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How to quantify classical information?

How to quantify classical information?

Definition

A classical state is a probability distribution P on a finite set X of
symbols.

Question: How much information is contained in a classical state?
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How to quantify classical information?

An i.i.d. classical source created from a classical state

From the classical state P create an independent and identically
distributed (i.i.d.) classical source (or stochastic process) (Xn)n∈N
such that

the random variables (r.v.) Xn’s are independent, and

the probability distribution of each Xn is equal to P.
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How to quantify classical information?

A binary block encoding-decoding of the i.i.d. classical
source generated by the classical state

A binary block encoding of the classical source (Xk)k∈N each having
range X , is a family of maps

e : X k → {0, 1}n.

A binary block decoding of the classical source (Xk)k∈N each having
range X is a family of maps

d : {0, 1}n → X k .
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How to quantify classical information?

Probability of error of an encoding-decoding

The probability of error of the encoding-decoding (e, d) is defined by

Err(e, d) = Pk{(x1, . . . , xk) ∈ X k : d ◦ e(x1, . . . , xk) ̸= (x1, . . . , xk)}.

Goal: Given ε ∈ (0, 1) find an encoding-decoding (e, d) such that

The fraction n
k is as small as possible, and

Err(e, d) ≤ ε.
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How to quantify classical information?

Asymptotic minimum number of bits per symbol

n(k , ε) := min
{

n | ∃e : X k → {0, 1}n and d : {0, 1}n → X k

such that Err(e, d) ≤ ε
}
.

n(k , ε)

k
=minimum number of bits per symbol needed in order to block

encode k many i.i.d. symbols emitted from the classical source,

if the encoding-decoding error stays upper bounded by ε.

lim
k→∞

n(k , ε)

k
=asymptotic minimum number of bits per symbol needed to

block encode i.i.d. symbols emitted from the classical source,

if the encoding-decoding error stays upper bounded by ε.
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How to quantify classical information?

Information contained in a classical state

Definition

Information contained in a classical state := Asymptotic minimum number
of bits per symbol needed for the block encoding of the corresponding
i.i.d. classical source, if the probability of error is arbitrarily small

= lim
ε→0

lim
k→∞

n(k , ε)

k
.
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How to quantify classical information?

Classical Noiseless Coding Theorem

Definition (The entropy of a classical state P)

H(P) = −
∑
i

pi log2 pi .

Theorem (Classical Noiseless Coding Theorem, C. Shannon 1948)

The information contained in a classical state P is equal to H(P), i.e.

lim
ε→0

lim
k→∞

n(k , ε)

k
= H(P),

i.e. Achievability: For every ε > 0 and k ∈ N there exists a block
encoding-decoding of k many emissions of the classical source generated
by P into kH(P) many bits with probability or error at most ε.
Converse: If fewer than kH(P) bits are used to encode k many emissions
of the classical source generated by P as k → ∞, then the probability of
error will stay bounded from below by a positive number.
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How to quantify classical information?

Main ingredient of the proof

Define the typical sets:

Tk,δ =
{

(xi1 , . . . , xik ) ∈ X k : 2−k(H(P)+δ) ≤ pi1 · · · pik ≤ 2−k(H(P)−δ)
}
.

Then,

Pk(Tk,δ) → 1 as k → ∞.

#(Tk,δ) ≤ 2k(H(P)+δ).
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How to quantify quantum information?

How do you quantify quantum information?

Definition (Dirac Notation)

Ket denotes a (column) vector |y⟩ =

 y1
...

yD

 ∈ CD . Bra denotes the

complex conjugate and transpose of the ket, i.e. ⟨y | = (y1 · · · yD) .

Definition

A quantum state ρ contains a probability distribution on a finite set of
rank-1 projections, i.e. {pi , |xi ⟩⟨xi |}ℓi=1, where |xi ⟩’s are normalized (not
necessarily linearly independent) vectors in the Hilbert space CD . Thus,

ρ =
ℓ∑

i=1

pi |xi ⟩⟨xi | .

Question: How much information is contained in a quantum state?
George Androulakis (Univ. of South Carolina) Classical-Quantum Information Theory July 3, 2024 11 / 41



How to quantify quantum information?

An i.i.d. quantum source created from a quantum state

From the quantum state ρ =
∑ℓ

i=1 pi |xi ⟩⟨xi | create an i.i.d. quantum
source (Xk)k∈N such that

the Xk ’s are independent, and

Xk takes the value |xi ⟩⟨xi | with probability pi for all i = 1, . . . , ℓ and
k ∈ N.

George Androulakis (Univ. of South Carolina) Classical-Quantum Information Theory July 3, 2024 12 / 41



How to quantify quantum information?

Combined emissions from the quantum source

Definition (Tensor product of vectors)

|y⟩ ⊗ |z⟩ = |yz⟩ = (y1, · · · , yD)⊺ ⊗ (z1, · · · , zD)⊺

= (y1z1, · · · , y1zD , y2z1, · · · , y2zD , · · · , yDzD)⊺ ∈ CD2
.

Definition (Tensor product of matrices)

(ai ,j)i ,j ⊗ (bk,l)k,l = (ai ,jB)i ,j =

 a1,1b1,1 a1,1b1,2 · · ·
a1,1b2,1 a1,1b2,2 · · ·

...
...

. . .


Definition (Tensor product of rank-1 projections)

Total emission from the quantum source after k-many emissions:
|xi1⟩⟨xi1 | ⊗ · · · ⊗ |xik ⟩⟨xik | = |xi1 · · · xik ⟩⟨xi1 · · · xik |, (it is a Dk × Dk matrix).
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How to quantify quantum information?

A qubit block encoding-decoding of the i.i.d. quantum
source generated by the quantum state ρ

A qubit block encoding of the quantum source (Xk)k∈N is a family of
maps

e : {|x1⟩⟨x1| , . . . , |xℓ⟩⟨xℓ|}⊗k → {|0⟩⟨0| , |1⟩⟨1|}⊗n

which extend linearly from Span
(
{|x1⟩⟨x1| , . . . , |xℓ⟩⟨xℓ|}⊗k

)
to C2n .

Notation: |0⟩ :=

(
1
0

)
∈ C2 and |1⟩ :=

(
0
1

)
∈ C2 are called qubits.

A qubit block decoding of the quantum source (Xk)k∈N is a family of
maps

d : {|0⟩⟨0| , |1⟩⟨1|}⊗n → {|x1⟩⟨x1| , . . . , |xℓ⟩⟨xℓ|}⊗k

which extend linearly from Span ({|0⟩⟨0| , |1⟩⟨1|}⊗n) to
Span

(
{|x1⟩⟨x1| , . . . , |xℓ⟩⟨xℓ|}⊗k

)
.
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How to quantify quantum information?

Probability of error of an encoding-decoding

The probability of error of the encoding-decoding (e, d) is defined by

Err(e, d) =

1 −
∑
i1,...,ik

pi1 · · · pik F (|xi1 · · · xik ⟩⟨xi1 · · · xik | , d ◦ e(|xi1 · · · xik ⟩⟨xi1 · · · xik |)

where the fidelity between two rank-1 projections is defined as

F (|u⟩⟨u| , |v⟩⟨v |) = | ⟨u|v⟩ |2.

Goal: Given ε ∈ (0, 1) find an encoding-decoding (e, d) such that

The fraction n
k is as small as possible, and

Err(e, d) ≤ ε.
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How to quantify quantum information?

Asymptotic minimum number of qubits/symbol

n(k , ε) := min
{

n | ∃e : {|x1⟩⟨x1| , . . . , |xℓ⟩⟨xℓ|}⊗k → {|0⟩⟨0| , |1⟩⟨1|}⊗n

and d : {|0⟩⟨0| , |1⟩⟨1|}⊗n → {|x1⟩⟨x1| , . . . , |xℓ⟩⟨xℓ|}⊗k

such that Err(e, d) ≤ ε
}
.

n(k , ε)

k
=minimum number of qubits per symbol needed for encoding

k many i.i.d. symbols emitted from the quantum source,

if the encoding-decoding error stays upper bounded by ε.

lim
k→∞

n(k , ε)

k
=asymptotic minimum number of qubits per symbol needed for

encoding i.i.d. symbols emitted from the quantum source,

if the encoding-decoding error stays upper bounded by ε.
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How to quantify quantum information?

Information contained in a quantum state

Definition

Information contained in a quantum state := Asymptotic minimum
number of qubits per symbol needed for a block encoding of the
corresponding i.i.d. quantum source, while the probability of error is
arbitrarily small

= lim
ε→0

lim
k→∞

n(k , ε)

k
.
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How to quantify quantum information?

Quantum Noiseless Coding Theorem

Definition

The quantum entropy S(ρ) of a quantum state ρ is given by

S(ρ) = −Tr (ρ log2 ρ).

Theorem (Quantum Noiseless Coding Theorem, B. Schumacher 1995)

The information contained in a quantum state ρ is equal to S(ρ), i.e.

lim
ε→0

lim
k→∞

n(k, ε)

k
= S(ρ).

i.e. Achievability: For every ε > 0 and k ∈ N there exists a block
encoding of k many emissions of the quantum source generated by ρ into
kS(ρ) many qubits with probability or error at most ε.
Converse: If fewer than kS(ρ) qubits are used to encode k many symbols
emitted by the quantum source generated by ρ, as k → ∞, then the
probability of error will stay bounded below by a positive number.
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encoding of k many emissions of the quantum source generated by ρ into
kS(ρ) many qubits with probability or error at most ε.
Converse: If fewer than kS(ρ) qubits are used to encode k many symbols
emitted by the quantum source generated by ρ, as k → ∞, then the
probability of error will stay bounded below by a positive number.
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How to distinguish two classical states?

Main ingredient of the proof

Define the typical sets:

Tk,δ =
{
|xi1 , . . . , xik ⟩⟨xi1 , . . . , xik | : 2−k(S(ρ)+δ) ≤ pi1 · · · pik ≤ 2−k(S(ρ)−δ)

}
.

and

Πk,δ = the orthogonal projection to the span of |xi1 · · · xik ⟩ ’s

for all |xi1 · · · xik ⟩⟨xi1 · · · xik | ∈ Tk,δ.

Then,

Tr (Πk,δρ
⊗k) → 1 as k → ∞.

dim (Πk,δ) ≤ 2k(S(P)+δ).

George Androulakis (Univ. of South Carolina) Classical-Quantum Information Theory July 3, 2024 19 / 41



How to distinguish two classical states?

Main ingredient of the proof

Define the typical sets:

Tk,δ =
{
|xi1 , . . . , xik ⟩⟨xi1 , . . . , xik | : 2−k(S(ρ)+δ) ≤ pi1 · · · pik ≤ 2−k(S(ρ)−δ)

}
.

and

Πk,δ = the orthogonal projection to the span of |xi1 · · · xik ⟩ ’s

for all |xi1 · · · xik ⟩⟨xi1 · · · xik | ∈ Tk,δ.

Then,

Tr (Πk,δρ
⊗k) → 1 as k → ∞.

dim (Πk,δ) ≤ 2k(S(P)+δ).

George Androulakis (Univ. of South Carolina) Classical-Quantum Information Theory July 3, 2024 19 / 41



How to distinguish two classical states?

Main ingredient of the proof

Define the typical sets:

Tk,δ =
{
|xi1 , . . . , xik ⟩⟨xi1 , . . . , xik | : 2−k(S(ρ)+δ) ≤ pi1 · · · pik ≤ 2−k(S(ρ)−δ)

}
.

and

Πk,δ = the orthogonal projection to the span of |xi1 · · · xik ⟩ ’s

for all |xi1 · · · xik ⟩⟨xi1 · · · xik | ∈ Tk,δ.

Then,

Tr (Πk,δρ
⊗k) → 1 as k → ∞.

dim (Πk,δ) ≤ 2k(S(P)+δ).

George Androulakis (Univ. of South Carolina) Classical-Quantum Information Theory July 3, 2024 19 / 41



How to distinguish two classical states?

How to distinguish two classical states?

Consider two known classical states P, Q. You are presented with an n
many i.i.d. draws of a random variable X such that either X ∼ P or
X ∼ Q, and you need to decide the probability distribution of X .

Assume that the random variable X takes values in a set X . You choose a
subset An of X n which aligns with Pn. If the n draws that you are
presented with belong to An, then you decide that X ∼ P. Otherwise, you
decide that X ∼ Q.
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How to distinguish two classical states?

Classical Asymmetric hypothesis testing

As in the previous page, consider two classical states P, Q and a random
variable X such that X ∼ P or X ∼ Q. We are presented with n many
i.i.d. draws of X and we would like to compute the smallest probability of
error while trying to figure out the distribution of X .

There are two types of errors:

Type I error: X ∼ P, but we erroneously decide that X ∼ Q.

Type II error: X ∼ Q, but we erroneously decide that X ∼ P.

Let ε > 0. Consider all decision strategies that satisfy P(Type I error) ≤ ε.
Goal: Among all these decision strategies compute inf P(Type II error).

Let ran (X ) = X . A decision strategy is a subset An of X n such that
when the sequence of n draws of X belongs to An, then we decide that
X ∼ P; otherwise we decide that X ∼ Q.

P(Type I error) = Pn(X n\An), P(Type II error) = Qn(An).
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How to distinguish two classical states?

The Question

Question

Compute the smallest “average” probability of Type II error for the
asymmetric classical hypothesis testing, i.e.

lim
ε→0

lim
n→∞

1

n
log2 inf

An⊆X n,
Pn(X n\An)≤ε

Qn(An).
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How to distinguish two classical states?

Stein’s Lemma

Definition (Kullback-Leibler Divergence (1951))

D(P||Q) =

{ ∑
i P(i) log2

P(i)
Q(i) if P ≪ Q

∞ otherwise

Theorem (“Stein’s Lemma”, R. Blahut (≤) (1974), T.S. Han, K.
Kobayashi (≥) (1989))

Let P, Q be two probability distributions on a set X , and you are
presented with a sequence of i.i.d. draws of a r.v. X such that X ∼ P or
X ∼ Q and the range of X is equal to X , then

lim
ε→0

lim
n→∞

1

n
log2 inf

An⊆X n,
Pn(X n\An)≤ε

Qn(An) = −D(P||Q).
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How to distinguish two classical states?

Main ingredient of the proof

Define the typical sets:

Tn,δ =

{
(xi1 , . . . , xin) ∈ X n : 2n(D(P||Q)−δ) ≤ pi1 · · · pin

qi1 · · · qin

≤ 2n(D(P||Q)+δ)

}
.

Then,

Pn(Tn,δ) → 1 as n → ∞.

Qn(Tn,δ) ≤ 2−n(D(P||Q)−δ).
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How to distinguish two quantum states?

How to distinguish two quantum states?

Postulate (Postulate of Quantum Mechanics)

Given a quantum state τ , and 0 ≤ A ≤ 1, then Tr (τA) is equal to the
probability that when we measure the state τ we find that it aligns with A.

Consider two known (D × D) quantum states ρ, σ. You are presented with
an unknown Dn × Dn matrix ? which is either equal to ρ⊗n or σ⊗n, and
you need to decide whether ? = ρ⊗n or ? = σ⊗n. Even though you do not
know the matrix ? you can evaluate Tr (?An) (probabilities!) for any
Dn × Dn matrix An that satisfies 0 ≤ Dn ≤ 1.

You choose a Dn × Dn matrix An with 0 ≤ An ≤ 1 and aligns with ρ⊗n

and evaluate Tr (?An) in order to check whether ? aligns with ρ⊗n. If it
does, you decide that ? = ρ⊗n. Otherwise, you decide that ? = σ⊗n.
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How to distinguish two quantum states?

Quantum Asymmetric hypothesis testing
As in the previous page, consider an unknown Dn × Dn matrix ? which is
either equal to ρ⊗n or σ⊗n and you are trying to decide which of the two
cases is correct by choosing appropriate matrix An with 0 ≤ An ≤ 1
(decision strategy) and evaluating Tr(?An).

Type I error: ? = ρ⊗n, but we erroneously decide that ? = σ⊗n.

Type II error: ? = σ⊗n, but we erroneously decide that ? = ρ⊗n.

Given ε > 0 you consider all Dn × Dn matrices (decision strategies) An

which satisfy

0 ≤ An ≤ 1 and Tr (ρ⊗n(1 − An)) ≤ ε, i.e. P(Type I error) ≤ ε.

Among all of these matrices An compute the

inf Tr (σ⊗nAn) i.e. inf P(Type II error).
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How to distinguish two quantum states?

The Question

Question

Compute the smallest “average” probability of Type II error for the
asymmetric quantum hypothesis testing, i.e.

lim
ε→0

lim
n→∞

1

n
log2 inf

0≤An≤1,
Tr(ρ⊗n(1−An))≤ε

Tr(σ⊗nAn).
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How to distinguish two quantum states?

Quantum Stein’s Lemma

Definition (Umegaki relative entropy (1962))

D(ρ||σ) =

{
Tr(ρ(log ρ− log σ)) if supp (ρ) ⊆ supp (σ),
∞ otherwise.

Theorem (“Quantum Stein’s Lemma”, Hiai-Petz (≤) (1991),
Ogawa-Nagaoka (≥) (2000))

For the quantum asymmetric hypothesis testing between two states ρ and
σ, the asymptotic smallest “average” Type II error is given by:

lim
ε→0

lim
n→∞

1

n
log2 inf

0≤An≤1,
Tr(ρ⊗n(1−An))≤ε

Tr(σ⊗nAn) = −D(ρ||σ).
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How to distinguish two quantum states?

Main ingredient of the proof

By “sandwiching” ρ⊗n with the eigenprojections of σ⊗n, one may assume
that the two states have the same eigenvectors, thus they are
simultaneously diagonalizable. Hence, the (classical) Stein’s Lemma can
be used.
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More classical-quantum connections by Nussbaum and Szko la

The Nussbaum-Szko la distributions

Definition (Nussbaum-Szko la distributions P and Q)

Let

ρ =
n∑

i=1

ri |ui ⟩⟨ui | and σ =
n∑

j=1

sj |vj⟩⟨vj |

be the spectral decompositions of ρ and σ. Then

P(i , j) = ri | ⟨ui |vj⟩ |2 and Q(i , j) = sj | ⟨ui |vj⟩ |2 for i , j ∈ {1, . . . n}.

Theorem (Nussbaum and Szko la (2009))

For every two quantum states ρ and σ on a finite dimensional Hilbert
space there exist two probability distributions P and Q such that

D(ρ||σ) = D(P||Q).
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Classical divergences

Classical f -divergences

Definition (Cziszár (1963))

Let P, Q be probability distributions on a common measure space. Let µ
be a σ-finite measure with P ≪ µ and Q ≪ µ. Let p = dP

dµ and q = dQ
dµ .

Let f : (0,∞) → R be a convex or concave function. Define the
f -divergence by

Df (P||Q) =

∫
{pq>0}

f (
p

q
)dQ + f (0)Q(p = 0) + f ′(∞)P(q = 0),

where f ′(∞) := limt→∞
f (t)
t , and “natural” conventions about 0 and ∞.
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Classical divergences

Special cases of f -divergences

Assume that P and Q are discrete probability distributions.

f (t) = t log t gives the Kullback-Leibler divergence

Df (P||Q) = D(P||Q) =

{ ∑
i P(i) log P(i)

Q(i) if P ≪ Q

∞ otherwise

fα(t) = tα for α ∈ (0, 1) ∪ (1,∞) gives the Rényi α-divergence
Dα(P||Q) = 1

α−1 log Dfα(P||Q) with

Dα(P||Q) =

{
1

α−1 log
∑

i P(i)αQ(i)1−α if P ≪ Q

∞ otherwise
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Classical divergences

More special cases of f -divergences

fα(t) = tα−1
α−1 for α ∈ (0, 1) ∪ (1,∞) gives the Hellinger

α-divergence Dfα(P∥Q) = Hα(P||Q), with

Hα(P||Q) =

{
1

α−1

((∑
i P(i)αQ(i)1−α

)
− 1

)
, if α<1

or (1<α and P≪Q),

∞, otherwise.

f (t) = |t − 1| gives the total variation distance

Df (P∥Q) = V (P∥Q) =
∑
i

|P(i) − Q(i)|.

f (t) = (t − 1)2 gives the χ2-divergence,

χ2(P||Q) =

{ ∑
{i |Q(i)>0}

(P(i)−Q(i))2

Q(i) , if P ≪ Q,

∞, otherwise.
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Hα(P||Q) =

{
1

α−1

((∑
i P(i)αQ(i)1−α

)
− 1

)
, if α<1

or (1<α and P≪Q),

∞, otherwise.

f (t) = |t − 1| gives the total variation distance

Df (P∥Q) = V (P∥Q) =
∑
i

|P(i) − Q(i)|.

f (t) = (t − 1)2 gives the χ2-divergence,

χ2(P||Q) =

{ ∑
{i |Q(i)>0}

(P(i)−Q(i))2

Q(i) , if P ≪ Q,

∞, otherwise.
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Quantum divergences

The relative modular operator

Notation

B(H): bounded operators on H.

B2(H): Hilbert-Schmidt operators on H.

Πσ: the projection on the supp (σ), (if σ is a quantum state).

Definition (Araki (1977))

Define the antilinear operator S : D(S) → B2(H) by

D(S) = {X
√
σ : X ∈ B(H)} + {Y (I − Πσ) : Y ∈ B2(H)} ⊆ B2(H),

S
(
X
√
σ + Y (I − Πσ)

)
= ΠσX †√ρ.

Then, the relative modular operator ∆ρ,σ is defined by

∆ρ,σ = S†S .
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Quantum divergences

The relative modular operator in a simplified case

Remark

Assume that H is a finite dimensional Hilbert space, ρ, σ are quantum
states on H, and σ is invertible. Then

∆ρ,σ : B(H) → B(H)

is given by
∆ρ,σ(X ) = ρXσ−1.
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Quantum divergences

Quantum f -divergences

Definition

Let ρ, σ be states on H. Let f : (0,∞) → R be a convex or concave
function. Then the quantum f -divergence Df (ρ||σ) is defined by

Df (ρ||σ) =

∫ ∞

0+

f (λ)
〈√

σ
∣∣ξ∆ρ,σ(dλ)

∣∣√σ
〉

2
+f (0) tr

(
σΠ⊥

ρ

)
+f ′(∞) tr

(
ρΠ⊥

σ

)
,

where ξ∆ρ,σ is the spectral measure of the relative modular operator ∆ρ,σ

and ⟨·|·⟩2 denotes the inner product in B2(H).
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Quantum divergences

Special cases of quantum f -divergences

f (t) = t log t gives the Umegaki Relative Entropy
D(ρ∥σ) := Df (ρ∥σ).

fα(t) = tα for α ∈ (0, 1) ∪ (1,∞) gives the Petz-Rényi α-relative
entropy Dα(ρ||σ) := 1

α−1 log Dfα(ρ∥σ).

fα(t) = tα−1
α−1 for α ∈ (0, 1) ∪ (1,∞) gives the quantum Hellinger

α-divergence.

f (t) = |t − 1| gives the quantum total variation
V (ρ||σ) := Df (ρ∥σ).

f (t) = (t − 1)2 gives the quantum χ2-divergence
χ2(ρ||σ) := Df (ρ∥σ).
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An extension of the Nussbaum-Szko la result

Generalized Nussbaum-Szko la distributions

Definition (Generalized Nussbaum-Szko la distributions)

Let H be a Hilbert space. Let ρ and σ be states on B(H) with spectral
decompositions

ρ =
∑
i∈I

ri |ui ⟩⟨ui | and σ =
∑
j∈I

sj |vj⟩⟨vj | .

Define the Nussbaum-Szko la distributions P and Q associated with ρ
and σ on I × I by,

P(i , j) = ri |⟨ui |vj⟩|2 and Q(i , j) = sj |⟨ui |vj⟩|2, ∀(i , j) ∈ I × I.
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An extension of the Nussbaum-Szko la result

The use of the generalized Nussbaum-Szko la distributions

Theorem (G.A., T.C.John)

Let H be a Hilbert space and ρ, σ be states on B(H). Let P, Q be the
Nussbaum-Szko la distributions associated with ρ and σ. Let
f : (0,∞) → R be a convex or concave function. Then

Df (ρ||σ) = Df (P||Q).
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An extension of the Nussbaum-Szko la result

An Open Question

Question

Are there “continuous Nussbaum-Szko la distributions” and what are their
applications?
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An extension of the Nussbaum-Szko la result

Thank you!
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