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Abstract

Let X1, . . . , XN , N > n, be independent random points in Rn, distributed
according to the so-called beta or beta-prime distribution, respectively. We
establish threshold phenomena for the volume, intrinsic volumes, or more general
measures of the convex hulls of these random point sets, as the space dimension n
tends to infinity. The dual setting of polytopes generated by random halfspaces
is also investigated.
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1 Introduction and main results

In the last decades, random polytopes have become one of the outstanding models
of study in stochastic geometry, connecting problems and methods from classical
convexity and probability theory, and bringing forth numerous applications in other
fields of mathematics like optimization, extreme value theory, random matrices and
algorithmic geometry, to name just a few. Among the vast literature on the subject,
we direct the reader to the recent survey papers [8, 16] and the references therein for
a detailed account on the matter.

A particular issue that has been studied in many aspects is the complexity of
volume computation and approximation of high-dimensional convex bodies by random
polytopes. In the general setting, one may consider the convex hull conv{X1, . . . , XN}
of a finite number of points chosen randomly from the interior of a convex body K in
Rn, and investigate conditions under which this convex hull “well-approximates” the
original body, for example in terms of the volume or other geometric parameters. In
a seminal work, Dyer, Füredi and McDiarmid [7] proved that the expected volume
of the convex hull CN = conv{X1, . . . , XN} of N > n points chosen uniformly and
independently from the vertices of the n-dimensional cube [−1, 1]n, exhibits a phase
transition when N is taken to be exponential in the dimension n, namely, that for
every ε > 0,

lim
n→∞

EVn(CN )

Vn([−1, 1]n)
=

{
0 if N 6 (2e−1/2 − ε)n

1 if N > (2e−1/2 + ε)n,

where Vn denotes the n-dimensional volume of a set. The method introduced in
[7] influenced a number of later works, like for instance the approach that Bárány
and Pór [4] used to prove the existence of ±1 polytopes with a super-exponential
number of facets. Subsequently, new volume threshold results were established by
Gatzouras and Giannopoulos [9] for random polytopes generated by a wide class
of probability measures µ in Rn, as well as Pivovarov [14], who treated the case of
independent points with respect to the Gaussian measure in Rn and the uniform
measure on the Euclidean sphere. Moreover, Pivovarov considered the dual setting
of polytopes generated as sections of random halfspaces with respect to the same
probability measures. We stress that the authors in both [9] and [14] exploit the
method of [7], which due to its geometric viewpoint seems to be applicable for a wide
variety of probability distributions.

Let N and n be natural numbers, N > n, and X1, X2, . . . , XN be independent
and identically distributed random points in Rn, equipped with the Euclidean norm
‖·‖ and its corresponding unit ball Bn

2 . In this text, we draw our attention to the
following two probability distribution models.

(a) The Beta model, with parameter β > −1: X1 has density proportional to

(1− ‖x‖2)β, x ∈ Bn
2 .

We are interested in the random polytope given by

P βN,n := conv{X1, . . . , XN}.

(b) The Beta-prime model, with parameters β > n/2 and σ > 0: X1 has density
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proportional to (
1 +
‖x‖2

σ2

)−β
, x ∈ Rn.

As before, we consider the random polytope

P̃ β,σN,n := conv{X1, . . . , XN}.

Lately, the high-dimensional geometry of sets arising from these models of ran-
domness have been studied extensively; for instance, in terms of properties of their
volume [10], facet numbers [5] or intrinsic volumes [11]. Asymptotic estimates on the
expected volume of the polytope P βN,n, as N →∞, were derived by Affentranger [1]
for any fixed dimension n and parameter β. Note also, that the gnomonic projection
of a uniformly distributed point on the half-sphere is beta prime distributed, which
is exploited in [5] and [12].

In this article, we prove threshold results for the volumes and intrinsic volumes
of P βN,n and the content of P̃ β,σN,n with respect to log-concave isotropic measures, as
the space dimension tends to infinity. In particular, it turns out that the polytope
P βN,n tends to capture the whole volume of Bn

2 only if the number of points N is
superexponential in n.

Theorem 1.1 (Threshold for beta polytopes). Fix ε ∈ (0, 1) and let −1 < β = β(n)
and N = N(n) be sequences. Then,

lim
n→∞

EVn(P βN,n)

Vn(Bn
2 )

=

{
0 if N 6 exp

(
(1− ε)(β + n+1

2 ) log n
)

1 if N > exp
(
(1 + ε)(β + n+1

2 ) log n
)
.

Although the statement of Theorem 1.1 would still hold when replacing the factor
β + (n + 1)/2 by β + n/2, we write the former version because the condition on
ε constant can be actually relaxed into ε = ε(n), where ε(n) → 0+ slowly enough.
This makes the aforementioned factors not interchangeable. The admissible speed of
decay of ε(n) is addressed in Remark 3.6.

A special case of Theorem 1.1 is of particular interest. By its very definition
(see Section 2.1 below), the beta distribution for β = 0 coincides with the uniform
probability measure on the Euclidean ball Bn

2 . The following is thus an immediate
corollary of Theorem 1.1.

Corollary 1.2. Fix ε ∈ (0, 1) and let N = N(n) be a sequence of positive integers.
Let X1, . . . , XN be independent random points uniformly distributed on Bn

2 and set
BN,n := conv{X1, . . . , XN}. Then,

lim
n→∞

EVn(BN,n)

Vn(Bn
2 )

=

{
0 if N 6 exp

(
(1− ε)(n+1

2 ) log n
)

1 if N > exp
(
(1 + ε)(n+1

2 ) log n
)
.

Moreover, since the uniform distribution on the unit sphere Sn−1 arises as the
weak limit of the beta distribution, as β → −1 (see for example the proof of Theorem
2.7 in [10]), the result of Theorem 2.4 in [14] can be recovered by Theorem 1.1.
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Corollary 1.3. Fix ε ∈ (0, 1) and let N = N(n) be a sequence of positive integers.
Let X1, . . . , XN be independent random points uniformly distributed on Sn−1 and set
SN,n := conv{X1, . . . , XN}. Then,

lim
n→∞

EVn(SN,n)

Vn(Bn
2 )

=

{
0 if N 6 exp

(
(1− ε)

(
n−1

2

)
log n

)
1 if N > exp

(
(1 + ε)

(
n−1

2

)
log n

)
.

Similar threshold statements hold also for the intrinsic volumes of P βN,n. Intrinsic
volumes are geometric functionals which arise from the computation of the volume of
the Minkowski sum of two convex sets in Rn. Namely, for a convex set K and t > 0,
the volume of K + tBn

2 can be written as a polynomial of degree n in t:

Vn(K + tBn
2 ) =

n∑
j=0

tn−jVn−j(B
n−j
2 )Vj(K),

with non-negative coefficients (Vj(K))nj=0. The term Vj(K), j ∈ {0, . . . , n}, is called
the j-th intrinsic volume of K. In particular, Vn(K) is the volume of K, Vn−1(K) is
half of its surface area and V1(K) is a constant multiple of its mean width, respectively.
The intrinsic volumes are of great interest in valuation theory, since they form a basis
of the vector space of all continuous motion invariant valuations on the set of convex
bodies in Rn. This observation is the content of Hadwiger’s characterization theorem,
see for instance Lemma 4.2.6 in [17].

As pointed out in [11], the expected k-th intrinsic volume of P βN,n is directly
connected to the expected k-dimensional volume of PαN,k for some different parameter
α depending on β, k and n. Because of this, Theorem 1.1 can be applied to establish
threshold results for the intrinsic volumes Vk(P

β
N,n), k ∈ {1, . . . , n}, for different

regimes of k = k(n).
On the other hand, the case that k is a fixed integer is of independent interest,

since it amounts to studying the threshold behaviour of Vn(P βN,n) as β → ∞ while
the dimension n stays fixed. We prove the following.

Theorem 1.4 (Threshold for intrinsic volumes of beta polytopes). Fix ε ∈ (0, 1)
and k ∈ N, and let −1 < β = β(n) and N = N(n) be arbitrary sequences of real and
natural numbers, respectively. Then

lim
n→∞

EVk(P βN,n)

Vk(B
n
2 )

=

{
1 if N > exp

(
exp

(
(1 + ε) log

(
β + n−k

2

)))
0 if N 6 exp

(
exp

(
(1− ε) log

(
β + n−k

2

)))
.

The proof of Theorem 1.4, as well as a general discussion on threshold phenomena
for the intrinsic volumes of P βN,n is the content of Section 3.3.

Next, we treat the case of the beta-prime distribution. Since the underlying
measure is not compactly supported, in the spirit of [15], we replace the role of
the normalized volume on the ball by an arbitrary isotropic log-concave probability
measure µ on Rn, see Subsection 2.2 for the definition. In the sequel we will use the
notation a� b if ab → 0 as n→∞.

Theorem 1.5 (Threshold for beta prime polytopes). Fix ε ∈ (0, 1). Let µ = µn
denote a sequence of isotropic log-concave measures on Rn, let σ = σ(n) > 0 and
β = β(n) be sequences of real numbers, and let N = N(n) be a sequence of natural
numbers. Let β − n

2 � log n.
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(a) If n
σ2 � 1

β−n
2
and N > 3n log n, then

lim
n→∞

Eµ(P̃ β,σN,n) = 1.

(b) If 1
β−n

2
� n

σ2 � 1√
β−n

2

, then,

lim
n→∞

Eµ(P̃ β,σN,n) =

{
0 if N 6 exp

(
(1− ε) n

σ2 (β − n
2 )
)

1 if N > exp
(
(1 + ε) n

σ2 (β − n
2 )
)
.

(c) If n
σ2 →∞ and σ > e−

n
3 (in particular this holds for σ ≡ 1), then,

lim
n→∞

Eµ(P̃ β,σN,n) =

{
0 if N 6 exp

(
(β − n

2 ) log
(
(1− ε) n

σ2

))
1 if N > exp

(
(β − n

2 ) log
(
(1 + ε) n

σ2

))
.

Since the densities of a sequence of beta-prime distributions with parameters σ2 =
2β →∞ converge to the density of the standard multivariate Gaussian distribution,
we also recover Pivovarov’s threshold for Gaussian polytopes. We state it here in
a slightly more explicit form than in Theorem 2.2.1 from [15]. For a related result
where the log concave isotropic measures are replaced by the volume ratios of the
intersection of Gaussian polytopes with balls of arbitrary radii, see Theorem 2.1 from
[14].

Corollary 1.6. Fix ε ∈ (0, 1/2). Let µ = µn denote a sequence of isotropic log-
concave measures on Rn and let N = N(n) be a sequence of natural numbers. Let
X1, . . . , XN be independent random points distributed according to the standard Gaus-
sian distribution on Rn and let GN,n := conv{X1, . . . , XN}. Then,

lim
n→∞

Eµ(GN,n) =

{
0 if N 6 exp

((
1
2 − ε

)
n
)

1 if N > exp
((

1
2 + ε

)
n
)
.

The proofs of the above statements can be found in Section 3. We stress that in
all Theorems 1.1, 1.4 and 1.5, the parameter β is actually allowed to vary with the
dimension n.

Finally, in the spirit of [14], we also treat the dual setting, providing theorems
of similar type for polytopes generated as intersections of random halfspaces. More
precisely, given X1, . . . , XN chosen independently according to the beta or the beta-
prime distribution, we consider the polytopes formed as intersections of the sets

{x ∈ Rn : 〈Xi, x〉 6 a}, i = 1, . . . , N,

for suitable a > 0. The exact statement and proofs of these results can be found in
the final Section 4.

2 Notation and auxiliary estimates

We start this section by collecting some general notation. We work in the Euclidean
space Rn, n ∈ N = {1, 2, . . .}, equipped with the scalar product 〈· , ·〉 and correspond-
ing norm ‖·‖. By Bn

2 we denote the closed Euclidean unit ball and by Sn−1 the
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Euclidean unit sphere, equipped with the unique rotationally invariant probability
measure σ. By dx we indicate Lebesgue integration in the appropriate dimension,
and we use the symbol Vn(·) for the volume, i.e., the n-dimensional Lebesgue measure.
We abbreviate κn = Vn(Bn

2 ).
By a convex body in Rn we mean a compact, convex subset of Rn with non-empty

interior. Given a convex body K in Rn and t > 0, the intrinsic volumes (Vj(K))nj=0,
j ∈ {0, . . . , n}, are the non-negative coefficients of the polynomial in t that appear
in Steiner’s formula, (see e.g. [17, Equation (4.2.27)]), namely

Vn(K + tBn
2 ) =

n∑
j=0

tn−jκn−jVj(K).

Throughout the text, given two sequences of numbers positive real numbers
(an)n∈N and (bn)n∈N we will use the notation an � bn for an = o(bn), meaning that
an/bn → 0, as n → ∞. Analogously, we will use an � bn meaning an/bn → +∞,
as n → ∞. Furthermore, we write an ∼ bn, if an/bn → 1, as n → ∞. Finally, we
denote the set {1, . . . , n} by [n].

2.1 The beta and beta-prime distributions

As aforementioned, our focus in this paper is on two specific classes of probability
distributions on Rn, namely, the beta and beta-prime distributions. To introduce the
beta distribution, we set

cn,β := π−n/2
Γ
(
β + n

2 + 1
)

Γ(β + 1)
, β > −1, n ∈ N,

and define νβ to be the probability measure on Bn
2 with density function

pn,β(x) := cn,β(1− ‖x‖2)β, x ∈ Bn
2 .

The corresponding one-dimensional marginal density function of νβ is

fβ(t) := αn,β(1− t2)β+n−1
2 , t ∈ [−1, 1],

where

αn,β :=
cn,β
cn−1,β

= π−1/2 Γ
(
β + n

2 + 1
)

Γ
(
β + n−1

2

) .
Finally, for d ∈ [0, 1], we abbreviate

F(d) :=

∫ 1

d
fβ(t) dt.

To introduce the beta-prime distribution, we define

c̃n,β,σ := σ−nπ−n/2
Γ(β)

Γ(β − n
2 )
, β >

n

2
, σ > 0, n ∈ N,

and let ν̃β,σ be the probability measure on Rn with density function

p̃n,β,σ(x) := c̃n,β,σ

(
1 +
‖x‖2

σ2

)−β
, x ∈ Rn.
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Moreover, let

α̃n,β,σ :=
c̃n,β,σ
c̃n−1,β,σ

= σ−1π−1/2 Γ(β − n−1
2 )

Γ(β − n
2 )

,

so that
f̃β,σ(t) := α̃n,β,σ(1 + t2)−β+n−1

2 , t ∈ R,

is the one-dimensional marginal density function of ν̃β,σ. Analogously to the beta
case, for d ∈ [0,∞), we denote

F̃(d) :=

∫ ∞
d

f̃β,σ(t) dt.

Estimates on the asymptotic behavior of the distribution functions of νβ and ν̃β,σ, in
particular for the functions F and F̃ defined above, play a central role in our work.
We begin with a bound on the ratio of Gamma functions, that is a particular case of
Wendel’s inequality (see e.g. eq. (7) in [18]), but written in a similar form already in
[3].

Lemma 2.1. For every x > 1,

1√
x
<

Γ(x)

Γ(x+ 1
2)
<

1√
x− 1

.

The previous inequalities are used in the proof of the following bounds for the
distribution function F.

Lemma 2.2. Let d ∈ (0, 1). Then,

1

2
√
π

(1− d2)β+n+1
2√

β + n
2 + 1

< F(d) <
1

2d
√
π

(1− d2)β+n+1
2√

β + n
2

.

Proof. Using the change of variable s = 1− t2, we write

F(d) = αn,β

∫ 1

d
(1− t2)β+n−1

2 dt =
1

2
αn,β

∫ 1−d2

0
sβ+n−1

2 (1− s)−
1
2 ds.

Note that since s ∈ (0, 1− d2), we have (1− s)−1/2 ∈ (1, d−1), so

αn,β
2

∫ 1−d2

0
sβ+n−1

2 ds < F(d) <
αn,β
2d

∫ 1−d2

0
sβ+n−1

2 ds.

The fact that

αn,β

β + n+1
2

=
1√
π

Γ(β + n
2 + 1)

Γ(β + n
2 + 3

2)
,

together with Lemma 2.1, completes the proof.
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Remark 2.3. Note that an adaptation of the above proof yields similar estimates
on the growth of F̃ if the parameter σ is an absolute constant. For instance if σ = 1,
one has that

1

2
√
π

(1 + d2)−β+n
2√

β − n−1
2

< F̃(d) <
1√
2π

(1 + d2)−β+n
2√

β − n+1
2

(1)

for every d > 1. Yet, in the general case where the parameter σ could vary with β or
n we will show that the asymptotic behaviour of F̃ in terms of σ, β and n actually
depends on the growth rate of the quantity n/σ2. This will result to the different
threshold results in the statement of Theorem 1.5.

To deal with the distribution function F̃ for an arbitrary σ > 0, we will use a
different argument. Note first that a suitable substitution provides

F̃(d) =
α̃n,β,σ√

2bn

∫ ∞
an

(
1 +

s2

2bn

)−bn
ds, bn = β − n− 1

2
and an = d

√
2bn
σ

. (2)

It is easy to see that α̃n,β,σ√
2bn
→ 1√

2π
whenever bn →∞. The estimates of F̃(d) which

will appear in the proof of Theorem 1.5 are based on (2) and the following lemma.

Lemma 2.4. Let (an)n∈N, (bn)n∈N be two sequences with an > 0 and 1
2 < bn →∞.

(a) If a4n
bn
→ 0, then, ∫ ∞

an

(
1 +

t2

2bn

)−bn
dt ∼

∫ ∞
an

e−
t2

2 dt.

If additionally an →∞, then,∫ ∞
an

(
1 +

t2

2bn

)−bn
dt ∼ e−

a2n
2

an
.

(b) If a2n
bn
→∞, then,∫ ∞

an

(
1 +

t2

2bn

)−bn
dt ∼ 1√

2bn

(
1 +

a2
n

2bn

)−(bn− 1
2

)

.

The main ingredient to prove Lemma 2.4 is Laplace’s method. We refer the reader
to Theorem 1.1 of [19] for a more general version of the following lemma.

Lemma 2.5 (Special case of Laplace’s method). Let h : [a,∞) → R be a strictly
increasing and differentiable function. Then, as λ→∞,∫ ∞

a
e−λh(t) dt ∼ e−λh(a)

λh′(a)
.

Proof of Lemma 2.4. We first show a pair of auxiliary estimates. The inequality
x− x2

2 6 log (1 + x) 6 x gives that

1 6

(
1 + t2

2bn

)−bn
e−

t2

2

= exp

(
−bn log

(
1 +

t2

2bn

)
+
t2

2

)
6 e

t4

8bn .
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Therefore, for any couple of sequences 0 6 cn < dn, we have∫ dn

cn

e−
t2

2 dt 6
∫ dn

cn

(
1 +

t2

2bn

)−bn
dt 6 e

d4n
8bn

∫ dn

cn

e−
t2

2 dt,

and in particular

d4
n

bn
→ 0 ⇒

∫ dn

cn

(
1 +

t2

2bn

)−bn
dt ∼

∫ dn

cn

e−
t2

2 dt. (3)

If additionally cn →∞ we can get a more explicit approximation by using a substi-
tution and the Laplace’s method. The new estimate is

d4
n

bn
→ 0 and cn →∞ ⇒

∫ dn

cn

(
1 +

t2

2bn

)−bn
dt ∼ e−

c2n
2

cn
− e−

d2n
2

dn
. (4)

Since for any t, the map (1
2 ,∞) 3 b 7→

(
1 + t2

2b

)−b
is decreasing, we have that for

any sequence (cn)n∈N with 1
2 < c2

n < bn,∫ ∞
cn

(
1 +

t2

2bn

)−bn
dt 6

∫ ∞
cn

(
1 +

t2

2c2
n

)−c2n
dt

=
√

2cn

∫ ∞
1√
2

(
1 + s2

)−c2n ds

=
√

2cn

∫ ∞
1√
2

exp
(
−c2

n log(1 + s2)
)

ds.

Laplace’s method, see Lemma 2.5, now implies that for cn →∞,∫ ∞
1√
2

exp
(
−c2

n log(1 + s2)
)

ds ∼
exp

(
−c2

n log(5
4)
)

c2
n

In particular,

bn > c2
n and cn →∞⇒

∫ ∞
cn

(
1 +

t2

2bn

)−bn
dt = o

(
e−c

2
n log( 5

4
)
)
. (5)

Now we have all the ingredients to show Lemma 2.4 (a), but we need to distinguish
the case where an →∞ from the case where an is bounded.

First, we assume that an is bounded. Let cn > an be a sequence such that c4n
bn
→ 0

and cn → ∞. Splitting the integral in two parts and applying (3) with an and cn,
gives ∫ ∞

an

(
1 +

t2

2bn

)−bn
dt =

∫ cn

an

(
1 +

t2

2bn

)−bn
dt+

∫ ∞
cn

(
1 +

t2

2bn

)−bn
dt

∼
∫ cn

an

e−
t2

2 dt+ o(1)

∼
∫ ∞
an

e−
t2

2 dt.
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Second, we assume that an →∞. We split the integral in two parts and use the
estimates (4) with cn = an and dn = 2an, and (5) with cn = 2an. This gives∫ ∞

an

(
1 +

t2

2bn

)−bn
dt =

∫ 2an

an

(
1 +

t2

2bn

)−bn
dt+

∫ ∞
2an

(
1 +

t2

2bn

)−bn
dt

∼ e−
a2n
2

an
− e−2a2n

2an
+ o

(
e−4a2n log( 5

4
)
)

∼ e−
a2n
2

an
.

To show part (b) of Lemma 2.4, note that the substitution s = (1 + t2

2bn
)−1 gives

∫ ∞
an

(
1 +

t2

2bn

)−bn
dt =

√
bn
2

∫ (
1+

a2n
2bn

)−1

0
sbn−

3
2 (1− s)−

1
2 ds.

But, since (0, 1) 3 s 7→ (1− s)−
1
2 is increasing, we have

1 6

√
bn
2

∫ (
1+

a2n
2bn

)−1

0 sbn−
3
2 (1− s)−

1
2 ds

√
bn
2

∫ (
1+

a2n
2bn

)−1

0 sbn−
3
2 ds

6

(
1−

(
1 +

a2
n

2bn

)−1
)− 1

2

.

Observe that the right hand side of the last equation tends to 1 because a2n
bn
→ ∞.

Thus, the two last equations provide the equivalence

∫ ∞
an

(
1 +

t2

2bn

)−bn
dt ∼

√
bn
2

∫ (
1+

a2n
2bn

)−1

0
sbn−

3
2 ds

∼
√
bn√

2(bn − 1
2)

(
1 +

a2
n

2bn

)−(bn− 1
2

)

∼ 1√
2bn

(
1 +

a2
n

2bn

)−(bn− 1
2

)

,

which completes the proof.

2.2 Isotropic log-concave probability measures

A probability measure µ on Rn is called log-concave, if for all compact subsets A,B
of Rn and all λ ∈ (0, 1),

µ((1− λ)A+ λB) > µ(A)1−λµ(B)λ.

It is called isotropic, if its center of mass is at the origin, i.e.,∫
Rn
〈x, ϑ〉dµ(x) = 0

10



holds for every ϑ ∈ Sn−1, and satisfies the isotropic condition, that is,∫
Rn
〈x, ϑ〉2 dµ(x) = 1

for all ϑ ∈ Sn−1.
In the sequel, we will rely on the so-called thin-shell concentration property of

isotropic log-concave probability measures. Answering a central question in asymp-
totic convex geometry (see [2]), Klartag [13, Theorem 1.4] proved that an isotropic
log-concave measure is typically concentrated on a “thin spherical shell” around the
Euclidean ball of radius

√
n. The statement reads as follows.

Theorem 2.6 (Thin shell concentration). Let µ be an isotropic log-concave probability
measure in Rn. Then, for every ε ∈ (0, 1),

µ
({
x ∈ Rn :

∣∣‖x‖ − √n∣∣ > ε
√
n}) 6 Cn−cε

2
, (6)

for some absolute constants c, C > 0.

Results of this type are closely linked to the long-standing thin shell conjecture,
which asks, if the quantity E

(
‖X‖ −

√
n
)2 can be uniformly bounded by a constant

independent of the dimension, for any random vector X distributed according to an
isotropic and log-concave probability measure on Rn. For more information on the
history of this problem, recent improvements of Theorem 2.6, as well as the general
theory of isotropic log-concave probability measures, one can consult the monograph
[6].

3 Convex hulls of random points

Recall that by P βN,n and P̃ β,σN,n we denote the convex hulls arising from N > n
independent random points in Rn, distributed according to the beta distribution with
parameter β and the beta-prime distribution with parameters β and σ, respectively.

3.1 Preparatory lemmas

The proofs of Theorem 1.1 and Theorem 1.5 follow the method introduced in [7] and
exploited in [14]. We thus define, for every x ∈ Rn, the functions

q(x) := inf{P(X ∈ H) : H is a halfspace containing x},

when X ∼ νβ , and

q̃(x) := inf{P(X ∈ H) : H is a halfspace containing x},

when X ∼ ν̃β,σ. The following lemma implies a way to compute q(x) and q̃(x) in
terms of the Euclidean norm of the point x ∈ Rn.

Lemma 3.1. Let H be a halfspace at distance d > 0 from the origin. Then,

(a) P(X ∈ H) = F(d), when X ∼ νβ,

(b) P(X ∈ H) = F̃(d), when X ∼ ν̃β,σ.

11



Proof. We prove the lemma only for the case (a), since (b) is analogous. By rotational
invariance of the measure νβ, we may assume that H = {x = (x1, . . . , xn) ∈ Rn :

x1 > d}. We write

P(X ∈ H) = νβ(H) =

∫
H
pn,β(x) dx = cn,β

∫
H

(1− ‖x‖2)β dx

= cn,β

∫ 1

d

∫
Bn−1

2

(1− ‖x‖2)β d(x2, . . . , xn) dx1

= cn,β

∫ 1

d

∫
Bn−1

2

(1− t2)β
(

1− ‖y‖
2
2

1− t2

)β
dy dt

= cn,β

∫ 1

d
(1− t2)β

∫
Bn−1

2

(1− ‖z‖22)β(1− t2)
n−1
2 dz dt

= αn,β

∫ 1

d
(1− t2)β+n−1

2

∫
Bn−1

2

pn−1,β(z) dz dt

=

∫ 1

d
fβ(t) dt = F(d),

which concludes the proof.

Corollary 3.2. For every x ∈ Rn,

(a) q(x) = F(‖x‖),

(b) q̃(x) = F̃(‖x‖).

Proof. As before, we discuss only the case (a). Note that q(0) = 1/2 = F(0). If
x 6= 0, let H(x) be the halfspace bounded by the tangent hyperplane to ‖x‖Bn

2 at x,
not containing 0. Then, by Lemma 3.1 (a), we have

F(‖x‖) = P(X ∈ H(x)) > q(x).

Conversely, let H be a halfspace at distance d from the origin, such that x ∈ H. If
d = 0, then, P(X ∈ H) > 1/2 > B(‖x‖). If d > 0, then, again by Lemma 3.1 (a), we
have P(X ∈ H) = F(d) > F(‖x‖), since d 6 ‖x‖. It follows that q(x) > F(‖x‖).

Using Corollary 3.2, we can relate the probability content of the random polytopes
P βN,n and P̃ β,σN,n to the distribution functions F and F̃, respectively. In particular, we
upper bound the expected volume of P βN,n in terms of F (and similarly for P̃ β,σN,n).

Lemma 3.3. Let A be a bounded, measurable subset of Rn.

(a) In the beta model,

P(A ⊆ P βN,n) 6
EVn(P βN,n ∩A)

Vn(A)
6 N sup

x∈A
F(‖x‖).

(b) In the beta-prime model,

µ(A)P(A ⊆ P̃ β,σN,n) 6 Eµ(P̃ β,σN,n ∩A) 6 Nµ(A) sup
x∈A

F̃(‖x‖),

where µ is any isotropic log-concave probability measure on Rn.

12



Proof. (a) First, note that, for any x ∈ P βN,n = conv{X1, . . . , XN} and any halfspace
H containing x, there must be some Xi ∈ H. This implies that

{x ∈ P βN,n} ⊆
N⋃
i=1

{Xi ∈ H}.

Since the previous inclusion holds for any halfspace H containing x, by a union bound
and Corollary 3.2 (a), we get that

P(x ∈ P βN,n) 6 Nq(x) = NF(‖x‖).

Now, using the latter estimate,

EVn(P βN,n ∩A) = E
∫
A
1
PβN,n

(x) dx =

∫
A
P(x ∈ P βN,n) dx 6 NVn(A) sup

x∈A
F(‖x‖).

This proves the upper bound. On the other hand, since the event {A ⊆ P βN,n} implies
{Vn(A) 6 Vn(P βN,n ∩A)}, Markov’s inequality gives

Vn(A)P(A ⊆ P βN,n) 6 EVn(P βN,n ∩A),

completing the proof.
(b) The proof follows along the same line as (a), using now Corollary 3.2 (b)

instead of (a). As above, for any halfspace H and any point x ∈ H, we have

{x ∈ P̃ β,σN,n} ⊆
N⋃
i=1

{Xi ∈ H}.

Again, by a union bound and Corollary 3.2 (b), we get that

P(x ∈ P̃ β,σN,n) 6 Nq̃(x) = N F̃(‖x‖).

Using this estimate, we have

Eµ(P̃ β,σN,n ∩A) = E
∫
A
1
P̃β,σN,n

(x)µ(dx) =

∫
A
P(x ∈ P̃ β,σN,n)µ(dx) 6 Nµ(A) sup

x∈A
F̃(‖x‖),

which proves the upper bound. Finally, by Markov’s inequality, we get the lower
bound

µ(A)P(A ⊆ P̃ β,σN,n) 6 Eµ(P̃ β,σN,n ∩A),

finishing the proof.

Next, we reproduce an analogous “ball inclusion” argument as in [7] in our setting.

Lemma 3.4. (a) For any R ∈ (0, 1), the inclusion RBn
2 ⊆ P

β
N,n holds with proba-

bility greater than 1− 2
(
N
n

)
(1− F(R))N−n.

(b) For any R > 0, the inclusion RBn
2 ⊆ P̃ β,σN,n holds with probability greater than

1− 2
(
N
n

)
(1− F̃(R))N−n.

13



Proof. Let us start with part (a). Let J ⊆ {1, . . . , N} with |J | = n. With proba-
bility equal to one, the set {Xj}j∈J is affinely independent. Let HJ be the affine
hyperplane defined by the affine hull of {Xj}j∈J and H+

J , H
−
J be the corresponding

closed halfspaces, determined by HJ . Moreover, let X be an additional independent
beta-distributed random point and let EJ be the event, that, either P βN,n ⊆ H+

J

and P(X /∈ H)|H=H+
J
> F(R), or P βN,n ⊆ H−J and P(X /∈ H)|H=H−J

> F(R). Note
that here, and in the following, P(X /∈ H)|H=G denotes the evaluation of the map
H 7→ P(X /∈ H) for the halfspace G ⊂ Rn.

Suppose that RBn
2 * P βN,n, so there exists some x0 ∈ RBn

2 \ P
β
N,n. Then, there

exists some J ⊆ {1, . . . , N} with |J | = n such that either P βN,n ⊆ H
+
J and x0 ∈ H−J

or P βN,n ⊆ H−J and x0 ∈ H+
J . Note that we have P(X /∈ H)|H=H+

J
> q(x0) > F(R),

or P(X /∈ H)|H=H−J
> q(x0) > F(R) respectively, since ‖x0‖ 6 R. It follows that

{RBn
2 * P βN,n} ⊆

⋃
J⊆[N ]
|J |=n

EJ .

Clearly, using the union bound,

P(RBn
2 * P βN,n) 6

(
N

n

)
P(E[n]).

Next, note that P(X /∈ H)|H=H+
[n]

> F(R) implies P(X ∈ H)|H=H+
[n]

6 1−F(R), and

similarly for H−[n]. It follows that P(E[n] | X1, . . . , Xn) 6 2(1 − F(R))N−n. Finally,
we get that P(E[n]) = E(P(E[n] | X1, . . . , Xn)) 6 2(1− F(R))N−n, and, hence,

P(RBn
2 * P βN,n) 6 2

(
N

n

)
(1− F(R))N−n,

proving the statement of the lemma. The proof of part (b) is a word-by-word
repetition of the proof of (a), where now F̃ plays the role of F.

Finally, we provide an essential lemma for the proofs of Theorem 1.1 and Theorem
1.5.

Lemma 3.5. Let ε > 0 be fixed.

(a) In the beta model,

lim
n→∞

EVn(P βN,n)

κn
=

{
0 if NF

(√
1− n−(1−ε)

)
→ 0

1 if NF
(√

1− n−(1+ε)
)
− n logN →∞.

(b) In the beta-prime model,

lim
n→∞

Eµn(P̃ β,σN,n) =

{
0 if N F̃

(
(1− ε)

√
n
)
→ 0

1 if N F̃
(
(1 + ε)

√
n
)
− n logN →∞.
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Proof. (a) Set rn =
√

1− n−(1−ε), An = Bn
2 \ rnBn

2 and assume that NF(rn) → 0.
We have that supx∈An F(‖x‖) 6 F(rn), since ‖x‖ > rn for every x ∈ An. By using
this, in conjunction with Lemma 3.3 (a),

EVn(P βN,n ∩An)

κn
6

EVn(P βN,n ∩An)

Vn(An)
6 NF(rn)→ 0.

Note also that Vn(rnBn2 )
Vn(Bn2 ) = rnn → 0. Thus

EVn(P βN,n)

κn
6
Vn(rnB

n
2 )

Vn(Bn
2 )

+
EVn(P βN,n ∩An)

κn
→ 0.

Now, we set sn =
√

1− n−(1+ε) and assume that NF(sn)− n logN →∞. From
the lower bound in Lemma 3.3 (a) with A = snB

n
2 we get that

EVn(P βN,n)

κn
> snnP(snB

n
2 ⊆ P

β
N,n) ∼ P(snB

n
2 ⊆ P

β
N,n).

Hence, it suffices to show that

lim
n→∞

P(snB
n
2 * P βN,n) = 0. (7)

By Lemma 3.4 (a), we have, using
(
N
n

)
6 (eN/n)n,

P(snB
n
2 * P βN,n) 6 2

(
N

n

)
(1− F(sn))N−n

6 2(eN/n)n exp((N − n) log(1− F(sn)))

= 2 exp
(
n log(eN/n) + (N − n) log(1− F(sn))

)
.

Since log(1− x) 6 −x, we have

P(snB
n
2 * P βN,n) 6 2 exp

(
n log(eN/n)− (N − n)F(sn)

)
= 2 exp

(
n log(N)−NF(sn)

)
exp
(
n
(

log
( e
n

)
+ F(sn)

))
.

Since, for n > e2, we have log
(
e
n

)
+ F(sn) 6 0, we get

P(snB
n
2 * P βN,n) 6 2 exp

(
n log(N)−NF(sn)

)
→ 0.

(b) Set rn = (1− ε)
√
n, An = Rn \ rnBn

2 and assume N F̃(rn)→ 0. By the thin
shell property of µ, see Theorem 2.6, we have that Eµ(P̃ β,σN,n ∩ rnBn

2 ) → 0. On the
other hand Lemma 3.3 (b) gives that

Eµ(P̃ β,σN,n ∩An) 6 N sup
x∈An

F̃(‖x‖2) = N F̃(rn)→ 0.

Therefore
Eµ(P̃ β,σN,n) = Eµ(P̃ β,σN,n ∩ rnB

n
2 ) + Eµ(P̃ β,σN,n ∩An)→ 0.
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Now, set sn = (1 + ε)
√
n and assume that N F̃(sn) − n logN → ∞. From the

lower bound in Lemma 3.3 (b) we get that

Eµ(P̃ β,σN,n) > µ(snB
n
2 )P(snB

n
2 ⊆ P̃

β,σ
N,n).

On one hand the thin shell property of µ, see Theorem 2.6, gives that Eµ(snB
n
2 )→ 1.

On the other hand, arguing exactly as in the proof of case (a), we can use the bound

P(RBn
2 * P̃ β,σN,n) 6 2 exp

(
n logN −N F̃(R)

)
→ 0.

Therefore
1 > Eµ(P̃ β,σN,n) > µ(snB

n
2 )(1− P(snB

n
2 * P̃ β,σN,n))→ 1,

which completes the proof.

3.2 Proofs regarding the beta model

Based on these preparations, we proceed to the proof of Theorem 1.1 on the volume
of beta polytopes.
Proof of Theorem 1.1: Set rn =

√
1− n−(1− ε

2
). From Lemma 2.2 we get

F(rn) 6
n−(1− ε

2)(β+n+1
2

)√
β + n

2

= exp
(
−
(

1− ε

2

)(
β +

n+ 1

2

)
log n− 1

2
log
(
β +

n

2

))
.

The choice N 6 exp
(
(1− ε)

(
β + n+1

2

)
log n

)
implies that

NF(rn) 6 exp
(
−ε

2

(
β +

n+ 1

2

)
log n− 1

2
log
(
β +

n

2

))
→ 0,

as n→∞. Combined with Lemma 3.5, this yields the proof of the first part of the
theorem.

Set sn =
√

1− n−(1+ ε
2

). From Lemma 2.2 we get

F(Rn) >
1

2
√
π

n−(1− ε
2

)(β+n+1
2

)√
β + n

2 + 1

= exp
(
−
(

1 +
ε

2

)(
β +

n+ 1

2

)
log n− 1

2
log
(

4π
(
β +

n

2
+ 1
)))

.

The choice N = exp
(
(1 + ε)(β + n+1

2 ) log n
)
implies that

NF(Rn) > exp
(ε

2

(
β +

n+ 1

2

)
log n− 1

2
log
(

4π
(
β +

n

2
+ 1
)))

,

and thus
lim
n→∞

NF (Rn)− n logN =∞.

Combined with Lemma 3.5, this yields the proof.
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Remark 3.6. As anticipated in Section 1, Theorem 1.1 can be formulated in a
stronger way, as follows.

Consider any function f = f(n) such that f(n) → ∞ and f(n) − log n → −∞
as n → ∞. If N 6 exp

(
(β + n+1

2 )f(n)
)
, then, EVn(Kβ

N )/κn → 0 as n → ∞.
Analogously, for any function g = g(n) such that g(n)− log n→ +∞ as n→∞, if
N > exp

(
(β + n+1

2 )g(n)
)
, then, EVn(Kβ

N )/κn → 1 as n→∞. This is proved in the
same way as Theorem 1.1 using R2

n = 1 − exp(−f(n)/2) for the upper bound and
R2
n = 1− exp(−g(n)/2) for the lower bound, respectively.
Notice that this is equivalent to replacing ε constant in the statement by ε = ε(n)

with ε(n)� 1/ log n.
This formulation also clarifies the fact that the only regimes that remain uncovered

by Theorem 1.1 are N ' exp
(
(β + n+1

2 ) log(cn)
)
for any constant c > 0.

Proof of Corollary 1.3: We start with the first case. Let ε ∈ (0, 1) and fix a
sequence N(n) 6 exp((1 − ε)(n−1

2 ) log n). As elaborated in [10] the weak limit of
a sequence of beta distributions on Rn for β → −1 is the unique rotational in-
variant probability measure on the sphere Sn−1, for any fixed n. Since the map
(x1, . . . , xN ) 7→ Vn(conv(x1, . . . , xN )) is bounded and continuous, there exists a se-
quence βn such that |EVn(P βnN,n) − EVn(SN,n)| < ε′, for any ε′ > 0. By Theorem
1.1 we have EVn(P βN,n) 6 ε′, and thus can conclude that EVn(SN,n) 6 2ε′. The
statement of the second case can be shown analogously.

3.3 Intrinsic volumes of the beta polytopes

Dimension reduction

For the beta distribution, there is a known formula that relates the expected k-th
intrinsic volume of P βN,n to the expected volume of the respective k-dimensional
polytope up to a different parameter β′. In particular, Proposition 2.3 in [11] states
that

EVk(P βN,n) =

(
n

k

)
κn

κkκn−k
EVk

(
P
β+n−k

2
N,k

)
.

Since

Vk(B
n
2 ) =

(
n

k

)
κn

κkκn−k
Vk(B

k
2 ),

see, e.g., Equation (14.8) from [17], we have

EVk(P βN,n)

Vk(B
n
2 )

=
EVk

(
P
β+n−k

2
N,k

)
Vk(B

k
2 )

. (8)

The above relation indicates that for any k = k(n) such that limn→∞ k(n) =∞,
a threshold behavior similar to that of Theorem 1.1 holds for the intrinsic volumes
of P βN,n, namely, as n→∞,

lim
n→∞

EVk(P βN,n)

Vk(B
n
2 )

=

{
0 if N 6 exp

(
(1− ε)(β + n+1

2 ) log k
)

1 if N > exp
(
(1 + ε)(β + n+1

2 ) log k
)
.
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Moreover, if k = n − m for any fixed m ∈ N, the ratio on the left hand side will
exhibit a threshold behavior similar to that of the case k = n. As a special case, for
m = 1, one can deduce by Theorem 1.1 the following threshold phenomenon for the
surface area Sn−1 of P βN,n.

Proposition 3.7. Let ε ∈ (0, 1). Then, as n→∞,

lim
n→∞

E(Sn−1(P βN,n))

Sn−1(Bn
2 )

=

{
0 if N 6 exp

(
(1− ε)(β + n+1

2 ) log n
)

1 if N > exp
(
(1 + ε)(β + n+1

2 ) log n
)
.

Still, by (8), determining the threshold behaviour of the k-th intrinsic volume when
k is a fixed integer would require looking into the case that the space dimension stays
fixed, while the parameter β grows to infinity. This is done in the next subsection.

A detour into thresholds for beta polytopes in fixed dimension

Here we present the proof of Theorem 1.4. This will come as a corollary of the
following general statement.

Theorem 3.8. Let n ∈ N be a fixed integer, δ > 1 and N = δβ.

(a) For any R ∈
(

0,
√

δ−1
δ

)
, we have that P(RBn

2 ⊂ P
β
N )→ 1 as β →∞.

(b) For any R ∈
(√

δ−1
δ , 1

)
, we have that P(P βN ⊂ RBn

2 )→ 1 as β →∞.

Given Theorem 3.8, note that if N = δβ = exp(β log δ) and R1, R2 are such that

0 < R1 <
√

δ−1
δ < R2 < 1, then

lim
β→∞

P(R1B
n
2 ⊆ P

β
N,n ⊆ R2B

n
2 ) = 1.

In particular

lim
β→∞

P
(
Rn1 6

Vn(P βN,n)

Vn(Bn
2 )

6 Rn2

)
= 1,

and since this holds for any 0 < R1 <
√

δ−1
δ < R2 < 1, we get that

lim
β→∞

EVn(P βN,n)

Vn(Bn
2 )

=
(δ − 1

δ

)n
2
.

Now since N 7→ EVn(PβN,n)

Vn(Bn2 ) is an increasing function, limδ→∞
(
δ−1
δ

)n
2 = 1 and

limδ→1

(
δ−1
δ

)n
2 = 0, we have just proved the following.

Corollary 3.9. Let n ∈ N be a fixed integer. Let f, g : (−1,∞) → R+ be functions
with f(β)→∞ and g(β)→ 0 as β →∞, and let δ ∈ (1,∞). Then, as β →∞,

lim
n→∞

EVn(P βN,n)

Vn(Bn
2 )

=


1 if N > exp(βf(β))

0 if N 6 exp(βg(β))

( δ−1
δ )

n
2 if N = exp(β log(δ)).
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Proof of Theorem 1.4: The result is an immediate consequence of (8) and Corollary
3.9, with f

(
β + n−k

2

)
= (β + n−k

2 )ε and g
(
β + n−k

2

)
= (β + n−k

2 )−ε.

It remains to prove Theorem 3.8.

Proof of Theorem 3.8. (a) By Lemma 2.2 we have that

F (R) >
1

2
√
π

(1−R2)β+n+1
2√

β + n
2 + 1

,

thus

NF (R) >
(1−R2)

n+1
2

2
√
π

1√
β + n

2 + 1
(δ(1−R2))β.

Observe that ε := δ(1−R2)− 1 > 0 because R <
√

δ−1
δ . It is then easy to see that

lim
β→∞

(1−R2)
n+1
2

2
√
π

1√
β + n

2 + 1
(1 + ε)

β
2 = +∞,

in particular NF (R) > (1 + ε)β/2 for large enough β. On the other hand, by Lemma
3.4 (a),

1− P(RBn
2 ⊂ P

β
N ) 6 2

(
N

n

)
(1− F (R))N−n

6 2Nn(1− F (R))N−n

= exp (log(2) + n log(N) + (N − n) log(1− F (R)))

6 exp (log(2) + n log(N)− (N − n)F (R)) ,

and since logN = β log δ and n is fixed, we have that the last expression tends to 0
as β →∞. Thus,

lim
β→∞

P(RBn
2 ⊆ P

β
N,n) = 1.

(b) Using integration in polar coordinates and the change of variables s = t2, we can
see that if x is distributed according to νβ one has

P(‖x‖ > R) = cn,β

∫
(RBn2 )c

(1− ‖x‖2)β dx

= ncn,βκn

∫ 1

R
(1− t2)tn−1 dt

=
1

B
(
β + 1, n2

) ∫ 1

R2

(1− s)βs
n
2
−1 ds

6
1

B
(
β + 1, n2

) ∫ 1

R2

(1− s)β ds =
(1−R2)β+1

B
(
β + 1, n2

)
(β + 1)

,

where B(a, b) = Γ(a)Γ(b)
Γ(a+b) denotes the Beta function. Letting N = δβ and ε :=

1− δ(1−R2), the above inequality implies that

NP(‖x‖ > R) 6 (1− ε)β 1−R2

B
(
β + 1, n2

)
(β + 1)

.
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Note that ε ∈ (0, 1), since R ∈
(√

δ−1
δ , 1

)
, so using the fact that B

(
β + 1, n2

)
∼

Γ(n/2)/(β + 1)n/2 we can easily see that

lim
β→∞

(1− ε)
β
2

1−R2

B
(
β + 1, n2

)
(β + 1)

= 0.

In particular, NP(‖x‖ > R) 6 (1− ε)
β
2 if β is sufficiently large. Combining this with

the inequality log x > 1− 1
x , which holds for every x > 0, we get

0 > N logP(‖x‖ 6 R) > N
(

1− 1

P(‖x‖ 6 R)

)
> N

(
1− 1

1− (1−ε)β/2
N

)
= − N(1− ε)β/2

N − (1− ε)β/2
.

It follows that limβ→∞N logP(‖x‖ 6 R) = 0. By independence, we have that

P(P βN,n ⊆ RB
n
2 ) = P(‖x‖ 6 R)N = exp(N logP(‖x‖ 6 R)),

which gives that limβ→∞ P(P βN,n ⊆ RBn
2 ) = 1, completing the proof.

3.4 Proofs regarding the beta-prime model

Using Lemma 2.4 and the machinery developed in Section 3.1, we now proceed to
the proof of Theorem 1.5. Set

bn = β − n− 1

2
.

Under the assumptions of Theorem 1.5, bn →∞. Thus (2) becomes

F̃(d) ∼ 1√
2π

∫ ∞
an

(
1 +

s2

2bn

)−bn
ds, an = d

√
2bn
σ

. (9)

Proof of Theorem 1.5 (a): Let ε > 0. Equation (9) gives that

F̃
(
(1 + ε)

√
n
)
∼ 1√

2π

∫ ∞
an

(
1 +

s2

2bn

)−bn
ds,

with a4n
bn

= 4(1 + ε)4 n
2(β−n−1

2
)

σ4 → 0 because of the assumptions. Thus, by Lemma 2.4,

F̃
(
(1 + ε)

√
n
)
∼ 1√

2π

∫ ∞
an

e−
t2

2 dt.

Since an = (1 + ε)
√

2bnn
σ → 0, it follows that

F̃
(
(1 + ε)

√
n
)
→ 1

2
.

Therefore, for N = 3dn log ne and n big enough, we have

N F̃
(
(1 + ε)

√
n
)
− n logN >

2

5
N − n logN

=
6

5
dn log ne − n log(3dn log ne)→∞.
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Again, Lemma 3.5 yields the proof.

Proof of Theorem 1.5 (b): From (9), we have

F̃
(
(1− ε)

√
n
)
∼ 1√

2π

∫ ∞
an

(
1 +

s2

2bn

)−bn
ds.

Due to the assumptions, an = (1− ε)
√

2bnn
σ →∞ and a4n

bn
= 4(1− ε)4 n

2(β−n−1
2

)

σ4 → 0.
Thus, by Lemma 2.4,

F̃
(
(1− ε)

√
n
)
∼ e−

a2n
2

√
2πan

=
1√

2πan
exp
(
−(1− ε)2 bnn

σ2

)
.

In particular, for N 6 exp
(
(1− ε)2 nbn

σ2

)
and n big enough,

N F̃
(
(1− ε)

√
n
)
6

1

an
→ 0,

which implies
Eµ(P̃ β,σN,n)→ 0,

because of Lemma 3.5.

Similarly as above, we have

F̃
(
(1 + ε)

√
n
)
∼ 1√

2πan
exp
(
−(1 + ε)2 bnn

σ2

)
,

where an = (1 + ε)
√

2bnn
σ . Because of the condition bnn

σ2 → ∞, we have that, for n
big enough,

F̃
(
(1 + ε)

√
n
)
∼ exp

(
−(1 + ε)2 bnn

σ2
− 1

2
log

bnn

σ2
− log

(
2(1 + ε)

√
π
))

> exp
(
−(1 + 3ε)

bnn

σ2

)
,

where the inequality holds because (1+ε)2 < 1+3ε. Hence, forN = exp
(
(1 + 4ε) bnn

σ2

)
and n big enough, we have

N F̃
(
(1 + ε)

√
n
)
− n logN > exp

(
ε
bnn

σ2

)
− n(1 + 4ε)

bnn

σ2

> exp (f(n))− 1 + 4ε

ε
nf(n),

(10)

where f(n) := ε bnn
σ2 . The assumption on the growth of β, together with (10), give

that N F̃
(
(1 + ε)

√
n
)
− n logN →∞, and Lemma 3.5 yields the proof.

Proof of Theorem 1.5 (c): From (9) we have

F̃
(
(1− ε)

√
n
)
∼

α̃n,β√
2bn

∫ ∞
an

(
1 +

s2

2bn

)−bn
ds,
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where an = (1−ε)
√

2bnn
σ . Note that a2n

bn
= (1−ε)2 2n

σ2 →∞ because of the assumption
n
σ2 →∞. Consequently, by Lemma 2.4

F̃
(
(1− ε)

√
n
)
∼ 1√

2π

√
bn√

2(bn − 1
2)

(
1 +

a2
n

2bn

)−(bn− 1
2

)

∼ 1

2
√
bnπ

(
1 + (1− ε)2 n

σ2

)−(bn− 1
2

)
.

In particular, for N 6 exp
(
(bn − 1

2) log
(
(1− ε)2 n

σ2

))
and n big enough,

N F̃
(
(1− ε)

√
n
)
6

1√
bn
→ 0,

which implies
Eµ(P̃ β,σN,n)→ 0,

because of Lemma 3.5.

Similarly as above, we have

F̃
(
(1 + ε)

√
n
)
∼ 1

2
√
bnπ

(
1 + (1 + ε)2 n

σ2

)−(bn− 1
2

)
.

Set ε′ ∈
(

0, log (1+2ε)2

(1+ε)2

)
. From the last equation, it is easy to see that for N =

exp
(
(bn − 1

2) log
(
(1 + 2ε)2 n

σ2

))
, and n big enough,

N F̃
(
(1 + ε)

√
n
)
>

1

4
√
bn

exp

((
bn −

1

2

)
log

(1 + 2ε)2 n
σ2

1 + (1 + ε)2 n
σ2

)
> exp

(
ε′bn

)
.

Observe also that log
(
(1 + 2ε)2 n

σ2

)
< n

2 because of the assumption σ > e−
n
3 . Com-

bined with log n� bn we get

N F̃
(
(1 + ε)

√
n
)
− n logN > exp

(
ε′bn

)
− n2

2
bn →∞,

and the result follows from Lemma 3.5.

Proof of Corollary 1.6: We will prove the corollary just for the first case, since the
second is analogous. Fix ε ∈ (0, 1)/2 and a sequence N(n) 6 exp

((
1
2 − ε

)
n
)
. For any

fixed n, it holds that p̃n,β,σ(x) → (2π)−
n
2 exp

(
−‖x‖

2

2

)
whenever σ2 = 2β → ∞. In

particular, for any ε′ > 0, one can find σn such that
∣∣Eµ(P̃

1
2

√
σn,σn

N,n )−Eµ(GN,n)
∣∣ < ε′.

We can choose σn � n and βn = 1
2

√
σn, so that the conditions of case (b) in

Theorem 1.5 are met. Therefore, for n large enough, Eµ(P̃
1
2

√
σn,σn

N,n ) < ε′. We can
conclude that Eµ(GN,n) < 2ε′, which ends the proof.
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4 Intersections of random halfspaces

We now study polytopes generated as intersections of random halfspaces. The model
is again based on a choice of N independent random points X1, . . . , XN in Rn,
but now we consider the polytope generated as the intersection of the halfspaces
{x ∈ Rn : 〈Xi, x〉 6 a, for each i = 1, . . . , N}, for some a > 0. Following Pivovarov
[14], who treated this setting for the cases where X1, . . . , XN are chosen according
to the uniform measure on Sn−1 or the Gaussian measure, we provide two threshold
results of the same nature when the points Xi are chosen according to νβ or ν̃β . For
simplicity, we choose to treat only the case σ = 1 in the beta-prime model, so let
ν̃β := ν̃β,1 for the rest of the text.We give the exact statements and, then, provide a
couple of preparatory lemmas before we proceed to the proofs.

Like before, let N > n and X1, . . . , XN ∈ Bn
2 be distributed independently

according to νβ . Consider the polytope

Hβ
N,n := {x ∈ Rn : 〈Xi, x〉 6 1, for each i = 1, . . . , N}.

Note that Hβ
N,n contains Bn

2 . Actually we have the stronger inclusion Hβ
N,n ⊇ RBn

2

for R = mini∈[N ] ‖Xi‖−1. Moreover, the bigger N is, the smaller Vn(Hβ
N,n) gets. The

next statement gives a threshold for the normalized volume of intersections of Hβ
N,n

with balls of radius larger than 1. It turns out that, as n→∞, Hβ
N,n tends to capture

the whole of the volume of such a ball, if the number of points is at most exponential
in the dimension.

Theorem 4.1. Fix ε,R ∈ (0, 1) and let −1 < β = β(n). Then,

lim
n→∞

EVn(Hβ
N,n ∩R−1Bn

2 )

Vn(R−1Bn
2 )

=

{
1 if N 6 exp

(
(1− ε)(β + n+1

2 ) log((1−R2)−1)
)

0 if N > exp
(
(1 + ε)(β + n+1

2 ) log((1−R2)−1)
)
.

For X1, . . . , XN ∈ Rn independent and distributed according to ν̃β , let

H̃β
N,n := {x ∈ Rn : 〈Xi, x〉 6 n, for each i = 1, . . . , N}.

As in the case of P̃ βN,n, we give a threshold result for µ(H̃β
N,n), where µ can be taken

to be any isotropic log-concave probability measure on Rn.

Theorem 4.2. Fix ε ∈ (0, 1) and let µ = µn denote an arbitrary isotropic log-concave
measure on Rn. Let β = β(n) > n/2 such that limn→∞ β − n/2 =∞. Then,

lim
n→∞

Eµ(H̃β
N,n) =

{
1 if N 6 exp

((
β − n

2

)
log((1− ε)n)

)
0 if N > exp

((
β − n

2

)
log((1 + ε)n)

)
.

Towards the proofs, we will once more relate the probability contents of Hβ
N,n

and H̃β
N,n to the distribution functions F and F̃ of νβ and ν̃β , respectively.

Lemma 4.3. (a) Let x ∈ Rn \Bn
2 . Then, P(x ∈ Hβ

N,n) = (1− F(‖x‖−1))N .

(b) Let x ∈ Rn \ {0}. Then, P(x ∈ H̃β
N,n) = (1− F̃(n/‖x‖))N .
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Proof. Again, we sketch the proof only for the beta case. Using independence and
the rotational invariance of νβ , we can write

P(x ∈ Hβ
N,n) = P(〈Xi, x〉 6 1, for every i = 1, . . . , N)

= P(〈X1, x〉 6 1)N = P
(
〈X1,

x

‖x‖
〉 6 ‖x‖−1

)N
= P

(
〈X1, e1〉 6 ‖x‖−1

)N
= (1− F(‖x‖−1))N .

The same argument proves (b).

Lemma 4.4. (a) Let 1 6 t < s and B = sBn
2 \ tBn

2 . Then,

Vn(B)(1− F(s−1))N 6 EVn(Hβ
N,n ∩B) 6 Vn(B)(1− F(t−1))N .

(b) Let µ be an isotropic log-concave measure on Rn, 0 < t < s and B = sBn
2 \ tBn

2 .
Then,

µ(B)(1− F̃ (n/s))N 6 Eµ(H̃β
N,n ∩B) 6 µ(B)(1− F̃(n/t))N .

Proof. Note that, e.g., for (a),

EVn(Hβ
N,n ∩B) = E

∫
B
1{x∈Hβ

N,n}
(x) dx =

∫
B
P(x ∈ Hβ

N,n) dx,

and the wanted bounds follow from Lemma 4.3 (a), and the fact that x ∈ B is
equivalent to ‖x‖ ∈ (t, s).

Remark 4.5. Using the inequalities

x− 1− (x− 1)2 6 log x 6 x− 1,

that hold for every x ∈ [1/2, 1], we will apply in the proofs below the bounds

exp(−NF(a)−NF(a)2) 6 (1− F(a))N 6 exp(−NF(a)) (11)

for any a ∈ (0, 1), and

exp(−N F̃(a)−N F̃(a)2) 6 (1− F̃(a))N 6 exp(−N F̃(a)) (12)

for any a > 0.

4.1 Proof of Theorem 4.1

Let 0 < R < 1, ε ∈ (0, 1), and set t := (1− (1−R2)1+ ε
2 )−1/2. Hence, we have

log
√

1− t−2 =
(

1 +
ε

2

)
log
√

1−R2.

Now, take s = R−1. Note that 1 < t < s, and set B = sBn
2 \ tBn

2 . Then,

EVn(Hβ
N,n ∩ sBn

2 )

Vn(sBn
2 )

=
EVn(Hβ

N,n ∩ tBn
2 )

Vn(sBn
2 )

+
EVn(Hβ

N,n ∩B)

Vn(sBn
2 )

.
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In particular,

EVn(Hβ
N,n ∩B)

Vn(sBn
2 )

6
EVn(Hβ

N,n ∩ sBn
2 )

Vn(sBn
2 )

6
( t
s

)n
+

EVn(Hβ
N,n ∩B)

Vn(sBn
2 )

. (13)

We will use (13) to bound the investigated ratio from above and below by something
that tends to 1 or zero respectively, depending on the choice of N .

For the lower bound, we let

N 6 exp
(

(1− ε)
(
β +

n+ 1

2

)
log
(
(1−R2)−1

))
.

Then, using successively the lower bounds in (13), Lemma 4.4 (a) and (11), we write

EVn(Hβ
N,n ∩ sBn

2 )

Vn(sBn
2 )

>
EVn(Hβ

N,n ∩B)

Vn(sBn
2 )

=
Vn(B)

Vn(sBn
2 )

EVn(Hβ
N,n ∩B)

Vn(B)

> (1− (t/s)n)(1− F(s−1))N

> (1− (t/s)n) exp(−NF(R)−NF(R)2).

It thus suffices to prove thatNF(R)→ 0 andNF(R)2 → 0 to get that
EVn(Hβ

N,n∩sB
n
2 )

Vn(sBn2 ) →
1. Recall that, by Lemma 2.2, we have

F(R) 6
1

2R
√
π

1√
β + n

2

exp
(
−
(
β +

n+ 1

2

)
log
(
(1−R2)−1

))
,

so that

NF(R) 6
1

2R
√
π

1√
β + n

2

exp
(
−ε
(
β +

n+ 1

2

)
log
(
(1−R2)−1

))
,

which establishes that NF (R)→ 0 as n→∞. It is straightforward to see that the
same holds for NF (R)2.

For the upper bound, we choose

N > exp
(

(1 + ε)
(
β +

n+ 1

2

)
log
(
(1−R2)−1

))
.

Similarly as before, we use the upper bounds in (13), Lemma 4.4 (a) and (11) to see
that

EVn(Hβ
N,n ∩ sBn

2 )

Vn(sBn
2 )

6
( t
s

)n
+ exp(−NF (t−1)).

Note that, by the definition of N , t, and the lower bound of Lemma 2.2, we get

NF(t−1) >
1

2
√
π

1√
β + n

2 + 1
exp
(ε

2

(
β +

n+ 1

2

)
log
(
(1−R2)−1

))
,

that yields limn→∞NF(t−1) = +∞. Since (t/s)n → 0 as n→∞, we then have that

limn→∞
EVn(Hβ

N,n∩sB
n
2 )

Vn(sBn2 ) = 0, proving the claim.
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4.2 Proof of Theorem 4.2

Let ε ∈ (0, 1) and set sn := n/
√

(1− ε/2)n− 1, tn := n/
√

(1 + ε/2)n− 1. Note
that tn < sn and both are of order

√
n. Then, set B = snB

n
2 \ tnBn

2 . Let µ be an
isotropic log-concave probability measure on Rn, and choose

N > exp
((
β − n

2

)
log((1 + ε)n)

)
.

Since
Eµ(H̃β

N,n) 6 µ(tnB
n
2 ) + Eµ(H̃β

N,n ∩B) + µ(Rn \ snBn
2 ),

and by Theorem 2.6 the first and last term tend to zero with n, we need only to
prove that the same happens to the second term.

By the upper bounds in Lemma 4.4 (b) and (12), we have that

Eµ(H̃β
N,n ∩B) 6 µ(B)(1− F̃(n/tn))N 6 µ(B) exp(−N F̃(n/tn)).

By (1), we have that

N F̃(n/rn) >
1

2
√
π

1√
β − n−1

2

(
1 + ε

1 + ε
2

)β−n
2

,

and since the last expression tends to infinity with n, we get limn→∞ Eµ(H̃β
N,n∩B) =

0, proving the second statement of the theorem.
On the other hand, let

N 6 exp
((
β − n

2

)
log((1− ε)n)

)
.

Note that, by (1), again,

N F̃(n/sn) 6
1√
2π

1√
β − n+1

2

(
1− ε

1− ε/2

)β−n
2

,

which tends to zero with n. The same holds for N F̃(n/sn)2. Using the lower bounds
in Lemma 4.4 (b) and (12) we see that

Eµ(H̃β
N,n) > Eµ(H̃β

N,n ∩B) > µ(B)(1− F̃(n/sn))N

> µ(B) exp
(
−N F̃(n/sn)−N F̃(n/sn)2

)
.

Thus, limn→∞ Eµ(H̃β
N,n) = 1, which completes the proof.
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