projection onto H . Convex body is a compact convex set with non-
empty interior and the set of all convex bodies K ⊆ R

n will be denoted by Kn. The
barycentre of a convex body K ∈ R

n is the vector

bar(K) =
1

|K|

∫

K

x dx.

We call K centered if bar(K) = 0 and the set of all centered convex bodies will be
denoted by Kn

c . Finally, the set of all centrally symmetric convex bodies will be
denoted by Kn

0 .
In [12], Meyer proved the following dual inequality: For any convex bodyK ⊆ R

n

(1.2) |K| > (n!)
1

n−1

n
n

n−1

n
∏

i=1

|K ∩ e⊥i |
1

n−1 .
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2 D.ALONSO AND S. BRAZITIKOS

In [5], Campi, Gritzmann and Gronchi considered the following problem. Given
any convex body K ⊆ R

n, find the largest constant Λ(K) such that there exists an
orthonormal basis {wi}ni=1 for which the following inequality, reverse to the classical
Loomis-Whitney inequality (1.1), holds:

(1.3) |K|n−1
> Λ(K)

n
∏

i=1

|Pw⊥

i
K|.

In the aforementioned paper the authors were interested in finding the value of
Λ(n) := infK∈Kn Λ(K). They found the exact value of this constant in the planar
case and gave a lower bound for its value in any dimension. Subsequently, in [10],
Koldobsky, Saroglou and Zvavitch gave the right asymptotic estimate for the value

of the constant, of the order Λ(n)
1
n ≃ n− 1

2 . Here, and through the whole text, the
notation a ≃ b is used to denote the existence of two absolute constants c1, c2 > 0
such that c1b 6 a 6 c2b.

In [6], Feng, Huang and Li considered the dual problem. Given any centered

convex body K ⊆ R
n, find the best constant Λ̃(K) such that there exists an or-

thonormal basis {wi}ni=1 for which the following inequality, reverse to the dual
Loomis-Whitney inequality (1.2) holds:

(1.4) |K|n−1 6 Λ̃(K)

n
∏

i=1

|K ∩ w⊥
i |.

They proved that if K is a centrally symmetric convex body in R
n then Λ̃(K) 6

((n−1)!)n. In other words, given a centered convex body K ⊆ R
n, we are interested

in the value of

(1.5) Λ̃(K) = min
|K|n−1

∏n

i=1 |K ∩ w⊥
i |

,

where the minimum is taken over all the orthogonal bases {wi}ni=1 of R
n. Moreover,

we define

Λ̃(n) = sup
K∈Kn

c

Λ̃(K) and Λ̃0(n) = sup
K∈Kn

0

Λ̃(K),

where the supremum is taken over all centered convex bodies K in R
n and over all

centrally symmetric convex bodies respectively.
In this note, we describe the exact asymptotic behavior of Λ̃(n) given by the

following theorem. The precise definition of LK , the isotropic constant of K, will
be given in Section 2.

Theorem 1.1. For every centered convex body K ∈ Kn
c , we have that

Λ̃(K) 6
(

2
√
3LK

)n

.

Furthermore,
(√

2Ln

)n

6 Λ̃(n) 6
(

2
√
3Ln

)n

,

where Ln = maxK∈Kn LK , is the maximal isotropic constant.

Remark. Notice that the best known general upper bound for the isotropic constant

(see section 2) gives an estimate Λ̃(n) 6 (Cn
1
4 )n, improving the estimate Λ̃(n) 6

((n− 1)!)n. Moreover, if we assume that the hyperplane conjecture is true, we have

that Λ̃(n)
1
n ≃ 1.
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As a consequence we obtain that for every centrally symmetric planar convex
body K ∈ K2

0, we have that Λ̃(K) ≤ 1. This inequality was proved in [6], where
the equality cases were claimed to be characterized. Unfortunately, such character-
ization is not correct and, while it is true that Λ̃0(2) = 1, the equality cannot be
attained for any convex body (see Section 4).

Moreover, we prove the following general reverse inequality for sections of ar-
bitrary dimension. Before stating the theorem, we need a more general definition
for Λ̃(K) and Λ̃(n). Let m > 1 and let S = (S1, . . . , Sm) be a uniform cover of
[n] := {1, . . . , n} with weights (p1, . . . , pm), that is Sj ⊆ [n] for every 1 6 j 6 m

and for every 1 6 i 6 n
m
∑

j=1

pjχSj
(i) = 1.

For any basis {wi}ni=1 of Rn, let Hj = span{wk : k ∈ Sj}, dj = dimHj = |Sj |, and
p =

∑m

j=1 pj.
For every S, we are interested in the value of

Λ̃S(K) = min
|K|p−1

∏n

i=1 |K ∩H⊥
j |pj ,

where the minimum is taken over all the orthogonal bases {wi}ni=1 of R
n. Moreover,

let

Λ̃S(n) = sup
K∈Kn

c

Λ̃S(K),

where the supremum is taken over all centered convex bodies K in R
n. Then, we

have the following

Theorem 1.2. There exists an absolute constant C > 0, such that for every cen-
tered convex body K ∈ Kn

c for any uniform cover S = (S1, . . . , Sm) of [n] with
weights (p1, . . . , pm), we have that

Λ̃S(K) 6 (CLK)n.

Furthermore, there exist absolute constants c, C such that

(cLn)
n

∏m

j=1 L
pjdj

dj

6 Λ̃S(n) 6 (CLn)
n,

where Ld = maxK∈Kd LK is the maximal isotropic constant in R
d.

Remark. Again, if we assume that the hyperplane conjecture is true we have
Λ̃S(n)

1
n ≃ 1.

In [3], the following restricted Loomis-Whitney inequality was obtained; if S ⊆
[n] has cardinality |S| = d and (S1, . . . , Sm) form a uniform cover of S with the
same weights ( 1

k
, . . . , 1

k
), where m > k, then for every convex body K ⊆ R

n and
any orthogonal basis {ei}ni=1

|PH⊥K||K|mk −1 6

(

n− kd
m

n−d

)

m
k

(

n

d

)
m
k
−1

m
∏

j=1

|PH⊥

j
K| 1k .

where Hj = span{ek : k ∈ Sj} and H = span{ek : k ∈ S}. In particular, for every
convex body K ⊆ R

n and any d-dimensional subspace H ∈ Gn,d, we have that for
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any orthogonal basis {ei}di=1 of H

(1.6) |PH⊥K||K|d−1 6

(

n−1
n−d

)d

(

n

d

)d−1

d
∏

j=1

|Pe⊥
j
K|.

Dual restricted inequalities were also proved in [3]. We will also consider the prob-
lem of finding reverse restricted Loomis-Whitney inequalities and restricted dual
Loomis-Whitney inequalities. We will prove the following two results:

Theorem 1.3. Let K ∈ Kn be a convex body and let 2 6 d 6 n − 1. For any
H ∈ Gn,d there exists an orthonormal basis {wj}dj=1 of H such that if we denote

H = span{w1, . . . , wd} then we have that

|PH⊥K||K|d−1 >

(

n+d
n

)

(2n)d

d
∏

i=1

|Pw⊥

i
K|.

Remark. Notice that if d = 2 then the constant in Theorem 1.3 and the constant
in equation (1.6) are of the same order.

Theorem 1.4. There exists an absolute constant C such that for every centered
convex body K ∈ Kn

c and every H ∈ Gn,d there exists an orthonormal basis {wj}dj=1

of H such that

|K||K ∩H⊥|d−1 ≤ Cd(d−1)d
d
2

d
∏

j=1

|K ∩ (H⊥ ⊕ 〈wj〉)|.

The paper is organized as follows: In Section 2 we provide the preliminary
definitions and results that we use in order to prove our results. In Section 3
we prove the reverse dual Loomis-Whitney inequalities given by Theorem 1.1 and
Theorem 1.2. In Section 4 we study the situation in the centrally symmetric planar
case. Finally, in Section 5 we prove the restricted versions provided in Theorems
1.3 and 1.4.

2. Preliminaries

A convex body K ∈ Kn is called isotropic if |K| = 1, K is centered, and for
every θ ∈ Sn−1

∫

K

〈x, θ〉2dx = L2
K ,

where LK is a constant depending on K, but not on θ, which is called the isotropic
constant of K. Given any convex body K ⊆ R

n there exists an affine map a+ T ,
with a ∈ R

n and T ∈ GL(n) (unique up to orthogonal transformations), such that
a + TK is isotropic. The isotropic constant of K is then defined as the isotropic
constant of any of its isotropic images. Such an affine map is the solution of a
minimization problem, which allows to alternatively define LK in the following way

nL2
K = min

{

1

|K|1+ 2
n

∫

a+TK

|x|2 : a ∈ R
n, T ∈ GL(n)

}

.

It is well known that the Euclidean ball Bn
2 is the n-dimensional convex body

with the smallest isotropic constant and, as a consequence, there exists an absolute
constant c > 0 such that LK > c for every convex bodyK ⊆ R

n and any n ∈ N (see,
for instance, [4, Proposition 3.3.1]. However, it is still a major open problem (known
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as the slicing problem) whether there exists an absolute constant C > 0 such that
Ln := maxK∈Kn LK 6 C. This question was posed by Bourgain, who proved the

upper bound Ln 6 Cn
1
4 logn in [2]. This was improved to Ln 6 Cn

1
4 by Klartag

in [9] and it is the currently best known bound. In the planar case, it is known (see
[4, Theorem 3.5.7] and the results in [15]) that L2 = L∆2 = 1√

6 4√3
. If we restrict

ourselves to centrally symmetric convex bodies and denote Ln,0 := maxK∈Kn
0
LK ,

then L2,0 = LB2
∞

= 1√
12
. Here ∆n denotes the n-dimensional regular simplex and

Bn
∞ denotes the n-dimensional cube. These (and their affine images) are the only

convex bodies on which the maximums in Kn (and in Kn
0 ) are attained.

Given a centered convex body K ∈ Kn
c with |K| = 1 and p > 1, its Lp-centroid

body Zp(K) is defined by

hZp(K)(y) =

(
∫

K

|〈x, y〉|pdx
)

1
p

, y ∈ R
n,

where for any convex body L ∈ Kn, hL(y) = max{〈x, y〉 : x ∈ L} is the support
function of L. Notice that, by Hölder’s inequality, if 1 6 p 6 q then Zp(K) ⊆
Zq(K). Moreover, for any linear map T ∈ SL(n), with |detT | = 1, Zp(TK) =
TZp(K), and that K is isotropic if and only if Z2(K) = LKBn

2 . If K is not isotropic
and |K| = 1 then Z2(K) is an ellipsoid whose volume is |Z2(K)| = Ln

K |Bn
2 | (see, for

instance [4, Proposition 3.1.7]). In [8], Hensley proved that there exist two absolute
constants c1, c2 such that for every centered convex body K ∈ Kn

c with |K| = 1
and every θ ∈ Sn−1

(2.1)
c1

|K ∩ θ⊥| 6 hZ2(K)(θ) 6
c2

|K ∩ θ⊥| .

The value of these two constants are known to be (see [13, Corollaries 2.5 and 2.7]
and [7, Theorem 3]) c1 = 1

2
√
3
and c2(n) =

n√
2(n+1)(n+2)

≤ 1√
2
. Furthermore, there

is equality in the left-hand side inequality if and only if K is cylindrical in the
direction θ (i.e., K = K ∩ θ⊥ + [−x, x] for some x ∈ R

n) and there is equality in
the right hand-side inequality if and only if K is a double cone in the direction θ.

The latter equation shows that for any isotropic convex body and any θ ∈ Sn−1

|K ∩ θ⊥| ≃ 1

LK

.

More generally, in [13, Proposition 3.11] (see also [4, Proposition 5.1.15]) it was
proved that for any isotropic convex body K and any d-dimensional linear subspace
H ∈ Gn,d, there exists a d-dimensional convex body B(K,H) such that

(2.2) |K ∩H⊥| 1d ≃ LB(K,H)

LK

.

It was proved by Paouris (see [4, Theorem 5.1.14]) that there exist two absolute
constants c1, c2 such that for every centered convex body K ∈ Kn with |K| = 1
and every d-dimensional linear subspace H ∈ Gn,d

(2.3) c1 6 |K ∩H⊥| 1d |PHZd(K)| 1d 6 c2.

Given a convex body K ∈ Kn, its polar projection body Π∗K is the closed unit
ball of the norm given by

‖x‖Π∗K = |x||Px⊥K|,
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which is a centrally symmetric convex body. Equivalently, its radial function is
given by ρΠ∗K(θ) = 1

|P
θ⊥

K| , where for every convex body L ∈ Kn containing the

origin in its interior, its radial function is defined for every θ ∈ Sn−1 by ρL(θ) =
max{λ > 0 : λθ ∈ L}. It is well known that for any convex body K ∈ Kn, the
affinely invariant quantity |K|n−1|Π∗K| is maximized when K is an ellipsoid and
minimized when K is a simplex (see [14] and [16]). Thus, for every convex body
K ⊆ R

n
(

2n
n

)

nn
≤ |K|n−1|Π∗K| ≤

( |Bn
2 |

|Bn−1
2 |

)n

.

In [1, Proposition 5.2], it was proved that for any convex body K ∈ Kn and any
d-dimensional linear subspace H ∈ Gn,d

(2.4) |K|d−1|Π∗K ∩H | >
(

n+d
n

)

nd|PH⊥K| .

3. Proof of the reverse dual Loomis Whitney inequality

We begin this section by proving Theorem 1.1

Proof of Theorem 1.1. Let K be a centered convex body. We can assume without
loss of generality that |K| = 1. Let Z2(K) ⊆ R

n be the ellipsoid whose support
function is given by

hZ2(K)(w) =

(
∫

K

〈x,w〉2dx
)

1
2

for every w ∈ Sn−1. We have that |Z2(K)| = Ln
K |Bn

2 |. By (2.1) there exist two
absolute constants c1 = 1

2
√
3
, c2 = 1√

2
such that for every centered convex body

K ⊆ R
n with volume 1 and every w ∈ Sn−1

c1

|K ∩ w⊥| 6 hZ2(K)(w) 6
c2

|K ∩ w⊥| .

Therefore, taking {wi}ni=1 the orthonormal basis given by the principal axes of the
ellipsoid Z2(K) we have

n
∏

i=1

|K ∩w⊥
i | >

cn1
∏n

i=1 hZ2(K)(wi)
=

cn1 |Bn
2 |

|Z2(K)| =
cn1
Ln
K

,

which proves that

Λ̃(K) ≤ (CLK)n

with C = 1
c1

= 2
√
3. To conclude the proof of Theorem 1.1 we first notice that

from the above

Λ̃(n) 6 (2
√
3Ln)

n.

On the other hand, if we consider an isotropic convex body with isotropic constant
LK = Ln we have that for every orthonormal basis {wi} of Rn

cn1
Ln
K

6

n
∏

i=1

|K ∩ w⊥
i | 6

cn2
Ln
K

,

and, since LK = Ln,

Λ̃(n) > (cLn)
n,

with c = 1
c2

=
√
2. This concludes the proof. �
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Remark. The latter proof shows that for every isotropic convex body, Λ̃(K)
1
n ≃ LK .

We now move to the general case.

Proof of Theorem 1.2. Let m > 1 and let S = (S1, . . . , Sm) be a uniform cover of
[n] with weights (p1, . . . , pm). Let K be a centered convex body. We can assume
without loss of generality that |K| = 1. Let {wi}ni=1 be the orthonormal basis given
by the principal axes of the ellipsoid Z2(K), whose support function is given by

hZ2(K)(w) =

(
∫

K

〈x,w〉2dx
)

1
2

.

Let T ∈ GL(n) be the diagonal map with respect to the orthonormal basis {wi}ni=1

given by T (wi) = λiwi such that TK is isotropic. By (2.2), there exists an absolute
constant c1 such that for any 1 6 j 6 m there exists a dj-dimensional convex body
B(K,Hj), depending on K and Hj = span{wk : k ∈ Sj}, verifying

|K ∩H⊥
j | = |T−1T (K ∩H⊥

j )| =
∏

k 6∈Sj

1

λk

|TK ∩H⊥
j |

>

(

c1LB(K,Hj)

LK

)dj
∏

k 6∈Sj

1

λk

.

Note that

m
∑

j=1

pjdj = n, the m-tuple (Sc
1, . . . , S

c
m) forms a uniform cover of [n] with

weights (p′1, . . . , p
′
m), where p′i =

pi

p−1 , and
∏n

i=1 λi = |T | = 1 since |K| = |TK| = 1.

Combining the above and calling p =

n
∑

i=1

pi we get

m
∏

j=1

|K ∩H⊥
j |pj >

(

c1

LK

)n m
∏

j=1

(

LB(K,Hj)

)pjdj 1
∏

k 6∈Sj
λ
pj

k

=

(

c1

LK

)n
∏m

j=1

(

LB(K,Hj)

)pjdj

∏n

i=1 λ

∑
m
j=1 pjχSc

j
(i)

i

=

(

c1

LK

)n
∏m

j=1

(

LB(K,Hj)

)pjdj

∏n

i=1 λ
p−1
i

=
cn1

∏m

j=1

(

LB(K,Hj)

)pjdj

Ln
K

.

This means that

Λ̃S(K) 6
(LK)n

cn1
∏m

j=1(LB(K,Hj))
pjdj

.

Taking now the supremum over all orthonormal bases, and taking into account that
there exists a universal constant c̃ > 0 bounding from below the isotropic constant
of any convex body in any dimension, we get that

Λ̃S(K) 6 max
(LK)n

cn1
∏m

j=1(LB(K,Hj))
pjdj

6 (CLK)n,
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with C = 1
c̃c1

.

If K is isotropic then, by (2.2), there exists a universal constant c2 such that for
any orthonormal basis {wi}ni=1 and any uniform cover S = (S1, . . . , Sm) of [n] with
weights (p1, . . . , pm), we have that for every 1 6 j 6 m the dj-dimensional convex
bodies B(K,Hj) associated to K and Hj = span{wk : k ∈ Sj} verifies

|K ∩H⊥
j | 6

(

c2LB(K,Hj)

LK

)dj

,

and then for any orthonormal basis {wi}ni=1 and any uniform cover S = (S1, . . . , Sm)
of [n] with weights (p1, . . . , pm)

|K|p−1
>

(LK)n

cn2
∏m

j=1(LB(K,Hj))
pjdj

m
∏

j=1

|K ∩H⊥
j |pj .

Therefore, taking c = 1
c2

Λ̃S(K) > min
(cLK)n

∏m

j=1(LB(K,Hj))
pjdj

>
(cLK)n

∏m

j=1 L
pjdj

dj

,

where the minimum is taken over all the orthogonal basis {wi}ni=1 in R
n. Taking

the convex body with maximal isotropic constant in R
n, we get the reverse bound

for Λ̃S(n). �

Remark. Notice that if K is isotropic then one has that for any orthonormal basis
{wi}ni=1

(cLK)n
∏m

j=1(LB(K,Hj))
pjdj

6
|K|p−1

∏m

j=1 |K ∩H⊥
j |pj

6
(CLK)n

∏m

j=1(LB(K,Hj))
pjdj

,

where c, C are absolute constants and so

Λ̃S(K)
1
n ≃ min

LK

∏m

j=1(LB(K,Hj))
pjdj

n

,

where the minimum is taken over all orthonormal bases {wi}ni=1 in R
n.

4. The centrally symmetric planar case

In this section we will study the centrally symmetric planar case and prove the
following:

Proposition 4.1. The value of Λ̃0(2) is

Λ̃0(2) = 1.

However, there exists no centrally symmetric planar convex body K ∈ K2
0 such that

Λ̃(K) = 1.

In order to prove the proposition we will make use of the following lemma, which
shows that when K is a centrally symmetric planar box, one of the two orthogonal
vectors for which we obtain the minimum defining Λ̃(K) has to be the direction of
one of the diagonals.
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Lemma 4.1. Let K ∈ K2
0 be a centrally symmetric box (i.e. a centrally symmetric

orthogonal parallelepiped) with |K| = 1. Then

Λ̃(K) =
|K|

|K ∩ w⊥
1 ||K ∩ w⊥

2 |
=

l4

l4 + 1
< 1,

where w1 is the direction of a diagonal of K and w2 is orthogonal to w1 and l ≥ 1
is the length of the largest side of K.

Remark. If we do not assume |K| = 1, then l2 > 1 is the quotient of the largest
side and the shortest side of the box.

Proof. We can assume without loss of generality that the sides of K are parallel to
the coordinate axes. Let l denote the length of the vertical side of the box, which
we can assume to be the longest one. Then l > 1 and

K = conv

{(

1

2l
,
l

2

)

,

(

− 1

2l
,
l

2

)

,

(

1

2l
,− l

2

)

,

(

− 1

2l
,− l

2

)}

.

Let us take w⊥
2 = {(x, y) ∈ R

2 : y = ax, a ∈ R} a generic linear hyperplane and
w1 an orthogonal vector to w2. Thus, w

⊥
1 =

{

(x, y) ∈ R
2 : y = − 1

a
x
}

. Notice that

if a ∈
[

l2,∞
)

then w⊥
2 intersects with the boundary of K, ∂K, in the horizontal

sides at the points P1 =
(

l
2a ,

l
2

)

and −P1 and w⊥
1 in the vertical sides at the points

P2 =
(

1
2l ,− 1

2al

)

and −P2, while if a ∈
[

1
l2
, l2

]

both w⊥
1 , w

⊥
2 intersect ∂K in the

vertical sides, being w⊥
2 ∩ ∂K the points P ′

1 =
(

1
2l ,

a
2l

)

and −P ′
1, and w⊥

1 ∩ ∂K the

points P ′
2 =

(

1
2l ,− 1

2al

)

and −P ′
2.

Therefore, if a ∈
[

l2,∞
)

, we have that

|K ∩ w⊥
1 ||K ∩w⊥

2 | = 1 +
1

a2

and if a ∈
[

1
l2
, l2

]

|K ∩w⊥
1 ||K ∩ w⊥

2 | =
1

l2

(

a+
1

a

)

we have that |K ∩ w⊥
1 ||K ∩ w⊥

2 | is maximized in a ∈
[

1
l2
,∞

)

for the values a = l2

and a = 1
l2
, which correspond to the cases in which either w⊥

2 or w⊥
1 passes through

one of the vertices of the box. If this is the case,

|K ∩ w⊥
1 ||K ∩ w⊥

2 | =
l4 + 1

l4
.

Since K is symmetric with respect to the coordinate axes, we have that for any
a ∈

(

−∞, 1
l2

)

there exists another pair of orthogonal lines w̃⊥
1 , w̃

⊥
2 described as

before by a parameter a1 ∈
[

1
l2
,∞

)

for which

|K ∩ w⊥
1 ||K ∩w⊥

2 | = |K ∩ w̃⊥
1 ||K ∩ w̃⊥

2 |.
Since in the case where w1, w2 are the coordinate vectors we have |K∩w⊥

1 ||K∩w⊥
2 | =

1, it follows that

max |K ∩ w⊥
1 ||K ∩ w⊥

2 | =
l4 + 1

l4
,

where the maximum is taken over all the pairs of orthogonal vectors in R
2, and it

is attained when one of the two vectors is the direction of the diagonal of K. �

Let us now prove Proposition 4.1:
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Proof of Proposition 4.1. We argue like in the proof of Theorem 1.1. For any K ∈
K2

0 with |K| = 1, if w1, w2 are the principal axes of the inertia ellipsoid Z2(K) of
K, and taking into account that L2,0 = 1√

12
, we have

(4.1) Λ̃(K) 6
|K|

|K ∩ w⊥
1 ||K ∩ w⊥

2 |
6 12L2

K 6 1.

Besides, by Lemma 4.1, we have that

Λ̃0(2) > lim
l→∞

l4

l4 + 1
= 1.

Therefore, Λ̃0(2) = 1. If there exists a convex bodyK (we can assume that |K| = 1)

such that Λ̃(K) = 1 then for such K all the inequalities in (4.1) are equalities. In
particular, if we have equality in the second inequality, K is cylindrical both with
respect to w1 and w2, which implies that K is a box. But in this case, the Lemma
4.1 gives Λ̃(K) < 1. �

Remark. In [6], the authors claimed that if K ∈ K2
0, then Λ̃(K) = 1 if and only

if K is a parallelogram with one of its diagonals perpendicular to the edges. The
following example shows that such characterization was not correct. Let

K = conv

{(

0,
1

2

)

,

(

1,
1

2

)

,

(

0,−1

2

)

,

(

−1,−1

2

)}

,

which is a symmetric parallelogram with the diagonal from
(

0, 12
)

to
(

0,− 1
2

)

per-

pendicular to the edge from
(

0, 1
2

)

to
(

1, 12
)

. Notice that |K| = 1 and if we take w1

in the direction of the diagonal from
(

1, 12
)

to
(

−1,− 1
2

)

, we have that w⊥
1 inter-

sects the boundary of K at the points P =
(

− 1
6 ,

1
3

)

and −P and then, taking w2

orthogonal to w1 we have that

|K|
|K ∩ w⊥

1 ||K ∩ w⊥
2 |

=
3

5
< 1.

Thus, it is not true that Λ̃(K) = 1.

5. Restricted Versions

In this section we will prove reverse versions of restricted Loomis-Whitney and
restricted dual Loomis-Whitney inequalities. We start proving Theorem 1.3.

Proof of Theorem 1.3. Let K ∈ Kn, H ∈ Gn,d and let Π∗K be the polar projection
body ofK. Since Π∗K is a centrally symmetric convex body, Π∗K∩H is a centrally
symmetric convex body in H , using [5, Lemma 5.5], there exists a rectangular cross-
polytope C contained in Π∗K ∩H such that

|Π∗K ∩H | 6 d!|C|.
That is, there exist d orthogonal vectors {wi}di=1 ∈ Sn−1 ∩H such that

C = conv{±ρΠ∗K(wi)wi}di=1 ⊆ Π∗K ∩H

and

|Π∗K ∩H | 6 d!|C| =
d
∏

i=1

2ρΠ∗K(wi) =
2d

∏d

i=1 |Pw⊥

i
K|

.
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Since, by (2.4), we have

|Π∗K ∩H | >
(

n+d

n

)

nd|K|d−1|PH⊥K| ,

we obtain

|PH⊥K||K|d−1 >

(

n+d
n

)

(2n)d

d
∏

i=1

|Pw⊥

i
K|.

�

Let us now prove the restricted dual Loomis-Whitney inequality given in Theo-
rem 1.4.

Proof of Theorem 1.4. Let K ∈ Kn
c be a centered convex body. We can assume,

without loss of generality, that |K| = 1. If H ∈ Gn,d, by the reverse Loomis-
Whitney inequality (1.3) applied to the convex body PH(Zd(K)), with the value of
the constant estimated in [10], there exists an absolute constant c and an orthonor-
mal basis {wj}dj=1 of H such that

|PH(Zd(K))|d−1 >
1

(cd)
d
2

d
∏

j=1

|PH∩w⊥

j
Zd(K)|.

Using (2.3), we get that there exist two absolute constants c1, c2 such that

cd1 6 |K ∩H⊥||PHZd(K)| 6 cd2.

Therefore, for every 1 6 j 6 d

cd−1
1 6 |K ∩ (H⊥ ⊕ 〈wj〉)||PH∩w⊥

j
Zd−1(K)| 6 cd−1

2 .

Combining the above with the fact that Zd−1(K) ⊆ Zd(K), it follows that

c
d(d−1)
2

|K ∩H⊥|d−1
>

c
d(d−1)
1

(cd)
d
2

1
∏d

j=1 |K ∩ (H⊥ ⊕ 〈wj〉)|
,

which gives the result. �
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