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How to quantify classical information?

How to quantify classical information?

Definition

A classical state is a probability distribution P on a finite set X of
symbols.
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How to quantify classical information?

How to quantify classical information?

Definition
A classical state is a probability distribution P on a finite set X of
symbols.

Question: How much information is contained in a classical state?
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How to quantify classical information?

An i.i.d. classical source created from a classical state

From the classical state P create an independent and identically
distributed (i.i.d.) classical source (or stochastic process) (X,)nen
such that

@ the random variables (r.v.) X,'s are independent, and

@ the probability distribution of each X, is equal to P.
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How to quantify classical information?

A binary block encoding-decoding of the i.i.d. classical
source generated by the classical state

A binary block encoding of the classical source (Xk)ken each having
range X, is a family of maps

e: Xk {0,1}".
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How to quantify classical information?

A binary block encoding-decoding of the i.i.d. classical
source generated by the classical state

A binary block encoding of the classical source (Xk)ken each having
range X, is a family of maps

e: Xk {0,1}".

A binary block decoding of the classical source (Xi)xen each having
range X is a family of maps

d:{0,1}" — xk
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How to quantify classical information?

Probability of error of an encoding-decoding

The probability of error of the encoding-decoding (e, d) is defined by

Err(e,d) = P*{(x1,...,xk) € XX :doe(xq,...,xx) # (x1,--, %)}
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How to quantify classical information?

Probability of error of an encoding-decoding

The probability of error of the encoding-decoding (e, d) is defined by

Err(e,d) = P*{(x1,...,xk) € XX :doe(xq,...,xx) # (x1,--, %)}

Goal: Given ¢ € (0,1) find an encoding-decoding (e, d) such that
@ The fraction £ is as small as possible, and

e Err(e,d) <e.
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How to quantify classical information?

Asymptotic minimum number of bits per symbol

n(k,e) :=min{n|3e: X% - {0,1}" and d : {0,1}" — Xk
such that Err(e, d) < e}.
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How to quantify classical information?

Asymptotic minimum number of bits per symbol

n(k,e) :==min{n|3e: X* - {0,1}" and d : {0,1}" — x*
such that Err(e, d) < e}.

n(k,e)

=minimum number of bits per symbol needed in order to block

k

encode k many i.i.d. symbols emitted from the classical source,

if the encoding-decoding error stays upper bounded by ¢.
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How to quantify classical information?

Asymptotic minimum number of bits per symbol

n(k,e) :==min{n|3e: X* - {0,1}" and d : {0,1}" — x*
such that Err(e, d) < e}.

n(k,e)
k

=minimum number of bits per symbol needed in order to block

encode k many i.i.d. symbols emitted from the classical source,

if the encoding-decoding error stays upper bounded by ¢.

n(k,¢)

lim =asymptotic minimum number of bits per symbol needed to

k—00 k

block encode i.i.d. symbols emitted from the classical source,

if the encoding-decoding error stays upper bounded by ¢.
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How to quantify classical information?

Information contained in a classical state

Definition
Information contained in a classical state := Asymptotic minimum number
of bits per symbol needed for the block encoding of the corresponding
i.i.d. classical source, if the probability of error is arbitrarily small

n(k,e)

= lim lim ———~=.
e—0k—oo  k
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How to quantify classical information?

Classical Noiseless Coding Theorem

Definition (The entropy of a classical state P)

H(P) == pilog, pi.
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How to quantify classical information?

Classical Noiseless Coding Theorem

Definition (The entropy of a classical state P)

H(P) == pilog, pi.

Theorem (Classical Noiseless Coding Theorem, C. Shannon 1948)

The information contained in a classical state P is equal to H(P),

4
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Classical Noiseless Coding Theorem

Definition (The entropy of a classical state P)

H(P) == pilog, pi.

Theorem (Classical Noiseless Coding Theorem, C. Shannon 1948)

The information contained in a classical state P is equal to H(P), i.e.

lim lim n(k.e) = H(P),

e—0k—ooo  k
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How to quantify classical information?

Classical Noiseless Coding Theorem
Definition (The entropy of a classical state P)

H(P) == pilog, pi.

Theorem (Classical Noiseless Coding Theorem, C. Shannon 1948)

The information contained in a classical state P is equal to H(P), i.e.

... n(k,e)

L et (0
i.e. Achievability: For every € > 0 and k € N there exists a block
encoding-decoding of k many emissions of the classical source generated
by P into kH(P) many bits with probability or error at most ¢.
Converse: If fewer than kH(P) bits are used to encode k many emissions
of the classical source generated by P as k — oo, then the probability of
error will stay bounded from below by a positive number.

4
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Main ingredient of the proof

Define the typical sets:

Tis = {(X,l, X)) € XK KHPIED) < < 2—k(H(P)—6)},
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Main ingredient of the proof

Define the typical sets:
Tis = {(X,l, X)) € XK KHPIED) < < 2—k(H(P)—6)},

Then,
] Pk(Tkyg) — 1 as k — .
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Main ingredient of the proof

Define the typical sets:

Tis = {(X,l, X)) € XK KHPIED) < < 2—k(H(P)—6)},

Then,
] Pk(Tkyg) — 1 as k — .
° #(Tk 5) < 2k(H(P)+6)_
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How to quantify quantum information?

How do you quantify quantum information?
Definition (Dirac Notation)

1
Ket denotes a (column) vector |y) = : € CP. Bra denotes the

Ybp
complex conjugate and transpose of the ket, i.e. (y| = (y1---yD) -

Definition

A quantum state p contains a probability distribution on a finite set of
rank-1 projections, i.e. {pj,|xi}xi|}¢_,, where |x;)'s are normalized (not
necessarily linearly independent) vectors in the Hilbert space CP. Thus,

4
p=>_ pilxi)xi.
i=1

Question: How much information is contained in a quantum state?
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How to quantify quantum information?

An i.i.d. quantum source created from a quantum state

From the quantum state p = Zle pi |xi)Xxi| create an i.i.d. quantum
source (Xi)ken such that

@ the X)'s are independent, and

@ Xj takes the value |x;)(x;| with probability p; for all i =1,...,¢ and
k € N.
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How to quantify quantum information?

Combined emissions from the quantum source

Definition (Tensor product of vectors)
|y> ® |Z> = |yZ> = (ylv"' ayD)T®(zl7"' 7zD)T

D2
=z1, -, 712D, Y221, -+ ,¥22p,- - ,ypzp)T € C* .
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How to quantify quantum information?

Combined emissions from the quantum source

Definition (Tensor product of vectors)
|y> ® |Z> = |yZ> = (yla T 7yD)T & (zla e 7zD)T

D2
=z1, -, 712D, Y221, -+ ,¥22p,- - ,ypzp)T € C* .

Definition (Tensor product of matrices)

ai1bi1 aribip
(3111 ® (B iyt = (2iB)ay = || Anvbn a1abap
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How to quantify quantum information?

Combined emissions from the quantum source

Definition (Tensor product of vectors)
|y> ® |Z> = |yZ> = (y17 T 7yD)T & (zlu e 7zD)T

D2
=z1, -, 712D, Y221, -+ ,¥22p,- - ,ypzp)T € C* .

Definition (Tensor product of matrices)

ai1bi1 aribip
(3111 ® (B iyt = (2iB)ay = || Anvbn a1abap

Definition (Tensor product of rank-1 projections)

Total emission from the quantum source after k-many emissions:
|xi Wi, | @« @ |xi Woxi | = |xiy - xi XXy -+ - x|, (it is @ D¥ x DX matrix). )
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How to quantify quantum information?

A qubit block encoding-decoding of the i.i.d. quantum
source generated by the quantum state p

A qubit block encoding of the quantum source (Xx)ken is a family of
maps

e {lxu)0al, .. x4 — {l0)0], [1)1[}*"
which extend linearly from Span ({|x1)(x1|, ..., |x¢)(x¢|}®¥) to C%".

Notation: |0) := ( é ) €C?and [1) := ( g € C? are called qubits.
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How to quantify quantum information?

A qubit block encoding-decoding of the i.i.d. quantum
source generated by the quantum state p

A qubit block encoding of the quantum source (Xx)ken is a family of
maps

e {lxu)0al, .. x4 — {l0)0], [1)1[}*"

which extend linearly from Span ({|x1)(x1|, ..., |x¢)(x¢|}®¥) to C%".
Notation: |0) := ( é ) €C?and [1) := ( 2 ) € C? are called qubits.

A qubit block decoding of the quantum source (Xk)ken is a family of
maps

d = {10)0[, [LXLFE" — {Ixa)xal - [xedoxel } 2
which extend linearly from Span ({|0)0], |1)1]}®") to
Span ({|x)(xa|, ..., [xe){xe|}¥¥).
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How to quantify quantum information?

Probability of error of an encoding-decoding

The probability of error of the encoding-decoding (e, d) is defined by

Err(e,d) =
1- Z [ ’Xﬂ X,'k><X,'1~'~X,'k|,dOe(|X,'1~-'X,'k><X,'1-"X,'k‘)
15000yl

where the fidelity between two rank-1 projections is defined as

F(Ju)ul, [v)v]) = {ulv) >
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How to quantify quantum information?

Probability of error of an encoding-decoding

The probability of error of the encoding-decoding (e, d) is defined by

Err(e,d) =
1- Z [ ’Xu x,-k>(x,-1---x,-k|,doe(|x,-1---x,-k)<x,-1---x,-k\)
15000yl

where the fidelity between two rank-1 projections is defined as

F(Ju)ul, [v)v]) = {ulv) >

Goal: Given ¢ € (0,1) find an encoding-decoding (e, d) such that
@ The fraction 7 is as small as possible, and
e Err(e,d) <e.
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How to quantify quantum information?

Asymptotic minimum number of qubits/symbol

n(k,e) := min {n|3e: {{x)al,. ., e)fxe}¥ = {|O)0], [1)(1[}*"
and d : {|0)O], [LX1[}®™ — {Ixa)xal ... [xe)xe [}
such that Err(e, d) < e}.
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How to quantify quantum information?

Asymptotic minimum number of qubits/symbol

n(k,e) := min {n | Fe s {|xi)x|, ., xe)xe| }EF — {]0XO], [1)1[}®"
and d : {|0)0], L1} = {Px)0al, -, [xe)xe[}
such that Err(e, d) < e}.

n(k,¢)

=minimum number of qubits per symbol needed for encoding

k

k many i.i.d. symbols emitted from the quantum source,

if the encoding-decoding error stays upper bounded by ¢.
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How to quantify quantum information?

Asymptotic minimum number of qubits/symbol

n(k,e) := min {n | Fe s {|xi)x|, ., xe)xe| }EF — {]0XO], [1)1[}®"
and d : {|0)0], L1} = {Px)0al, -, [xe)xe[}
such that Err(e, d) < e}.

k
n( k,e) =minimum number of qubits per symbol needed for encoding
k many i.i.d. symbols emitted from the quantum source,
if the encoding-decoding error stays upper bounded by ¢.
. n(k,e) L .
kllm p =asymptotic minimum number of qubits per symbol needed for
—00

encoding i.i.d. symbols emitted from the quantum source,

if the encoding-decoding error stays upper bounded by ¢.
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How to quantify quantum information?

Information contained in a quantum state

Definition
Information contained in a quantum state := Asymptotic minimum
number of qubits per symbol needed for a block encoding of the
corresponding i.i.d. quantum source, while the probability of error is
arbitrarily small
= lim lim n(k,e).
e—=0k—oo k
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How to quantify quantum information?

Quantum Noiseless Coding Theorem
Definition
The quantum entropy S(p) of a quantum state p is given by

5(p) = —Tr(plogy p).
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How to quantify quantum information?

Quantum Noiseless Coding Theorem
Definition
The quantum entropy S(p) of a quantum state p is given by

5(p) = —Tr(plogy p).

V.

Theorem (Quantum Noiseless Coding Theorem, B. Schumacher 1995)

The information contained in a quantum state p is equal to S(p),
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How to quantify quantum information?

Quantum Noiseless Coding Theorem
Definition
The quantum entropy S(p) of a quantum state p is given by

5(p) = —Tr(plogy p).

V.

Theorem (Quantum Noiseless Coding Theorem, B. Schumacher 1995)

The information contained in a quantum state p is equal to S(p), i.e.

lim lim (k) = S(p).

e—0k—oo  k
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How to quantify quantum information?

Quantum Noiseless Coding Theorem
Definition

The quantum entropy S(p) of a quantum state p is given by

5(p) = —Tr(plogy p).

v

Theorem (Quantum Noiseless Coding Theorem, B. Schumacher 1995)

The information contained in a quantum state p is equal to S(p), i.e.

lim lim (k) = S(p).

e—0k—oo  k

i.e. Achievability: For every ¢ > 0 and k € N there exists a block
encoding of k many emissions of the quantum source generated by p into
kS(p) many qubits with probability or error at most ¢.

Converse: If fewer than kS(p) qubits are used to encode k many symbols
emitted by the quantum source generated by p, as k — oo, then the

probability of error will stay bounded below by a positive number.
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How to distinguish two classical states?

Main ingredient of the proof

Define the typical sets:

Tks = {!Xil, o Xi Wiy X | 127K < g < 2_k(5(”)_6)}.

and

My s = the orthogonal projection to the span of |x; ---x; )’

S
for all |X,'1 .- -X,'k><X;1 .- 'X;k‘ € Tk75.
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Tks = {!Xil, o Xi Wiy X | 127K < g < 2_k(5(”)_6)}.

and

My s = the orthogonal projection to the span of |x; ---x; )’

S
for all |X,'1 .- -X,'k><X;1 .- 'X;k‘ € Tk75.

Then,

] Tr(ﬂk75p®k) — 1 as k — o0.
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How to distinguish two classical states?

Main ingredient of the proof

Define the typical sets:

Tks = {!Xil, o Xi Wiy X | 127K < g < 2_k(5(”)_6)}.

and

My s = the orthogonal projection to the span of |x; ---x; )’

S
for all |X,'1 .- -X,'k><X;1 .- 'X;k‘ € Tk75.

Then,

] Tr(ﬂk75p®k) — 1 as k — o0.
o dim (I'Ik,(;) < 2k(S(P)+5).

George Androulakis (Univ. of South Carolina)

Classical-Quantum Information Theory

July 3, 2024 19 /41



How to distinguish two classical states?

How to distinguish two classical states?

Consider two known classical states P, Q. You are presented with an n
many i.i.d. draws of a random variable X such that either X ~ P or
X ~ @, and you need to decide the probability distribution of X.

Assume that the random variable X takes values in a set X'. You choose a
subset A, of X" which aligns with P". If the n draws that you are
presented with belong to A, then you decide that X ~ P. Otherwise, you
decide that X ~ Q.
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How to distinguish two classical states?

Classical Asymmetric hypothesis testing

As in the previous page, consider two classical states P, @ and a random
variable X such that X ~ P or X ~ Q. We are presented with n many

i.i.d. draws of X and we would like to compute the smallest probability of
error while trying to figure out the distribution of X.
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How to distinguish two classical states?

Classical Asymmetric hypothesis testing

As in the previous page, consider two classical states P, @ and a random
variable X such that X ~ P or X ~ Q. We are presented with n many

i.i.d. draws of X and we would like to compute the smallest probability of
error while trying to figure out the distribution of X.

There are two types of errors:

o Type | error: X ~ P, but we erroneously decide that X ~ Q.
o Type Il error: X ~ @, but we erroneously decide that X ~ P.
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How to distinguish two classical states?

Classical Asymmetric hypothesis testing

As in the previous page, consider two classical states P, @ and a random
variable X such that X ~ P or X ~ Q. We are presented with n many
i.i.d. draws of X and we would like to compute the smallest probability of
error while trying to figure out the distribution of X.
There are two types of errors:

o Type | error: X ~ P, but we erroneously decide that X ~ Q.

o Type Il error: X ~ @, but we erroneously decide that X ~ P.

Let € > 0. Consider all decision strategies that satisfy P(Type | error) < e.
Goal: Among all these decision strategies compute inf P(Type Il error).
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How to distinguish two classical states?

Classical Asymmetric hypothesis testing

As in the previous page, consider two classical states P, @ and a random
variable X such that X ~ P or X ~ Q. We are presented with n many
i.i.d. draws of X and we would like to compute the smallest probability of
error while trying to figure out the distribution of X.
There are two types of errors:

o Type | error: X ~ P, but we erroneously decide that X ~ Q.

o Type Il error: X ~ @, but we erroneously decide that X ~ P.

Let € > 0. Consider all decision strategies that satisfy P(Type | error) < e.
Goal: Among all these decision strategies compute inf P(Type Il error).

Let ran (X) = X'. A decision strategy is a subset A, of X" such that
when the sequence of n draws of X belongs to A,, then we decide that
X ~ P: otherwise we decide that X ~ Q.
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How to distinguish two classical states?

Classical Asymmetric hypothesis testing

As in the previous page, consider two classical states P, @ and a random
variable X such that X ~ P or X ~ Q. We are presented with n many
i.i.d. draws of X and we would like to compute the smallest probability of
error while trying to figure out the distribution of X.
There are two types of errors:

o Type | error: X ~ P, but we erroneously decide that X ~ Q.

o Type Il error: X ~ @, but we erroneously decide that X ~ P.

Let € > 0. Consider all decision strategies that satisfy P(Type | error) < e.
Goal: Among all these decision strategies compute inf P(Type Il error).

Let ran (X) = X'. A decision strategy is a subset A, of X" such that
when the sequence of n draws of X belongs to A,, then we decide that
X ~ P: otherwise we decide that X ~ Q.

P(Type | error) = P"(X™\A,), P(Type Il error) = Q"(A,).
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The Question

Question

Compute the smallest “average” probability of Type Il error for the
asymmetric classical hypothesis testing, i.e.

1
i i L . Y
lim lim_— log, Anlgj(n’ Q"(An)
P"(X"\A,,)Ss
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How to distinguish two classical states?

Stein's Lemma

Definition (Kullback-Leibler Divergence (1951))

> P(i)logy gf  ifP < Q
otherwise

D(PIIQ)Z{
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How to distinguish two classical states?

Stein's Lemma

Definition (Kullback-Leibler Divergence (1951))

> P(i)logy gf  ifP < Q
otherwise

D(PIIQ)Z{

Theorem (“Stein's Lemma”, R. Blahut (<) (1974), T.S. Han, K.
Kobayashi (>) (1989))

Let P, Q be two probability distributions on a set X, and you are
presented with a sequence of i.i.d. draws of a r.v. X such that X ~ P or
X ~ Q and the range of X is equal to X, then

1 . n(AY —
Iy, nloge ook, @A) =—D(PIQ)
P"(X"™\Ap)<e
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Main ingredient of the proof

Define the typical sets:

Tos — {(X,l, o x) e an 2nPPIQ)5) < PP 2n(D(P||o)+a)}.
qil Tt CIi,,
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Main ingredient of the proof

Define the typical sets:

Tos — {(X,l, o x) e an 2nPPIQ)5) < PP 2n(D(P||o)+a)}.
qil Tt CIi,,

Then,
® P"(Tss5) = 1as n— oo.
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Main ingredient of the proof

Define the typical sets:

Tos = {(X,l,...,x,-") e xn: p(D(PIQ)=8) < P Piy
' qil o

Then,
e P"(Ths) — 1asn— oo.
o Q"(T,s) <2 MDPIR)-0)
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How to distinguish two quantum states?

How to distinguish two quantum states?

Postulate (Postulate of Quantum Mechanics)

Given a quantum state 7, and 0 < A < 1, then Tr(7A) is equal to the
probability that when we measure the state T we find that it aligns with A
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How to distinguish two quantum states?

How to distinguish two quantum states?

Postulate (Postulate of Quantum Mechanics)

Given a quantum state 7, and 0 < A < 1, then Tr(7A) is equal to the
probability that when we measure the state T we find that it aligns with A.

Consider two known (D x D) quantum states p, 0. You are presented with
an unknown D" x D™ matrix ? which is either equal to p®" or ¢®", and
you need to decide whether ? = p®" or 7 = ¢®". Even though you do not
know the matrix 7 you can evaluate Tr(?A,) (probabilities!) for any

D" x D" matrix A, that satisfies 0 < D,, < 1.
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How to distinguish two quantum states?

How to distinguish two quantum states?

Postulate (Postulate of Quantum Mechanics)

Given a quantum state 7, and 0 < A < 1, then Tr(7A) is equal to the
probability that when we measure the state T we find that it aligns with A.

Consider two known (D x D) quantum states p, 0. You are presented with
an unknown D" x D™ matrix ? which is either equal to p®" or ¢®", and
you need to decide whether ? = p®" or 7 = ¢®". Even though you do not
know the matrix 7 you can evaluate Tr(?A,) (probabilities!) for any

D" x D" matrix A, that satisfies 0 < D,, < 1.

You choose a D" x D" matrix A, with 0 < A, <1 and aligns with p®"
and evaluate Tr(?A,) in order to check whether ? aligns with p®". If it
does, you decide that ? = p®". Otherwise, you decide that ? = ¢®".
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How to distinguish two quantum states?

Quantum Asymmetric hypothesis testing

As in the previous page, consider an unknown D" x D" matrix ? which is
either equal to p®" or 0®" and you are trying to decide which of the two

cases is correct by choosing appropriate matrix A, with 0 < A, <1
(decision strategy) and evaluating Tr(?A,).
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How to distinguish two quantum states?

Quantum Asymmetric hypothesis testing

As in the previous page, consider an unknown D" x D" matrix ? which is
either equal to p®" or 0®" and you are trying to decide which of the two

cases is correct by choosing appropriate matrix A, with 0 < A, <1
(decision strategy) and evaluating Tr(?A,).

e Type | error: ? = p®" but we erroneously decide that ? = ¢®".
e Type Il error: ? = 0®", but we erroneously decide that ? = p®".
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How to distinguish two quantum states?

Quantum Asymmetric hypothesis testing
As in the previous page, consider an unknown D" x D" matrix ? which is
either equal to p®" or 0®" and you are trying to decide which of the two

cases is correct by choosing appropriate matrix A, with 0 < A, <1
(decision strategy) and evaluating Tr(?A,).

e Type | error: 7 = p®" but we erroneously decide that ? = o®".
e Type Il error: ? = 0®", but we erroneously decide that ? = p®".

Given ¢ > 0 you consider all D" x D" matrices (decision strategies) A,
which satisfy

0<A,<land Tr(p®"(1 - A,)) <e, ie. P(Typelerror) <e

Among all of these matrices A, compute the

inf Tr (0®"A,) i.e. inf P(Type Il error).
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The Question

Question

Compute the smallest “average” probability of Type Il error for the
asymmetric quantum hypothesis testing, i.e.

1
lim lim —lo inf THo®"Ap).
e—=0n—oo n &2 0<A,<1, r( n)

TH{p®"(1—An))<e
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How to distinguish two quantum states?

Quantum Stein’s Lemma

Definition (Umegaki relative entropy (1962))

D(p||o) = Tr(p(log p — log o))  if supp(p) C supp (o),
e 00 otherwise.

Theorem (“Quantum Stein's Lemma", Hiai-Petz (<) (1991),
Ogawa-Nagaoka (>) (2000))

For the quantum asymmetric hypothesis testing between two states p and
o, the asymptotic smallest “average” Type Il error is given by:

1
. . - . ®n — _
sh—rpo Jim n 1082 0<Tnf<1 Tro="An) D(pllo)-

THp®"(1—An))<e
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How to distinguish two quantum states?

Main ingredient of the proof

By “sandwiching” p®" with the eigenprojections of o®", one may assume
that the two states have the same eigenvectors, thus they are
simultaneously diagonalizable. Hence, the (classical) Stein's Lemma can

be used.

July 3, 2024 29 /41
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The Nussbaum-Szkota distributions

Definition (Nussbaum-Szkota distributions P and Q)
Let

n n
p="_rilu)ui| and o =" s;|v;)Xy
i=1 j=1
be the spectral decompositions of p and o. Then

P(i,j) = ri| {(ui]v;) |? and Q(i,j) = s;| (ui|v;) |* for i,j € {1,...n}.
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The Nussbaum-Szkota distributions

Definition (Nussbaum-Szkota distributions P and Q)
Let

n n
p="_rilu)ui| and o =" s;|v;)Xy
i=1 j=1
be the spectral decompositions of p and o. Then

P(i,j) = ri| {(ui]v;) |? and Q(i,j) = s;| (ui|v;) |* for i,j € {1,...n}.

Theorem (Nussbaum and Szkota (2009))

For every two quantum states p and o on a finite dimensional Hilbert
space there exist two probability distributions P and Q such that

D(pllo) = D(PI|Q).
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Classical divergences

Classical f-divergences

Definition (Cziszar (1963))

Let P, Q be probability distributions on a common measure space. Let
be a o-finite measure with P < p1 and Q < p. Let p= 9 and q = d(i
Let f : (0,00) — R be a convex or concave function. Defme the
f-divergence by

De(PIIQ) = /{pq>0} f(s)dQ +£(0)Q(p = 0) + f'(c0)P(q = 0),

where f'(00) = lim; 1) and “natural” conventions about 0 and co.

t
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Classical divergences

Special cases of f-divergences

Assume that P and Q are discrete probability distributions.
e f(t) = tlogt gives the Kullback-Leibler divergence

S P(i)log g if P< Q
o

otherwise

Dr(Pl|Q) = D(P||Q) = {
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Classical divergences

Special cases of f-divergences

Assume that P and Q are discrete probability distributions.
e f(t) = tlogt gives the Kullback-Leibler divergence

S P(i)log g if P< Q
o

otherwise

Dr(Pl|Q) = D(P||Q) = {

o f(t) = t“ for a € (0,1) U (1, 00) gives the Rényi a-divergence

Do (P||Q) = =5 log D¢, (P||Q) with
1 . AYes Nl—a
Du(P||Q) :{ a1 log 2 PN QU™ fP<Q
o0 otherwise
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Classical divergences

More special cases of f-divergences

o f(t) = L=} for a € (0,1) U(1,00) gives the Hellinger
a-divergence D¢ (P||Q) = Hq(P]|Q), with

Ha(PHQ) — { ﬁ ((Z: P(i)aQ(i)l_a) - 1) > or (1<iof §r1<d1P<<Q),

o0, otherwise.
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Classical divergences

More special cases of f-divergences

o f(t) = L=} for a € (0,1) U(1,00) gives the Hellinger
a-divergence D¢ (P||Q) = Hq(P]|Q), with

Ha(PHQ) — { ﬁ ((Z: P(i)aQ(i)l_a) - 1) > or (1<iof (:n<le<<Q),

o0, otherwise.

e f(t) = |t — 1| gives the total variation distance

Dr(PIIQ) = V(PIIQ) = Y IP(i) — Q(i)I-

1
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Classical divergences

More special cases of f-divergences

o fo(t) = L= for a € (0,1) U (1, 00) gives the Hellinger

[e%

a-divergence D¢ (P||Q) = Hq(P]|Q), with

Ha(PHQ) — { ﬁ ((Z: P(i)aQ(i)l_a) - 1) > or (1<g (:n<le<<Q),

o0, otherwise.

e f(t) = |t — 1| gives the total variation distance
Dr(PIIQ) = V(PIIQ) = D IP(i) — Q(i)l.
o f(t) = (t — 1)? gives the x2-divergence,

(P()=Q()*
X*(PlIQ) = Z{iIQ(i)>0} IO if P< Q,
0, otherwise.
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The relative modular operator

Notation
e B(H): bounded operators on H.
@ By(H): Hilbert-Schmidt operators on H.

e [,: the projection on the supp (o), (if o is a quantum state).
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The relative modular operator

Notation
e B(H): bounded operators on H.
@ By(H): Hilbert-Schmidt operators on H.

e [,: the projection on the supp (o), (if o is a quantum state).

Definition (Araki (1977))
Define the antilinear operator S : D(S) — Ba(H) by

D(S)={Xo : XeBH)}+{Y( —N,) : Y € Ba(H)} C Ba(H),
S (XVo + Y(I - Ny)) =N.X"/p.

Then, the relative modular operator A, , is defined by

A,,=S'S.
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Quantum divergences

The relative modular operator in a simplified case

Remark
Assume that H is a finite dimensional Hilbert space, p, o are quantum

states on ‘H, and o is invertible. Then

A,o i B(H) = B(H)

is given by

A, (X) = pXot.

July 3, 2024 35/41
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Quantum divergences

Quantum f-divergences

Definition
Let p, o be states on H. Let f : (0,00) — R be a convex or concave
function. Then the quantum f-divergence D¢(p||o) is defined by

De(pllo) = /0 ) (ValeBe(aN)|[Va), F(O) tr (71E ) +(o0) e (o

where £20o s the spectral measure of the relative modular operator A,y s
and (-|-), denotes the inner product in By(H).
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Quantum divergences

Special cases of quantum f-divergences

e f(t) = tlogt gives the Umegaki Relative Entropy
D(pllo) := Dr(pllo).

o f,(t) =t for o € (0,1) U (1, 00) gives the Petz-Rényi a-relative
entropy Da(pl|o) i= =17 log Dy, (pl|o).

o f,(t) = £=1 for a € (0,1) U (1,00) gives the quantum Hellinger

a—1
a-divergence.

e f(t) = |t — 1| gives the quantum total variation
V(pllo) := Dr(pllo)-

o f(t) = (t — 1)? gives the quantum x2-divergence
X2 (pllo) := Dr(pllo).
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An extension of the Nussbaum-Szkota result

Generalized Nussbaum-Szkota distributions

Definition (Generalized Nussbaum-Szkota distributions)

Let H be a Hilbert space. Let p and o be states on B(H) with spectral
decompositions

p=> riluXu| and o=7 si|y)Xyl.
ieT jez

Define the Nussbaum-Szkota distributions P and Q associated with p
and o on T x T by,

P(i,j) = ril{uilvp)I* and Q(i,j) = sjl{uilvp)I?, V(i,j) € T x I.
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An extension of the Nussbaum-Szkota result

The use of the generalized Nussbaum-Szkota distributions

Theorem (G.A., T.C.John)

Let H be a Hilbert space and p, o be states on B(H). Let P, Q be the
Nussbaum-Szkota distributions associated with p and o. Let

f :(0,00) = R be a convex or concave function. Then

Dr(pllo) = Dr(P||Q).
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An Open Question

Question

Are there “continuous Nussbaum-Szkota distributions” and what are their
applications?

George Androulakis (Univ. of South Carolina)  Classical-Quantum Information Theory



An extension of the Nussbaum-Szkota result

Thank you!
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