Connections between classical and quantum information theory

George Androulakis

University of South Carolina

7th MATH@NTUA Summer School in honor of Spiros Argyros

Outline

- 1 How to quantify classical information?
- 2 How to quantify quantum information?
- 3 How to distinguish two classical states?
- 4 How to distinguish two quantum states?
- 5 More classical-quantum connections by Nussbaum and Szkoła
- 6 Classical divergences
- 🕖 Quantum divergences
- 8 An extension of the Nussbaum-Szkoła result

How to quantify classical information?

Definition

A classical state is a probability distribution P on a finite set \mathcal{X} of symbols.

How to quantify classical information?

Definition

A classical state is a probability distribution P on a finite set \mathcal{X} of symbols.

Question: How much information is contained in a classical state?

An i.i.d. classical source created from a classical state

From the classical state P create an **independent and identically distributed (i.i.d.) classical source** (or **stochastic process**) $(X_n)_{n \in \mathbb{N}}$ such that

- the random variables (r.v.) X_n 's are independent, and
- the probability distribution of each X_n is equal to P.

A binary block encoding-decoding of the i.i.d. classical source generated by the classical state

A binary block encoding of the classical source $(X_k)_{k \in \mathbb{N}}$ each having range \mathcal{X} , is a family of maps

$$e: \mathcal{X}^k \to \{0,1\}^n.$$

A binary block encoding-decoding of the i.i.d. classical source generated by the classical state

A binary block encoding of the classical source $(X_k)_{k \in \mathbb{N}}$ each having range \mathcal{X} , is a family of maps

$$e: \mathcal{X}^k \to \{0,1\}^n.$$

A **binary block decoding** of the classical source $(X_k)_{k \in \mathbb{N}}$ each having range \mathcal{X} is a family of maps

$$d: \{0,1\}^n \to \mathcal{X}^k.$$

Probability of error of an encoding-decoding

The **probability of error** of the encoding-decoding (e, d) is defined by

 $\mathsf{Err}(e,d) = \mathsf{P}^k\{(x_1,\ldots,x_k) \in \mathcal{X}^k : d \circ e(x_1,\ldots,x_k) \neq (x_1,\ldots,x_k)\}.$

Probability of error of an encoding-decoding

The **probability of error** of the encoding-decoding (e, d) is defined by

$$\mathsf{Err}(e,d) = P^k\{(x_1,\ldots,x_k) \in \mathcal{X}^k : d \circ e(x_1,\ldots,x_k) \neq (x_1,\ldots,x_k)\}.$$

Goal: Given $\varepsilon \in (0,1)$ find an encoding-decoding (e, d) such that

- The fraction $\frac{n}{k}$ is as small as possible, and
- $\operatorname{Err}(e, d) \leq \varepsilon$.

Asymptotic minimum number of bits per symbol

$$\begin{split} n(k,\varepsilon) &:= \min \big\{ n \, | \, \exists e : \mathcal{X}^k \to \{0,1\}^n \text{ and } d : \{0,1\}^n \to \mathcal{X}^k \\ \text{ such that } \operatorname{Err}(e,d) \leq \varepsilon \big\}. \end{split}$$

Asymptotic minimum number of bits per symbol

$$egin{aligned} & n(k,arepsilon) := \minig\{n \,|\, \exists e: \mathcal{X}^k o \{0,1\}^n ext{ and } d: \{0,1\}^n o \mathcal{X}^k \ & ext{ such that } \operatorname{Err}(e,d) \leq arepsilonig\}. \end{aligned}$$

 $\frac{n(k,\varepsilon)}{k} = \text{minimum number of bits per symbol needed in order to block}$ encode k many i.i.d. symbols emitted from the classical source, if the encoding-decoding error stays upper bounded by ε . Asymptotic minimum number of bits per symbol

$$egin{aligned} & n(k,arepsilon) := \minig\{n \,|\, \exists e: \mathcal{X}^k o \{0,1\}^n ext{ and } d: \{0,1\}^n o \mathcal{X}^k \ & ext{ such that } \operatorname{Err}(e,d) \leq arepsilonig\}. \end{aligned}$$

 $\frac{n(k,\varepsilon)}{k} = \text{minimum number of bits per symbol needed in order to block}$ encode k many i.i.d. symbols emitted from the classical source, if the encoding-decoding error stays upper bounded by ε .

 $\lim_{k \to \infty} \frac{n(k,\varepsilon)}{k} = \text{asymptotic minimum number of bits per symbol needed to}$ block encode i.i.d. symbols emitted from the classical source, if the encoding-decoding error stays upper bounded by ε .

Information contained in a classical state

Definition

Information contained in a classical state := Asymptotic minimum number of bits per symbol needed for the block encoding of the corresponding i.i.d. classical source, if the probability of error is arbitrarily small

$$=\lim_{arepsilon
ightarrow 0}\lim_{k
ightarrow\infty}rac{n(k,arepsilon)}{k}.$$

Definition (The entropy of a classical state P)

$$H(P) = -\sum_i p_i \log_2 p_i.$$

Definition (The entropy of a classical state P)

$$H(P) = -\sum_i p_i \log_2 p_i.$$

Theorem (Classical Noiseless Coding Theorem, C. Shannon 1948) The information contained in a classical state P is equal to H(P),

Definition (The entropy of a classical state P)

$$H(P) = -\sum_i p_i \log_2 p_i.$$

Theorem (Classical Noiseless Coding Theorem, C. Shannon 1948) The information contained in a classical state P is equal to H(P), i.e.

$$\lim_{\varepsilon\to 0}\lim_{k\to\infty}\frac{n(k,\varepsilon)}{k}=H(P),$$

Definition (The entropy of a classical state P)

$$H(P) = -\sum_i p_i \log_2 p_i.$$

Theorem (Classical Noiseless Coding Theorem, C. Shannon 1948) The information contained in a classical state P is equal to H(P), i.e.

$$\lim_{\varepsilon\to 0}\lim_{k\to\infty}\frac{n(k,\varepsilon)}{k}=H(P),$$

i.e. Achievability: For every $\varepsilon > 0$ and $k \in \mathbb{N}$ there exists a block encoding-decoding of k many emissions of the classical source generated by P into kH(P) many bits with probability or error at most ε . Converse: If fewer than kH(P) bits are used to encode k many emissions of the classical source generated by P as $k \to \infty$, then the probability of error will stay bounded from below by a positive number.

Main ingredient of the proof

Define the **typical sets**:

$$T_{k,\delta} = \left\{ (x_{i_1},\ldots,x_{i_k}) \in \mathcal{X}^k : 2^{-k(H(P)+\delta)} \le p_{i_1}\cdots p_{i_k} \le 2^{-k(H(P)-\delta)} \right\}.$$

Main ingredient of the proof

Define the typical sets:

$$T_{k,\delta} = \left\{ (x_{i_1},\ldots,x_{i_k}) \in \mathcal{X}^k : 2^{-k(H(P)+\delta)} \le p_{i_1}\cdots p_{i_k} \le 2^{-k(H(P)-\delta)} \right\}.$$

Then,

•
$$P^k(T_{k,\delta}) \to 1$$
 as $k \to \infty$.

Main ingredient of the proof

Define the typical sets:

$$T_{k,\delta} = \left\{ (x_{i_1},\ldots,x_{i_k}) \in \mathcal{X}^k : 2^{-k(H(P)+\delta)} \le p_{i_1}\cdots p_{i_k} \le 2^{-k(H(P)-\delta)} \right\}.$$

Then,

• $P^k(T_{k,\delta}) \to 1 \text{ as } k \to \infty.$ • $\#(T_{k,\delta}) \le 2^{k(H(P)+\delta)}.$

How do you quantify quantum information?

Definition (Dirac Notation)

Ket denotes a (column) vector
$$|y\rangle = \begin{pmatrix} y_1 \\ \vdots \\ y_D \end{pmatrix} \in \mathbb{C}^D$$
. **Bra** denotes the complex conjugate and transpose of the ket, i.e. $\langle y| = (\overline{y_1} \cdots \overline{y_D})$.

Definition

A quantum state ρ contains a probability distribution on a finite set of rank-1 projections, i.e. $\{p_i, |x_i\rangle\langle x_i|\}_{i=1}^{\ell}$, where $|x_i\rangle$'s are normalized (not necessarily linearly independent) vectors in the Hilbert space \mathbb{C}^D . Thus,

$$\rho = \sum_{i=1}^{\ell} p_i |x_i\rangle \langle x_i|.$$

Question: How much information is contained in a quantum state?

An i.i.d. quantum source created from a quantum state

From the quantum state $\rho = \sum_{i=1}^{\ell} p_i |x_i\rangle \langle x_i|$ create an i.i.d. **quantum** source $(X_k)_{k \in \mathbb{N}}$ such that

- the X_k 's are independent, and
- X_k takes the value $|x_i\rangle\langle x_i|$ with probability p_i for all $i = 1, ..., \ell$ and $k \in \mathbb{N}$.

Combined emissions from the quantum source

Definition (Tensor product of vectors)

$$|y\rangle \otimes |z\rangle = |yz\rangle = (y_1, \cdots, y_D)^{\mathsf{T}} \otimes (z_1, \cdots, z_D)^{\mathsf{T}}$$
$$= (y_1z_1, \cdots, y_1z_D, y_2z_1, \cdots, y_2z_D, \cdots, y_Dz_D)^{\mathsf{T}} \in \mathbb{C}^{D^2}$$

13/41

Combined emissions from the quantum source

Definition (Tensor product of vectors)

$$|y\rangle \otimes |z\rangle = |yz\rangle = (y_1, \cdots, y_D)^{\mathsf{T}} \otimes (z_1, \cdots, z_D)^{\mathsf{T}}$$

Definition (Tensor product of matrices)

$$(a_{i,j})_{i,j} \otimes (b_{k,l})_{k,l} = (a_{i,j}B)_{i,j} = \begin{pmatrix} a_{1,1}b_{1,1} & a_{1,1}b_{1,2} & \cdots \\ a_{1,1}b_{2,1} & a_{1,1}b_{2,2} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

Combined emissions from the quantum source

Definition (Tensor product of vectors)

$$|y\rangle \otimes |z\rangle = |yz\rangle = (y_1, \cdots, y_D)^{\mathsf{T}} \otimes (z_1, \cdots, z_D)^{\mathsf{T}}$$

= $(y_1z_1, \cdots, y_1z_D, y_2z_1, \cdots, y_2z_D, \cdots, y_Dz_D)^{\mathsf{T}} \in \mathbb{C}^D$

Definition (Tensor product of matrices)

$$(a_{i,j})_{i,j} \otimes (b_{k,l})_{k,l} = (a_{i,j}B)_{i,j} = \begin{pmatrix} a_{1,1}b_{1,1} & a_{1,1}b_{1,2} & \cdots \\ a_{1,1}b_{2,1} & a_{1,1}b_{2,2} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

Definition (Tensor product of rank-1 projections)

Total emission from the quantum source after k-many emissions: $|x_{i_1}\rangle\langle x_{i_1}| \otimes \cdots \otimes |x_{i_k}\rangle\langle x_{i_k}| = |x_{i_1}\cdots x_{i_k}\rangle\langle x_{i_1}\cdots x_{i_k}|$, (it is a $D^k \times D^k$ matrix).

A qubit block encoding-decoding of the i.i.d. quantum source generated by the quantum state ρ

A **qubit block encoding** of the quantum source $(X_k)_{k \in \mathbb{N}}$ is a family of maps

$$e:\{\left|x_{1}\right\rangle\!\!\left\langle x_{1}\right|,\ldots,\left|x_{\ell}\right\rangle\!\!\left\langle x_{\ell}\right|\}^{\otimes k}\rightarrow\{\left|0\right\rangle\!\!\left\langle 0\right|,\left|1\right\rangle\!\!\left\langle 1\right|\}^{\otimes n}$$

which extend linearly from Span $(\{|x_1\rangle\langle x_1|, \ldots, |x_\ell\rangle\langle x_\ell|\}^{\otimes k})$ to \mathbb{C}^{2^n} . **Notation:** $|0\rangle := \begin{pmatrix} 1\\ 0 \end{pmatrix} \in \mathbb{C}^2$ and $|1\rangle := \begin{pmatrix} 0\\ 1 \end{pmatrix} \in \mathbb{C}^2$ are called **qubits**.

A qubit block encoding-decoding of the i.i.d. quantum source generated by the quantum state ρ

A **qubit block encoding** of the quantum source $(X_k)_{k \in \mathbb{N}}$ is a family of maps

$$e:\{\left|x_{1}\right\rangle\!\!\left\langle x_{1}\right|,\ldots,\left|x_{\ell}\right\rangle\!\!\left\langle x_{\ell}\right|\}^{\otimes k}\rightarrow\{\left|0\right\rangle\!\!\left\langle 0\right|,\left|1\right\rangle\!\!\left\langle 1\right|\}^{\otimes n}$$

which extend linearly from Span $(\{|x_1\rangle\langle x_1|, \ldots, |x_\ell\rangle\langle x_\ell|\}^{\otimes k})$ to \mathbb{C}^{2^n} . **Notation:** $|0\rangle := \begin{pmatrix} 1\\ 0 \end{pmatrix} \in \mathbb{C}^2$ and $|1\rangle := \begin{pmatrix} 0\\ 1 \end{pmatrix} \in \mathbb{C}^2$ are called **qubits**.

A **qubit block decoding** of the quantum source $(X_k)_{k \in \mathbb{N}}$ is a family of maps

$$d:\{|0\rangle\!\langle 0|,|1\rangle\!\langle 1|\}^{\otimes n} \to \{|x_1\rangle\!\langle x_1|,\ldots,|x_\ell\rangle\!\langle x_\ell|\}^{\otimes k}$$

which extend linearly from Span ({ $|0\rangle\langle 0|, |1\rangle\langle 1|$ }^{$\otimes n$}) to Span ({ $|x_1\rangle\langle x_1|, \ldots, |x_\ell\rangle\langle x_\ell|$ }^{$\otimes k$}).

Probability of error of an encoding-decoding

The probability of error of the encoding-decoding (e, d) is defined by

$$\mathsf{Err}(e,d) = 1 - \sum_{i_1,\ldots,i_k} p_{i_1} \cdots p_{i_k} \mathcal{F}\left(|x_{i_1} \cdots x_{i_k}\rangle \langle x_{i_1} \cdots x_{i_k}|, d \circ e(|x_{i_1} \cdots x_{i_k}\rangle \langle x_{i_1} \cdots x_{i_k}|\right)$$

where the fidelity between two rank-1 projections is defined as

$$F(|u\rangle\langle u|,|v\rangle\langle v|) = |\langle u|v\rangle|^2.$$

Probability of error of an encoding-decoding

The probability of error of the encoding-decoding (e, d) is defined by

$$\mathsf{Err}(e,d) = 1 - \sum_{i_1,\ldots,i_k} p_{i_1} \cdots p_{i_k} \mathcal{F}\left(|x_{i_1} \cdots x_{i_k}\rangle \langle x_{i_1} \cdots x_{i_k}|, d \circ e(|x_{i_1} \cdots x_{i_k}\rangle \langle x_{i_1} \cdots x_{i_k}|\right)$$

where the fidelity between two rank-1 projections is defined as

$$F(|u\rangle\langle u|,|v\rangle\langle v|) = |\langle u|v\rangle|^2.$$

Goal: Given $\varepsilon \in (0,1)$ find an encoding-decoding (e, d) such that

- The fraction $\frac{n}{k}$ is as small as possible, and
- $\operatorname{Err}(e, d) \leq \varepsilon$.

Asymptotic minimum number of qubits/symbol

$$n(k,\varepsilon) := \min \left\{ n \, | \, \exists e : \{ |x_1\rangle\langle x_1|, \dots, |x_\ell\rangle\langle x_\ell| \}^{\otimes k} \to \{ |0\rangle\langle 0|, |1\rangle\langle 1| \}^{\otimes n} \\ \text{and } d : \{ |0\rangle\langle 0|, |1\rangle\langle 1| \}^{\otimes n} \to \{ |x_1\rangle\langle x_1|, \dots, |x_\ell\rangle\langle x_\ell| \}^{\otimes k} \\ \text{such that } \operatorname{Err}(e,d) \le \varepsilon \}.$$

Asymptotic minimum number of qubits/symbol

$$\begin{split} n(k,\varepsilon) &:= \min \big\{ n \, | \, \exists e : \{ |x_1\rangle\!\langle x_1|, \dots, |x_\ell\rangle\!\langle x_\ell| \}^{\otimes k} \to \{ |0\rangle\!\langle 0|, |1\rangle\!\langle 1| \}^{\otimes n} \\ & \text{and } d : \{ |0\rangle\!\langle 0|, |1\rangle\!\langle 1| \}^{\otimes n} \to \{ |x_1\rangle\!\langle x_1|, \dots, |x_\ell\rangle\!\langle x_\ell| \}^{\otimes k} \\ & \text{such that } \operatorname{Err}(e, d) \leq \varepsilon \big\}. \end{split}$$

 $\frac{n(k,\varepsilon)}{k} = \text{minimum number of qubits per symbol needed for encoding}$ k many i.i.d. symbols emitted from the quantum source,if the encoding-decoding error stays upper bounded by ε .

Asymptotic minimum number of qubits/symbol

$$\begin{split} n(k,\varepsilon) &:= \min \big\{ n \, | \, \exists e : \{ |x_1\rangle\!\langle x_1|, \dots, |x_\ell\rangle\!\langle x_\ell| \}^{\otimes k} \to \{ |0\rangle\!\langle 0|, |1\rangle\!\langle 1| \}^{\otimes n} \\ & \text{and } d : \{ |0\rangle\!\langle 0|, |1\rangle\!\langle 1| \}^{\otimes n} \to \{ |x_1\rangle\!\langle x_1|, \dots, |x_\ell\rangle\!\langle x_\ell| \}^{\otimes k} \\ & \text{such that } \mathsf{Err}(e,d) \leq \varepsilon \big\}. \end{split}$$

 $\frac{n(k,\varepsilon)}{k} = \text{minimum number of qubits per symbol needed for encoding}$ k many i.i.d. symbols emitted from the quantum source,if the encoding-decoding error stays upper bounded by ε .

 $\lim_{k \to \infty} \frac{n(k,\varepsilon)}{k} = \text{asymptotic minimum number of qubits per symbol needed for}$ encoding i.i.d. symbols emitted from the quantum source, if the encoding-decoding error stays upper bounded by ε .

Information contained in a quantum state

Definition

Information contained in a quantum state := Asymptotic minimum number of qubits per symbol needed for a block encoding of the corresponding i.i.d. quantum source, while the probability of error is arbitrarily small

$$= \lim_{\varepsilon \to 0} \lim_{k \to \infty} \frac{n(k,\varepsilon)}{k}.$$

Quantum Noiseless Coding Theorem

Definition

The quantum entropy $S(\rho)$ of a quantum state ρ is given by

 $S(\rho) = -Tr(\rho \log_2 \rho).$

Quantum Noiseless Coding Theorem

Definition

The quantum entropy $S(\rho)$ of a quantum state ρ is given by

 $S(\rho) = -Tr(\rho \log_2 \rho).$

Theorem (Quantum Noiseless Coding Theorem, B. Schumacher 1995) The information contained in a quantum state ρ is equal to $S(\rho)$,

Quantum Noiseless Coding Theorem

Definition

The quantum entropy $S(\rho)$ of a quantum state ρ is given by

$$S(\rho) = -Tr(\rho \log_2 \rho).$$

Theorem (Quantum Noiseless Coding Theorem, B. Schumacher 1995) The information contained in a quantum state ρ is equal to $S(\rho)$, i.e.

$$\lim_{\varepsilon\to 0}\lim_{k\to\infty}\frac{n(k,\varepsilon)}{k}=S(\rho).$$
Quantum Noiseless Coding Theorem

Definition

The quantum entropy $S(\rho)$ of a quantum state ρ is given by

$$S(\rho) = -\operatorname{Tr}(\rho \log_2 \rho).$$

Theorem (Quantum Noiseless Coding Theorem, B. Schumacher 1995) The information contained in a quantum state ρ is equal to $S(\rho)$, i.e.

$$\lim_{\varepsilon\to 0}\lim_{k\to\infty}\frac{n(k,\varepsilon)}{k}=S(\rho).$$

i.e. Achievability: For every $\varepsilon > 0$ and $k \in \mathbb{N}$ there exists a block encoding of k many emissions of the quantum source generated by ρ into $kS(\rho)$ many qubits with probability or error at most ε . Converse: If fewer than $kS(\rho)$ qubits are used to encode k many symbols emitted by the quantum source generated by ρ , as $k \to \infty$, then the probability of error will stay bounded below by a positive number. George Androulakis (Univ. of South Carolina) Classical-Quantum Information Theory July 3, 2024 18 / 41

Define the typical sets:

$$T_{k,\delta} = \left\{ |x_{i_1},\ldots,x_{i_k}\rangle\langle x_{i_1},\ldots,x_{i_k}| : 2^{-k(\mathcal{S}(\rho)+\delta)} \le p_{i_1}\cdots p_{i_k} \le 2^{-k(\mathcal{S}(\rho)-\delta)} \right\}$$

and

 $\begin{aligned} \Pi_{k,\delta} &= \text{the orthogonal projection to the span of } |x_{i_1}\cdots x_{i_k}\rangle \text{'s} \\ & \text{for all } |x_{i_1}\cdots x_{i_k}\rangle\!\langle x_{i_1}\cdots x_{i_k}| \in T_{k,\delta}. \end{aligned}$

Define the typical sets:

$$T_{k,\delta} = \left\{ |x_{i_1},\ldots,x_{i_k}\rangle\langle x_{i_1},\ldots,x_{i_k}| : 2^{-k(\mathcal{S}(\rho)+\delta)} \le p_{i_1}\cdots p_{i_k} \le 2^{-k(\mathcal{S}(\rho)-\delta)} \right\}$$

and

 $\begin{aligned} \Pi_{k,\delta} &= \text{the orthogonal projection to the span of } |x_{i_1} \cdots x_{i_k}\rangle \text{'s} \\ & \text{for all } |x_{i_1} \cdots x_{i_k}\rangle \langle x_{i_1} \cdots x_{i_k}| \in T_{k,\delta}. \end{aligned}$

Then,

• Tr
$$(\Pi_{k,\delta}\rho^{\otimes k}) \to 1$$
 as $k \to \infty$.

Define the typical sets:

$$T_{k,\delta} = \left\{ |x_{i_1},\ldots,x_{i_k}\rangle\langle x_{i_1},\ldots,x_{i_k}| : 2^{-k(\mathcal{S}(\rho)+\delta)} \le p_{i_1}\cdots p_{i_k} \le 2^{-k(\mathcal{S}(\rho)-\delta)} \right\}$$

and

 $\begin{aligned} \Pi_{k,\delta} &= \text{the orthogonal projection to the span of } |x_{i_1} \cdots x_{i_k}\rangle \text{'s} \\ & \text{for all } |x_{i_1} \cdots x_{i_k}\rangle \langle x_{i_1} \cdots x_{i_k}| \in T_{k,\delta}. \end{aligned}$

Then,

•
$$\operatorname{Tr}(\Pi_{k,\delta}\rho^{\otimes k}) \to 1 \text{ as } k \to \infty.$$

• $\dim(\Pi_{k,\delta}) \leq 2^{k(S(P)+\delta)}.$

How to distinguish two classical states?

Consider two known classical states P, Q. You are presented with an n many i.i.d. draws of a random variable X such that either $X \sim P$ or $X \sim Q$, and you need to decide the probability distribution of X.

Assume that the random variable X takes values in a set \mathcal{X} . You choose a subset A_n of \mathcal{X}^n which aligns with P^n . If the *n* draws that you are presented with belong to A_n , then you decide that $X \sim P$. Otherwise, you decide that $X \sim Q$.

As in the previous page, consider two classical states P, Q and a random variable X such that $X \sim P$ or $X \sim Q$. We are presented with n many i.i.d. draws of X and we would like to compute the smallest probability of error while trying to figure out the distribution of X.

As in the previous page, consider two classical states P, Q and a random variable X such that $X \sim P$ or $X \sim Q$. We are presented with n many i.i.d. draws of X and we would like to compute the smallest probability of error while trying to figure out the distribution of X.

There are two types of errors:

- Type I error: $X \sim P$, but we erroneously decide that $X \sim Q$.
- Type II error: $X \sim Q$, but we erroneously decide that $X \sim P$.

As in the previous page, consider two classical states P, Q and a random variable X such that $X \sim P$ or $X \sim Q$. We are presented with n many i.i.d. draws of X and we would like to compute the smallest probability of error while trying to figure out the distribution of X.

There are two types of errors:

- Type I error: $X \sim P$, but we erroneously decide that $X \sim Q$.
- Type II error: $X \sim Q$, but we erroneously decide that $X \sim P$.

Let $\varepsilon > 0$. Consider all decision strategies that satisfy $\mathbb{P}(\text{Type I error}) \leq \varepsilon$. **Goal:** Among all these decision strategies compute inf $\mathbb{P}(\text{Type II error})$.

As in the previous page, consider two classical states P, Q and a random variable X such that $X \sim P$ or $X \sim Q$. We are presented with n many i.i.d. draws of X and we would like to compute the smallest probability of error while trying to figure out the distribution of X.

There are two types of errors:

- Type I error: $X \sim P$, but we erroneously decide that $X \sim Q$.
- **Type II error:** $X \sim Q$, but we erroneously decide that $X \sim P$.

Let $\varepsilon > 0$. Consider all decision strategies that satisfy $\mathbb{P}(\text{Type I error}) \leq \varepsilon$. **Goal:** Among all these decision strategies compute inf $\mathbb{P}(\text{Type II error})$.

Let ran $(X) = \mathcal{X}$. A **decision strategy** is a subset A_n of \mathcal{X}^n such that when the sequence of *n* draws of *X* belongs to A_n , then we decide that $X \sim P$; otherwise we decide that $X \sim Q$.

As in the previous page, consider two classical states P, Q and a random variable X such that $X \sim P$ or $X \sim Q$. We are presented with n many i.i.d. draws of X and we would like to compute the smallest probability of error while trying to figure out the distribution of X.

There are two types of errors:

- Type I error: $X \sim P$, but we erroneously decide that $X \sim Q$.
- Type II error: $X \sim Q$, but we erroneously decide that $X \sim P$.

Let $\varepsilon > 0$. Consider all decision strategies that satisfy $\mathbb{P}(\text{Type I error}) \leq \varepsilon$. **Goal:** Among all these decision strategies compute inf $\mathbb{P}(\text{Type II error})$.

Let ran $(X) = \mathcal{X}$. A **decision strategy** is a subset A_n of \mathcal{X}^n such that when the sequence of *n* draws of *X* belongs to A_n , then we decide that $X \sim P$; otherwise we decide that $X \sim Q$.

 $\mathbb{P}(\text{Type I error}) = P^n(\mathcal{X}^n \setminus A_n), \mathbb{P}(\text{Type II error}) = Q^n(A_n).$

The Question

Question

Compute the smallest "average" probability of Type II error for the asymmetric classical hypothesis testing, i.e.

$$\lim_{\varepsilon\to 0}\lim_{n\to\infty}\frac{1}{n}\log_2\inf_{\substack{A_n\subseteq \mathcal{X}^n,\\P^n(\mathcal{X}^n\setminus A_n)\leq\varepsilon}}Q^n(A_n).$$

Stein's Lemma

Definition (Kullback-Leibler Divergence (1951))

$$D(P||Q) = \begin{cases} \sum_{i} P(i) \log_2 \frac{P(i)}{Q(i)} & \text{if } P \ll Q \\ \infty & \text{otherwise} \end{cases}$$

Stein's Lemma

Definition (Kullback-Leibler Divergence (1951))

$$D(P||Q) = \begin{cases} \sum_{i} P(i) \log_2 \frac{P(i)}{Q(i)} & \text{if } P \ll Q \\ \infty & \text{otherwise} \end{cases}$$

Theorem ("Stein's Lemma", R. Blahut (\leq) (1974), T.S. Han, K. Kobayashi (\geq) (1989))

Let P, Q be two probability distributions on a set \mathcal{X} , and you are presented with a sequence of i.i.d. draws of a r.v. X such that $X \sim P$ or $X \sim Q$ and the range of X is equal to \mathcal{X} , then

$$\lim_{\varepsilon \to 0} \lim_{n \to \infty} \frac{1}{n} \log_2 \inf_{\substack{A_n \subseteq \mathcal{X}^n, \\ P^n(\mathcal{X}^n \setminus A_n) \le \varepsilon}} Q^n(A_n) = -D(P||Q).$$

Define the **typical sets**:

$$T_{n,\delta} = \left\{ (x_{i_1},\ldots,x_{i_n}) \in \mathcal{X}^n : 2^{n(D(P||Q)-\delta)} \le \frac{p_{i_1}\cdots p_{i_n}}{q_{i_1}\cdots q_{i_n}} \le 2^{n(D(P||Q)+\delta)} \right\}.$$

Define the typical sets:

$$T_{n,\delta} = \left\{ (x_{i_1},\ldots,x_{i_n}) \in \mathcal{X}^n : 2^{n(D(P||Q)-\delta)} \le \frac{p_{i_1}\cdots p_{i_n}}{q_{i_1}\cdots q_{i_n}} \le 2^{n(D(P||Q)+\delta)} \right\}$$

Then,

•
$$P^n(T_{n,\delta}) \to 1$$
 as $n \to \infty$.

Define the typical sets:

$$T_{n,\delta} = \left\{ (x_{i_1},\ldots,x_{i_n}) \in \mathcal{X}^n : 2^{n(D(P||Q)-\delta)} \le \frac{p_{i_1}\cdots p_{i_n}}{q_{i_1}\cdots q_{i_n}} \le 2^{n(D(P||Q)+\delta)} \right\}.$$

Then,

•
$$P^n(T_{n,\delta}) \to 1$$
 as $n \to \infty$.
• $Q^n(T_{n,\delta}) \le 2^{-n(D(P||Q)-\delta)}$.

How to distinguish two quantum states?

Postulate (Postulate of Quantum Mechanics)

Given a quantum state τ , and $0 \le A \le 1$, then $Tr(\tau A)$ is equal to the probability that when we measure the state τ we find that it aligns with A.

How to distinguish two quantum states?

Postulate (Postulate of Quantum Mechanics)

Given a quantum state τ , and $0 \le A \le 1$, then $Tr(\tau A)$ is equal to the probability that when we measure the state τ we find that it aligns with A.

Consider two known $(D \times D)$ quantum states ρ , σ . You are presented with an unknown $D^n \times D^n$ matrix ? which is either equal to $\rho^{\otimes n}$ or $\sigma^{\otimes n}$, and you need to decide whether ? = $\rho^{\otimes n}$ or ? = $\sigma^{\otimes n}$. Even though you do not know the matrix ? you can evaluate Tr (? A_n) (probabilities!) for any $D^n \times D^n$ matrix A_n that satisfies $0 \le D_n \le 1$.

How to distinguish two quantum states?

Postulate (Postulate of Quantum Mechanics)

Given a quantum state τ , and $0 \le A \le 1$, then $Tr(\tau A)$ is equal to the probability that when we measure the state τ we find that it aligns with A.

Consider two known $(D \times D)$ quantum states ρ , σ . You are presented with an unknown $D^n \times D^n$ matrix ? which is either equal to $\rho^{\otimes n}$ or $\sigma^{\otimes n}$, and you need to decide whether ? = $\rho^{\otimes n}$ or ? = $\sigma^{\otimes n}$. Even though you do not know the matrix ? you can evaluate Tr (? A_n) (probabilities!) for any $D^n \times D^n$ matrix A_n that satisfies $0 \le D_n \le 1$.

You choose a $D^n \times D^n$ matrix A_n with $0 \le A_n \le 1$ and aligns with $\rho^{\otimes n}$ and evaluate $\text{Tr}(?A_n)$ in order to check whether ? aligns with $\rho^{\otimes n}$. If it does, you decide that $? = \rho^{\otimes n}$. Otherwise, you decide that $? = \sigma^{\otimes n}$.

Quantum Asymmetric hypothesis testing

As in the previous page, consider an unknown $D^n \times D^n$ matrix ? which is either equal to $\rho^{\otimes n}$ or $\sigma^{\otimes n}$ and you are trying to decide which of the two cases is correct by choosing appropriate matrix A_n with $0 \le A_n \le 1$ (decision strategy) and evaluating $Tr(?A_n)$.

Quantum Asymmetric hypothesis testing

As in the previous page, consider an unknown $D^n \times D^n$ matrix ? which is either equal to $\rho^{\otimes n}$ or $\sigma^{\otimes n}$ and you are trying to decide which of the two cases is correct by choosing appropriate matrix A_n with $0 \le A_n \le 1$ (decision strategy) and evaluating $Tr(?A_n)$.

- Type I error: $? = \rho^{\otimes n}$, but we erroneously decide that $? = \sigma^{\otimes n}$.
- Type II error: $? = \sigma^{\otimes n}$, but we erroneously decide that $? = \rho^{\otimes n}$.

Quantum Asymmetric hypothesis testing

As in the previous page, consider an unknown $D^n \times D^n$ matrix ? which is either equal to $\rho^{\otimes n}$ or $\sigma^{\otimes n}$ and you are trying to decide which of the two cases is correct by choosing appropriate matrix A_n with $0 \le A_n \le 1$ (decision strategy) and evaluating $Tr(?A_n)$.

Type I error: ? = ρ^{⊗n}, but we erroneously decide that ? = σ^{⊗n}.
Type II error: ? = σ^{⊗n}, but we erroneously decide that ? = ρ^{⊗n}.

Given $\varepsilon > 0$ you consider all $D^n \times D^n$ matrices (decision strategies) A_n which satisfy

$$0 \leq A_n \leq 1$$
 and $\operatorname{Tr}(
ho^{\otimes n}(1-A_n)) \leq \varepsilon$, i.e. $\mathbb{P}(\mathsf{Type} \mid \mathsf{error}) \leq \varepsilon$.

Among all of these matrices A_n compute the

inf Tr $(\sigma^{\otimes n}A_n)$ i.e. inf $\mathbb{P}(\text{Type II error})$.

The Question

Question

Compute the smallest "average" probability of Type II error for the asymmetric quantum hypothesis testing, i.e.

$$\lim_{\varepsilon\to 0}\lim_{n\to\infty}\frac{1}{n}\log_2\inf_{\substack{0\leq A_n\leq 1,\\Tr(\rho^{\otimes n}(1-A_n))\leq\varepsilon}}Tr(\sigma^{\otimes n}A_n).$$

Quantum Stein's Lemma

Definition (Umegaki relative entropy (1962))

$$D(\rho||\sigma) = \begin{cases} Tr(\rho(\log \rho - \log \sigma)) & \text{if } supp(\rho) \subseteq supp(\sigma), \\ \infty & \text{otherwise.} \end{cases}$$

Theorem ("Quantum Stein's Lemma", Hiai-Petz (\leq) (1991), Ogawa-Nagaoka (\geq) (2000))

For the quantum asymmetric hypothesis testing between two states ρ and σ , the asymptotic smallest "average" Type II error is given by:

$$\lim_{\varepsilon \to 0} \lim_{n \to \infty} \frac{1}{n} \log_2 \inf_{\substack{0 \le A_n \le 1, \\ Tr(\rho^{\otimes n}(1-A_n)) \le \varepsilon}} Tr(\sigma^{\otimes n}A_n) = -D(\rho||\sigma).$$

By "sandwiching" $\rho^{\otimes n}$ with the eigenprojections of $\sigma^{\otimes n}$, one may assume that the two states have the same eigenvectors, thus they are simultaneously diagonalizable. Hence, the (classical) Stein's Lemma can be used.

The Nussbaum-Szkoła distributions

Definition (Nussbaum-Szkoła distributions P and Q)

Let

$$ho = \sum_{i=1}^{n} r_i |u_i\rangle\langle u_i|$$
 and $\sigma = \sum_{j=1}^{n} s_j |v_j\rangle\langle v_j|$

be the spectral decompositions of ρ and $\sigma.$ Then

$$P(i,j) = r_i |\langle u_i | v_j \rangle|^2$$
 and $Q(i,j) = s_j |\langle u_i | v_j \rangle|^2$ for $i,j \in \{1, \dots n\}$

The Nussbaum-Szkoła distributions

Definition (Nussbaum-Szkoła distributions P and Q)

Let

$$ho = \sum_{i=1}^{n} r_i |u_i\rangle\langle u_i|$$
 and $\sigma = \sum_{j=1}^{n} s_j |v_j\rangle\langle v_j|$

be the spectral decompositions of ρ and $\sigma.$ Then

$$P(i,j) = r_i |\langle u_i | v_j \rangle|^2$$
 and $Q(i,j) = s_j |\langle u_i | v_j \rangle|^2$ for $i,j \in \{1, \dots n\}$

Theorem (Nussbaum and Szkoła (2009))

For every two quantum states ρ and σ on a finite dimensional Hilbert space there exist two probability distributions P and Q such that

$$D(\rho||\sigma) = D(P||Q).$$

Classical *f*-divergences

Definition (Cziszár (1963))

Let P, Q be probability distributions on a common measure space. Let μ be a σ -finite measure with $P \ll \mu$ and $Q \ll \mu$. Let $p = \frac{dP}{d\mu}$ and $q = \frac{dQ}{d\mu}$. Let $f : (0, \infty) \rightarrow \mathbb{R}$ be a convex or concave function. Define the f-divergence by

$$D_f(P||Q) = \int_{\{pq>0\}} f(rac{p}{q}) dQ + f(0)Q(p=0) + f'(\infty)P(q=0),$$

where $f'(\infty) := \lim_{t\to\infty} \frac{f(t)}{t}$, and "natural" conventions about 0 and ∞ .

31 / 41

Special cases of *f*-divergences

Assume that P and Q are discrete probability distributions.

• $f(t) = t \log t$ gives the Kullback-Leibler divergence

$$D_f(P||Q) = D(P||Q) = \begin{cases} \sum_i P(i) \log \frac{P(i)}{Q(i)} & \text{if } P \ll Q \\ \infty & \text{otherwise} \end{cases}$$

Special cases of *f*-divergences

Assume that P and Q are discrete probability distributions.

• $f(t) = t \log t$ gives the Kullback-Leibler divergence

$$D_f(P||Q) = D(P||Q) = \begin{cases} \sum_i P(i) \log \frac{P(i)}{Q(i)} & \text{if } P \ll Q \\ \infty & \text{otherwise} \end{cases}$$

• $f_{\alpha}(t) = t^{\alpha}$ for $\alpha \in (0, 1) \cup (1, \infty)$ gives the **Rényi** α -divergence $D_{\alpha}(P||Q) = \frac{1}{\alpha-1} \log D_{f_{\alpha}}(P||Q)$ with

$$D_{lpha}(P||Q) = \left\{ egin{array}{cc} rac{1}{lpha-1}\log\sum_{i}P(i)^{lpha}Q(i)^{1-lpha} & ext{if }P\ll Q \ \infty & ext{otherwise} \end{array}
ight.$$

More special cases of *f*-divergences

• $f_{\alpha}(t) = \frac{t^{\alpha}-1}{\alpha-1}$ for $\alpha \in (0,1) \cup (1,\infty)$ gives the Hellinger α -divergence $D_{f_{\alpha}}(P||Q) = \mathcal{H}_{\alpha}(P||Q)$, with

$$\mathcal{H}_{\alpha}(P||Q) = \begin{cases} \frac{1}{\alpha-1} \left(\left(\sum_{i} P(i)^{\alpha} Q(i)^{1-\alpha} \right) - 1 \right), & \text{ or } (1 < \alpha \text{ and } P \ll Q), \\ \infty, & \text{ otherwise.} \end{cases}$$

More special cases of *f*-divergences

• $f_{\alpha}(t) = \frac{t^{\alpha}-1}{\alpha-1}$ for $\alpha \in (0,1) \cup (1,\infty)$ gives the Hellinger α -divergence $D_{f_{\alpha}}(P||Q) = \mathcal{H}_{\alpha}(P||Q)$, with

$$\mathcal{H}_{\alpha}(P||Q) = \begin{cases} \frac{1}{\alpha-1} \left(\left(\sum_{i} P(i)^{\alpha} Q(i)^{1-\alpha} \right) - 1 \right), & \text{ or } (1 < \alpha \text{ and } P \ll Q), \\ \infty, & \text{ otherwise.} \end{cases}$$

• f(t) = |t - 1| gives the total variation distance

$$D_f(P||Q) = V(P||Q) = \sum_i |P(i) - Q(i)|.$$

More special cases of *f*-divergences

• $f_{\alpha}(t) = \frac{t^{\alpha}-1}{\alpha-1}$ for $\alpha \in (0,1) \cup (1,\infty)$ gives the Hellinger α -divergence $D_{f_{\alpha}}(P||Q) = \mathcal{H}_{\alpha}(P||Q)$, with

$$\mathcal{H}_{\alpha}(P||Q) = \begin{cases} \frac{1}{\alpha-1} \left(\left(\sum_{i} P(i)^{\alpha} Q(i)^{1-\alpha} \right) - 1 \right), & \text{ or } (1 < \alpha \text{ and } P \ll Q), \\ \infty, & \text{ otherwise.} \end{cases}$$

• f(t) = |t - 1| gives the total variation distance

$$D_f(P||Q) = V(P||Q) = \sum_i |P(i) - Q(i)|.$$

• $f(t) = (t-1)^2$ gives the χ^2 -divergence, $\chi^2(P||Q) = \begin{cases} \sum_{\substack{\{i|Q(i)>0\}}} \frac{(P(i)-Q(i))^2}{Q(i)}, & \text{if } P \ll Q, \\ \infty, & \text{otherwise.} \end{cases}$

The relative modular operator

Notation

- $\mathcal{B}(\mathcal{H})$: bounded operators on \mathcal{H} .
- $\mathcal{B}_2(\mathcal{H})$: Hilbert-Schmidt operators on \mathcal{H} .
- Π_{σ} : the projection on the supp (σ) , (if σ is a quantum state).

The relative modular operator

Notation

- $\mathcal{B}(\mathcal{H})$: bounded operators on \mathcal{H} .
- $\mathcal{B}_2(\mathcal{H})$: Hilbert-Schmidt operators on \mathcal{H} .
- Π_{σ} : the projection on the supp (σ) , (if σ is a quantum state).

Definition (Araki (1977))

Define the antilinear operator $S:D(S)\to \mathcal{B}_2(\mathcal{H})$ by

$$egin{aligned} \mathcal{D}(\mathcal{S}) &= \{X\sqrt{\sigma} \,:\, X\in\mathcal{B}(\mathcal{H})\} + \{Y(I-\Pi_{\sigma}) \,:\, Y\in\mathcal{B}_{2}(\mathcal{H})\}\subseteq\mathcal{B}_{2}(\mathcal{H}),\ &\quad \mathcal{S}\left(X\sqrt{\sigma}+Y(I-\Pi_{\sigma})
ight) = \Pi_{\sigma}X^{\dagger}\sqrt{
ho}. \end{aligned}$$

Then, the relative modular operator $\Delta_{\rho,\sigma}$ is defined by

$$\Delta_{\rho,\sigma} = S^{\dagger}\overline{S}.$$

The relative modular operator in a simplified case

Remark

Assume that \mathcal{H} is a finite dimensional Hilbert space, ρ , σ are quantum states on \mathcal{H} , and σ is invertible. Then

$$\Delta_{
ho,\sigma}:\mathcal{B}(\mathcal{H})
ightarrow\mathcal{B}(\mathcal{H})$$

is given by

$$\Delta_{\rho,\sigma}(X) = \rho X \sigma^{-1}.$$
Quantum *f*-divergences

Definition

Let ρ , σ be states on \mathcal{H} . Let $f : (0, \infty) \to \mathbb{R}$ be a convex or concave function. Then the **quantum f-divergence** $D_f(\rho||\sigma)$ is defined by

$$D_{f}(\rho||\sigma) = \int_{0^{+}}^{\infty} f(\lambda) \left\langle \sqrt{\sigma} \left| \xi^{\Delta_{\rho,\sigma}}(\mathrm{d}\lambda) \right| \sqrt{\sigma} \right\rangle_{2} + f(0) \operatorname{tr}\left(\sigma \Pi_{\rho}^{\perp}\right) + f'(\infty) \operatorname{tr}\left(\rho \Pi_{\sigma}^{\perp}\right)$$

where $\xi^{\Delta_{\rho,\sigma}}$ is the spectral measure of the relative modular operator $\Delta_{\rho,\sigma}$ and $\langle \cdot | \cdot \rangle_2$ denotes the inner product in $\mathcal{B}_2(\mathcal{H})$.

Special cases of quantum *f*-divergences

- f(t) = t log t gives the Umegaki Relative Entropy D(ρ||σ) := D_f(ρ||σ).
- f_α(t) = t^α for α ∈ (0,1) ∪ (1,∞) gives the Petz-Rényi α-relative entropy D_α(ρ||σ) := 1/(α-1) log D_{f_α}(ρ||σ).
- $f_{\alpha}(t) = \frac{t^{\alpha}-1}{\alpha-1}$ for $\alpha \in (0,1) \cup (1,\infty)$ gives the quantum Hellinger α -divergence.
- f(t) = |t 1| gives the quantum total variation $V(\rho||\sigma) := D_f(\rho||\sigma)$.
- $f(t) = (t-1)^2$ gives the quantum χ^2 -divergence $\chi^2(\rho||\sigma) := D_f(\rho||\sigma)$.

Generalized Nussbaum-Szkoła distributions

Definition (Generalized Nussbaum-Szkoła distributions)

Let \mathcal{H} be a Hilbert space. Let ρ and σ be states on $\mathcal{B}(\mathcal{H})$ with spectral decompositions

$$ho = \sum_{i \in \mathcal{I}} r_i |u_i \rangle \langle u_i|$$
 and $\sigma = \sum_{j \in \mathcal{I}} s_j |v_j \rangle \langle v_j|$.

Define the Nussbaum-Szkoła distributions P and Q associated with ρ and σ on $\mathcal{I} \times \mathcal{I}$ by,

$$\mathsf{P}(i,j) = \mathsf{r}_i |\langle u_i | v_j
angle|^2$$
 and $Q(i,j) = \mathsf{s}_j |\langle u_i | v_j
angle|^2, \quad orall (i,j) \in \mathcal{I} imes \mathcal{I}.$

The use of the generalized Nussbaum-Szkoła distributions

Theorem (G.A., T.C.John)

Let \mathcal{H} be a Hilbert space and ρ , σ be states on $\mathcal{B}(\mathcal{H})$. Let P, Q be the Nussbaum-Szkoła distributions associated with ρ and σ . Let $f : (0, \infty) \to \mathbb{R}$ be a convex or concave function. Then

 $D_f(\rho||\sigma) = D_f(P||Q).$

An Open Question

Question

Are there "continuous Nussbaum-Szkoła distributions" and what are their applications?

Thank you!