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Abstract

Given γ > 1 we say that a Borel measure ν on Sn−1 is a γ-approximation of an isotropic measure if

In � Tν =

∫
Sn−1

u⊗ u dν(u) � γIn,

where In is the identity matrix. We provide a generalization of Barthe’s continuous version of the
Brascamp-Lieb inequalities to the context of these approximate isotropic measures, and we apply these
inequalities to obtain stability results for some classical positions of convex bodies.

1 Introduction

This article is a continuation of the work [11] of the first named author. Our purpose is to extend Barthe’s
continuous version of the Brascamp-Lieb inequalities to the setting of approximately isotropic Borel measures
on the sphere. Recall that a Borel measure ν on Sn−1 is called isotropic if

(1.1) In =

∫
Sn−1

u⊗ u dν(u),

where In is the identity matrix and (u ⊗ v)(y) = 〈v, y〉u. Barthe’s theorem is a pair of inequalities for a
family of functions (fu), u ∈ Sn−1, that satisfy some mild continuity conditions; namely,

• There exist a continuous function F : Sn−1×R −→ (0,+∞) and two functions a, b on Sn−1 with a < b
(a, b are either real-valued continuous or constant with value ±∞) such that for all (u, t) ∈ Sn−1 × R

fu(t) = 1a(u)6t6b(u)F (u, t).

• There exists a function U ∈ L1(R) ∩ L∞(R) such that 0 6 fu 6 U for all u ∈ Sn−1.

Then, we say that (fu) satisfies condition (H).

Theorem 1.1 (Barthe). Let ν be an isotropic Borel measure on Sn−1 and let (fu), u ∈ Sn−1 be a family of
functions fu : R −→ [0,+∞) that satisfies condition (H). Then,

(1.2)

∫
Rn

exp

(∫
Sn−1

log fu(〈x, u〉)dν(u)

)
dx 6 exp

(∫
Sn−1

log

(∫
R
fu

)
dν(u)

)
.

Also, if h is a measurable function such that

(1.3) h

(∫
Sn−1

θ(u)u dν(u)

)
> exp

(∫
Sn−1

log fu(θ(u)) dν(u)

)
for every integrable function θ, then

(1.4)

∫
Rn
h(x) dx > exp

(∫
Sn−1

log

(∫
R
fu

)
dν(u)

)
.
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The discrete analogues of the two statements in Theorem 1.1, Ball’s version of the Brascamp-Lieb
inequality and Barthe’s reverse Brascamp-Lieb inequality, have been the key to a number of sharp geometric
inequalities and play an important role in convex geometric analysis. Recall that if m > n, u1, . . . , um ∈ Rn
and c1, . . . , cm > 0 with c1 + · · ·+ cm = n, then the Brascamp-Lieb inequality [10], as reformulated by Ball
(see e.g. [2]), states that

(1.5) G(f1, . . . , fm) :=

∫
Rn

m∏
j=1

f
cj
j (〈x, uj〉)dx 6

1√
D

m∏
j=1

(∫
R
fj

)cj
for all integrable functions fj : R −→ [0,∞), where

(1.6) D = inf

{
det
(∑m

j=1 cjλjuj ⊗ uj
)∏m

j=1 λ
cj
j

: λj > 0

}
.

A reverse form of (1.5) was proved by Barthe in [6] (see also [7] for a multidimensional extension). Under
the same assumptions on the data {uj , cj}j6m, we have

(1.7) K(h1, . . . , hm) :=

∫ ∗
Rn

sup

{ m∏
j=1

h
cj
j (θj) : θj ∈ R , x =

m∑
j=1

θjcjuj

}
dx >

√
D

m∏
j=1

(∫
R
hj

)cj
for all integrable functions h1, . . . , hm : R −→ [0,∞), where

∫ ∗
denotes outer integral.

In order to apply (1.5) and (1.7) for a given set of vectors uj and weights cj , one has to compute
the constant D = D({uj , cj}16j6m); this is not a simple problem. Ball’s crucial observation is that if
u1, . . . , um ∈ Sn−1 and c1, . . . , cm > 0 satisfy the condition

(1.8) In =

m∑
j=1

cjuj ⊗ uj ,

then

(1.9) D = D({uj , cj}16j6m) = 1.

Ball first used this fact in [2] to obtain estimates on the volume of sections and projections of the unit cube.
A well-known decomposition of the form (1.8) appears in John’s theorem regarding a convex body whose
maximal volume ellipsoid is the Euclidean unit ball (see Section 2). The first and well-known application of
(1.5) in this context is Ball’s sharp reverse isoperimetric inequality in [3]. Subsequently, both (1.5) and (1.7)
have been systematically used for the proof of several other sharp inequalities in convex geometric analysis
(see [4] for references and the history of these ideas).

Note that uj ∈ Sn−1 and cj > 0 satisfy (1.8) if and only if the measure ν with supp(ν) = {u1, . . . , um}
and ν({uj}) = cj , j = 1, . . . ,m is an isotropic measure on Sn−1. It was later understood (and this point of
view was put forward in [12]) that various classical positions of convex bodies are also characterized by the
fact that an appropriate Borel measure on the sphere is isotropic (see Section 2 for background information).
For example:

• A convex body K has minimal surface area among all its affine images of the same volume if and only
if the surface area measure σK of K is an isotropic measure on Sn−1.

• A convex body K has minimal mean width among all its affine images of the same volume if and only
if the measure νK with density hK with respect to σ is an isotropic measure on Sn−1.

Barthe’s theorem (Theorem 1.1) provides a continuous version (and extension) of (1.5) and (1.7) which
potentially allows one to obtain geometric applications in situations where a non-discrete isotropic measure
appears. This is certainly the case in the two examples above (see also [18] and [19] for a sample of
applications).
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We present a variant of Theorem 1.1 for any non-negative finite Borel measure ν on Sn−1, and in
particular we are interested in the case where ν is approximately isotropic. For any non-negative finite Borel
measure ν on Sn−1 we define the symmetric positive semi-definite n× n matrix

(1.10) Tν =

∫
Sn−1

u⊗ u dν(u).

We say that ν is a γ-approximation of an isotropic measure (for some γ > 1) if

(1.11) In � Tν =

∫
Sn−1

u⊗ u dν(u) � γIn.

First, we obtain a generalization of the next result of Lutwak, Yang and Zhang [17] which is the continuous
version of Ball’s observation (1.9): if ν is an isotropic measure on Sn−1 and t : supp(ν) −→ (0,∞) is
continuous, then

(1.12) det

(∫
Sn−1

t(u)u⊗ u dν(u)

)
> exp

[∫
Sn−1

log t(u) dν(u)

]
.

This fact is a basic ingredient in Barthe’s proof of Theorem 1.1. In the general case it takes the following
form:

Theorem 1.2. Let ν be a non-negative finite Borel measure on Sn−1. For every continuous function
t : supp(ν) −→ (0,∞) one has

det

(∫
Sn−1

t(u)u⊗ u dν(u)

)
> det(Tν) exp

[∫
Sn−1

log t(u) 〈T−1
ν u, u〉 dν(u)

]
.(1.13)

Then, with a modification of Barthe’s argument from [8], we obtain a general continuous version of the
Brascamp-Lieb inequality.

Theorem 1.3. Let ν be a non-negative finite Borel measure on Sn−1 and let (fu), u ∈ Sn−1 be a family of
functions fu : R −→ [0,+∞) that satisfies condition (H). Let

Aν =
√

det(Tν) exp

(∫
Sn−1

log

√
〈T−1
ν u, u〉dµ(u)

)
,

where µ is the measure on Sn−1 with dµ(u) = 〈T−1
ν u, u〉dν(u). Then,

(1.14) Aν

∫
Rn

exp

(∫
Sn−1

log fu(〈x, u〉)〈T−1
ν u, u〉dν(u)

)
dx 6 exp

(∫
Sn−1

log

(∫
R
fu

)
〈T−1
ν u, u〉 dν(u)

)
.

Also, if h is a measurable function such that

(1.15) h

(∫
Sn−1

θ(u)u dµ(u)

)
> exp

(∫
Sn−1

log fu(θ(u))dµ(u)

)
for every integrable function θ, then

(1.16)

∫
Rn
h(y) dy > Aν exp

(∫
Sn−1

log

(∫
R
fu

)
〈T−1
ν u, u〉 dν(u)

)
.

In particular, if ν a γ-approximation of an isotropic measure, we obtain a generalization of the discrete
analogues of Theorem 1.2 and Theorem 1.3 from [11] (see the precise statements in Section 2) where it was
shown that if an approximate John’s decomposition is available by a set of uj ∈ Sn−1 and cj > 0 then we
still have a Brascamp-Lieb inequality with a reasonable constant D({uj , cj}16j6m).

We also observe in Proposition 3.4 that the constant Aν in Theorem 1.3 is at most 1, with equality if the
measure ν is isotropic. This agrees with a result of Valdimarsson from [22] for the discrete Brascamp-Lieb
inequality.

In the last section of this article we apply Theorem 1.3 to obtain stability results for some classical
positions of convex bodies. The main idea is to use the next fact.
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Theorem 1.4. Let ν be a non-negative finite Borel measure on Sn−1. Let C(ν) be the symmetric convex
body whose support function is the cosine transform of ν

(1.17) Cν(x) =

∫
Sn−1

|〈x, u〉| dν(u), x ∈ Rn,

and write C∗(ν) for the polar body of ν. Then,

(1.18) ν(Sn−1)|C∗(ν)|1/n >
nω

n+1
n

n

2ωn−1
> c,

where c > 0 is an absolute constant. Conversely, if ν is a γ-approximation of an isotropic measure on Sn−1

for some γ > 1, then

(1.19) ν(Sn−1)|C∗(ν)|1/n 6 2eγ.

The isotropic analogue of Theorem 1.4 has first appeared in [14], in the particular case where ν = σK is
the area measure of a convex body K. Theorem 1.4 allows us to use it for approximate isotropic measures;
as an example of application we show that if the area measure of a convex body K is almost isotropic then
K has almost minimal surface area (this fact appears in [14] but we feel that the present argument is more
transparent and may be the model for new applications of this type).

2 Notation and background

We work in Rn, which is equipped with a Euclidean structure 〈·, ·〉. We denote by ‖ · ‖2 the corresponding
Euclidean norm, and write Bn2 for the Euclidean unit ball and Sn−1 for the unit sphere. Volume is denoted
by | · |. We write ωn for the volume of Bn2 and σ for the rotationally invariant probability measure on
Sn−1. We will denote by PF the orthogonal projection from Rn onto F . We also define BF = Bn2 ∩ F and
SF = Sn−1 ∩ F .

The letters c, c′, c1, c2 etc. denote absolute positive constants which may change from line to line.
Whenever we write a ' b, we mean that there exist absolute constants c1, c2 > 0 such that c1a 6 b 6 c2a.
Also, if K,L ⊆ Rn we will write K ' L if there exist absolute constants c1, c2 > 0 such that c1K ⊆ L ⊆ c2K.

We refer to the book of Schneider [21] for basic facts from the Brunn-Minkowski theory and to the book
of Artstein-Avidan, Giannopoulos and V. Milman [1] for basic facts from asymptotic convex geometry.

2.1. Convex bodies

A convex body in Rn is a compact convex subset K of Rn with non-empty interior. We say that K is
symmetric if x ∈ K implies that −x ∈ K, and that K is centered if its barycenter

(2.1) bar(K) =
1

|K|

∫
K

x dx

is at the origin. If 0 ∈ int(K) then the polar body K◦ of K is defined by

(2.2) K◦ := {y ∈ Rn : 〈x, y〉 6 1 for all x ∈ K}.

The Blaschke-Santaló inequality states that for every centered convex body K in Rn one has |K||K◦| 6 ω2
n,

with equality if and only if K is an ellipsoid. The reverse Santaló inequality of Bourgain and V. Milman [9]
states that there exists an absolute constant c > 0 such that

(2.3) (|K||K◦|)1/n > c/n,

where c > 0 is an absolute constant, for every convex body K in Rn which contains 0 in its interior.
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The support function of a convex body K in Rn is defined by

(2.4) hK(x) = max{〈x, y〉 : y ∈ K}.

The mean width of K is the quantity

(2.5) w(K) =

∫
Sn−1

hK(x) dσ(x).

The area measure σK of a convex body K in Rn is defined on Sn−1 and corresponds to the usual surface
measure on K via the Gauss map: for every Borel A ⊆ Sn−1, we set

(2.6) σK(A) = λ ({x ∈ bd(K) : the outer normal to K at x is in A}) ,

where λ is the (n− 1)-dimensional surface measure on K. The surface area ∂(K) of K is obviously equal to
σK(Sn−1).

The projection body ΠK of K is the symmetric convex body whose support function is defined by
hΠK(θ) = |Pθ⊥(K)|, θ ∈ Sn−1. We write Π∗K for its polar body (the polar projection body of K).

The cosine transform of a non-negative finite Borel measure ν on Sn−1 is defined by

(2.7) Cν(x) =

∫
Sn−1

|〈x, u〉| dν(u), x ∈ Rn.

If ν is not concentrated on a great subsphere then Cν is the support function of a symmetric convex body
in Rn, which we denote by C(ν). For example, if K is a convex body in Rn then

(2.8) CσK (θ) =

∫
Sn−1

|〈θ, u〉| dσK(u) = 2|Pθ⊥(K)|

for every θ ∈ Sn−1, and hence C(σK) = 2ΠK. We also write C∗(ν) for the polar body of C(ν).

2.2. Discrete approximate decompositions of the identity

It was mentioned in the introduction that if u1, . . . , um ∈ Sn−1 and c1, . . . , cm > 0 satisfy (1.8) then
D({uj , cj}16j6m) = 1. The next result from [11] provides a substitute of this fact in the case of an approxi-
mate John’s decomposition.

Theorem 2.1 (Brazitikos). Let γ > 1. If u1, . . . , um ∈ Sn−1 and c1, . . . , cm > 0 satisfy

(2.9) In � A :=

m∑
j=1

cjuj ⊗ uj � γIn

then

(2.10) γn det

 m∑
j=1

κjλjuj ⊗ uj

 > det

 m∑
j=1

cjλjuj ⊗ uj

 >
m∏
j=1

λ
κj
j

for all λ1, . . . , λm > 0, where κj = cj〈A−1uj , uj〉 > 0, 1 6 j 6 m.

As a direct consequence one has the next approximate geometric Brascamp-Lieb inequality and its reverse
counterpart.

Theorem 2.2 (Brazitikos). Let γ > 1. Assume that u1, . . . , um ∈ Sn−1 and c1, . . . , cm > 0 satisfy (2.9) and
set κj = cj〈A−1uj , uj〉 > 0, 1 6 j 6 m. If f1, . . . , fm : R −→ [0,+∞) are integrable functions then

(2.11)

∫
Rn

m∏
j=1

f
κj
j (〈x, uj〉)dx 6 γ

n
2

m∏
j=1

(∫
R
fj(t)dt

)κj
.
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Also, if w, h1, . . . , hm : R −→ [0,∞) are integrable functions and w(x) > sup
{∏m

j=1 h
κj
j (θj) : θj ∈ R , x =∑m

j=1 θjcjuj
}

, then

(2.12)

∫
Rn
w(x)dx > γ−

n
2

m∏
j=1

(∫
R
hj(t) dt

)κj
.

2.3. Isotropic measures and classical positions of convex bodies

A Borel measure ν on Sn−1 is called isotropic if

(2.13) In =

∫
Sn−1

u⊗ u dν(u).

Note that uj ∈ Sn−1 and cj > 0 satisfy (1.8) if and only if the measure ν with supp(ν) = {u1, . . . , um} and
ν({uj}) = cj , j = 1, . . . ,m is an isotropic measure on Sn−1.

For any non-negative finite Borel measure ν on Sn−1 we define the symmetric positive semi-definite n×n
matrix

(2.14) Tν =

∫
Sn−1

u⊗ u dν(u).

Equivalently, we have

(2.15) 〈Tνx, x〉 =

∫
Sn−1

〈x, u〉2 dν(u)

for all x ∈ Rn. Note that

(2.16) tr(Tν) = ν(Sn−1).

In particular, whenever (1.8) is satisfied we have that

(2.17)

m∑
j=1

cj = tr(In) = n and

m∑
j=1

cj〈uj , z〉2 = 1

for any z ∈ Sn−1.
We say that K has minimal mean width if w(K) 6 w(TK) for every T ∈ SL(n). It was proved in [12]

that a smooth enough convex body K in Rn has minimal mean width if and only if

(2.18)

∫
Sn−1

hK(x)〈x, θ〉2dσ(x) =
w(K)

n

for every θ ∈ Sn−1. Equivalently, if the measure νK on Sn−1 with density hK with respect to σ is a scalar
multiple of an isotropic measure. Moreover, this minimal mean width position is unique up to orthogonal
transformations.

We say that K has minimal surface area if ∂(K) 6 ∂(TK) for every T ∈ SL(n). A characterization
of the minimal surface area position through the area measure was given by Petty in [20] (see also [14]):
a convex body K has minimal surface area if and only if σK is a scalar multiple of an isotropic measure.
Moreover, this minimal surface area position is unique up to orthogonal transformations.

A convex body K of volume 1 in Rn is called isotropic if it is centered and there exists a constant LK > 0
such that

(2.19)

∫
K

〈x, θ〉2dx = L2
K
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for all θ ∈ Sn−1. Moreover, the isotropic position is unique up to orthogonal transformations. Writing (2.19)
in polar coordinates we get

(2.20)
nωn
n+ 2

∫
Sn−1

〈u, θ〉2 ρn+2
K (u)dσ(u) = L2

K

for all θ ∈ Sn−1, where ρK(u) = max{t > 0 : tu ∈ K} is the radial function of K. Therefore, K is isotropic if
and only if the measure λK on Sn−1 with density ρn+2

K with respect to σ is a scalar multiple of an isotropic
measure.

We say that a convex body K is in John’s position if the ellipsoid of maximal volume inscribed in K is
the Euclidean unit ball Bn2 . John’s theorem [16] states that K is in John’s position if and only if Bn2 ⊆ K and
there exist u1, . . . , um ∈ bd(K) ∩ Sn−1 (contact points of K and Bn2 ) and positive real numbers c1, . . . , cm
such that

(2.21)

m∑
j=1

cjuj = 0

and the identity operator In is decomposed in the form

(2.22) In =

m∑
j=1

cjuj ⊗ uj .

2.4. Mixed discriminants

For the proof of Theorem 1.2 we shall modify the argument that Lutwak, Yang and Zhang used in [17] for
the isotropic case, which employs some basic properties of mixed discriminants. Recall that if T1, . . . , Tm
are positive semi-definite n× n matrices then the determinant of a1T1 + · · ·+ amTm can be expanded as a
homogeneous polynomial of degree n in a1, . . . , am > 0; one has

(2.23) det(a1T1 + · · ·+ amTm) =
∑

16i1,...,in6m

D(Ti1 , . . . , Tin)ai1 · · · ain ,

where the coefficient D(Ti1 , . . . , Tin) depends only on i1, . . . , in and is invariant under permutations of the
ij ’s. This coefficient is the mixed discriminant of Ti1 , . . . , Tin .

We shall use a number of properties of mixed discriminants (see [5] for a proof).

Lemma 2.3. If S, T, Ti, T
′
i are positive semi-definite n× n matrices, then:

(i) D(T1, . . . , Tn) > 0.

(ii) D(T, T, . . . , T ) = det(T ). In particular, D(In, . . . , In) = 1.

(iii) nD(T, In, . . . , In) = tr(T ).

(iv) D(aT1 + bT ′1, T2, . . . , Tn) = aD(T1, T2, . . . , Tn) + bD(T ′1, T2, . . . , Tn) for all a, b > 0.

(v) D(T1S, T2S, . . . , TnS) = |det(S)|D(T1, . . . , Tn) and D(ST1, ST2, . . . , STn) = |det(S)|D(T1, . . . , Tn).

We will be interested in n-tuples (Tµ1
, . . . , Tµn) where µ1, . . . , µn are non-negative finite Borel measures

on Sn−1. We will use the fact that

(2.24) D(Tµ1 , . . . , Tµn) =
1

n!

∫
Sn−1

· · ·
∫
Sn−1

[u1, . . . , un]2dµ1(u1) · · · dµn(un),

where [u1, . . . , un] denotes the volume of the parallelotope defined by u1, . . . , un (see [17] for a proof).
Note also that if u ∈ Sn−1 and δu is the probability measure supported by {u}, then

(2.25)
1

n
=

tr(Tδu)

n
= D(Tδu , In, . . . , In).

7



3 Proof of the main results

We start with the proof of Theorem 1.2. Let ν be a non-negative finite Borel measure on Sn−1. Given
a continuous function t : supp(ν) −→ (0,∞) we apply (2.24) for the measures µ1 = · · · = µn = µ where
dµ = t dν, to get

det

(∫
Sn−1

t(u)u⊗ u dν(u)

)
= det(Tµ) = D(Tµ, . . . , Tµ)(3.1)

=
1

n!

∫
Sn−1

· · ·
∫
Sn−1

t(u1) · · · t(un)[u1, . . . , un]2dν(u1) · · · dν(un)

= det(Tν)
1

n! det(Tν)

∫
Sn−1

· · ·
∫
Sn−1

t(u1) · · · t(un)[u1, . . . , un]2dν(u1) · · · dν(un).

Replacing t by the constant function 1 in the equation above, we see that

(3.2)
1

n! det(Tν)

∫
Sn−1

· · ·
∫
Sn−1

[u1, . . . , un]2dν(u1) · · · dν(un) = 1.

Then, from Jensen’s inequality we see that

det

(∫
Sn−1

t(u)u⊗ u dν(u)

)
(3.3)

> det(Tν) exp

[
1

n! det(Tν)

∫
Sn−1

· · ·
∫
Sn−1

log(t(u1) · · · t(un))[u1, . . . , un]2dν(u1) · · · dν(un)

]

= det(Tν) exp

 1

n! det(Tν)

n∑
j=1

∫
Sn−1

· · ·
∫
Sn−1

log t(uj)[u1, . . . , un]2dν(u1) · · · dν(un)

 .
Note that for every u ∈ Sn−1 we also have that∫

Sn−1

· · ·
∫
Sn−1

[u, u2, . . . , un]2dν(u2) · · · dν(un) = n!D(Tδu , Tν , . . . , Tν)(3.4)

= n! det(Tν)D(T−1
ν Tδu , In, . . . , In)

= (n− 1)! det(Tν)tr(T−1
ν Tδu)

= (n− 1)! det(Tν)
〈
T−1
ν u, u

〉
.

It follows that ∫
Sn−1

· · ·
∫
Sn−1

log t(u1)[u1, . . . , un]2dν(u1) · · · dν(un)(3.5)

= (n− 1)! det(Tν)

∫
Sn−1

log t(u)
〈
T−1
ν u, u

〉
dν(u),

and then, (3.3) and (3.5) give:

(3.6) det

(∫
Sn−1

t(u)u⊗ u dν(u)

)
> det(Tν) exp

[∫
Sn−1

log t(u)
〈
T−1
ν u, u

〉
dν(u)

]
,

which completes the proof. 2

Applying Theorem 1.2 to a γ-approximation of an isotropic measure we get a generalization of Theorem
2.1.
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Theorem 3.1. Let u1, . . . , um ∈ Sn−1 and c1, . . . , cm > 0 satisfy In � A :=
∑m
j=1 cjuj ⊗ uj � γIn for some

γ > 1. Then, for all λ1, . . . , λm > 0,

(3.7) γn det

 m∑
j=1

cjλj〈A−1uj , uj〉uj ⊗ uj

 > exp

 m∑
j=1

log(λj) cj〈A−1uj , uj〉

 =

m∏
j=1

λ
cj〈A−1uj ,uj〉
j .

Proof. We apply Theorem 1.2 to the discrete measure ν with ν({uj}) = cj〈A−1uj , uj〉 and to the function
t : {u1, . . . , um} −→ (0,∞) with t(uj) = λj . Note that 〈A−1uj , uj〉 > γ−1 and hence

det(Tν) = det

 m∑
j=1

cj〈A−1uj , uj〉uj ⊗ uj

 > det(γ−1A) > γ−n

by the assumption that In � A. 2

We pass to the proof of Theorem 1.3. In the next lemma, which is essentially the main lemma in [8],
(fu), (gu), u ∈ Sn−1 are two families of functions fu, gu : R −→ [0,+∞) that satisfy condition (H):

• There exist two continuous functions F,G : Sn−1 × R −→ (0,+∞) and functions a, b, c, d on Sn−1

with a < b and c < d (a, b, c, d are either real-valued continuous or constant with value ±∞) such that
for all (u, t) ∈ Sn−1 × R

(3.8) fu(t) = 1a(u)6t6b(u)F (u, t) and gu(t) = 1c(u)6t6d(u)G(u, t).

• There exist two functions U, V ∈ L1(R) ∩ L∞(R) such that 0 6 fu 6 U and 0 6 gu 6 V for all
u ∈ Sn−1.

Lemma 3.2. Let ν be a non-negative finite Borel measure on Sn−1 and let µ be the measure on Sn−1 with
dµ(u) = 〈T−1

ν u, u〉dν(u). If (fu), (gu), u ∈ Sn−1 are two families of functions that satisfy (H) then

det(Tν) exp

(∫
Sn−1

log

(∫
R
gu

)
dµ(u)

)∫
Rn

exp

(∫
Sn−1

log fu(〈x, u〉)dµ(u)

)
dx(3.9)

6 exp

(∫
Sn−1

log

(∫
R
fu

)
dµ(u)

)∫ ∗
Rn

sup
y=

∫
θ(u)udν(u)

exp

(∫
Sn−1

log gu(θ(u))dµ(u)

)
dy.

Proof. We sketch the proof, following Barthe’s argument, just in order to make the necessary modifications.
We assume that the left hand side of (3.9) is positive and note that exp

(∫
Sn−1 log fu(〈x, u〉)dµ(u)

)
is equal

to zero outside the closed and convex set

(3.10) D = {x ∈ Rn : a(u) 6 〈x, u〉 6 b(u) for all u ∈ supp(ν)}.

For every u ∈ Sn−1 we define Mu : (a(u), b(u)) −→ (c(u), d(u)) by the equation

(3.11)

∫ t
a(u)

fu∫
fu

=

∫Mu(t)

c(u)
gu∫

gu
.

Note that the map (u, t) 7→ Mu(t) is continuous on the open set {(u, t) : u ∈ Sn−1, a(u) < t < b(u)} and
that for every u the function Mu is strictly increasing and differentiable, with

(3.12) fu(t)

∫
R
gu = gu(Mu(t))M ′u(t)

∫
R
fu

for all t ∈ (a(u), b(u)). It follows that the functions u 7→ Mu(〈x, u〉) and u 7→ M ′u(〈x, u〉) are continuous on
Sn−1 for every x ∈ int(D).
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We define M : int(D) −→ Rn by

(3.13) M(x) =

∫
Sn−1

Mu(〈x, u〉)u dν(u).

Then,

(3.14) dM(x) =

∫
Sn−1

M ′u(〈x, u〉)u⊗ u dν(u).

Using Theorem 1.2 we see that

(3.15) det(dM(x)) > det(Tν) exp

(∫
Sn−1

logM ′u(〈x, u〉) dµ(u)

)
.

In particular, this implies that M is injective. Then, for any measurable function h that satisfies

(3.16) h

(∫
Sn−1

θ(u)u dν(u)

)
> exp

(∫
Sn−1

log gu(θ(u)) dµ(u)

)
for every integrable function θ, we may write

exp
(∫

Sn−1

log
(∫

R
fu

)
dµ(u)

)∫
Rn
h(y) dy

(3.17)

> exp
(∫

Sn−1

log
(∫

R
fu

)
dµ(u)

)∫
int(D)

h(M(x)) det(dM(x)) dx

> exp
(∫

Sn−1

log
(∫

R
fu

)
dµ(u)

)∫
int(D)

exp
(∫

Sn−1

log gu(Mu(〈x, u〉)) dµ(u)
)

det(dM(x)) dx

> det(Tν)

∫
int(D)

exp
(∫

Sn−1

log
(
gu(Mu(〈x, u〉))

∫
R
fu

)
dµ(u)

)
dx × exp

(∫
Sn−1

logM ′u(〈x, u〉) dµ(u)
)
dx

= det(Tν)

∫
int(D)

exp
(∫

Sn−1

log
(
gu(Mu(〈x, u〉))M ′u(〈x, u〉)

∫
R
fu

)
dµ(u)

)
dx

= det(Tν)

∫
int(D)

exp
(∫

Sn−1

log
(
fu(〈x, u〉)

∫
R
gu

)
dµ(u)

)
dx

= det(Tν) exp
(∫

Sn−1

log
(∫

R
gu

)
dµ(u)

)∫
Rn

exp
(∫

Sn−1

log fu(〈x, u〉)dµ(u)
)
dx

using (3.15) and (3.12). The lemma follows.

Proof of Theorem 1.3. Let ν be a non-negative finite Borel measure on Sn−1. Let µ be the measure on
Sn−1 with dµ(u) = 〈T−1

ν u, u〉dν(u) and let (fu), u ∈ Sn−1 be a family of functions fu : R −→ [0,+∞) that
satisfies (H).

Note that if y =
∫
θ(u)udν(u) then

〈T−1
ν y, y〉 =

〈
T−1
ν y,

∫
Sn−1

θ(u)udν(u)
〉

=

∫
Sn−1

θ(u)〈T−1
ν y, u〉dν(u)(3.18)

6

(∫
Sn−1

θ2(u)dν(u)

)1/2(∫
Sn−1

〈T−1
ν y, u〉2dν(u)

)1/2

=

(∫
Sn−1

θ2(u)dν(u)

)1/2√
〈T−1
ν y, y〉
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taking into account (2.15) in the last step. Therefore,

(3.19)

∫
Sn−1

θ2(u)dν(u) > 〈T−1
ν y, y〉.

We consider the functions gu(t) = exp
(
−πt2
〈T−1
ν u,u〉

)
, u ∈ Sn−1. Then,∫ ∗

Rn
sup

y=
∫
θ(u)udν(u)

exp

(∫
Sn−1

log gu(θ(u))dµ(u)

)
dy(3.20)

=

∫ ∗
Rn

sup
y=

∫
θ(u)udν(u)

exp

(
−
∫
Sn−1

πθ2(u)dν(u)

)
dy

6
∫
Rn

exp(−π〈T−1
ν y, y〉) dy =

1√
det(T−1

ν )
=
√

det(Tν).

Applying Lemma 3.2 we get√
det(Tν) exp

(∫
Sn−1

log

√
〈T−1
ν y, y〉dµ(u)

)∫
Rn

exp

(∫
Sn−1

log fu(〈x, u〉)dµ(u)

)
dx(3.21)

6 exp

(∫
Sn−1

log

(∫
R
fu

)
dµ(u)

)
.

For the second assertion of the theorem, assume that

(3.22) h

(∫
Sn−1

θ(u)u dν(u)

)
> exp

(∫
Sn−1

log gu(θ(u))dµ(u)

)
for every integrable function θ. We apply Lemma 3.2 with fu(t) = exp

(
−πt2
〈T−1
ν u,u〉

)
. Then,∫

Rn
exp

(∫
Sn−1

log fu(〈x, u〉)dµ(u)

)
dx =

∫
Rn

exp

(∫
Sn−1

−π〈x, u〉2dν(u)

)
dx

=

∫
Rn
e−π〈Tνx,x〉dx =

1√
det(Tν)

,

and hence√
det(Tν) exp

(∫
Sn−1

log

(∫
R
gu

)
dµ(u)

)
(3.23)

6 exp

(∫
Sn−1

log

√
〈T−1
ν u, u〉dµ(u)

)∫ ∗
Rn

sup
y=

∫
θ(u)udν(u)

exp

(∫
Sn−1

log gu(θ(u))dµ(u)

)
dy

6 exp

(∫
Sn−1

log

√
〈T−1
ν u, u〉dµ(u)

)∫
Rn
h

(∫
Sn−1

θ(u)u dν(u)

)
dy

= exp

(∫
Sn−1

log

√
〈T−1
ν u, u〉dµ(u)

)∫
Rn
h(y) dy.

If we define θ′(u) = θ(u)〈T−1
ν u, u〉 and g′u(t) = gu(t〈T−1

ν u, u〉), then the assumption (3.22) is satisfied by the
pair (θ′, g′u), and making a change of variables we have

exp

(∫
Sn−1

log

(∫
R
g′u(t/〈T−1

ν u, u〉) dt
)
dµ(u)

)
= exp

(∫
Sn−1

log〈T−1
ν u, u〉dµ(u)

)
exp

(∫
Sn−1

log

(∫
R
g′u(t) dt

)
dµ(u)

)
.
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We now complete the proof applying (3.23) for the pair (θ′, g′u), making some cancellations and recalling
what Aν is. 2

Note that if ν is a γ-approximation of an isotropic measure then we recover the continuous analogue of
Theorem 2.2.

Theorem 3.3. Let ν be a γ-approximation of an isotropic Borel measure in Rn and let (fu), u ∈ Sn−1 be
a family of functions fu : R −→ [0,+∞) that satisfies (H). Then,

(3.24)

∫
Rn

exp

(∫
Sn−1

log fu(〈x, u〉)〈T−1
ν u, u〉dν(u)

)
dx 6 γ

n
2 exp

(∫
Sn−1

log

(∫
R
fu

)
〈T−1
ν u, u〉 dν(u)

)
.

Also, if h is a measurable function such that

(3.25) h

(∫
Sn−1

θ(u)u〈T−1
ν u, u〉 dν(u)

)
> exp

(∫
Sn−1

log fu(θ(u))〈T−1
ν u, u〉 dν(u)

)
for every integrable function θ, then

(3.26) γ
n
2

∫
Rn
h(y) dy > exp

(∫
Sn−1

log

(∫
R
fu

)
〈T−1
ν u, u〉 dν(u)

)
.

One can also check that the constant Aν which appears in Theorem 1.3 is at most 1, therefore the best
constant in the continuous Brascamp-Lieb inequality of theorem is attained when the measure is isotropic.
This agrees with the result in [22] for the discrete Brascamp-Lieb inequality.

Proposition 3.4. Let ν be a non-negative finite Borel measure on Sn−1. Then

Aν 6 1,

with equality if ν is isotropic.

Proof. We will use the continuous version of Hadamard’s inequality; for any non-negative finite and isotropic
Borel measure µ on Sn−1 and any n× n matrix T we have

(3.27) det(T ) 6 exp

(∫
Sn−1

log(‖Tu‖2) dν(u)

)
.

Indeed, since the inequality is invariant under orthogonal transformations we can assume that T is positive
definite and can be written as

T =

n∑
i=1

aiei ⊗ ei

for some ai > 0. Note that for any u ∈ Sn−1 we have
∑n
i=1 〈u, ei〉

2
= ‖u‖22 = 1. Therefore, by the AM-GM

inequality we get

‖Tu‖22 =

n∑
i=1

a2
i 〈u, ei〉

2 ≥
n∏
i=1

a
2〈u,ei〉2
i .

Using the fact that ν is isotropic we check that

exp

(∫
Sn−1

log(‖Tu‖2) dν(u)

)
> exp

(∫
Sn−1

n∑
i=1

log(ai) 〈u, ei〉2 dν(u)

)

= exp

(
n∑
i=1

log(ai)

∫
Sn−1

〈u, ei〉2 dν(u)

)

= exp

(
n∑
i=1

log(ai)

)
=

n∏
i=1

ai = det(T ).
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Since

Tν =

∫
Sn−1

u⊗ u dν(u),

we have that

In =

∫
Sn−1

T
−1/2
ν u

‖T−1/2
ν u‖2

⊗ T
−1/2
ν u

‖T−1/2
ν u‖2

‖T−1/2
ν u‖22dν(u),

therefore the measure µ(u) := ‖T−1/2
ν u‖22(ν ◦M−1)(u), where M(u) =

T−1/2
ν u

‖T−1/2
ν u‖2

, is isotropic. This means

that we can apply (3.27) for T = T
1/2
ν and for the isotropic measure µ. We get

det(T 1/2
ν ) 6 exp

(∫
Sn−1

log

(
1

‖T−1/2
ν u‖2

)
‖T−1/2

ν u‖22 dν(u)

)
.

Since ‖T−1/2
ν u‖22 = 〈T−1

ν u, u〉, we get the desired result. 2

4 Approximate classical positions of convex bodies

Let ν be a non-negative finite Borel measure on Sn−1. Consider the cosine transform Cν of ν and the
symmetric convex body C(ν) defined by

(4.1) hC(ν)(x) = Cν(x) =

∫
Sn−1

|〈x, u〉| dν(u).

Note that

w(C(ν)) =

∫
Sn−1

hC(ν)(x)dσ(x) =

∫
Sn−1

∫
Sn−1

|〈x, u〉|dν(u)dσ(x)(4.2)

=

∫
Sn−1

(∫
Sn−1

|〈x, u〉|dσ(x)

)
dν(u) = cnν(Sn−1),

where

(4.3) cn =

∫
Sn−1

|〈x, u〉|dσ(x) =
2ωn−1

nωn
' 1√

n
.

Combining this fact with the inequality

(4.4)
1

w(C(ν))
6 vrad(C∗(ν))1/n :=

(
|C∗(ν)|
ωn

)1/n

which follows immediately by expressing the volume of C∗(ν) in polar coordinates, we get the next simple
fact.

Proposition 4.1. Let ν be a non-negative finite Borel measure on Sn−1. Then,

(4.5) ν(Sn−1)|C∗(ν)|1/n >
nω

n+1
n

n

2ωn−1
> c,

where c > 0 is an absolute constant.

The next proposition establishes a reverse inequality for approximate isotropic measures.
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Proposition 4.2. Let γ > 1 and let ν be a γ-approximation of an isotropic measure on Sn−1. Then,

(4.6) ν(Sn−1)|C∗(ν)|1/n 6 γn
2

(n!)1/n
6 2eγ.

Proof. Using Fubini’s theorem we check that

(4.7) n!|C∗(ν)| =
∫
Rn
e−hC(ν)(x)dx =

∫
Rn

exp

(
−
∫
Sn−1

|〈x, u〉|dν(u)

)
dx.

Then, applying Theorem 1.3 with fu(t) = exp
(
− |t|
〈T−1
ν u,u〉

)
we see that

Aν

∫
Rn

exp

(
−
∫
Sn−1

|〈x, u〉|dν(u)

)
dx = Aν

∫
Rn

exp

(∫
Sn−1

log(fu(〈x, u〉))〈T−1
ν u, u〉 dν(u)

)
dx(4.8)

6 exp

(∫
Sn−1

log

(∫
R
fu

)
〈T−1
ν u, u〉 dν(u)

)
= exp

(∫
Sn−1

log
(
2〈T−1

ν u, u〉
)
〈T−1
ν u, u〉 dν(u)

)
= 2n exp

(∫
Sn−1

log
(
〈T−1
ν u, u〉

)
〈T−1
ν u, u〉 dν(u)

)
,

using the fact that∫
Sn−1

〈T−1
ν u, u〉 dν(u) =

∫
Sn−1

tr(T−1
ν (u⊗ u)) dν(u) = tr

[
T−1
ν

(∫
Sn−1

u⊗ u dν(u)

)]
(4.9)

= tr(T−1
ν Tν) = tr(In) = n.

Simplifying with the common part of Aν , we get

(4.10) n!
√

det(Tν)|C∗(ν)| 6 2n exp

(∫
Sn−1

log

(√
〈T−1
ν u, u〉

)
〈T−1
ν u, u〉 dν(u)

)
.

Since In � Tν we have that det(Tν) > 1 and log

(√
〈T−1
ν u, u〉

)
6 0 for all u ∈ Sn−1. Therefore, (4.10)

implies that

(4.11) n!|C∗(ν)| 6 2n

On the other hand, since 〈T−1
ν u, u〉 > γ−1 for all u ∈ Sn−1, we also have

(4.12) n =

∫
Sn−1

〈T−1
ν u, u〉 dν(u) > γ−1ν(Sn−1).

Multiplying (4.11) and (4.12) we see that

(4.13) ν(Sn−1)|C∗(ν)|1/n 6 γn
2

(n!)1/n
6 2eγ,

as claimed.

Remark 4.3. Note that the estimate is sharp for ν = σC , where C is the cube.
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From (4.11) we see that if ν is a γ-approximation of an isotropic measure on Sn−1 then

(4.14)

∫
Sn−1

h−nC(ν)dσ(θ) =
|C∗(ν)|
ωn

6
2n

n!ωn
,

and an application of Markov’s inequality shows that a random θ ∈ Sn−1 statisfies

(4.15) hC(ν)(θ) >
(n!ωn)

1
n

4
> c
√
n

with probability greater than 1 − 2−n, where c > 0 is an absolute constant. On the other hand, from the
Cauchy-Schwarz inequality we have

hC(ν)(θ) =

∫
Sn−1

|〈u, θ〉| dν(u) 6

(∫
Sn−1

〈u, θ〉2 dν(u)

) 1
2 √

ν(Sn−1)(4.16)

6
√
γ
√
ν(Sn−1) 6 γ

√
n

In other words, with probability greater than 1− 2−n we have

(4.17) c
√
n 6

∫
Sn−1

|〈u, θ〉| dν(u) 6 γ
√
n.

This observation applies to all the classical positions of a convex body that we discussed in Section 2:

Fact 4.4. Let K be a convex body in Rn.

(i) If σK is a γ-approximation of an isotropic measure then

(4.18)
c∂(K)√

n
6 2|Pθ⊥(K)| =

∫
Sn−1

|〈u, θ〉| dσK(u) 6 γ
∂(K)√
n
.

with probability greater than 1− 2−n on Sn−1.

(ii) If νK is a γ-approximation of an isotropic measure then

(4.19)
cw(K)√

n
6
∫
Sn−1

|〈u, θ〉|hK(u) dσ(u) 6 γ
w(K)√

n

with probability greater than 1− 2−n on Sn−1.

(iii) If λK is a γ-approximation of an isotropic measure then

(4.20) c
√
nL2

K 6
∫
K

|〈x, θ〉| ‖x‖2 dx 6 γ
√
nL2

K

with probability greater than 1− 2−n on Sn−1.

Remark 4.5. Note that (tν)(Sn−1)|C∗(tν)|1/n = ν(Sn−1)|C∗(ν)|1/n for every Borel measure ν on Sn−1

and every t > 0.

As an application of Proposition 4.1 and Proposition 4.2 we provide an alternative proof of a result from
[14] on the stability of the minimal surface area position.

Theorem 4.6. Let K be a convex body of volume 1 in Rn such that

(4.21) In �
1

α

∫
Sn−1

u⊗ u dσK(u) � γIn

for some γ > 1 and α > 0. Then,

(4.22) ∂(TK) 6 ∂(K) 6 cγ∂(TK),

where c > 0 is an absolute constant, T ∈ SL(n) and TK is in the minimal surface area position.
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Proof. Recall that Π∗K = 2C∗(σK) and Π∗(TK) = 2C∗(σTK). Applying Proposition 4.1 and Proposition
4.2 to suitable multiples of the measure σK and σTK (also, taking into account Remark 4.5) we get

(4.23) σK(Sn−1)|Π∗K|1/n 6 4eγ 6
2e

c
γσTK(Sn−1)|Π∗(TK)|1/n.

Now, we use the observation of Petty [20] that

(4.24) Π∗(TK) = T (Π∗K)

(this holds true for every convex body K and every T ∈ SL(n)) and hence, |Π∗(TK)| = |Π∗K|. Going back
to (4.23) we conclude that

(4.25) ∂(K) = σK(Sn−1) 6
2e

c
γσTK(Sn−1) =

2e

c
γ∂(TK).

The inequality ∂(TK) 6 ∂(K) is obvious since TK has minimal surface area. 2

Remark 4.7. Proposition 4.2 and the Bourgain-Milman inequality (2.3) give upper and lower bounds for
|C(ν)| if ν is a γ-approximation of an isotropic measure on Sn−1 for some γ > 1. One has,

(4.26)
c1ν(Sn−1)

n
> |C(ν)| 1n >

c2ν(Sn−1)

γn
,

where c1, c2 > 0 are absolute constants. In fact the sharp reverse Santaló inequality is known for zonoids
(see e.g. [15] for a very elegant proof) and since C∗(ν) is a zonoid we can specify the constants ci further.
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