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Abstract

We provide a number of new quantitative versions of Helly’s theorem. For example, we show that
for every family {Pi : i ∈ I} of closed half-spaces

Pi = {x ∈ Rn : 〈x,wi〉 6 1}

in Rn such that P =
⋂

i∈I Pi has positive volume, there exist s 6 αn and i1, . . . , is ∈ I such that

|Pi1 ∩ · · · ∩ Pis | 6 (Cn)n |P |,

where α,C > 0 are absolute constants. These results complement and improve previous work of Bárány-
Katchalski-Pach and Naszódi. Our method combines the work of Srivastava on approximate John’s
decompositions with few vectors, a new estimate on the corresponding constant in the Brascamp-Lieb
inequality and an appropriate variant of Ball’s proof of the reverse isoperimetric inequality.

1 Introduction

Our starting point is a quantitative version of Helly’s theorem on convex sets in Euclidean space. Helly’s
theorem states that if P = {Pi : i ∈ I} is a finite family of at least n+ 1 convex sets in Rn and if any n+ 1
members of P have non-empty intersection then

⋂
i∈I Pi 6= ∅. Bárány, Katchalski and Pach proved in [5]

(see also [6]) the following quantitative “volume version”:

Let P = {Pi : i ∈ I} be a finite family of convex sets in Rn. If the intersection of any 2n or fewer
members of P has volume greater than or equal to 1, then

∣∣⋂
i∈I Pi

∣∣ > cn, where cn > 0 is a constant
depending only on n.

Using the fact that every (closed) convex set is the intersection of a family of closed half-spaces and a
simple compactness argument (see [5]) one can remove the restriction that P is finite and also assume that
each Pi is a closed half-space. Therefore, the theorem of Bárány, Katchalski and Pach is equivalently stated
as follows:

Let P = {Pi : i ∈ I} be a family of closed half-spaces in Rn such that
∣∣⋂

i∈I Pi
∣∣ > 0. There exist s 6 2n

and i1, . . . , is ∈ I such that

(1.1) |Pi1 ∩ · · · ∩ Pis | 6 Cn

∣∣∣∣∣⋂
i∈I

Pi

∣∣∣∣∣ ,
where Cn > 0 is a constant depending only on n.

Note that the cube [−1, 1]n in Rn can be written as the intersection of the 2n closed half-spaces H±j :=
{x : 〈x,±ej〉 6 1} and that the intersection of any 2n − 1 of these half-spaces has infinite volume; this
shows that one cannot replace 2n by 2n − 1 in the statement above. In [5] the authors offered a bound

Cn 6 n2n
2

for the constant Cn and they conjectured that one might actually have Cn 6 ncn for an absolute
constant c > 0. Naszódi [15] has recently verified this conjecture; namely, he proved a volume version of
Helly’s theorem with Cn 6 (Cn)2n, where C > 0 is an absolute constant. In Section 3 we present a slight
modification of Naszódi’s argument which leads to the exponent 3n

2 instead of 2n:
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Theorem 1.1. Let P = {Pi : i ∈ I} be a family of closed half-spaces such that
∣∣⋂

i∈I Pi
∣∣ > 0. We may find

s 6 2n and i1, . . . , is ∈ I such that

(1.2) |Pi1 ∩ · · · ∩ Pis | 6 (Cn)
3n
2

∣∣∣∣∣⋂
i∈I

Pi

∣∣∣∣∣ ,
where C > 0 is an absolute constant.

The aim of this work is to study a natural question that arises from Theorem 1.1. Given N > 2n we
would like to estimate the quantity

(1.3) Cn,N = sup
|Pi1 ∩ · · · ∩ PiN |∣∣⋂

i∈I Pi
∣∣

where the supremum is over all families P = {Pi : i ∈ I} of closed half-spaces with
∣∣⋂

i∈I Pi
∣∣ > 0. We would

also like to study the same question in the case of families of symmetric strips in Rn.
Starting with the symmetric case, our main result is the next theorem.

Theorem 1.2. Let {Pi : i ∈ I} be a family of symmetric strips

(1.4) Pi = {x ∈ Rn : |〈x,wi〉| 6 1}

in Rn, such that P =
⋂
i∈I Pi has positive volume. For every d > 1 there exist s 6 dn and i1, . . . , is ∈ I such

that

(1.5) |Pi1 ∩ · · · ∩ Pis | 6
(

4γd
π

)n
2

Γ
(n

2
+ 1
)
|P |,

where γd :=
(√

d+1√
d−1

)2
.

Note that if d� 1 then the constant Cn,bdnc is bounded by (Cn)
n
2 . In the non-symmetric case we first

use a similar strategy (whose details are of course more delicate) to obtain an estimate comparable to the
one in Theorem 1.1.

Theorem 1.3. Let {Pi : i ∈ I} be a family of closed half-spaces

(1.6) Pi = {x ∈ Rn : 〈x, vi〉 6 1}

in Rn, such that P =
⋂
i∈I Pi has positive volume. For every d > 1 there exist s 6 (d + 1)(n + 1) and

i1, . . . , is ∈ I such that

(1.7) |Pi1 ∩ · · · ∩ Pis | 6 γ
n+1
2

d

nn/2(n+ 1)3(n+1)/2

π
n
2 n!

Γ
(n

2
+ 1
)
|P | 6 γ

n+1
2

d (Cn)
3n
2 |P |,

where C > 0 is an absolute constant.

Note that Theorem 1.3 gives the same dependence on n as Theorem 1.1. In fact, Theorem 1.1 is stronger
if what matters is to use (the smallest possible number of) 2n of the half-spaces Pi. On the other hand, there
is a (small) difference in the value of the constant C involved in the two statements: the proof of Theorem

1.1 works with C = 2 3
√
π, while the proof of Theorem 1.3 works with Cd =

(
eγd
2π

) 1
3 (which is smaller than C

if d is large enough).
However, if we relax the condition on the number s of half-spaces that we use (but still require that it

is proportional to the dimension) we are able to (significantly) improve the exponent in the constant Cn,N
from 3n

2 to n:
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Theorem 1.4. There exists an absolute constant α > 1 with the following property: for every family
{Pi : i ∈ I} of closed half-spaces

(1.8) Pi = {x ∈ Rn : 〈x, vi〉 6 1}

in Rn, such that P =
⋂
i∈I Pi has positive volume, there exist s 6 αn and i1, . . . , is ∈ I such that

(1.9) |Pi1 ∩ · · · ∩ Pis | 6 (Cn)n |P |,

where C > 0 is an absolute constant.

Let us note that, in the recent paper [14], De Loera, La Haye, Rolnick and Soberón have presented
many interesting results, both continuous and discrete, that may be viewed as quantitative versions of
Carathéodory’s, Helly’s and Tverberg’s theorems. For example, they prove that for every n > 1 and ε > 0
there exists a positive integer N(n, ε) with the following property: if F = {Fi : i ∈ I} is a finite family of
convex sets in Rn such that |Fi1 ∩ · · · ∩ Fis | > 1 for all s 6 Nn and all i1, . . . , is ∈ I, then

(1.10)

∣∣∣∣∣⋂
i∈I

Fi

∣∣∣∣∣ > 1

1 + ε
.

They also obtain a variant of this statement in which volume is replaced by diameter, as well as a “colorful”
volume version of Helly’s theorem. We would like to emphasize that the “philosophy” of all these results is
completely different from the one in our work. The parameter N(n, ε) is defined as the smallest integer such
that, for every convex set K ⊂ Rn of positive volume there exists a polytope P ⊇ K with at most N(n, ε)
facets such that |P | 6 (1 + ε)|K|, and it is known that N(n, ε) is exponential in n and ε: one has

(1.11)
(c1n
ε

)n−1
2

6 N(n, ε) 6
(c2n
ε

)n−1
2

.

We are interested in the best lower bound that one can obtain for
∣∣⋂

i∈I Fi
∣∣ in terms of a lower bound for

the volume of the intersection of any N ' n of the sets Fi (the main point is that N is assumed proportional
to the dimension).

We close this introductory section by briefly explaining the main ideas behind the proof of our results
in the non-symmetric case. We may assume that P =

⋂
i∈I{x ∈ Rn : 〈x, vi〉 6 1} has finite volume and,

since the statements are affinely invariant, that P is in John’s position, i.e. the ellipsoid of maximal volume
inscribed in P is the Euclidean unit ball Bn2 . Then, we have John’s decomposition of the identity (see Section
2 for background information): there exists J ⊆ I such that vj , j ∈ J are contact points of P and Bn2 and
there are positive scalars aj , j ∈ J such that

(1.12) In =
∑
j∈J

ajvj ⊗ vj and
∑
j∈J

ajvj = 0.

Given d > 1 we would like to extract a subset σ of J , of cardinality dn, which still forms an approximate
John’s decomposition of the identity with suitable weigths. To this end, for the proof of Theorem 1.3 we use
a result of Batson, Spielman and Srivastava from [7]: there exists a subset σ ⊆ J with |σ| 6 dn and bj > 0,
j ∈ σ, such that

(1.13) In �
∑
j∈σ

bjajvj ⊗ vj � γdIn,

where γd :=
(√

d+1√
d−1

)2
. For the proof of Theorem 1.4 we use a second, more delicate, theorem of Srivastava

from [19] (see Section 4 for the precise statement).
Then, we would like to exploit an appropriate variant of Ball’s proof of the reverse isoperimetric inequality

in [3] in order to estimate the volume of Q :=
⋂
j∈σ Pj using the Brascamp-Lieb inequality (see Section 5).
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The main problem now is to obtain an estimate for the constant in the Brascamp-Lieb inequality that
corresponds to an approximate John’s decomposition. To the best of our knowledge this question had not
been studied. Our main technical result is the next theorem; we feel that it is a useful tool of independent
interest.

Theorem 1.5. Let γ > 1. Let u1, . . . , us ∈ Sn−1 and c1, . . . , cs > 0 satisfy

(1.14) In � A :=

s∑
j=1

cjuj ⊗ uj � γIn

and set κj = cj〈A−1uj , uj〉 > 0, 1 6 j 6 s. If f1, . . . , fs : R→ R+ are measurable functions then

(1.15)

∫
Rn

s∏
j=1

f
κj
j (〈x, uj〉)dx 6 γ

n
2

s∏
j=1

(∫
R
fj(t)dt

)κj
.

In Section 6 we present the proofs of the main results.

2 Notation and background

We work in Rn, which is equipped with a Euclidean structure 〈·, ·〉. We denote by ‖ · ‖2 the corresponding
Euclidean norm, and write Bn2 for the Euclidean unit ball and Sn−1 for the unit sphere. Volume is denoted
by | · |. We write ωn for the volume of Bn2 and σ for the rotationally invariant probability measure on
Sn−1. We will denote by PF the orthogonal projection from Rn onto F . We also define BF = Bn2 ∩ F and
SF = Sn−1 ∩ F .

The letters c, c′, c1, c2 etc. denote absolute positive constants which may change from line to line.
Whenever we write a ' b, we mean that there exist absolute constants c1, c2 > 0 such that c1a 6 b 6 c2a.
Also, if K,L ⊆ Rn we will write K ' L if there exist absolute constants c1, c2 > 0 such that c1K ⊆ L ⊆ c2K.

We refer to the book of Schneider [18] for basic facts from the Brunn-Minkowski theory and to the book
of Artstein-Avidan, Giannopoulos and V. Milman [1] for basic facts from asymptotic convex geometry.

A convex body in Rn is a compact convex subset K of Rn with non-empty interior. We say that K is
symmetric if x ∈ K implies that −x ∈ K, and that K is centered if its barycenter

(2.1) bar(K) =
1

|K|

∫
K

x dx

is at the origin. The polar body K◦ of K is defined by

(2.2) K◦ := {y ∈ Rn : 〈x, y〉 6 1 for all x ∈ K}.

The Blaschke-Santaló inequality states that for every centered convex body K in Rn one has |K||K◦| 6 ω2
n,

with equality if and only if K is an ellipsoid. The reverse Santaló inequality of Bourgain and V. Milman [8]
states that there exists an absolute constant c > 0 such that

(2.3) (|K||K◦|)1/n > c/n,

where c > 0 is an absolute constant, for every convex body K in Rn which contains 0 in its interior.

We say that a convex body K is in John’s position if the ellipsoid of maximal volume inscribed in K is
the Euclidean unit ball Bn2 . John’s theorem [13] states that K is in John’s position if and only if Bn2 ⊆ K and
there exist u1, . . . , um ∈ bd(K) ∩ Sn−1 (contact points of K and Bn2 ) and positive real numbers c1, . . . , cm
such that

(2.4)

m∑
j=1

cjuj = 0
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and the identity operator In is decomposed in the form

(2.5) In =

m∑
j=1

cjuj ⊗ uj ,

where (uj ⊗ uj)(y) = 〈uj , y〉uj . In the case where K is symmetric, the second condition (2.5) is enough (for
any contact point u we have that −u is also a contact point, and hence, having (2.5) we may easily produce
a decomposition for which (2.4) is also satisfied). In analogy to John’s position, we say that a convex body
K is in Löwner’s position if the ellipsoid of minimal volume containing K is the Euclidean unit ball Bn2 . One
can check that this holds true if and only if K◦ is in John’s position; in particular, we have a decomposition
of the identity similar to (2.5).

Assume that u1, . . . , um are unit vectors that satisfy John’s decomposition (2.5) with some positive
weights cj . Then, one has the useful identities

(2.6)

m∑
j=1

cj = tr(In) = n and

m∑
j=1

cj〈uj , z〉2 = 1

for all z ∈ Sn−1. Moreover,

(2.7) conv{u1, . . . , um} ⊇
1

n
Bn2 .

In the symmetric case we actually have

(2.8) conv{±u1, . . . ,±um} ⊇
1√
n
Bn2 .

Another useful fact, which goes back to the classical article of Dvoretzky and Rogers [11], is that we may
choose v1, . . . , vn, among the ui’s, which satisfy

(2.9) dist(vk, span(v1, v2, . . . , vk−1)) >

√
n− k + 1

n

for all k = 2, . . . , n.
Finally, we state as a lemma a useful fact from linear algebra that will be used in Section 5.

Lemma 2.1. Let A be an n× n invertible matrix. For any u, v ∈ Rn we have

(2.10) det(A+ u⊗ v) = det(A)(1 + 〈A−1u, v〉).

Proof. Let u, v ∈ Rn. Starting with the identity

(2.11)

(
In 0
v 1

)(
In + u⊗ v u

0 1

)(
In 0
−v 1

)
=

(
In u
0 1 + 〈u, v〉

)
and taking determinants we see that det(I + u⊗ v) = 1 + 〈u, v〉, which is the assertion of the lemma in the
case A = In. Given any n× n invertible matrix A we write

(2.12) A+ u⊗ v = A(In +A−1(u⊗ v)) = A(In + (A−1u⊗ v)),

and applying the previous special case we obtain

(2.13) det(A+ u⊗ v) = det(A) det(In + (A−1u⊗ v)) = det(A)(1 + 〈A−1u, v〉)

as claimed.
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3 A refinement of Naszódi’s argument

We start with a refinement of Naszódi’s argument from [15]; our only new ingredient is the fact that every
convex body K contains a centrally symmetric convex body K1 of volume |K1| > 2−n|K|. Incorporating
this in the original proof we obtain a better estimate.

Theorem 3.1. Let P = {Pi : i ∈ I} be a family of closed half-spaces such that
∣∣⋂

i∈I Pi
∣∣ > 0. We may find

s 6 2n and i1, . . . , is ∈ I such that

(3.1) |Pi1 ∩ · · · ∩ Pis | 6 (Cn)
3n
2

∣∣∣∣∣⋂
i∈I

Pi

∣∣∣∣∣ ,
where C > 0 is an absolute constant.

Proof. We start with a family P = {Pi : i ∈ I} of closed half-spaces Pi = {x : 〈x, ui〉 6 1} such that∣∣⋂
i∈I Pi

∣∣ < ∞. We may assume that P is a finite family, therefore P =
⋂
i∈I Pi is a polytope. By affine

invariance, we may also assume that P is in John’s position. From John’s theorem there exists J ⊆ I such
that uj , j ∈ J are contact points of P and Bn2 , and aj > 0, j ∈ J such that

(3.2) In =
∑
j∈J

ajuj ⊗ uj and
∑
j∈J

ajuj = 0.

By the Dvoretzky-Rogers lemma, we may choose n of these contact points, which we denote by v1, . . . , vn,
so that

(3.3) dist(vk, span(v1, v2, . . . , vk−1)) >

√
n− k + 1

n

for all k = 2, . . . , n. It follows that the simplex S = conv{v0 = 0, v1, . . . , vn} ⊆ P has volume

(3.4) |S| = 1

n!

n∏
k=1

dist(vk, span(v1, v2, . . . , vk−1)) >
1

n
n
2

√
n!
.

Now we use the fact (see [1, Theorem 4.1.20]) that if w is the center of mass of S then S − w contains
an origin symmetric convex body T1 of volume |T1| > 2−n|S − w| = 2−n|S|, and hence the convex body
T = T1 + w ⊆ S has a center of symmetry at w and satisfies

(3.5) |T | > 2−n|S|.

Consider the ray ` from the origin in the direction of −w. Then, ` intersects the boundary of conv{uj , j ∈ J}
at a point z ∈ conv{vn+1, . . . , vn+k} for some vn+i ∈ {uj , j ∈ J} and k 6 n (this follows from Carathéodory’s
theorem). Also, note that conv{uj , j ∈ J} ⊇ 1

nB
n
2 , and hence ‖z‖2 > 1

n . Applying a contraction with center
z and ratio

λ =
‖z‖2
‖z − w‖2

=
‖z‖2

‖z‖2 + ‖w‖2
>

‖z‖2
1 + ‖z‖2

>
1

n+ 1

to T , we obtain an origin symmetric convex body

(3.6) Q ⊆ conv{z, v1, . . . , vn} ⊆ conv{v1, . . . , vn, vn+1, . . . , vn+k}

with volume

(3.7) |Q| > 1

(n+ 1)n
|T | > 1

2n(n+ 1)n
|S| > 1

2n(n+ 1)nn
n
2

√
n!
.
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Consider the intersection of n+ k 6 2n half-spaces

(3.8) R =

n+k⋂
i=1

{x ∈ Rn : 〈x, vi〉 6 1}.

Using the Blaschke-Santaló inequality for Q and the fact that Bn2 ⊆ P and R ⊆ Q◦ we get

(3.9)
|R|
|P |

6
|Q◦|
|Bn2 |

6
|Bn2 |
|Q|

.

Finally, from (3.7) we see that

(3.10) |R| 6 π
n
2 2n(n+ 1)nn

n
2

√
n!

Γ
(
n
2 + 1

) |P |

and the result follows (with constant C = 2 3
√
π as one can check using Stirling’s formula) .

4 Approximate John’s decompositions

Our first main tool is the work of Batson, Spielman and Srivastava [7] on spectral sparcification of graphs,
in which they introduced a deterministic method extracting an approximate John’s decomposition starting
from a John’s decomposition of the form (2.5). Their result is the following:

Theorem 4.1 (Batson-Spielman-Srivastava). Let v1, . . . , vm ∈ Sn−1 and a1, . . . , am > 0 such that

(4.1) In =

m∑
j=1

ajvj ⊗ vj .

Then, for every d > 1 there exists a subset σ ⊆ {1, . . . ,m} with |σ| 6 dn and bj > 0, j ∈ σ, such that

(4.2) In �
∑
j∈σ

bjajvj ⊗ vj � γdIn,

where

(4.3) γd :=

(√
d+ 1√
d− 1

)2

.

Here, given two symmetric positive definite matrices A and B we write A � B if 〈Ax, x〉 6 〈Bx, x〉 for
all x ∈ Rn. Using this fact, Srivastava [19] obtained an improved version of Rudelson’s theorem [17] on the
approximation of a symmetric convex body K by a symmetric convex body T which has few contact points
with its maximal volume ellipsoid: for any symmetric convex body K in Rn and any ε > 0 there exists a
symmetric convex body T such that T ⊆ K ⊆ (1 + ε)T and T has at most 32n/ε2 contact points with its
John ellipsoid.

In order to deal with the not-necessarily symmetric case of this question, Srivastava proved in [19] the
next variant of Theorem 4.1:

Theorem 4.2 (Srivastava). Let v1, . . . , vm ∈ Sn−1 and a1, . . . , am > 0 such that

(4.4) In =

m∑
j=1

ajvj ⊗ vj and

m∑
j=1

ajvj = 0.
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Given ε > 0 we can find a subset σ of {1, . . . ,m} of cardinality |σ| = Oε(n), positive scalars ci, i ∈ σ and a
vector v with

(4.5) ‖v‖22 6
ε∑
i∈σ ci

,

such that

(4.6) In �
∑
i∈σ

ci(vi + v)⊗ (vi + v) � (4 + ε)In

and

(4.7)
∑
i∈σ

ci(vi + v) = 0.

Using Theorem 4.2, Srivastava showed that for any convex body K in Rn and any ε > 0 there exists
a convex body T such that T ⊆ K ⊆ (

√
5 + ε)T and T has at most Oε(n) contact points with its John

ellipsoid. We will use Theorem 4.2 in order to deal with the not-necessarily symmetric case of our problem,
which is clearly much more interesting than the symmetric one.

5 Brascamp-Lieb inequality and approximate John decomposi-
tions

The Brascamp-Lieb inequality [9] estimates the norm of the multilinear operator G : Lp1(R)×· · ·×Lpm(R)→
R defined by

(5.1) G(f1, . . . , fm) =

∫
Rn

m∏
j=1

fj(〈x, uj〉) dx,

where m > n, p1, . . . , pm > 1 with 1
p1

+ · · ·+ 1
pm

= n, and u1, . . . , um ∈ Rn. Brascamp and Lieb proved that
the norm of G is the supremum D of

(5.2)
G(g1, . . . , gm)∏m

j=1 ‖gj‖pj

over all centered Gaussian functions g1, . . . , gm, i.e. over all functions of the form gj(t) = e−λjt
2

, λj > 0.
If we set cj = 1/pj and replace fj by f

cj
j then we can state the Brascamp-Lieb inequality in the following

form.

Theorem 5.1 (Bracamp-Lieb). Let m > n, and let u1, . . . , um ∈ Rn and c1, . . . , cm > 0 with c1+· · ·+cm = n.
Then,

(5.3)

∫
Rn

m∏
j=1

f
cj
j (〈x, uj〉)dx 6 D

m∏
j=1

(∫
R
fj

)cj
for all integrable functions fj : R→ [0,∞), where D = 1/

√
F and

(5.4) F = inf

{
det
(∑m

j=1 cjλjuj ⊗ uj
)∏m

j=1 λ
cj
j

: λj > 0

}
.
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Calculating the constant F = F ({uj}, {cj}) in Theorem 5.1 seems difficult. An important observation
of Ball (see e.g. [2]) is that if u1, . . . , um ∈ Sn−1 and c1, . . . , cm > 0 satisfy John’s decomposition of the
identity (2.5) then the constant F = F ({uj}, {cj}) in Theorem 5.1 is equal to 1.

The next proposition shows that we still have a Brascamp-Lieb inequality with a reasonable constant
when an approximate John’s decomposition is available.

Proposition 5.2. Let γ > 1. If u1, . . . , us ∈ Sn−1 and c1, . . . , cs > 0 satisfy

(5.5) In � A :=

s∑
j=1

cjuj ⊗ uj � γIn

then

(5.6) γn det

 s∑
j=1

κjλjuj ⊗ uj

 >
s∏
j=1

λ
κj
j

for all λ1, . . . , λs > 0, where κj = cj〈A−1uj , uj〉 > 0, 1 6 j 6 s.

Proof. For every M ⊂ {1, . . . , s} with cardinality |M | = n we define

(5.7) λM =
∏
j∈M

λj and UM = det

∑
j∈M

cjuj ⊗ uj

 .

By the Cauchy-Binet formula we have

(5.8) det

 s∑
j=1

cjλjuj ⊗ uj

 =
∑
|M |=n

λMUM .

Choosing λj = 1 in (5.8) we get

(5.9)
∑
|M |=n

UM = det(A).

By the arithmetic-geometric means inequality,

(5.10)
∑
|M |=n

λM
UM∑
|M |=n UM

>
∏
|M |=n

λ

UM∑
|M|=n UM

M =

s∏
j=1

λ

∑
{M:j∈M} UM∑
|M|=n UM

j .

Applying the Cauchy-Binet formula again, we get∑
{M :j∈M} UM∑
|M |=n UM

=

∑
|M |=n UM −

∑
{M :j /∈M} UM∑

|M |=n UM
= 1− det (A− cjuj ⊗ uj)

det(A)

= 1− (1− cj〈A−1uj , uj〉) = cj〈A−1uj , uj〉

for every j = 1, . . . , s, where in the last equality we used Lemma 2.1. Going back to (5.8) and (5.10) we see
that

(5.11)
det
(∑s

j=1 cjλjuj ⊗ uj
)

det(A)
>

s∏
j=1

λ
cj〈A−1uj ,uj〉
j

9



We set

(5.12) κj = cj〈A−1uj , uj〉, j = 1, . . . , s.

Since In � A � γIn we have that det(A) > 1 and γκj = cjγ〈A−1uj , uj〉 > cj for all 1 6 j 6 s. This implies
that, for all λ1, . . . , λs > 0,

(5.13)

s∑
j=1

cjλjuj ⊗ uj � γ

 s∑
j=1

κjλjuj ⊗ uj

 .

Combining (5.11) and (5.13) we get

(5.14) γn det

 s∑
j=1

κjλjuj ⊗ uj

 >
s∏
j=1

λ
κj
j

as claimed.

Remark 5.3. Setting λ1 = · · · = λs = λ > 0 in the conclusion of Proposition 5.2, we get

(5.15) γnλn det

 s∑
j=1

κjuj ⊗ uj

 > λ
∑s
j=1 κj .

Since this holds true for any λ > 0, we must have

(5.16)

s∑
j=1

κj = n.

We can also check this directly: note that

s∑
j=1

κj =

s∑
j=1

cj〈A−1uj , uj〉 =

s∑
j=1

cj tr(uj ⊗A−1uj) = tr

 s∑
j=1

cj(uj ⊗A−1uj)

(5.17)

= tr

 s∑
j=1

cjA
−1(uj ⊗ uj)

 = tr

A−1( s∑
j=1

cj(uj ⊗ uj)
) = tr(A−1A) = tr(In) = n.

Having verified condition (5.16), we conclude from Proposition 5.2 that the constant in the Brascamp-Lieb
inequality that corresponds to {uj}sj=1 and {κj}sj=1 is bounded by γn/2. We will use this observation in the
following form:

Theorem 5.4. Let γ > 1. Let u1, . . . , us ∈ Sn−1 and c1, . . . , cs > 0 satisfy

(5.18) In � A :=

s∑
j=1

cjuj ⊗ uj � γIn

and set κj = cj〈A−1uj , uj〉 > 0, 1 6 j 6 s. If f1, . . . , fs : R→ R+ are integrable functions then

(5.19)

∫
Rn

s∏
j=1

f
κj
j (〈x, uj〉)dx 6 γ

n
2

s∏
j=1

(∫
R
fj(t)dt

)κj
.
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6 Volume approximation by convex bodies with few facets

In this section we prove the main theorems of this article. We show that the intersection of any family of
closed half-spaces is contained in an intersection of N ' n of these half-spaces whose volume is reasonably
small. This implies our quantitative versions of Helly’s theorem as explained in the introduction.

We start with the symmetric case.

Theorem 6.1. Let {Pi : i ∈ I} be a family of symmetric strips

(6.1) Pi = {x ∈ Rn : |〈x, vi〉| 6 1}

in Rn, and let P =
⋂
i∈I Pi. For every d > 1 there exist s 6 dn and i1, . . . , is ∈ I such that

(6.2) |Pi1 ∩ · · · ∩ Pis | 6

(
2√
π

√
d+ 1√
d− 1

)n
Γ
(n

2
+ 1
)
|P |.

Proof. We may assume that P is in John’s position. From John’s theorem there exists J ⊆ I so that the
vectors vj , j ∈ J are contact points of P and Sn−1 and there exist aj > 0, j ∈ J , such that

(6.3) In =
∑
j∈J

ajvj ⊗ vj .

Theorem 4.1 shows that there exists a subset σ ⊆ J with |σ| = s 6 dn and bj > 0, j ∈ σ, such that

(6.4) In �
∑
j∈σ

bjajvj ⊗ vj � γdIn,

where γd =
(√

d+1√
d−1

)2
. We rewrite the vectors vj , j ∈ σ, as w1, . . . , ws and we set cj = ajbj . Now, we apply

Theorem 5.4 to find κj > 0, 1 6 j 6 s such that
∑s
j=1 κj = n and

(6.5)

∫
Rn

s∏
j=1

f
κj
j (〈x,wj〉)dx 6 γ

n
2

d

s∏
j=1

(∫
R
fj(t)dt

)κj
for any choice of non-negative integrable functions f1, . . . , fs on Rn. Note that

(6.6) |P1 ∩ · · · ∩ Ps| =
∫
Rn

s∏
j=1

1[−1,1](〈x,wj〉)κjdx.

Since
∫
R 1[−1,1](t)dt = 2, from Theorem 5.4 we get

(6.7) |P1 ∩ · · · ∩ Ps| 6 2nγ
n
2

d .

Since Bn2 ⊆ P , we also have

(6.8) |P | > |Bn2 | =
πn/2

Γ
(
n
2 + 1

)
and the result follows.

Remark 6.2. The proof of Theorem 6.1 shows that if K is a symmetric convex body in John’s position
then for every d > 1 there exist s 6 dn and w1, . . . , ws ∈ Sn−1 such that

(6.9) K ⊆ P :=

s⋂
j=1

{x ∈ Rn : |〈x,wj〉| 6 1}

11



and

(6.10) |P | 1n 6 2

√
d+ 1√
d− 1

.

This estimate should be compared to well-known lower bounds for the volume of intersections of strips,
due to Carl-Pajor [10], Gluskin [12] and Ball-Pajor [4]. If we fix d > 1 and set N = bdnc then for any
choice of vectors w1, . . . , wN spanning Rn, with ‖wi‖2 6 1 for all 1 6 i 6 N , we know that the body

P =
⋂N
j=1{x ∈ Rn : |〈x,wj〉| 6 1} satisfies

(6.11) |P | 1n >
2

√
e
√

log(1 + d)
.

which is of the same order (up to the dependence on d).
On the other hand, even if we ask that N = n (which corresponds to d = 1), one may find upper estimates

of the form (6.10) in the literature: for example, if K is a symmetric convex body in John’s position and if
v1, . . . , vn are the vectors in (2.9) then the parallelepiped

(6.12) P = {x ∈ Rn : |〈x, vj〉| 6 1, j = 1, . . . , n},

satisfies K ⊆ P and

(6.13) |P | 1n = 2|det(v1, v2, . . . , vn)|− 1
n 6

2
√
n

(n!)
1
2n

∼ 2
√
e.

This result is due to Dvoretzky and Rogers, and an estimate of the same order (but improving in a sense the

constants involved) was obtained by Pelczynski and Szarek in [16]. Comparing 2
√
e with 2

√
d+1√
d−1 we see that

our estimate provides a better bound if we allow a larger, but still proportional to the dimension, number
of strips.

Next, we pass to the not-necessarily symmetric case; we consider a family {Pi : i ∈ I} of closed half-
spaces and ask for a collection of s half-spaces Pj such that |P1 ∩ · · · ∩ Ps| 6 cn,s

∣∣⋂
i∈I Pi

∣∣. We give two
arguments. The first one is based on the ideas of Theorem 6.1 and establishes (for any d > 1) a choice of
s 6 (d+ 1)(n+ 1) half-spaces and a bound of the order of n3n/2 for the constant cn,s.

Theorem 6.3. Let {Pi : i ∈ I} be a family of closed half-spaces

(6.14) Pi = {x ∈ Rn : 〈x, ui〉 6 1}

in Rn, such that P =
⋂
i∈I Pi has positive volume. For every d > 1 there exist s 6 (d + 1)(n + 1) and

i1, . . . , is ∈ I such that

(6.15) |Pi1 ∩ · · · ∩ Pis | 6 γ
n+1
2

d

nn/2(n+ 1)3(n+1)/2

π
n
2 n!

Γ
(n

2
+ 1
)
|P | 6 γ

n+1
2

d (Cn)
3n
2 |P |,

where C > 0 is an absolute constant.

Proof. We may assume that P is in John’s position. From John’s theorem there exists J ⊆ I so that the
vectors uj , j ∈ J are contact points of P and Sn−1 and there exist aj > 0, j ∈ J , such that

(6.16) In =
∑
j∈J

ajuj ⊗ uj and
∑
j∈J

ajuj = 0.

Set

(6.17) vj =

√
n

n+ 1

(
−uj ,

1√
n

)
and bj =

n+ 1

n
aj .
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Then

(6.18) In+1 =
∑
j∈J

bjvj ⊗ vj .

Theorem 4.1 shows that there exists a subset σ ⊆ J with |σ| = s 6 d(n+ 1) and δj > 0, j ∈ σ, such that

(6.19) In+1 � A :=
∑
j∈σ

δjbjvj ⊗ vj � γdIn+1,

where γd =
(√

d+1√
d−1

)2
. We fix the vectors vj , j ∈ σ, and set cj = δjbj . We also consider the vector

(6.20) w := − 1

n(n+ 1)

∑
j∈σ

κjuj ,

where κj = cj〈A−1uj , uj〉 > 0, j ∈ σ are the scalars provided by Proposition 5.2. Recall that, by John’s
theorem, conv{uj , j ∈ J} ⊇ 1

nB
n
2 , and ‖w‖2 6 1

n by the triangle inequality and the fact that
∑
j∈σ κj = n+1.

From Carathéodory’s theorem we get that there exists τ ⊆ J with |τ | 6 n+ 1 and ρi > 0 with
∑
i∈τ ρi = 1

so that

(6.21) w =
∑
i∈τ

ρiui.

We define

(6.22) Q = {x ∈ Rn : 〈x, uj〉 < 1 for all j ∈ σ}

and

(6.23) Q′ = Q ∩ {x ∈ Rn : 〈x, ui〉 6 1 for all i ∈ τ}.

From Theorem 5.4 we know that if fj : R→ R+, j ∈ σ are integrable functions, then

(6.24)

∫
Rn+1

∏
j∈σ

f
κj
j (〈y, vj〉)dy 6 γ

n+1
2

d

∏
j∈σ

(∫
R
fj(t)dt

)κj
.

For j ∈ σ we define fj(t) = e−t1[0,∞)(t). Let y = (x, r) ∈ Rn+1. We easily check that if r > 0 and x ∈ r√
n
Q

then 〈x, uj〉 < r√
n

for all j ∈ σ. This implies that 〈y, vj〉 > 0 for all j ∈ σ, and hence
∏
j∈σ f

κj
j (〈y, vj〉) > 0.

It follows that∫
Rn+1

∏
j∈σ

f
κj
j (〈y, vj〉)dy >

∫ ∞
0

∫
r√
n
Q

∏
j∈σ

f
κj
j (〈y, vj〉)dy(6.25)

=

∫ ∞
0

∫
r√
n
Q

exp

−∑
j∈σ

κj〈(x, r), vj〉

 dx dr

=

∫ ∞
0

∫
r√
n
Q

exp

√ n

n+ 1

∑
j∈σ

κj〈x, uj〉 −
r√
n+ 1

∑
j∈σ

κj

 dx dr

=

∫ ∞
0

∫
r√
n
Q

e−r
√
n+1 exp

(
−n3/2

√
n+ 1〈x,w〉

)
dx dr

>
∫ ∞
0

∫
r√
n
Q′
e−r
√
n+1 exp

(
−n3/2

√
n+ 1 〈x,w〉

)
dx dr,
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where, in the last step, we use the fact that Q′ ⊆ Q. Now, observe that if x ∈ r√
n
Q′ then

(6.26) 〈x,w〉 =
∑
i∈τ

ρi〈x, ui〉 6
r√
n
.

So, we get ∫
Rn+1

∏
j∈σ

f
κj
j (〈y, vj〉)dy >

∫ ∞
0

∫
r√
n
Q′
e−r
√
n+1−rn

√
n+1dx dr(6.27)

=

∫ ∞
0

∫
r√
n
Q′
e−r(n+1)3/2dx dr

= |Q′| · 1

nn/2

∫ ∞
0

rne−r(n+1)3/2 dr

= |Q′| · 1

nn/2
n!

(n+ 1)3(n+1)/2
.

Note that

(6.28)
∏
j∈σ

(∫
R
fj(t)dt

)κj
= 1,

and hence (6.24) gives us

(6.29) |Q′| 6 γ
n+1
2

d

nn/2(n+ 1)3(n+1)/2

n!
.

Since Q′ is an intersection of at most (d+1)(n+1) half-spaces and Bn2 ⊆ P ⊆ Q′, the result follows as in the

symmetric case. Using Stirling’s formula one can check that the statement holds true with Cd =
(
eγd
2π

) 1
3 .

Our next argument provides (for an absolute constant α� 1) a choice of s 6 αn half-spaces and a much
better bound of the order of nn for the constant cn,s.

Theorem 6.4. There exists an absolute constant α > 1 with the following property: for every family
{Pi : i ∈ I} of closed half-spaces

(6.30) Pi = {x ∈ Rn : 〈x, ui〉 6 1}

in Rn, such that P =
⋂
i∈I Pi has positive volume, there exist s 6 αn and i1, . . . , is ∈ I such that

(6.31) |Pi1 ∩ · · · ∩ Pis | 6 (Cn)n |P |,

where C > 0 is an absolute constant.

Proof. As in the proof of Theorem 6.3 we assume that P is in John’s position, and we find J ⊆ I so that
the vectors uj , j ∈ J are contact points of P and Sn−1 and there exist aj > 0, j ∈ J , such that

(6.32) In =
∑
j∈J

ajuj ⊗ uj and
∑
j∈J

ajuj = 0.

We apply Theorem 4.2 to find a subset σ ⊆ J with |σ| 6 α1(ε)n, positive scalars cj , j ∈ σ and a vector u
such that

(6.33) In �
∑
j∈σ

cj(uj + u)⊗ (uj + u) � (4 + ε)In

14



and

(6.34)
∑
j∈σ

cj(uj + u) = 0 and ‖u‖22 6
ε∑
j∈σ cj

.

Note that

tr

∑
j∈σ

cj(uj + u)⊗ (uj + u)

 =
∑
j∈σ

cj‖uj + u‖22(6.35)

=
∑
j∈σ

cj‖uj‖22 + 2
∑
j∈σ
〈u, cjuj〉+

∑
j∈σ

cj

 ‖u‖22
=
∑
j∈σ

cj + 2
〈
u,−

(∑
j∈σ

cj

)
u
〉

+

∑
j∈σ

cj

 ‖u‖22
=
∑
j∈σ

cj −

∑
j∈σ

cj

 ‖u‖22
and hence from (6.33) we get that

n 6
∑
j∈σ

cj −

∑
j∈σ

cj

 ‖u‖22 6 (4 + ε)n.

Now, using (6.34) we get

(6.36) n 6
∑
j∈σ

cj 6 (4 + 2ε)n.

In particular,

(6.37) ‖u‖22 6
ε∑
j∈σ cj

6
ε

n
.

Recall that conv{uj , j ∈ J} ⊇ 1
nB

n
2 . Then, for the vector w = u√

εn
we have ‖w‖2 6 1

n and hence w ∈
conv{uj , j ∈ J}. Carathéodory’s theorem shows that there exist τ ⊆ J with |τ | 6 n + 1 and ρi > 0, i ∈ τ
such that

(6.38) w =
∑
i∈τ

ρiui and
∑
i∈τ

ρi = 1.

Note that

(6.39)

∑
j∈σ

cj

 (−u) =
∑
j∈σ

cjuj ,

and this shows that −u ∈ conv{uj : j ∈ σ}. It follows that the segment

(6.40)

[
−u, u√

εn

]
⊂ conv{uj : j ∈ σ ∪ τ}.
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For j ∈ σ we set

(6.41) vj =

√
n

n+ 1

(
−uj ,

1√
n

)
and bj =

n+ 1

n
cj .

We also set −v =
√

n
n+1 (u, 0). Then, using (6.34) we get

(6.42)
∑
j∈σ

bj(vj + v)⊗ (vj + v) =

(∑
j∈σ cj(uj + u)⊗ (uj + u) 0

0
∑
j∈σ cj

n

)
,

which implies, with the help of (6.36), that

(6.43) In+1 �
∑
j∈σ

bj(vj + v)⊗ (vj + v) � (4 + 2ε)In+1.

We rewrite the last one as follows:

In+1 −
∑
j∈σ

bjvj ⊗ v −
∑
j∈σ

v ⊗ bjvj −

∑
j∈σ

bj

 v ⊗ v(6.44)

�
∑
j∈σ

bjvj ⊗ vj � 5In+1 −
∑
j∈σ

bjvj ⊗ v −
∑
j∈σ

v ⊗ bjvj −

∑
j∈σ

bj

 v ⊗ v.

Note that

(6.45)
∑
j∈σ

bjvj =

√
n+ 1

n

−∑
j∈σ

cjuj ,

∑
j∈σ cj√
n

 =

√
n+ 1

n

∑
j∈σ

cj

u,

∑
j∈σ cj√
n

 ,

so ∑
j∈σ

bjvj

⊗ v =

∑
j∈σ

cj

u,

∑
j∈σ cj√
n

⊗ (−u, 0)(6.46)

=

−(∑j∈σ cj

)
u⊗ u 0

− (
∑
j∈σ cj)u√
n

0

 .

Computing in a similar way we finally have that

(6.47) T :=
∑
j∈σ

bjvj ⊗ v +
∑
j∈σ

v ⊗ bjvj +

∑
j∈σ

bj

 v ⊗ v =

(
V z
z 0

)
.

where V = −
(∑

j∈σ cj

)
u⊗ u and z = − (

∑
j∈σ cj)u√
n

. Now, for every (x, t) ∈ Sn we have

〈T (x, t), (x, t)〉 = 〈V x, x〉+ 2〈z, t〉 6 ‖V ‖+ 2‖z‖2(6.48)

=

∑
j∈σ

cj

 ‖u‖22 +

∑
j∈σ

cj

 2‖u‖2√
n

6 ε+ (4 + 2ε)n
2
√
ε

n
= ε+ 2

√
ε(4 + 2ε).
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Choosing ε = 10−3 we get

(6.49)

∥∥∥∥∥∥
∑
j∈σ

bjvj ⊗ v +
∑
j∈σ

v ⊗ bjvj +

∑
j∈σ

bj

 v ⊗ v

∥∥∥∥∥∥ 6
1

2
,

and going back to (6.44) we get

(6.50)
1

2
In+1 �

∑
j∈σ

bjvj ⊗ vj � 5In+1.

Now, we apply Proposition 5.2 to find κj > 0, j ∈ σ such that if fj : R→ R+ are measurable functions, then

(6.51)

∫
Rn+1

∏
j∈σ

f
κj
j (〈y, vj〉)dy 6 10

n+1
2

∏
j∈σ

(∫
R
fj(t)dt

)κj
.

For j ∈ σ we define fj(t) = e
−
bj
kj
t
1[0,∞)(t). Then,

(6.52)

∫
Rn+1

∏
j∈σ

f
κj
j (〈y, vj〉)dy 6 10

n+1
2

∏
j∈σ

(∫
R
fj(t)dt

)κj
= 10

n+1
2

∏
j∈σ

(
κj
cj

)κj
6 40

n+1
2 ,

recalling from the proof of Proposition 5.2 that
κj
bj

= 〈A−1uj , uj〉 6 2 (the last inequality is a consequence

of 1
2In+1 � A =

∑
j∈σ bjvj ⊗ vj).

Let

(6.53) Q = {x ∈ Rn : 〈x, uj〉 < 1, j ∈ σ ∪ τ}.

We write y = (x, r) ∈ Rn+1 and assume that r > 0 and x ∈ r√
n
Q. Then, we have 〈x, uj〉 < r√

n
for all j ∈ σ.

This implies that 〈y, vj〉 > 0 for all j ∈ σ, and hence
∏
j∈σ f

κj
j (〈y, vj〉) > 0. We also have

1(∑
j∈σ cj

) 〈∑
j∈σ

cjuj , x

〉
= 〈−u, x〉 =

√
εn〈−w, x〉 =

√
εn

〈
−
∑
i∈τ

ρiui, x

〉
(6.54)

> −
√
εr,

where the last inequality holds since x ∈ r√
n
Q. It follows that

(6.55)
〈∑
j∈σ

cjuj , x
〉
> −5

√
εrn.

Using the above (and recalling our choice of ε = 10−3 < 1) we see that if y = (x, r) ∈ r√
n
Q× (0,∞) then

∏
j∈σ

f
κj
j (〈y, vj〉) = exp

−∑
j∈σ

bj

(
r√
n
−
√

n

n+ 1
〈x, uj〉

)(6.56)

= exp

− r√
n

∑
j∈σ

bj

 exp

〈x,∑
j∈σ

bjuj

〉
> exp

(
−5r

n+ 1√
n
− 5
√
εr(n+ 1)

)
> exp (−10r(n+ 1)) .
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Now, (6.52) gives us

|Q|
n
n
2

∫ ∞
0

rne−10r(n+1) dr =

∫ ∞
0

∫
r√
n
Q

e−10r(n+1)dx dr 6
∫
Rn+1

∏
j∈σ

f
κj
j (〈y, vj〉)dy(6.57)

6 40
n+1
2 .

Direct computation and then Stirling’s approximation show that

(6.58) |Q| 6 Cn1
n

3n
2

n!
6 Cn2 n

n
2

and Q is the intersection of at most |σ|+ |τ | 6 α1(10−3)n+n+ 1 6 αn half-spaces, where α = α1(10−3) + 2.
Since Bn2 ⊆ P ⊆ Q, the result follows as in the symmetric case.
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