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Abstract

We establish a sharp concentration of mass inequality for isotropic convex
bodies: there exists an absolute constant c > 0 such that if K is an isotropic
convex body in R

n, then

Prob
({

x ∈ K : ‖x‖2 > c
√

nLKt
})

6 exp
(

−
√

nt
)

for every t > 1, where LK denotes the isotropic constant.

1 Introduction

Let K be an isotropic convex body in R
n. This means that K has volume equal

to 1, its centre of mass is at the origin and its inertia matrix is a multiple of the
identity. Equivalently, there exists a positive constant LK , the isotropic constant
of K, such that

(1.1)

∫

K

〈x, θ〉2dx = L2
K

for every θ ∈ Sn−1. A major problem in Asymptotic Convex Geometry is whether
there exists an absolute constant c > 0 such that LK 6 c for every n and every
isotropic convex body K in R

n. The best known estimate, due to Bourgain (see
[11]), is LK 6 c 4

√
n log n, where c > 0 is an absolute constant (see [30] for an

extension of this estimate to the not-necessarily symmetric case). There is a number
of recent developments on this problem; see [13], [14] and [21]. In particular, Klartag
in [21] has obtained an isomorphic answer to the question: For every symmetric
convex body K in R

n there exists a second symmetric convex body T in R
n whose

Banach-Mazur distance from K is O(log n) and its isotropic constant is bounded
by an absolute constant: LT 6 c.
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The starting point of this paper is the following concentration estimate of
Alesker [1]: there exists an absolute constant c > 0 such that if K is an isotropic
convex body in R

n, then

(1.2) Prob
({

x ∈ K : ‖x‖2 > c
√

nLKt
})

6 2 exp(−t2)

for every t > 1.

Bobkov and Nazarov (see [7] and [8]) have clarified the picture of the volume
distribution on isotropic unconditional convex bodies. Recall that a symmetric
convex body K is called unconditional if, for every choice of real numbers ti and
every choice of signs εi ∈ {−1, 1}, 1 6 i 6 n,

‖ε1t1e1 + · · · + εntnen‖K = ‖t1e1 + · · · + tnen‖K ,

where ‖ ‖̇K is the norm that corresponds to K and {e1, . . . en} is the standard
orthonormal basis of R

n. In particular, they obtained a striking strengthening of
(1.2) in the case of 1-unconditional isotropic convex bodies: there exists an absolute
constant c > 0 such that if K is a 1-unconditional isotropic convex body in R

n,
then

(1.3) Prob
({

x ∈ K : ‖x‖2 > c
√

nt
})

6 exp
(

−
√

nt
)

for every t > 1. Note that LK ≃ 1 in the case of 1–unconditional convex bodies (see
[27]). Since the circumradius R(K) of an isotropic convex body K in R

n is always
bounded by (n + 1)LK (see [22]), the estimate in (1.3) is stronger than Alesker’s
estimate for all t > 1. It should be noted that similar very precise estimates on
volume concentration were previously given in the case of the ℓn

p -balls (see [39], [38],
[41] and [40]). Volume concentration for the class of the unit balls of the Schatten
trace classes was recently established in [19].

We will prove that an estimate similar to (1.3) holds true in full generality.

Theorem 1.1. There exists an absolute constant c > 0 such that if K is an isotropic
convex body in R

n, then

(1.4) Prob
({

x ∈ K : ‖x‖2 > c
√

nLKt
})

6 exp
(

−
√

nt
)

for every t > 1.

The proof of Theorem 1.1 is based on the analysis of the growth of the Lq-norms

(1.5) Iq(K) :=

(
∫

K

‖x‖q
2dx

)1/q

, (1 6 q 6 n)

of the Euclidean norm ‖ ·‖2 on isotropic convex bodies. It was observed in [32] that
Theorem 1.1 follows from the following fact.
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Theorem 1.2. There exists an absolute constant c > 0 with the following property:
if K is an isotropic convex body in R

n, then

(1.6) Iq(K) 6 cmax{q,
√

n}LK

for every 2 6 q 6 n.

In fact, it was proved in [32] that Theorem 1.1 is equivalent to the fact that

(1.7) Iq(K) 6 c
√

n LK

for every 2 6 q 6
√

n. An equivalent formulation of this last statement may be
given in terms of the function

(1.8) fK(t) :=

∫

Sn−1

|K ∩ (θ⊥ + tθ)| dσ(θ) (t > 0).

It has been conjectured that fK is close to the centered Gaussian density of variance
L2

K . This conjecture can be stated precisely in several different ways (see [10], [3])
and has been verified only for some special classes of bodies. It was proved in [32]
that (1.7) is equivalent with the following:

Theorem 1.3. There exist absolute constants c1, c2 > 0 such that if K is an
isotropic convex body in R

n, then

(1.9) fK(t) 6
c1

LK
exp

(

−c2
t2

L2
K

)

for every 0 < t 6 4
√

nLK .

The paper is organized as follows: In Section 2 we show how one can derive Theorem
1.1 from Theorem 1.2 (the argument appears in [32] and [33], but we reproduce it
here so that the presentation will be self-contained). Our main tool is the study of
the Lq–centroid bodies of K; the q–th centroid body Zq(K) has support function

(1.10) hZq(K)(y) =

(
∫

K

|〈x, y〉|qdx

)1/q

.

Sections 3, 4 and 5 are devoted to an analysis of this family of bodies, which leads
to Theorem 1.2. In fact, our method of proof works for an arbitrary convex body
K in R

n, and leads to the following estimate:

Theorem 1.4. Let K be a convex body in R
n, with volume 1 and center of mass at

the origin. Write K in the form K = T (K̃), where K̃ is isotropic and T ∈ SL(n)
is positive definite. Then,

(1.11) Prob
({

x ∈ K : ‖x‖2 > cI2(K)t
})

6 exp

(

−‖T‖HS

λ1(T )
t

)

for every t > 1, where c > 0 is an absolute constant (we write ‖T‖HS for the
Hilbert–Schmidt norm and λ1(T ) for the largest eigenvalue of T ).
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In other words, the concentration estimate of Theorem 1.1 is stable: if K̃ is
isotropic and if ‖T‖HS/λ1(T ) is not small, then one has strong concentration for
T (K̃).

As a by-product of our method, in Section 6 we obtain a precise estimate for
the volume of the Lq-centroid bodies of a convex body. The lower bound in the
next Theorem is a consequence of the Lq affine isoperimetric inequality of Lutwak,
Yang and Zhang (see [26]).

Theorem 1.5. Let K be a convex body in R
n, with volume 1 and center of mass

at the origin. For every 2 6 q 6 n we have that

(1.12) c1

√

q/n 6 |Zq(K)|1/n
6 c2

√

q/n LK ,

where c1, c2 > 0 are absolute constants.

In Section 7 we apply our concentration estimate to a question of Kannan,
Lovász and Simonovits which has its origin in the problem of finding a fast algorithm
for the computation of the volume of a given convex body: The isotropic condition
(1.1) may be equivalently written in the form

(1.13) I =
1

L2
K

∫

K

x ⊗ xdx,

where I is the identity operator. Let ε ∈ (0, 1) and consider N independent random
points x1, . . . , xN uniformly distributed in K. The question is to find N0, as small
as possible, for which the following holds true: if N > N0 then with probability
greater than 1 − ε one has

(1.14)

∥

∥

∥

∥

I − 1

NL2
K

N
∑

i=1

xi ⊗ xi

∥

∥

∥

∥

2

6 ε.

Kannan, Lovász and Simonovits (see [23]) proved that one can choose N0 = c(ε)n2

for some constant c(ε) > 0 depending only on ε. This was later improved to N0 ≃
c(ε)n(log n)3 by Bourgain [12] and to N0 ≃ c(ε)n(log n)2 by Rudelson [36]. One
can actually check (see [17]) that this last estimate can be obtained by Bourgain’s
argument if we also use Alesker’s concentration inequality. See also [20] for an
extension of this result. In [18] it was observed that N0 > c(ε)n log n is enough for
the class of unconditional isotropic convex bodies. Theorem 1.1 allows us to prove
the same fact in full generality.

Theorem 1.6. Let ε ∈ (0, 1). Assume that n > n0 and let K be an isotropic
convex body in R

n. If N > c(ε)n log n, where c > 0 is an absolute constant, and
if x1, . . . , xN are independent random points uniformly distributed in K, then with
probability greater than 1 − ε we have

(1.15) (1 − ε)L2
K 6

1

N

N
∑

i=1

〈xi, θ〉2 6 (1 + ε)L2
K ,

for every θ ∈ Sn−1.
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G. Aubrun has recently proved (see [2]) that in the unconditional case, only
C(ε)n random points are enough in order to obtain (1 + ε)–approximation of the
identity operator as in Theorem 1.6.

All the previous results remain valid if we replace Lebesgue measure on an
isotropic convex body by an arbitrary isotropic log-concave measure. In the last
Section of the paper, we briefly discuss this extension.

Notation. We work in R
n, which is equipped with a Euclidean structure 〈·, ·〉. We

denote by ‖ · ‖2 the corresponding Euclidean norm, and write Bn
2 for the Euclidean

unit ball, and Sn−1 for the unit sphere. Volume is denoted by | · |. We write ωn for
the volume of Bn

2 and σ for the rotationally invariant probability measure on Sn−1.
The Grassmann manifold Gn,k of k-dimensional subspaces of R

n is equipped with
the Haar probability measure µn,k.

A convex body is a compact convex subset C of R
n with non-empty interior.

We say that C is symmetric if x ∈ C ⇒ −x ∈ C. We say that C has centre of
mass at the origin if

∫

C
〈x, θ〉dx = 0 for every θ ∈ Sn−1. The support function

hC : R
n → R of C is defined by hC(x) = max{〈x, y〉 : y ∈ C}. The gauge function

rC : R
n → R of C is defined by rC(x) = min{λ > 0 : x ∈ λC}. The mean width of

C is defined as 2w(C), where

(1.16) w(C) =

∫

Sn−1

hC(θ)σ(dθ).

The circumradius of C is the quantity R(C) = max{‖x‖2 : x ∈ C}, and the polar
body C◦ of C is

(1.17) C◦ := {y ∈ R
n : 〈x, y〉 6 1 for all x ∈ C}.

Whenever we write a ≃ b, we mean that there exist absolute constants c1, c2 > 0
such that c1a 6 b 6 c2a. The letters c, c′, c1, c2 etc. denote absolute positive
constants which may change from line to line. We refer to the books [37], [28] and
[34] for basic facts from the Brunn-Minkowski theory and the asymptotic theory of
finite dimensional normed spaces.

2 Reduction to the behavior of moments

Let K be a convex body of volume 1 in R
n. For every q > 1 we consider the q-th

moment of the Euclidean norm

(2.1) Iq(K) =

(
∫

K

‖x‖q
2dx

)1/q

and, for every q > 1 and y ∈ R
n, we set

(2.2) Iq(K, y) =

(
∫

K

|〈x, y〉|qdx

)1/q

.

Recall that, as a consequence of Borell’s lemma (see [28, Appendix III]) one has
the following Khintchine–type inequalities.
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Lemma 2.1. Let K be a convex body of volume 1 in R
n. For every y ∈ R

n and
every p, q > 1 we have that

(2.3) Ipq(K, y) 6 c1qIp(K, y)

where c1 > 0 is an absolute constant. In particular, for every y ∈ R
n and every

q > 2 we have that

(2.4) Iq(K, y) 6 (c1/2)qI2(K, y).

Also, for every p, q > 1 we have that

(2.5) Ipq(K) 6 c1qIp(K).

Alesker’s concentration estimate (1.2) is equivalent to the following statement.

Theorem 2.2 (Alesker [1]). Let K be an isotropic convex body in R
n. For every

q > 2 we have that

(2.6) Iq(K) 6 c2
√

qI2(K)

where c2 > 0 is an absolute constant.

We will prove the following fact.

Theorem 2.3. There exist universal constants c3, c4 > 0 with the following prop-
erty: if K is an isotropic convex body in R

n, then

(2.7) Iq(K) 6 c4I2(K)

for every q 6 c3
√

n.

Theorem 1.2 is a direct consequence of Theorem 2.3, Lemma 3.9 and Lemma 3.11.
Also, in [32] it was proved that Theorem 1.1 is equivalent to the fact that the
q-th moments of the Euclidean norm stay bounded (and equivalent to I2(K)) for
large values of q. For completeness we show how one can derive Theorem 1.1 from
Theorem 2.3.

Proof of Theorem 1.1. Let K be an isotropic convex body in R
n. Fix q > 2.

Markov’s inequality shows that

(2.8) Prob(x ∈ K : ‖x‖2 > e3Iq(K)) 6 e−3q.

From Borell’s lemma (see [28, Appendix III]) we get

Prob(x ∈ K : ‖x‖2 > e3Iq(K)s) 6 (1 − e−3q)

(

e−3q

1 − e−3q

)(s+1)/2

6 e−qs

for every s > 1. Choosing q = c3
√

n, and using (2.7), we get

(2.9) Prob(x ∈ K : ‖x‖2 > c4e
3I2(K)s) 6 e−c3

√
ns

for every s > 1. Since K is isotropic, we have I2(K) =
√

nLK . This proves Theorem
1.1.
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3 Lq-centroid bodies

Let K be a convex body of volume 1 in R
n. For q > 1 we define the Lq–centroid

body Zq(K) of K by its support function:

(3.1) hZq(K)(y) = Iq(K, y) :=

(
∫

K

|〈x, y〉|qdx

)1/q

.

Since |K| = 1, it is easy to check that Z1(K) ⊆ Zp(K) ⊆ Zq(K) ⊆ Z∞(K) for
every 1 6 p 6 q 6 ∞, where Z∞(K) = conv{K,−K}.

Observe that Zq(K) is always symmetric, and Zq(TK) = T (Zq(K)) for every
T ∈ SL(n) and q ∈ [1,∞]. Also, if K has its center of mass at the origin, then
Zq(K) ⊇ cZ∞(K) for all q > n, where c > 0 is an absolute constant.

Lq–centroid bodies have appeared in the literature under a different normaliza-
tion. If K is a convex body in R

n and 1 6 q < ∞, the body Γq(K) was defined in
[25] by

hΓq(K)(y) =

(

1

cn,q|K|

∫

K

|〈x, y〉|qdx

)1/q

,

where
cn,q =

ωn+q

ω2ωnωq−1
.

In other words, Zq(K) = c
1/q
n,q Γq(K) if |K| = 1. The normalization in [25] is chosen

so that Γq(B
n
2 ) = Bn

2 for every q. Lutwak, Yang and Zhang (see [26] and [15] for a
different proof) have established the following Lq affine isoperimetric inequality.

Theorem 3.1. Let K be a convex body of volume 1 in R
n. For every q > 1,

|Γq(K)| > 1,

with equality if and only if K is a centered ellipsoid of volume 1.

Now, for every p, q > 1 we define

(3.2) wp(Zq(K)) =

(
∫

Sn−1

hp
Zq(K)(θ)σ(dθ)

)1/p

.

Observe that w1(Zq(K)) = w(Zq(K)).
The q-th moments of the Euclidean norm on K are related to the Lq-centroid

bodies of K through the following Lemma.

Lemma 3.2. Let K be a convex body of volume 1 in R
n. For every q > 1 we have

that

(3.3) wq(Zq(K)) = an,q

√

q

q + n
Iq(K)

where an,q ≃ 1.
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Proof. For every x ∈ R
n we have (see [31])

(3.4)

(
∫

Sn−1

|〈x, θ〉|qσ(dθ)

)1/q

= an,q

√
q√

q + n
‖x‖2,

where an,q ≃ 1. Since

(3.5) wq(Zq(K)) =

(
∫

Sn−1

∫

K

|〈x, θ〉|qdxσ(dθ)

)1/q

,

the Lemma follows.

Remark. It is not hard to check that an,2 =
√

(n + 2)/(2n) and

(3.6) I2(K) =
√

nw2(Z2(K)).

Definition 3.3. Let C be a symmetric convex body in R
n and let ‖x‖C be the

norm induced on R
n by C. Set

M(C) =

∫

Sn−1

‖θ‖Cdσ(θ) and b(C) = max
x∈Sn−1

‖x‖C .

More generally, for every q > 1 set

(3.7) Mq(C) =

(
∫

Sn−1

‖θ‖q
Cdσ(θ)

)1/q

.

Define k∗(C) as the largest positive integer k 6 n for which

(3.8) µn,k

(

F ∈ Gn,k : 1
2M(C)‖x‖2 6 ‖x‖C 6 2M(C)‖x‖2, ∀x ∈ F

)

>
n

n + k
.

The critical dimension k∗ is completely determined by the global parameters M
and b.

Fact 3.4 (Milman–Schechtman [29]). There exist c1, c2 > 0 such that

(3.9) c1n
M(C)2

b(C)2
6 k∗(C) 6 c2n

M(C)2

b(C)2

for every symmetric convex body C in R
n.

We will make essential use of the following result of Litvak, Milman and Schechtman
[24]:

Fact 3.5. There exist c1, c2, c3 > 0 such that for every symmetric convex body C
in R

n we have:

(i) If 1 6 q 6 k∗(C) then M(C) 6 Mq(C) 6 c1M(C).

(ii) If k∗(C) 6 q 6 n then c2

√

q/n b(C) 6 Mq(C) 6 c3

√

q/n b(C).
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On observing that M(C◦) = w(C) and b(C◦) = R(C), we can translate Fact 3.5 as
follows:

Lemma 3.6. There exist c1, c2, c3 > 0 such that for every symmetric convex body
C in R

n we have:

(i) If 1 6 q 6 k∗(C◦) then w(C) 6 wq(C) 6 c1w(C).

(ii) If k∗(C◦) 6 q 6 n then c2

√

q/n R(C) 6 wq(C) 6 c3

√

q/n R(C).

Definition 3.7. Let K be a convex body of volume 1 in R
n. We define

(3.10) q∗(K) = max{q ∈ N : k∗(Z
◦
q (K)) > q},

where Z◦
q (K) := (Zq(K))◦.

We will need a lower estimate for q∗(K). This depends on the “ψα-behavior” of
linear functionals on K.

Definition 3.8. Let K be a convex body of volume 1 in R
n and let α ∈ [1, 2]. We

say that K is a ψα-body with constant bα if

(3.11)

(
∫

K

|〈x, θ〉|qdx

)1/q

6 bαq1/α

(
∫

K

|〈x, θ〉|2dx

)1/2

for all q > 2 and all θ ∈ Sn−1. Equivalently, if

(3.12) Zq(K) ⊆ bαq1/αZ2(K)

for all q > 2. Observe that if K is a ψα-body with constant bα, then T (K) is a
ψα-body with the same constant, for every T ∈ SL(n). Also, from (3.12) we see
that

(3.13) R(Zq(K)) 6 bαq1/αR(Z2(K))

for all q > 2.
An immediate consequence of Lemma 2.1 is that there exists an absolute con-

stant c > 0 such that every convex body K in R
n is a ψ1-body with constant

c.

Lemma 3.9. There exist absolute constants c1, c2 > 0 such that if K is a convex
body of volume 1 in R

n then, for every n > q > q∗(K),

(3.14) c1R(Zq(K)) 6 Iq(K) 6 c2R(Zq(K)).

In particular, if K is an isotropic ψα-body with constant bα then, for every n > q >

q∗(K),

(3.15) Iq(K) 6 c2bαq1/αLK .
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Proof. Let n > q > q∗(K). By the definition of q∗(K) we have q > k∗(Z◦
q (K)), and

Lemma 3.6(ii) shows that

(3.16) c3

√

q

n
R(Zq(K)) 6 wq(Zq(K)) 6 c4

√

q

n
R(Zq(K)).

Now, from Lemma 3.2 we have that

(3.17) wq(Zq(K)) = an,q

√

q

q + n
Iq(K).

This proves (3.14). For the second assertion, we use (3.13) and the fact that
R(Z2(K)) = LK if K is isotropic. 2

Remark. Let K be a convex body in R
n, with volume 1 and center of mass at the

origin. If q > n, one can check that R(Zq(K)) ≃ Iq(K) ≃ R(K).

Proposition 3.10. There exists an absolute constant c > 0 with the following
property: if K is a convex body of volume 1 in R

n which is ψα-body with constant
bα, then

(3.18) q∗(K) > c
(k∗(Z◦

2 (K)))α/2

bα
α

.

In particular, for every convex body K of volume 1 in R
n we have

(3.19) q∗(K) > c
√

k∗(Z◦
2 (K)).

Proof. Let q∗ := q∗(K). From Lemma 3.6(i), Lemma 3.2, Hölder’s inequality and
(3.6) we get

w(Zq∗(K)) > c1wq∗(Zq∗(K)) = c1an,q∗

√

q∗
n + q∗

Iq∗(K)

> c1an,q∗

√

q∗
n + q∗

I2(K) = c1an,q∗

√

q∗
n + q∗

√
nw2(Z2(K)).

In other words,

(3.20) w(Zq∗(K)) > c2
√

q∗w(Z2(K)).

Since K is a ψα-body with constant bα, we have that

(3.21) R(Zq∗(K)) 6 bαq∗
1/αR(Z2(K)).

Using the definition of q∗, Fact 3.4 and the inequalities (3.20) and (3.21), we write

q∗ + 1 > k∗(Z
◦
q∗(K)) > c3n

(

w(Zq∗(K))

R(Zq∗(K))

)2

> c3n
c2
2q∗

b2
αq

2/α
∗

w2(Z2(K))

R2(Z2(K))
= c5

q
1−2/α
∗
b2
α

k∗(Z
◦
2 (K)).
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So, we get

(3.22) q∗(K) > c
[k∗(Z◦

2 (K))]α/2

bα
α

.

The second assertion follows from the fact that every convex body is a ψ1-body
with (an absolute) constant c > 0. 2

Observe that K is isotropic if and only if k∗(Z◦
2 (K)) = n. So, we get the

following:

Corollary 3.11. There exists an absolute constant c > 0 with the following prop-
erty: if K is an isotropic convex body of volume 1 in R

n which is ψα-body with
constant bα, then

(3.23) q∗(K) >
cnα/2

bα
α

.

In particular, for every isotropic convex body K in R
n we have that

(3.24) q∗(K) > c
√

n.

4 Projections of Lq-centroid bodies

Let K be a convex body of volume 1 in R
n. Let F ∈ Gn,k be a k-dimensional

subspace of R
n and let q > 1. We define

(4.1) Iq(K,F ) =

(
∫

K

‖PF (x)‖q
2dx

)1/q

,

where PF denotes the orthogonal projection onto F , and

(4.2) wq(K,F ) =

(
∫

SF

hq
K(θ) dσF (θ)

)1/q

,

where SF = Sn−1∩F is the unit sphere of F . Observe that wq(K,F ) = wq(PF (K)).
We also set

(4.3) L(K,F ) =
I2(K,F )√

k

and

(4.4) L(K) = L(K, Rn) =
I2(K)√

n
.

The argument we used for the proof of Lemma 3.2 shows that

(4.5) wq(Zq(K), F ) = ak,q

√

q

k + q
Iq(K,F ).
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Choosing q = 2 and taking into account (4.3) we get

(4.6) L2(K,F ) =

∫

SF

h2
Z2(K)(θ)dσF (θ).

In particular, if K is isotropic then

(4.7) L(K,F ) = L(K) = LK

for every F .

In the sequel, we fix a k-dimensional subspace F of R
n and denote by E the

orthogonal subspace of F . For every φ ∈ SF we define E(φ) = {x ∈ span{E, φ} :
〈x, φ〉 > 0}.

Theorem 4.1 (K. Ball, see [4], [27]). Let K a convex body of volume 1 in R
n.

For every q > 0 and φ ∈ F , the function

φ 7→ ‖φ‖1+ q
q+1

2

(

∫

K∩E(φ)

|〈x, φ〉|qdx

)− 1
q+1

is a gauge function on F .

Note. In [4] and [27], Theorem 4.1 is stated and proved for the case where K is
centrally symmetric. However, it was observed in [14] that the general case follows
easily.

We denote by Bq(K,F ) the convex body in F whose gauge function is defined
in Theorem 4.1. The volume of Bq(K,F ) is given by

(4.8) |Bq(K,F )| = ωk

∫

SF

(

∫

K∩E(φ)

|〈x, φ〉|qdx

)
k

q+1

dσF (φ).

To see this, express the volume of Bq(K,F ) in polar coordinates.

Lemma 4.2. Let K be a convex body in R
n. For every q > 0 and every θ ∈ SF ,

we have

(4.9)

∫

K

|〈x, θ〉|qdx = kωk

∫

SF

|〈φ, θ〉|q
∫

K∩E(φ)

|〈z, φ〉|k+q−1dz dσF (φ).

Proof. For any continuous f : R
n → R we may write

∫

K

f(x) dx =

∫

E

∫

F

χK(u + v)f(u + v) dv du

= kωk

∫

E

∫

SF

∫ ∞

0

χK(u + ρφ)f(u + ρφ)ρk−1dρ dσF (φ) du

= kωk

∫

SF

(
∫

E

∫ ∞

0

χK(u + ρφ)f(u + ρφ)ρk−1dρ du

)

dσF (φ).
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Observe that if z = u + ρφ ∈ E(φ) then ρ = 〈z, φ〉. It follows that

(4.10)

∫

E

∫ ∞

0

χK(u + ρφ)f(u + ρφ)ρk−1dρ du =

∫

K∩E(φ)

f(z)〈z, φ〉k−1dz.

In other words,

(4.11)

∫

K

f(x) dx = kωk

∫

SF

∫

K∩E(φ)

f(z)〈z, φ〉k−1dz dσF (φ).

Let z ∈ K ∩ E(φ). Then z = u + 〈φ, z〉φ for some u ∈ E, and hence, if θ ∈ F we
have 〈z, θ〉 = 〈φ, θ〉〈z, φ〉. If we set fθ,q(x) = |〈x, θ〉|q, then (4.11) becomes

(4.12)

∫

K

|〈x, θ〉|qdx = kωk

∫

SF

|〈φ, θ〉|q
∫

K∩E(φ)

〈z, φ〉k+q−1dz dσF (φ).

This completes the proof of (4.9). 2

If we choose q = 0 in (4.9), we can express the volume of K in the following
way:

(4.13) |K| = kωk

∫

SF

∫

K∩E(φ)

|〈x, φ〉|k−1dx dσF (φ).

Notation. If K is a convex body in R
n, we set K = K/|K|1/n; this is the dilation

of K which has volume 1.

Proposition 4.3. Let K be a convex body of volume 1 in R
n and let 1 6 k 6 n−1.

For every F ∈ Gn,k and every q > 1 we have that

(4.14) PF (Zq(K)) = (k + q)
1/q |Bk+q−1(K,F )|1/k+1/qZq(Bk+q−1(K,F )).

Equivalently, for every θ ∈ F ,

(4.15)

∫

K

|〈x, θ〉|qdx = (k + q)

∫

Bk+q−1(K,F )

|〈x, θ〉|qdx.

Proof. Let θ ∈ F . Using polar coordinates on the right hand side of (4.15) and
Lemma 4.2, we write

∫

Bk+q−1(K,F )

|〈x, θ〉|qdx =
kωk

k + q

∫

SF

|〈φ, θ〉|q‖φ‖−(k+q)
Bk+q−1(K,F ) dσF (φ)

=
kωk

k + q

∫

SF

|〈φ, θ〉|q
∫

K∩E(φ)

|〈x, φ〉|k+q−1dx dσF (φ)

=
1

k + q

∫

K

|〈x, θ〉|qdx.

This proves (4.15). Observe that hPF (Zq(K))(θ) = hZq(K)(θ) for every θ ∈ F . If we
normalize the volume of Bk+q−1(K,F ), then (4.15) shows that

(4.16) hPF (Zq(K))(θ) = (k + q)
1/q |Bk+q−1(K,F )|1/k+1/qhZq(Bk+q−1(K,F ))(θ).

for every θ ∈ F . This proves the Proposition. 2
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Notation. If a, b are positive integers, we define

(4.17) B(b + 1, a + 1) :=

∫ 1

0

sa(1 − s)bds =
a! b!

(a + b + 1)!
.

One may easily check that

(4.18)

(

b

a

)a

6

(

b

a

)

6

(

eb

a

)a

, (0 < a < b)

and

(4.19) ba
6

(a + b)!

b!
6 (a + b)a.

Let n, k, q ∈ N, with max{k, q} < n. We define

(4.20) An,k,q :=

(

B(n − k + 1, k + q)
k

k+q

B(n − k + 1, k)

)

k+q
kq

.

Lemma 4.4. For every n, k, q ∈ N, with max{k, q} < n we have that

(4.21)
k

1
k + 1

q

(k + q)1/q

n

n + q
6 An,k,q 6 e

k
1
k + 1

q

(k + q)1/q

k + q

k
.

Proof. We first write An,k,q in the form

(4.22) An,k,q =

(

B(n − k + 1, k + q)

B(n − k + 1, k)

)1/q

(B(n − k + 1, k))
−1/k

.

Using (4.17) we can write

(4.23)
B(n − k + 1, k + q)

B(n − k + 1, k)
=

k

k + q

(k + q)!

k!

n!

(n + q)!

and

(4.24) (B(n − k + 1, k))
−1

= k

(

n

k

)

.

Using (4.19) into (4.23) we get

(4.25)
k

k + q

kq

(n + q)q
6

B(n − k + 1, k + q)

B(n − k + 1, k)
6

k

k + q

(k + q)q

nq
.

Using (4.18) into (4.24) we get

(4.26) k
(n

k

)k

6 (B(n − k + 1, k))
−1

6 k
(en

k

)k

.

Inserting (4.25) and (4.26) into (4.22) we get the Lemma. 2

The following lemma is standard and goes back at least to Berwald [5] (see [9] and
[27]).
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Lemma 4.5. Let C be a convex body in R
m and 0 ∈ int(C). For every φ ∈ Sm−1,

set

(4.27) C+(φ) := {x ∈ C : 〈x, φ〉 > 0}.

If s 6 r are non-negative integers, we have that

(4.28)

( ∫

C+(φ)
|〈x, φ〉|rdx

B(m, r + 1)|C ∩ φ⊥|

)1/(r+1)

6

( ∫

C+(φ)
|〈x, φ〉|sdx

B(m, s + 1)|C ∩ φ⊥|

)1/(s+1)

.

Proposition 4.6. Let K be a convex body of volume 1 in R
n and 0 ∈ int(K). If

F ∈ Gn,k and E = F⊥ then, for every integer q > 1,

(4.29) |Bk+q−1(K,F )| 1
k + 1

q 6
e(k + q)

k

(

1

k + q

)
1
q 1

|K ∩ E|1/k
.

Proof. By (4.8) we have that

(4.30) |Bk+q−1(K,F )| = ωk

∫

SF

(

∫

K∩E(φ)

|〈x, φ〉|k+q−1dx

)
k

k+q

dσF (φ).

Applying (4.28) with C = K ∩ span{E, φ}, m = n − k + 1, r = k + q − 1 and
s = k − 1, we get

(4.31)

( ∫

K∩E(φ)
|〈x, φ〉|k+q−1dx

B(n − k + 1, k + q)|K ∩ E|

)1/(k+q)

6

( ∫

K∩E(φ)
|〈x, φ〉|k−1dx

B(n − k + 1, k)|K ∩ E|

)1/k

or, equivalently,

(4.32)

(

∫

K∩E(φ)

|〈x, φ〉|k+q−1dx

)
k

k+q

6
A

kq/(k+q)
n,k,q

(|K ∩ E|)q/(k+q)

∫

K∩E(φ)

|〈x, φ〉|k−1dx,

where An,k,q is the constant defined by (4.20).
Going back to (4.30) and using (4.13) we get

|Bk+q−1(K,F )| 6
A

kq/(k+q)
n,k,q

|K ∩ E|q/(k+q)
ωk

∫

SF

∫

K∩E(φ)

|〈x, φ〉|k−1dx dσF (φ)

=
1

k

A
kq/(k+q)
n,k,q

|K ∩ E|q/(k+q)
.

By Lemma 4.4 we conclude that

(4.33) |Bk+q−1(K,F )| 1
k + 1

q 6
e(k + q)

k

(

1

k + q

)
1
q 1

|K ∩ E|1/k
,

as claimed. 2
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Lemma 4.7. Let f1, f2 : R
k → R be integrable functions with compact support such

that
∫

Rk f1(x)dx =
∫

Rk f2(x)dx and, for every s > 0,
∫

sBk
2

f1(x)dx 6
∫

sBk
2

f2(x)dx.

Then, for every p > 0,

(4.34)

∫

Rk

‖x‖p
2f1(x)dx >

∫

Rk

‖x‖p
2f2(x)dx.

Proof. We write

∫

Rk

‖x‖p
2fi(x) dx =

∫

Rk

∫ ‖x‖2

0

psp−1fi(x) ds dx

=

∫ ∞

0

psp−1

∫

(sBk
2
)c

fi(x) dx ds,

and observe that
∫

(sBk
2
)c f1(x)dx >

∫

(sBk
2
)c f2(x)dx for every s > 0. 2

Proposition 4.8. Let K be a convex body in R
n, with volume 1 and center of mass

at the origin. Let F ∈ Gn,k and E := F⊥ Then

(4.35)
1

|K ∩ E|1/k
6 cL(K,F ),

where c > 0 is an absolute constant.

Proof. Let M := supx∈F |K ∩ (E + x)|, f1(x) := |K ∩ (E + x)| and f2(x) :=
Mχ

ω
−1/k
k M−1/kBF

(x), where BF = Bn
2 ∩ F . Then,

(4.36)

∫

F

f1(x) dx = 1 =

∫

F

f2(x) dx,

and, from the fact that f2 is equal to M on a ball centered at the origin and equal
to zero elsewhere, we easily check that

(4.37)

∫

sBF

f1(x) dx 6

∫

sBF

f2(x) dx

for every s > 0. Lemma 4.7 shows that
(4.38)

∫

F

‖x‖2
2f1(x) dx >

∫

F

‖x‖2
2f2(x) dx =

k

k + 2
ω
−2/k
k M−2/k = I2

2 (BF )M−2/k.

Observe that

(4.39)

∫

F

‖x‖2
2f1(x) dx =

∫

K

‖PF x‖2
2dx = I2

2 (K,F ) = k(L(K,F ))2.

A result of Fradelizi (see [16]) shows that M 6 ek|K ∩ E|. This proves (4.35). 2

16



Proposition 4.9. Let K be a convex body in R
n, with volume 1 and center of mass

at the origin. If F ∈ Gn,k and E = F⊥ then, for every q ∈ N we have that

(4.40) PF (Zq(K)) ⊆ c(k + q)

k
L(K,F )Zq(Bk+q−1(K,F ))

where c > 0 is an absolute constant.

Proof. We start from Proposition 4.3 and use Propositions 4.6 and 4.8 to estimate
the quantity |Bk+q−1(K,F )|1/k+1/q which appears in (4.14). 2

Proposition 4.10. Let K be a convex body in R
n, with volume 1 and center of

mass at the origin. For every k-dimensional subspace F of R
n and every integer

q > 1 there exists θ ∈ SF such that

(4.41) hZq(K)(θ) 6 c
√

k
k + q

k
L(K,F ),

where c > 0 is an absolute constant.

Proof. By Proposition 4.9, taking volumes in (4.40), we have that

(4.42) |PF (Zq(K))|1/k
6

4c(k + q)

k
L(K,F )|Zq(Bk+q−1(K,F ))|1/k.

Recall that

Zq(Bk+q−1(K,F )) ⊆ conv{Bk+q−1(K,F ),−Bk+q−1(K,F )}
⊆ Bk+q−1(K,F ) − Bk+q−1(K,F ).

By the Rogers–Shephard inequality (see [35]) we have that

(4.43) |Zq(Bk+q−1(K,F ))|1/k
6 4.

Therefore,

(4.44) |PF (Zq(K))|1/k
6

4c(k + q)

k
L(K,F ).

Assume that

(4.45) ρ(Bn
2 ∩ F ) ⊆ PF (Zq(K))

for some ρ > 0. The Proposition will be proved if we show that

(4.46) ρ 6 c
√

k
k + q

k
L(K,F ).

From (4.44) and (4.45) we get

(4.47) ρω
1/k
k 6

4c(k + q)

k
L(K,F ).

Since ω
1/k
k ≃ 1/

√
k we get (4.41). 2
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Corollary 4.11. Let K be a convex body in R
n, with volume 1 and center of mass

at the origin. For every integer q > 1 and every F ∈ Gn,q there exists θ ∈ SF such
that

(4.48) hZq(K)(θ) 6 c
√

q L(K,F ),

where c > 0 is an absolute constant.

5 Proof of the main result

We are now ready to give the proof of Theorem 2.3. The precise formulation of our
result in the isotropic case is the following.

Theorem 5.1. There exists an absolute constant c > 0 with the following property:
if K is an isotropic convex body in R

n, then

(5.1) Iq(K) 6 cI2(K)

for every q 6 q∗(K).

Proof. Set q∗ = q∗(K). By the definition of q∗(K) and k∗(Z◦
q∗(K)) we have

k∗(Z◦
q∗(K)) > q∗, and hence, there exists a q∗-dimensional subspace F of R

n such
that

(5.2) hZq∗ (K)(θ) >
1
2w(Zq∗(K))

for every θ ∈ SF .
On the other hand, Corollary 4.11 shows that there exists θ0 ∈ SF such that

(5.3) hZq∗ (K)(θ0) 6 c1
√

q∗L(K,F ) = c1
√

q∗LK ,

where c1 > 0 is an absolute constant (here, we are using the fact that K is isotropic;
we have L(K,F ) = LK for every subspace F of R

n). It follows that

(5.4) w(Zq∗(K)) 6 2c1
√

q∗LK .

Since q∗ 6 k∗(Z◦
q∗(K)), from Lemma 3.5 and Lemma 3.2 we have

(5.5) w(Zq∗(K)) > c2wq∗(Zq∗(K)) > c3

√

q∗
n

Iq∗(K).

Combining (5.4) and (5.5) we see that

(5.6) Iq∗(K) 6 c
√

nLK ,

for some absolute constant c > 0. Since
√

nLK = I2(K), the result follows. 2

Proof of Theorem 2.2. We have assumed that K is isotropic. Then, Corollary 3.11
shows that q∗(K) > c

√
n, where c > 0 is an absolute constant. Then, Theorem 2.2

is an immediate consequence of Theorem 5.1. 2

In fact, the method which has been developed in the previous Sections provides
a similar result for an arbitrary convex body that has its center of mass at the
origin:
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Theorem 5.2. Let K be a convex body in R
n, with volume 1 and center of mass

at the origin. If q∗ = q∗(K), then

(5.7) Iq∗(K) 6 cI2(K),

where c > 0 is an absolute constant.

For the proof of Theorem 5.2 we need one more Lemma.

Lemma 5.3. There exists a constant c ∈ (0, 1) with the following property: if C is
a symmetric convex body in R

n and if m 6 k∗(C◦) 6 cn, then

(5.8) w(C) 6 2

∫

B

∫

SF

hC(θ) dσ(θ) dµn,m(F ),

where

(5.9) B =
{

F ∈ Gn,m : 1
2w(C) 6 hC(θ) 6 2w(C) for all θ ∈ SF

}

.

Proof. Since m 6 k∗(C◦), we have that µn,m(Bc) 6
m

n+m , where Bc = Gn,m \ B.
Then, using the fact that

(5.10) w2(C) 6 c1w(C)

which can be easily checked from Lemma 3.6, we can write

w(C) =

∫

Gn,m

∫

SF

hK(θ) dσF (θ) dµn,m(F )

=

∫

B

∫

SF

hC(θ) dσF (θ) dµn,m(F ) +

∫

Bc

∫

SF

hC(θ) dσF (θ) dµn,m(F )

6

∫

B

∫

SF

hC(θ) dσF (θ) dµn,m(F )

+
(

µ(Bc)
)1/2

(

∫

Gn,m

(
∫

SF

hC(θ) dσF (θ)

)2

dµn,m(F )

)1/2

6

∫

B

∫

SF

hC(θ) dσF (θ) dµn,m(F )

+
(

µ(Bc)
)1/2

(

∫

Gn,m

∫

SF

h2
C(θ) dσF (θ) dµn,m(F )

)1/2

6

∫

B

∫

SF

hC(θ) dσF (θ) dµn,m(F ) +

√

m

n + m
w2(C)

6

∫

B

∫

SF

hC(θ) dσF (θ) dµn,m(F ) + c1

√

m

n + m
w(C)

6

∫

B

∫

SF

hC(θ) dσF (θ) dµn,m(F ) + 1
2w(C),
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provided that c ∈ (0, 1) is chosen small enough. 2

Proof of Theorem 5.2. We define

(5.11) q = min{q∗, ⌊cn⌋}

where c ∈ (0, 1) is the constant from Lemma 5.3. By Lemma 3.2 and Lemma 3.6
we get

(5.12) Iq(K) = a−1
n,q

√

q + n

q
wq(Zq(K)) 6 c1a

−1
n,q

√

q + n

q
w(Zq(K)).

Set

(5.13) B =
{

F ∈ Gn,q : 1
2w(Zq(K)) 6 hZq(K)(θ) 6 2w(Zq(K)) for all θ ∈ SF

}

.

From Lemma 5.3 we have that

(5.14) w(Zq(K)) 6 2

∫

B

∫

SF

hZq(K)(θ) dσ(θ) dµn,q(F ).

Now, Corollary 4.11 and the definition of B show that, for every F ∈ B, there exists
θ0 ∈ SF such that

(5.15) w(Zq(K)) 6 2hZq(K)(θ0) 6 2c2
√

q L(K,F ).

Using again the definition of B, we now see that for every F ∈ B and for every
θ ∈ SF we have that

(5.16) hZq(K)(θ) 6 2w(Zq(K)) 6 4c2
√

q L(K,F ).

In view of (4.6) this means that, for every F ∈ B and for every θ ∈ SF ,

(5.17) hZq(K)(θ) 6 2w(Zq(K)) 6 4c2
√

q

(
∫

SF

h2
Z2(K)(φ)dσF (φ)

)1/2

.

Going back to (5.14) we may write

w(Zq(K)) 6 8c2
√

q

∫

B

∫

SF

(
∫

SF

h2
Z2(K)(φ)dσF (φ)

)1/2

dσF (θ) dµn,q(F )

= 8c2
√

q

∫

B

(
∫

SF

h2
Z2(K)(φ)dσF (φ)

)1/2

dµn,q(F )

6 8c2
√

q

(

∫

Gn,q

∫

SF

h2
Z2(K)(φ)dσF (φ) dµn,q(F )

)1/2

= 8c2
√

qL(K).
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Then, (5.12) becomes

(5.18) Iq(K) 6 c1a
−1
n,q

√

q + n

q
· (8c2

√
qL(K)) 6 c3

√
n L(K).

Since
√

nL(K) = I2(K) by definition (see (4.4)), we finally get

(5.19) Iq(K) 6 c3I2(K).

From Lemma 2.1 we know that

(5.20) Is(K) 6 c4
s

p
Ip(K)

for all s > p > 1, where c4 > 0 is an absolute constant, and hence, we can compare
Iq∗(K) with Iq(K). This completes the proof. 2

Corollary 5.4. Let K be an isotropic convex body in R
n, which is ψa-body with

constant bα. Then,

(5.21) Iq(K) 6 cmax{bαq1/α,
√

n}LK

for every 2 6 q 6 n, where c > 0 is an absolute constant. In particular, for every
isotropic convex body K in R

n we have that

(5.22) Iq(K) 6 c1 max{q,
√

n}LK

for every 2 6 q 6 n, where c1 > 0 is an absolute constant.

Proof. Direct consequence of Theorem 5.1 and Lemma 3.9. 2

It is interesting to note that the Euclidean ball and the ℓn
1 -ball Bn

1 are the
extremal bodies in Theorem 5.2, in the following sense:

Proposition 5.5. Let K be a convex body of volume 1 in R
n. For every 0 < p <

q < ∞ we have that

(5.23)
Iq(K)

Ip(K)
>

Iq(Bn
2 )

Ip(Bn
2 )

.

Proof. We follow an argument of Bobkov–Koldobsky from [6]. Let 0 < p < q < ∞.
A simple computation shows that

(5.24) Ip
p (Bn

2 ) = nωn

∫ ω−1/n
n

0

rn+p−1dr =
n

n + p
ω−p/n

n .

Therefore,

(5.25)
Iq(Bn

2 )

Ip(Bn
2 )

=
( n

n+q )1/q

( n
n+p )1/p

.
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For every q > −n we have that

(5.26) Iq
q (K) = ωn

∫ ∞

0

rn+q−1σ

(

1

r
K

)

dr.

The function g(r) = ωnσ
(

1
r K

)

is non-increasing on (0,∞) and can be assumed
absolutely continuous. So, we can write

(5.27) g(r) = n

∫ ∞

r

ρ(s)

sn
ds, (r > 0)

for some non-negative function ρ on (0,∞). Then,

(5.28) 1 =

∫ ∞

0

rn−1g(r) dr = n

∫ ∞

0

∫

0<r<s

rn−1 ρ(s)

sn
dr ds =

∫ ∞

0

ρ(s) ds.

Hence, ρ represents a probability density of a positive random variable, say, ξ. We
now write

(5.29) Iq
q (K) =

∫ ∞

0

rq+n−1g(r) dr =
n

n + q

∫ ∞

0

sqρ(s) ds =
n

n + q
E(ξq).

Applying Hölder’s inequality for 0 < p 6 q 6 ∞, we see that

(5.30) (E(ξq))
1/q

> (E(ξp))
1/p

.

So,

(5.31)
Iq(K)

Ip(K)
=

(

n
n+q E(ξq)

)1/q

(

n
n+pE(ξp)

)1/p
>

(

n
n+q

)1/q

(

n
n+p

)1/p
=

Iq(Bn
2 )

Ip(Bn
2 )

,

as claimed. 2

We now pass to the ℓn
1 -ball; the results of [39] show that

(5.32) Iq(Bn
1 ) ≃ max{q,

√
n}LBn

1

for every 2 6 q 6 n. We will prove something more general:

Lemma 5.6. Let K be an isotropic convex body in R
n. Then, for every 1 6 q 6 n

we have

(5.33) Iq(K) >
cq

n
R(K),

where c > 0 is an absolute constant.
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Proof. From the Remark after Lemma 3.9 we know that for every convex body K
of volume 1 with center of mass at the origin, R(K) 6 c1In(K), where c1 > 0 is an
absolute constant. Also, Lemma 2.1 shows that, for every p, q > 1,

(5.34) Ipq(K) 6 c2pIq(K)

where c2 > 0 is an absolute constant.
Let 1 6 q 6 n. Then,

(5.35) R(K) 6 c1In(K) 6 c1c2
n

q
Iq(K).

This proves the Lemma, with c := 1
c1c2

. 2

Remark. Since R(Bn
1 ) ≃ nLBn

1
, Lemma 5.6 and (5.22) prove (5.32).

Corollary 5.7. There exists an absolute constant c > 0 such that for every isotropic
convex body K in R

n and for every 2 6 q 6 ∞,

(5.36)
Iq(Bn

2 )

I2(Bn
2 )

6
Iq(K)

I2(K)
6 c

Iq(Bn
1 )

I2(Bn
1 )

.

Proof of Theorem 1.4. Let K be an isotropic convex body in R
n. If T ∈ SL(n) is

positive definite, then

(5.37) I2
2 (T (K)) =

∫

T (K)

‖x‖2
2dx =

∫

K

〈x, (T ∗T )(x)〉 dx = tr(T ∗T )L2
K ,

by the isotropicity of K. Since I2(K) =
√

nw2(Z2(T (K))) and tr(T ∗T ) = ‖T‖2
HS ,

we get

(5.38) w2(Z2(T (K))) =
‖T‖HS√

n
LK .

On the other hand,
(5.39)

R(Z2(T (K))) = R(T (Z2(K))) = R(T (LKBn
2 )) = LKR(T (Bn

2 )) = LKλ1(T ),

where λ1(T ) is the largest eigenvalue of T . It follows that

(5.40) k∗(Z
◦
2 (TK)) ≃ n

(

w(Z2(T (K)))

R(Z2(T (K)))

)2

≃
(‖T‖HS

λ1(T )

)2

.

From Proposition 3.10 we know that q∗(T (K)) > c
√

k∗(Z◦
2 (K)), and hence, Theo-

rem 5.2 and the reduction scheme of Section 2 show that

(5.41) Prob
({

x ∈ K : ‖x‖2 > cI2(K)t
})

6 exp

(

−‖T‖HS

λ1(T )
t

)

for every t > 1, where c > 0 is an absolute constant, which is the assertion of
Theorem 1.4.
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6 Volume of Lq-centroid bodies

The Lq-affine isoperimetric inequality of Lutwak, Yang and Zhang (see Theorem
3.1) can be written in the following form.

Proposition 6.1. Let K be a convex body in R
n, with volume 1 and center of mass

at the origin. Then,

(6.1) |Zq(K)|1/n
> |Zq(Bn

2 )|1/n
> c

√

q/n

for every 1 6 q 6 n, where c > 0 is an absolute constant. 2

Our goal in this Section is to show that the reverse inequality holds true (up to
the isotropic constant).

Theorem 6.2. Let K be a convex body in R
n, with volume 1 and center of mass

at the origin. For every 2 6 q 6 n we have that

(6.2) |Zq(K)|1/n
6 c

√

q/n LK ,

where c > 0 is an absolute constant.

For the proof we will use the Aleksandrov–Fenchel inequalities for the quermassin-
tegrals of a convex body C. From the classical Steiner’s formula we know that

(6.3) |C + tBn
2 | =

n
∑

k=0

(

n

k

)

W[k](C)tk

for all t > 0, where W[k](C) is the k-th quermassintegral of C; W[k](C) is the mixed
volume Vn−k(C) = V (C;n − k,Bn

2 ; k).
The Aleksandrov–Fenchel inequality implies the log-concavity of the sequence

(W[0](C), . . . ,W[n](C)). In other words,

(6.4) W k−i
[j] (C) > W k−j

[i] (C)W j−i
[k] (C), (0 6 i < j < k 6 n).

Choosing k = n we see that

(6.5)

(

W[i](C)

ωn

)1/(n−i)

6

(

W[j](C)

ωn

)1/(n−j)

,

for all 1 6 i < j < n.
We will also use Kubota’s integral formula which connects the i-th quermass-

integral with the average of the volumes of the (n − i)-dimensional projections of
C:

(6.6) W[i](C) =
ωn

ωn−i

∫

Gn,n−i

|PF (C)|dµn,n−i(F ), (1 6 i 6 n − 1).
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Proof of Theorem 6.2. We may assume that K is isotropic. It is enough to prove
(6.2) for q ∈ N and 1 6 q 6 n − 1.

Taking k = q in (4.45) we see that

(6.7) |PF (Zq(K))|1/q
6 c1LK ,

where c1 > 0 is an absolute constant. Applying (6.6) we get

(6.8) W[n−q](Zq(K)) 6
ωn

ωq
(c1LK)q.

Now, we apply (6.5) for C = Zq(K) with j = n − q and i = 0; this gives

(6.9) Wn
[n−q](Zq(K)) > |Zq(K)|qωn−q

n

or, equivalently,

(6.10) W
1/q
[n−q](Zq(K)) > |Zq(K)|1/nω1/q−1/n

n .

Combining (6.8) and (6.10) we get

(6.11) |Zq(K)|1/n
6

ω
1/n
n

ω
1/q
q

cLK .

Since ω
1/k
k ≃ 1/

√
k, the result follows. 2

7 Random points in isotropic symmetric convex

bodies

For the proof of Theorem 1.6 we follow the argument of [18] which incorporates the
concentration estimate of Theorem 1.1 into Rudelson’s approach to the problem.
The main lemma in [36] is the following.

Theorem 7.1 (Rudelson). Let x1, . . . , xN be vectors in R
n and let ε1, . . . , εN be

independent Bernoulli random variables which take the values ±1 with probability
1/2. Then, for all p > 1,

(7.1)

(

E

∥

∥

∥

∥

N
∑

i=1

εixi ⊗ xi

∥

∥

∥

∥

p
)1/p

6 c
√

p + log n · max
i6N

‖xi‖2 ·
∥

∥

∥

∥

N
∑

i=1

xi ⊗ xi

∥

∥

∥

∥

1/2

,

where c > 0 is an absolute constant. 2

Proof of Theorem 1.6. Let ε ∈ (0, 1) and let p > 1. We first estimate the
expectation of maxi6N ‖xi‖2p

2 , where x1, . . . , xN are independent random points
uniformly distributed in K.
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Lemma 7.2. There exists c > 0 such that for every isotropic convex body K in
R

n, for every N ∈ N and every p > 1,

(7.2)

(

E max
i6N

‖xi‖p
2

)1/p

6 cLK max{
√

n, p, log N}.

Proof. From Theorem 1.1 we have

(7.3) Prob(x ∈ K : ‖x‖2 > cqLK) 6 exp(−q)

for every q >
√

n, where c > 0 is an absolute constant. We set A := max{p,
√

n, log N}.
Since A >

√
n, we may write

E max
i6N

‖xi‖p
2 =

∫ ∞

0

ptp−1Prob(max
i6N

‖xi‖2 > t) dt

6 cpLp
K

∫ A

0

ptp−1dt + pcpLp
KN

∫ ∞

A

tp−1Prob(‖x‖2 > ctLK) dt

6 cpLp
KAp + pcpLp

KN

∫ ∞

A

tp−1e−tdt

6 cpLp
KAp + pcpLp

KNe−A+1Ap

6 cpLp
KAp(1 + epNe−A)

6 cpLp
KAp(1 + ep)

where we have used the fact that

(7.4)

∫ ∞

A

tp−1e−tdt 6 e−A+1Ap

for all A > p > 1. 2

Following Rudelson’s argument (see also [18], page 10) we see that if x′
1, . . . , x

′
N

are independent random points from K which are chosen independently from the
xi’s, then
(7.5)

Sp := E

∥

∥

∥

∥

I− 1

NL2
K

N
∑

i=1

xi⊗xi

∥

∥

∥

∥

p

6 (4c)p (p + log n)p/2

N
p/2

Lp
K

(

E max
i6N

‖xi‖2p
2

)1/2 √
Sp + 1.

If we choose p = log n, Lemma 7.2 and (7.5) show that

(7.6) Sp
6

(

c1(log n)max{n, (log N)2}
N

)p/2 √
Sp + 1.

From this inequality we see that if N > c(ε)n log n then

(7.7)

(

c1(log n)max{n, (log N)2}
N

)p/2

<
εp+1

2
,
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and hence,

(7.8) E

∥

∥

∥

∥

I − 1

NL2
K

N
∑

i=1

xi ⊗ xi

∥

∥

∥

∥

p

= Sp < εp+1.

An application of Markov’s inequality shows that

(7.9) Prob

(

∥

∥

∥

∥

I − 1

NL2
K

N
∑

i=1

xi ⊗ xi

∥

∥

∥

∥

> ε

)

< ε,

which is exactly the assertion of Theorem 1.6. 2

8 Concluding Remarks

All the main results of this paper remain valid if we replace Lebesgue measure
on an isotropic convex body by an arbitrary isotropic log-concave measure. In
our discussion, the fact that K is a convex body was only used through the log-
concavity of the function t → |{x ∈ K : |〈x, θ〉| = t}|. Also our assumption that
K has centre of mass at the origin was needed in order to use Fradelizi’s Theorem
which is also valid for any log-concave probability mesure. One way to extend our
results to the case of a log-concave probability measure in R

n is to introduce the
relevant parameters and follow the proofs of the previous Sections:

Let µ be a log-concave probability measure in R
n. We say that µ has its center

of mass at the origin if
∫

Rn〈x, θ〉 dµ(x) = 0 for all θ ∈ Sn−1. For q > 1 we define

Iq(µ) :=
(∫

Rn ‖x‖q
2dµ(x)

)1/q
and we consider the symmetric convex body Zq(µ) in

R
n which has support function hZq(µ)(θ) :=

(∫

Rn |〈x, θ〉|qdµ(x)
)1/q

.
Next, we define

(8.1) q∗(µ) = max{q ∈ N : k∗(Z
◦
q (µ)) > q}.

Then, one can prove the following analogue of Theorem 5.2:

Theorem 8.1. Let µ be a log-concave probability measure in R
n with center of

mass at the origin. Then, for every q 6 q∗(µ),

(8.2) Iq(µ) 6 cI2(µ)

where c > 0 is an absolute constant.

The proof of Theorem 8.1 is similar to the proof of Theorem 5.2; only a few
straightforward modifications are needed.

Let µ be a log-concave probability measure in R
n. We say that µ is isotropic

if Z2(µ) is a multiple of the Euclidean ball. An inspection of the proofs in Section
3 makes it clear that Proposition 3.10 and Corollary 3.11 remain true in the “log-
concave” case. This implies immediately a reformulation of Theorem 2.3 for log-
concave measures.
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Added in Proofs: B. Klartag has recently proved that for every convex body K
in R

n and for every ε > 0 there exists a second convex body T in R
n whose Banach-

Mazur distance from K is bounded by 1 + ε and and its isotropic constant satisfies
LT 6 C/

√
ε. This almost isometric answer to the slicing problem, combined with

Theorem 1.1 of our paper, leads to the estimate LK 6 c 4
√

n for every convex body
K. Klartag’s work will appear in this Journal.
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