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Abstract. We show that the two-dimensional minimum-volume central section of the n-
dimensional cross-polytope is attained by the regular 2n-gon. We establish stability-type
results for hyperplane sections of `p-balls in all the cases where the extremisers are known.
Our methods are mainly probabilistic, exploring connections between negative moments of
projections of random vectors uniformly distributed on convex bodies and volume of their
sections.
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1. Introduction

Let p > 0. Let Bn
p = {(x1, . . . , xn) ∈ Rn :

∑n
i=1 |xi|p ≤ 1} be the ball in the standard `np norm.

The problem of determining k-dimensional sections of Bn
p of maximal and minimal volume

has attracted significant attention over the past few decades, notably prompting development
of several important analytic, geometric and probabilistic techniques. It originated in the
context of the sections of the cube from questions in geometry of numbers (see, e.g. [20, 46]).

1.1. Known results. We begin by briefly recalling the known results. Let Hk be the hy-
perplane perpendicular to e1 + . . . + ek, where (ej)1≤j≤n is the standard basis of Rn. The
smallest hyperplane section of the cube Bn

∞ is obtained by taking the hyperplane H1, which
was proved by Hadwiger in [19] and independently by Hensley in [20]. This has been gener-
alized to sections of arbitrary dimension by Vaaler in [46]. In [3] Ball showed that H2 gives
the hyperplane section of the cube with the largest volume, see also [39] for a simpler proof.
This important result led to the negative answer to the Busemann-Petty question in large
dimensions, see [4]. The article [5] contains a study of maximal lower dimensional sections of
the cube (the results are optimal if the dimension k of the subspace divides n or k ≥ n/2). It
is shown in [40] that H2 is not a maximising subspace for the volume of hyperplane sections of
Bn
p for p ≤ 24. For a comprehensive survey of the results for the cube, we refer to Chapter 1

of [47]. For some recent related results, we also refer to [1, 2, 22, 27, 29, 31, 32].

Meyer and Pajor studied in [35] the same problem for Bn
p with finite p. They showed

that for any dimension k, the set Bk
p obtained by taking the standard coordinate subspace
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span{e1, . . . , ek} is the maximal section for 1 ≤ p ≤ 2 and the minimal section for p ≥ 2. For
extensions to p ∈ (0, 1) see [7, 13]. In [35], Meyer and Pajor also found the minimal hyperplane
section of Bn

1 , which is given by taking the hyperplane Hn. Koldobsky in [24] extended this
result to p ∈ (0, 2). Later on several works treated the complex case (see [26, 41]) as well as
a further generalisation to block subspaces (see [17]). We emphasise the fact that in all of the
cases, the known extremising subspaces are also known to be unique (modulo symmetries).

We mention in passing that the analogous, dual question for extremal projections of Bn
p

has also been considered. The problem is related to certain Khinchin-type inequalities, as
explained in [6, 9]. In particular, finding extremal projections of Bn

1 is equivalent to deriving
optimal constants in the classical Khinchin inequality, which was done by Szarek in [44],
followed up by De, Diakonikolas and Serviedo who developed a stability version in [16]. The
case p ≥ 2 has been studied by Barthe and Naor in [9], where the authors showed that the
smallest and the largest (n− 1)-dimensional projections of Bn

p are those onto the hyperplanes
H1 and Hn, respectively. Koldobsky, Ryabogin and Zvavitch in [25] developed a Fourier
analytic approach. Chakerian and Filliman in [14] found that the 2-dimensional orthogonal
projections of the cube Bn

∞ of maximal volume are attained by regular 2n-gons (the same
extremiser as in our Theorem 1) and, by McMullen’s formula from [33], this also gives (n−2)-
dimensional projections of maximal volume. See [21] for recent results on lower dimensional
projections of the cross-polytope Bn

1 . Paper [18] provides a different unified probabilistic
approach to the volume and mean-width of central sections and projections and in addition
to identifying the extremisers, also delivers Schur-convexity-type results.

1.2. Our results. It remains an open problem to determine k-dimensional sections of Bn
p of

extremal volume: the minimal ones when 2 ≤ k ≤ n− 2, 0 < p < 2 and maximal ones when
2 < p <∞, 2 ≤ k ≤ n−1. This paper is twofold. First, we take on this question in the case of
the cross-polytope and two-dimensional sections, so for p = 1 and k = 2. Second, we establish
stability-type results for the hyperplane sections in all of the cases where the extremisers are
known. Our bounds on deficits are sharp modulo multiplicative constants.

Cross-polytope. By voln we denote Lebesgue measure on Rn, by volH , Lebesgue k-dimensional
measure on a k-dimensional subspace H of Rn. Often, instead of writing volH , we shall write
volk, where k is the dimension of H, if it is clear what H is.

Our first main result is the following theorem about minimal volume two-dimensional central
sections of the cross-polytope Bn

1 .

Theorem 1. Let n ≥ 2. For every 2-dimensional subspace H of Rn one has

volH(Bn
1 ∩H) ≥

n2 sin3
(
π
2n

)
cos
(
π
2n

) .

Moreover, if the equality holds, then Bn
1 ∩H is isometric to a regular 2n-gon in R2. The mini-

mum is achieved for H = T (R2), with Tx = (〈v1, x〉 , . . . , 〈vn, x〉) and vk = (cos(kπn ), sin(kπn )),
k = 1, . . . , n. The minimizing subspace H is unique, up to coordinate reflections and permu-
tations.
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In essence, our argument relies on convexity of certain functions which arise from the radial
function of a planar embedding of the cross-section Bn

1 ∩H, after leveraging the fact that it
is a polygon and breaking it up into triangles.

Stability. For a vector x = (x1, . . . , xn) in Rn, |x| = (
∑n

j=1 x
2
j )

1/2 denotes its Euclidean

norm and recall that (ej)1≤j≤n is the standard basis of Rn. Our second main result concerns
dimension-free refinements of the known results for hyperplane sections, providing stability
of the unique extremising hyperplanes.

Theorem 2. There is a positive constant cp which depends only on p such that for every
n ≥ 1 and every unit vector a = (a1, . . . , an) in Rn with a1 ≥ a2 ≥ · · · ≥ an ≥ 0, we have

voln−1(B
n
p ∩ a⊥)

voln−1(Bn
p ∩ e⊥1 )

≤
(
ap1 + (1− a21)p/2

)−1/p
, 0 < p < 2,(1)

voln−1(B
n
p ∩ a⊥)

voln−1(Bn
p ∩ ( e1+···+en√

n
)⊥)
≥ 1 + cp

n∑
j=1

(a2j − 1/n)2, 0 < p < 2,(2)

voln−1(B
n
p ∩ a⊥)

voln−1(Bn
p ∩ e⊥1 )

≥ 1 + cp|a− e1|2, 2 < p ≤ ∞,(3)

voln−1(B
n
∞ ∩ a⊥)

voln−1(Bn
∞ ∩ ( e1+e2√

2
)⊥)
≤ 1− c∞

∣∣∣∣a− e1 + e2√
2

∣∣∣∣ .(4)

Sharpness of these results is explained in detail in the sections devoted to their proofs. Briefly,
the dependence on the right hand side of each of these inequalities on the deficit quantity
δ = δ(a) (which measures how far a is from the extremiser) is best possible, modulo the value
of constants cp.

Our proofs involve several different approaches building on various analytic and probabilistic
formulae for the volume of sections in question. To a large extent, the probabilistic underpin-
ning for these new geometric results is a connection to negative moments of weighted sums of
independent random variables. To give a short overview: (1) simply follows from Schur con-
vexity, its reversal, (2) is obtained from a formula involving negative moments combined with
complete monotonicity allowing to invoke the Laplace transform to leverage independence, (3)
for 2 < p <∞ relies on viewing the volume of sections as the∞-norm of an appropriate prob-
ability density which is estimated using peakedness and additional probabilistic tools, e.g. the
Berry-Esseen theorem, whereas (3) for p =∞ follows from a more general stability result for
an underlying Khinchin-type inequality, obtained thanks to negative moments, and, finally,
(4) is established by a careful analysis of Ball’s proof, souped-up with new insights gained
from representations via negative moments allowing for certain self-improvements of Ball’s
inequality (in the spirit of [16] which establishes an analogous stability result for Szarek’s
L1 − L2 classical Khinchin inequality, with arguments based on discrete Fourier analysis).
In a recent independent work [34], Melbourne and Roberto have addressed the stability of
maximal hyperplane sections of the cube, obtaining a similar result to (4), with explicit val-
ues of the numerical constants involved. Their approach is somewhat different and relies on
developing a stability version of Ball’s integral inequality.
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For the sake of simplicity of our arguments, we have not made any attempts to optimise the
values of the involved multiplicative constants cp (or for that matter even explicitly compute
some values, except for the case of (3) when p =∞).

1.3. Organisation. In Section 2, we recall well-known and develop some new formulae for
volumes of sections which will be used throughout the paper. Our new result for the cross-
polytope, Theorem 1, is proved in Section 3. Our stability results are proved in Sections 4
and 5. First, we deal with the cube and prove (3) for p = ∞ in Section 4.1, as well as (4)
in Section 4.2. Then, we consider the case 0 < p < 2 and show (1) in Section 5.1.1, followed
by the proof of (2) in Section 5.1.2. Finally, we present the proof of (3) when 2 < p < ∞ in
Section 5.2. We gather some concluding comments and possible future directions in Section 6.

Acknowledgements. We would like to thank Fedor Nazarov for helpful discussions and for
sharing with us his proof of Theorem 1 as well as letting us include it in this paper.

2. Formulae for volumes of sections of convex sets

2.1. Sections via linear embeddings. In what follows by a convex body we mean a convex
compact set with non-empty interior. Recall that there is a standard correspondence between
symmetric convex bodies in Rn and norms on Rn. The Minkowski function (gauge function)
associated with a convex body K will be denoted by ‖·‖K . We shall use the following standard
lemma.

Lemma 3. Let K be a convex body in Rn and let T : Rk → Rn be a linear map. Define
KT = {x ∈ Rk : ‖Tx‖K ≤ 1}. Then K ∩T (Rk) = T (KT ). Moreover, if T is of full rank then

volT (Rk)(K ∩ T (Rk)) =
√

det(T ∗T ) volk(KT ).

Proof. For the first part, let us show two inclusions. If y ∈ K∩T (Rk), then y ∈ K and y = Tx
for some x ∈ Rk. It follows that ‖Tx‖K ≤ 1, so x ∈ KT . Thus y = Tx ∈ T (KT ). Now, if
y ∈ T (KT ), then y = Tx for some x satisfying ‖Tx‖K ≤ 1. Thus ‖y‖K ≤ 1, so y ∈ K. Since
clearly y ∈ T (Rk), it follows that y ∈ K ∩ T (Rk).

For the second part, observe that one can treat H = T (Rk) as a manifold parametrized by
T . Since volH is volume on this manifold, we have the well-known formula for the volume
element, d volH =

√
det((DT )∗(DT )) d volk, where DT stands for the derivative of T . In our

case DT = T and so the assertion follows. �

A straightforward application of the above lemma to the case of K being the Bn
p ball yields

the following corollary.

Corollary 4. Suppose that H is an image of Rk under a linear map T : Rk → Rn of full
rank, given by Tx = (〈v1, x〉 , . . . , 〈vn, x〉) for some vectors v1, . . . , vn ∈ Rk. Then

volH(Bn
p ∩H) = det

(
n∑
i=1

vi ⊗ vi

)1/2

volk

({
x ∈ Rk :

n∑
i=1

| 〈vi, x〉 |p ≤ 1

})
.

4



Here, as usual, v ⊗ v is the matrix vv>. Let us now assume that the map T is an isometric
embedding. This means that 〈x, y〉 = 〈Tx, Ty〉 = 〈x, T ∗Ty〉, which gives the condition T ∗T =
Ik×k, where Ik×k stands for the k × k identity matrix. If the mapping is written in the form
Tx = (〈v1, x〉 , . . . , 〈vn, x〉), the condition T ∗T = Ik×k rewrites as

∑n
i=1 vi ⊗ vi = Ik×k. Thus,

finding extremal k dimensional sections of K is equivalent to solving the following problem.

Problem 1. Maximize/minimize the volume of the set KT = {x ∈ Rk : ‖Tx‖K ≤ 1} under
the constrain T ∗T = Ik×k. In the case of K = Bn

p , maximize/minimize the volume of the set

Kv =

{
x ∈ Rk :

n∑
i=1

| 〈vi, x〉 |p ≤ 1

}
over v1, . . . , vn ∈ Rk,

n∑
i=1

vi ⊗ vi = Ik×k.

Remark 5. Since the condition T ∗T = Ik×k ensures that the map is an isometric embedding,
the set KT in Rk in the above extremization problem is isometric to the section K ∩ T (Rk).

2.2. Sections via negative moments. The goal of this section is to connect extremal-
volume sections of convex bodies to sharp Khinchin-type inequalities for negative moments.

Lemma 6. Let X be random vector with density g in Rn. Let H be a codimension k subspace
of Rn and let U be a k × n matrix whose rows u1, . . . , uk form an orthonormal basis of H⊥,
the orthogonal complement of H. Then f(x) =

∫
H+U>x g is the density of the random vector

UX in Rk.

Proof. For x = (x1, . . . , xk) we have U>x =
∑k

i=1 uixi. Since ui span H⊥, we get that y ∈ H⊥
iff y = U>x for some x ∈ Rk. Moreover, since ui are orthonormal, we get that x 7→ U>x is an
isometric embedding of Rk into Rn, whose image is H⊥. By Fubini’s theorem f is measurable
on Rk.

Let us now take a measurable set B ⊆ Rk. Note that H = {x ∈ Rn : 〈x, ui〉 = 0, 1 ≤ i ≤ k}
and thus H = kerU . Every point y ∈ U−1(B) can be written as y = y1 + y2, where y1 ∈ H
and y2 ∈ H⊥ ∩ U−1(B). Since every point in H⊥ is of the form y2 = U>z for z ∈ Rk
and U>z ∈ U−1(B) iff UU>z ∈ B, which is just z ∈ B as UU> = Ik×k, we get that
U−1(B) = H + U>B. Thus, by Fubini’s theorem we get

P (UX ∈ B) = P
(
X ∈ U−1(B)

)
= P

(
X ∈ H + U>B

)
=

∫
B

(∫
H+U>x

g

)
dx =

∫
B
f(x)dx.

�

Corollary 7. Let A be a measurable set in Rn of volume 1 and let X be a uniform random
vector on A. Let H be a codimension k subspace of Rn and let U be a k × n matrix whose
rows form an orthonormal basis of H⊥, the orthogonal complement of H. Then

f(x) = voln−k(A ∩ (H + U>x))

is the density of the random vector UX in Rk. Moreover, if A is a convex body, then on
its support the above function is the unique continuous version of the density of UX. This
continuous version satisfies

f(0) = voln−k(A ∩H)

if 0 ∈ int supp(f).
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Proof. This is a special case of Lemma 6. If A is a convex body, then by Brunn-Minkowski

inequality f
1

n−k is concave on the interior of its support and therefore continuous. �

Lemma 8. Let X be a random vector in Rk with density f such that ‖f‖∞ = f(0) and f is
lower semi-continuous at 0. Let ‖ · ‖ be a norm on Rk with closed unit ball K. We have,

f(0) = lim
q→k−

k − q
k · volk(K)

E‖X‖−q.

Proof. We first claim that

(5)

∫
tK
‖x‖−qdx =

k

k − q
tk−q volk(K), for t > 0, 0 < q < k.

Indeed, thanks to the homogeneity of volume, we have∫
tK
‖x‖−qdx =

∫
tK

∫ ∞
‖x‖

qs−(q+1)dsdx =

∫
tK

(∫ ∞
0

qs−(q+1)1‖x‖≤sds

)
dx

=

∫ ∞
0

qs−(q+1)

(∫
tK

1‖x‖≤sdx

)
ds =

∫ ∞
0

qs−(q+1)

(∫
Rk

1‖x‖≤min(s,t)dx

)
ds

= volk(K)

∫ ∞
0

qs−(q+1) min(s, t)kds =
k

k − q
tk−q volk(K).

Take M > 0. Using (5) with t = M , we get

k − q
k · volk(K)

E‖X‖−q =
k − q

k · volk(K)

∫
MK
‖x‖−qf(x)dx+

k − q
k · volk(K)

∫
(MK)c

‖x‖−qf(x)dx

≤ k − q
k · volk(K)

‖f‖∞
∫
MK
‖x‖−qdx+

k − q
k · volk(K)

M−q

= ‖f‖∞Mk−q +
k − q

k · volk(K)
M−q.

Fix ε > 0. Since ‖f‖∞ = f(0) and f is lower semi-continuous at 0, the set {x ∈ Rk, f(x) >
‖f‖∞ − ε} contains a neighbourhood of 0, say δK for some δ > 0. Then,

k − q
k · volk(K)

E‖X‖−q ≥ k − q
k · volk(K)

∫
δK
‖x‖−qf(x)dx

≥ k − q
k · volk(K)

(‖f‖∞ − ε)
∫
δK
‖x‖−qdx

= (‖f‖∞ − ε)δk−q.

These two bounds show that as q → k−, the lim inf and lim sup of k−q
k·volk(K)E‖X‖

−q are within

ε of ‖f‖∞. �

Combining Corollary 7 and Lemma 8 yields a probabilistic formula for sections in terms of
negative moments.

Corollary 9. Let A be a symmetric convex body in Rn of volume 1 and let X be uniform on
A. Let ‖ · ‖ be a norm in Rk with closed unit ball K. Let H be a codimension k subspace of

6



Rn and let U be a k × n matrix whose rows form an orthonormal basis of H⊥. Then

voln−k(A ∩H) = lim
q→n−

k − q
k · volk(K)

E‖UX‖−q.

Proof. Since UX is log-concave and symmetric on Rk, one gets ‖f‖∞ = f(0). �

2.3. Sections of the cube. As a first application, we sketch how to obtain a convenient
probabilistic formula for central section of the cube in terms of negative moments. It was
derived first perhaps in [28] and later appeared in [10] as well as [31]. Our argument is
different, more direct, bypassing the Fourier-analytic identities involving Bessel functions. It
was recently presented in full detail in [15]. It is more convenient to treat the cube of unit
volume, so we set

Qn =
1

2
Bn
∞ =

[
−1

2
,
1

2

]n
.

Lemma 10 (König-Koldobsky, [28]). For a unit vector a = (a1, . . . , an) in Rn, we have

voln−1

(
Qn ∩ a⊥

)
= E

∣∣∣∣∣
n∑
k=1

akξk

∣∣∣∣∣
−1

,

where the ξk are uniform on S2 in R3.

Proof. Let U1, . . . , Un be i.i.d. uniform on [−1, 1]. From Corollary 9 applied with k = 1 one
gets

voln−1

(
Qn ∩ a⊥

)
= lim

q→1−
(1− q)E

∣∣∣∣∣
n∑
k=1

akUk

∣∣∣∣∣
−q

.

It is therefore enough to show that for q < 1 one has

E

∣∣∣∣∣
n∑
k=1

akξk

∣∣∣∣∣
−q

= (1− q)E

∣∣∣∣∣
n∑
k=1

akUk

∣∣∣∣∣
−q

.

This can be shown by repeating Lata la’s argument leveraging rotational symmetry from
Proposition 4 in [30]. It has also been written in full detail in Lemma 3 in [15]. �

Remark 11. The following alternative Fourier-analytic formula for the volume of central codi-
mension 1 sections perhaps goes back to Pólya and is well known (see, e.g. [3])

voln−1(Qn ∩ a⊥) =
2

π

∫ ∞
0

n∏
j=1

sin(ajt)

ajt
dt.

2.4. Sections of Bn
p via negative moments. Let p > 0. Throughout the paper, we let

Y
(p)
1 , Y

(p)
2 , . . . be i.i.d. random variables with density e−β

p
p |x|p ,

where

βp = 2Γ(1 + 1/p)

is chosen such that
∫
R e
−βpp |x|pdx = 1. We shall derive the following lemma.

7



Lemma 12. Let H be a subspace in Rn of codimension k such that the rows of a k×n matrix
U form an orthonormal basis of H⊥. Let v1, . . . , vn be the columns of U . Then

voln−k(B
n
p ∩H)

voln−k(B
n−k
p )

= lim
q→k−

k − q
k volk(B

k
2 )

E
∣∣∣ n∑
j=1

Y
(p)
j vj

∣∣∣−q.
Proof. Let v1, . . . , vn be the columns of U . Note that

n∑
j=1

vjv
>
j = Ik×k.

We take X = (X1, . . . , Xn) to be uniform on Bn
p . Then X/ voln(Bn

p )1/n is uniform on B̃n
p =

Bn
p / voln(Bn

p )1/n, which has volume 1. Using Corollary 9 with the Euclidean norm | · | gives

voln−k
(
Bn
p ∩H

)
(voln(Bn

p ))n−k
= voln−k

(
B̃n
p ∩H

)
= lim

q→k−

voln(Bn
p )

q
n (k − q)

k volk(B
k
2 )

E

∣∣∣∣∣∣
n∑
j=1

Xjvj

∣∣∣∣∣∣
−q

.

We shall now use two important facts:

(a) (Barthe, Guédon, Mendelson, Naor, [8]) Let Y1, . . . , Yn be i.i.d. random variables with

densities β−1p e−|x|
p

and write Y = (Y1, . . . , Yn). Define S =
(∑n

j=1 |Yj |p
)1/p

. Let E be

an exponential random variable with density e−t1{t>0}, independent of the Yj . Then

the random vector Y
(Sp+E)1/p is uniformly distributed on Bn

p .

(b) (Schechtman, Zinn, see [43] and Rachev, Rüschendorf, [42]) With the above notation
S and Y/S are independent.

In [8] Barthe, Guédon, Mendelson and Naor observed that using (a) and (b) one gets

E
∣∣∣ n∑
j=1

Xjvj

∣∣∣−q = E
∣∣∣ 1

(Sp + E)1/p

n∑
j=1

Yjvj

∣∣∣−q = E
∣∣∣ S

(Sp + E)1/p

∣∣∣−qE∣∣∣ n∑
j=1

Yj
S
vj

∣∣∣−q.
It follows that E

∣∣∣ S
(Sp+E)1/p

∣∣∣−q is finite. Thus

e−1E|S|−q = E|S|−q1E>1 ≤ E
∣∣∣ S

(Sp + E)1/p

∣∣∣−q <∞.
Then, again by independence of S and Y/S, we have

E
∣∣ n∑
j=1

Yj
S
vj
∣∣−qE|S|−q = E

∣∣ n∑
j=1

Yjvj
∣∣−q

and therefore

E
∣∣∣ n∑
j=1

Xjvj

∣∣∣−q =
1

E|S|−q
E
∣∣∣ S

(Sp + E)1/p

∣∣∣−qE∣∣∣ n∑
j=1

Yjvj

∣∣∣−q
= c1(p, q, n)E

∣∣∣ n∑
j=1

Yjvj

∣∣∣−q = c2(p, q, n)E
∣∣∣ n∑
j=1

Y
(p)
j vj

∣∣∣−q,
8



where ci(p, q, n) > 0 is independent of v1, . . . , vn. As a result one gets

voln−k(B
n
p ∩H) = c3(k, p, n) lim

q→k−

k − q
k volk(B

k
2 )

E
∣∣∣ n∑
j=1

Y
(p)
j vj

∣∣∣−q.
Taking vj = ej for 1 ≤ i ≤ k and vj = 0 for k + 1 ≤ j ≤ n and using Lemma 8 we obtain

voln−k(B
n−k
p ) = c3(k, p, n) lim

q→k−

k − q
k volk(B

k
2 )

E
∣∣∣(Y (p)

1 , . . . , Y
(p)
k )

∣∣∣−q = c3(k, p, n).

�

Corollary 13. Let p > 0. For a unit vector a ∈ Rn, we have

voln−1(B
n
p ∩ a⊥)

voln−1(B
n−1
p )

= fa(0),

where fa is the density of
∑n

j=1 ajY
(p)
j .

Proof. This formula follows by combining Lemma 12 with Lemma 8. The correctness of the
normalization constant can be checked by plugging in a = e1. �

As an application, we show how to obtain the following theorem of Meyer and Pajor from
[35]. The main idea of exploiting Kanter’s peakedness from [23] comes from the original proof
of Meyer and Pajor. In addition to illustrating our approach via negative moments, which we
will build upon later, we hope this proof might be of independent interest.

Theorem 14 (Meyer-Pajor, [35]). Let 1 ≤ k ≤ n and let H be a subspace in Rn of codimen-
sion k. Then the following function

p 7→ voln−k(B
n
p ∩H)/ voln−k(B

n−k
p ).

is nondecreasing on (0,∞).

Proof. For β > α the random variable Y
(β)
j is more peaked than Y

(α)
j (see [23] and [35]).

Thus for every vectors v1, . . . , vn in Rk,
∑n

j=1 Y
(β)
j vj is more peaked than

∑n
j=1 Y

(α)
j vj . Con-

sequently, for a norm ‖ · ‖ on Rk and 0 < q < k,

(6) E

∥∥∥∥∥∥
n∑
j=1

Y
(β)
j vj

∥∥∥∥∥∥
−q

≥ E

∥∥∥∥∥∥
n∑
j=1

Y
(α)
j vj

∥∥∥∥∥∥
−q

.

Thus, the function α 7→ E
∥∥∥∑n

j=1 Y
(α)
j vj

∥∥∥−q is nondecreasing on (0,∞). Using this together

with Lemma 12, we get that

p 7→
voln(Bn

p ∩H)

voln−k(B
n−k
q )

= lim
q→k−

k − q
k volk(B

k
2 )

E
∣∣∣ n∑
j=1

Y
(p)
j vj

∣∣∣−q
is nondecreasing. �
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2.5. Sections of Bn
p via Gaussian mixtures. In the sequel we shall need one more formula

in the special case of Bn
p with 0 < p < 2. This formula was mentioned in [18] (a hyperplane

case) and [38] (a general case). We sketch a slightly different argument below, based again
on negative moments, for simplicity for hyperplane sections.

We first need some notation. For α ∈ (0, 1), let gα be the density of a standard positive
α-stable random variable, that is a positive random variable Wα with the Laplace transform
Ee−uWα = e−u

α
, u > 0. Let V1, . . . , Vn be i.i.d. positive random variables with density

proportional to t−3/2gp/2(t
−1) and set Ri =

√
Vi/2. Take Gi to be standard Gaussian random

variables, independent of the Vj . According to Lemma 23(a) from [18], the random variables

RiGi have densities β−1p e−|x|
p
. We also let V̄j = (EV −1/2j )2Vj be normalised so that EV̄ −1/2j =

1.

Lemma 15 (Eskenazis-Nayar-Tkocz, [18]). Let 0 < p < 2. For a unit vector a = (a1, . . . , an)
in Rn, we have

(7)
voln−1(B

n
p ∩ a⊥)

voln−1(B
n−1
p )

= E

 n∑
j=1

a2j V̄j

−1/2 .
Proof. Using Lemma 12 and the above Gaussian mixture representation for the Y

(p)
j ,

voln−1(B
n
p ∩ a⊥)

voln−1(B
n−1
p )

= lim
q→1−

1− q
2

E
∣∣∣ n∑
j=1

ajY
(p)
j

∣∣∣−q
= κp lim

q→1−
(1− q)E

∣∣∣ n∑
j=1

aj
√
VjGj

∣∣∣−q
for a positive constant κp which depends only on p (resulting from rescalings of the random

variables involved). Since
∑n

j=1 aj
√
VjGj has the same distribution as

√∑
a2jVjG1 and

(1− q)E|G1|−q converges to
√

2
π (twice the density at 0) as q → 1−, after further rescalings,

we obtain

voln−1(B
n
p ∩ a⊥)

voln−1(B
n−1
p )

= κ′pE

 n∑
j=1

a2j V̄j

−1/2 .
Plugging in a = e1 shows that κ′p = 1. �

Remark 16. The above expectation is finite due to the fact that EW r
α <∞ iff r < α. Indeed,∫ ∞

0
tq−3/2gp/2(t

−1)dt =

∫ ∞
0

t−q−1/2gp/2(t)dt = EW−q−1/2p/2

thus EV q
1 <∞ as long as −q − 1/2 < p/2, that is q > −p+1

2 . The above fact can be deduced
from the asymptotic formulas (see, e.g. [36])

gα(t) ∼t→∞ Mαt
−(1+α), gα(t) ∼t→0+ Kαt

− 2−α
2(1−α) exp(Aαt

− α
1−α ).
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3. Two-dimensional central sections of the cross-polytope

This proof was kindly communicated to us by Fedor Nazarov. Recall that our goal is to
minimize the volume of the set Kv = {x ∈ R2 :

∑n
i=1 | 〈vi, x〉 | ≤ 1} under the constraint∑n

i=1 vi ⊗ vi = I2×2. In general, the set Kv is a convex symmetric 2k-gon, k ≤ n. We point
out that some of the vectors vi might be zero, and some of them may be parallel. While
studying the geometry of Kv, one can assume that the vectors vi are non-parallel, since if for
some a1, . . . , al, i1, . . . , il and v one has vi1 = a1v, . . . , vil = alv, then considering only one

vector ṽ =
∑l

j=1 |aij |v instead of the vectors vij will result in the same set. However, this

operation in general affects the constraint
∑n

i=1 vi ⊗ vi = I2×2.

Let ρ : S1 → (0,∞), given by ρ(θ) = (
∑n

i=1 | 〈vi, θ〉 |)
−1, be the radial function of Kv. One

can assume that in our configuration there are at least two non-parallel vectors (otherwise
the resulting set is an infinite strip and so its volume is infinite; in this case

∑n
i=1 vi ⊗ vi

is of rank one, and the constraint is not satisfied). It is not hard to check that under this
assumption the vertices of Kv correspond exactly to directions θ perpendicular to vi for some
non-zero vi (that is, to the changes of sign of 〈vi, θ〉). Indeed, for points x on the boundary
of Kv one has

∑n
i=1 | 〈vi, x〉 | = 1. If in a small neighborhood of x all the signs of 〈vi, x〉

are fixed, this is a linear equation and the set of solutions is a line. This corresponds to
1-dimensional faces of Kv. If on the other hand x satisfies 〈vi, x〉 = 0 for some non-zero
vi = (a, b) (if there are vectors parallel to vi we join them together as above), then within a
small ball around x = (s0, t0) there is a part of the boundary being a subset of the line of
the form {(s, t) : as + bt + As + Bt = 1} and a part being a subset of the line of the form
{(s, t) : −as − bt + As + Bt = 1}. These two lines intersect each other at x. We shall show
that they are non-parallel. If they were parallel, they would have to coincide and thus we
would have a+A = −a+A and b+B = −b+B, which gives a = b = 0, contradiction. Thus
x is an intersection of two non-parallel parts of the boundary and thus is a vertex of Kv. A
simple consequence of these observations is that Kv has at most 2n vertices.

Suppose that the boundary of Kv consists of segments Fj , j = 1, . . . , k. Let Cj be the
corresponding segments of S1, that is θ ∈ Cj if ρ(θ)θ ∈ Fj , and let Tj = conv(0, Fj) be the
corresponding triangle in Kv. We define Aj = 1

2

∫
Cj
ρ2 and Ij =

∫
Cj
ρ−1. Suppose that the

angle of Tj at vertex O = 0 has measure 2βj , where βj ∈ (0, π/2). Note that
∑k

j=1 βj = π.
We shall need the following elementary lemma.

Lemma 17. We have AjI
2
j ≥

4 sin3 βj
cosβj

.

Proof. Let OLR be one of our triangles Tj and let 2β be the measure of the angle at vertex
O. Let h be the height of OLR perpendicular to LR and let l be the bisector of ∠LOR. The
directed angle from h to l will be denoted by α. Let θ be the directed angle on S1, where
θ = 0 corresponds to points on h. Clearly ρ(θ) = h/ cos θ. We have

Ij =

∫ α+β

α−β

cos θ

h
dθ =

1

h
[sin(α+ β)− sin(α− β)],

Aj =
1

2
h2
∫ α+β

α−β

1

cos2 θ
dθ =

1

2
h2[tan(α+ β)− tan(α− β)].

11
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Figure 1. One piece of Kv: triangle OLR.

Thus,

AjI
2
j =

1

2

[
sin(α+ β)

cos(α+ β)
− sin(α− β)

cos(α− β)

]
· [sin(α+ β)− sin(α− β)]2 =

2 sin(2β) · sin2 β cos2 α

cos(α+ β) cos(α− β)
·

=
4 sin3 β cosβ cos2 α

cos2 α cos2 β − sin2 α sin2 β
=

4 sin3 β

cosβ
· 1

1− tan2 α tan2 β
≥ 4 sin3 β

cosβ
.

�

Lemma 18. The function ψ(x) = sinx
(cosx)1/3

is strictly convex on [0, π/2). In particular, the

function [0, π/2) 3 x 7→ ψ(x)/x is non-decreasing and thus the sequence an =
n sin( π

2n)
cos1/3( π

2n)
is

non-increasing.

Proof. Observe that ψ′(x) = cos2/3 x+ 1
3 sin2 x cos−4/3 x = 2

3 cos2/3 x+ 1
3 cos−4/3 x. It suffices

to show that this function is strictly increasing. Taking y = cos2/3 x we see that this is
equivalent to showing that f(y) = 2y + y−2 is strictly decreasing (0, 1). This is true since
f ′(y) = 2(1− y−3) < 0 for y ∈ (0, 1).

The second part follows from the monotonicity of the slopes of convex functions and the fact
that ψ(0) = 0. �

We are now ready to prove Theorem 1.

Proof of Theorem 1. We shall solve Problem 1. Assume that
∑n

i=1 vi ⊗ vi = I2×2 and that
Kv is a convex symmetric 2k-gon, where k ≤ n. Note that

∫
S1

ρ(θ)−1dθ =
n∑
i=1

∫
S1

| 〈vi, θ〉 |dθ = 4
n∑
i=1

|vi| ≤ 4
√
n

√√√√ n∑
i=1

|vi|2 = 4
√

2n,

12



where in the last equality we use
∑n

i=1 |vi|2 = tr (
∑n

i=1 vi ⊗ vi). Moreover, using Hölder’s
inequality, Lemma 17 and Lemma 18, we get

|Kv|
1
3 (4
√

2n)
2
3 = |Kv|

1
3

(∫
S1

ρ(θ)−1dθ

) 2
3

=

 2k∑
j=1

Aj

 1
3
 2k∑
j=1

Ij

 2
3

≥
2k∑
j=1

A
1
3
j I

2
3
j ≥ 4

1
3

2k∑
j=1

sinβj

cos1/3 βj

≥ 4
1
3 · 2k

sin
(

1
2k

∑2k
j=1 βj

)
cos1/3

(
1
2k

∑2k
j=1 βj

) = 2 · 4
1
3 ·

k sin
(
π
2k

)
cos1/3

(
π
2k

) ≥ 2 · 4
1
3 ·

n sin
(
π
2n

)
cos1/3

(
π
2n

) .
We arrive at |Kv| ≥

n2 sin3( π
2n)

cos( π
2n)

.

We now show that this bound is achieved for Kv being a regular 2n-gon. Let us consider

vk =
√

2
n(cos(kπn ), sin(kπn )) for k = 1, . . . , n. It is easy to verify that

∑n
i=1 vi ⊗ vi = I2×2.

As we already mentioned, the vertices of Kv correspond to the directions perpendicular to
vi. Since vi are equally spaced on the upper half-circle, we get that Kv is a regular 2n-gon.
Clearly |v1| = . . . = |vn|, β1 = . . . = β2n, I1 = . . . = I2n and A1 = . . . = A2n. Thus,
one has equalities in all the inequalities in the above proof, so |Kv| = n2 sin3

(
π
2n

)
/ cos

(
π
2n

)
.

Conversely, it is easy to see that the only possibility of having equalities in all the estimates
of the proof is to have the set {v1,−v1, . . . , vn,−vn} equally spaced on the circle. Thus, in
the extremal case the only freedom of choosing vi is to apply rotations to all the vectors vi
(which does not change the section Bn

1 ∩T (R2), as it corresponds to replacing T with T ◦U for
some orthogonal transformation U of R2), permuting some of the vectors (which corresponds
to applying permutations of coordinates in Rn, under which H changes), and reflecting some
of the vectors vi (which corresponds to applying coordinate reflections in Rn which again
changes H). Thus, up to coordinate reflections and permutations, there is only one minimal
two-dimensional section of Bn

1 . The fact that the section of minimal volume is isometric to a
regular 2n-gon in R2 follows from Remark 5. �

4. Cube slicing

4.1. Minimal hyperplane cube sections. Prior to Vaaler’s work [46], Hadwiger in [19]
and independently Hensley in [20] established that the minimal hyperplane sections of the
cube are attained for coordinate subspaces. A different simple proof was later given in [3]
(which was based on a direct minimisation of ‖f‖∞ over even unimodal probability densities
with fixed variance). Our method involving negative moments offers another simple approach
with the advantage that it is well-suited to give a stability result. First we establish a robust
version of a relevant Khinchin inequality.

Theorem 19. Let 0 < p < 2 and let ξ1, . . . , ξn be i.i.d. random vectors in Rd uniform on
Sd−1, d ≥ 3. For every n ≥ 1 and real numbers a1, . . . , an such that a21 + · · · + a2n = 1, we
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have

E

∣∣∣∣∣∣
n∑
j=1

ajξj

∣∣∣∣∣∣
−p

≥ 1 +
p(p+ 2)(2d− p− 4)

9d2

1−
n∑
j=1

a4j

 .

Proof. First we remark that a sharp inequality without the remainder term is a simple con-
sequence of convexity. Indeed, for any p > 0 we have

(8) E

∣∣∣∣∣∣
n∑
j=1

ajξj

∣∣∣∣∣∣
−p

= E

∣∣∣∣∣∣
n∑
j=1

ajξj

∣∣∣∣∣∣
2−p/2 ≥

E

∣∣∣∣∣∣
n∑
j=1

ajξj

∣∣∣∣∣∣
2−p/2 = 1.

To control the error in this estimate, a natural idea presents itself: we write∣∣∣∣∣∣
n∑
j=1

ajξj

∣∣∣∣∣∣
2

= 1 + S

with

S = 2
∑
i<j

aiaj 〈ξi, ξj〉

and seek a refinement of the pointwise bound (1 + x)−p/2 ≥ 1 − p
2x, x > −1 (resulting just

from convexity) which gives (8), in view of the fact that S > −1 a.s. and ES = 0. We shall
use the following lemma, the proof of which we defer for now (for simplicity, we did not try
to optimise the numerical constants).

Lemma 20. For every p > 0 and x > −1, we have

(1 + x)−p/2 ≥ 1− p

2
x+

p(p+ 2)

9
x2 − p(p+ 2)(p+ 4)

72
x3.

This lemma yields

E

∣∣∣∣∣∣
n∑
j=1

ajξj

∣∣∣∣∣∣
−p

= E(1 + S)−p/2 ≥ 1 +
p(p+ 2)

9
ES2 − p(p+ 2)(p+ 4)

72
ES3.

To compute ES2 and ES3, first note that thanks to rotational invariance and independence,
for i < j,

E 〈ξi, ξj〉2 = E 〈ξi, e1〉2 =
1

d
and for i < j < k,

E 〈ξi, ξj〉 〈ξj , ξk〉 〈ξi, ξk〉 = E 〈ξi, ξj〉 〈ξj , e1〉 〈ξi, e1〉 = E 〈ξj , e1〉2 〈ξi, e1〉2 =
1

d2
.

Thus, using symmetry,

ES2 = 4
∑
i<j

a2i a
2
jE 〈ξi, ξj〉

2 =
4

d

∑
i<j

a2i a
2
j

and

ES3 = 8 · 6
∑
i<j<k

a2i a
2
ja

2
kE 〈ξi, ξj〉 〈ξj , ξk〉 〈ξi, ξk〉 =

48

d2

∑
i<j<k

a2i a
2
ja

2
k.
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Introducing, sl =
∑n

i=1 a
2l
i , l = 1, 2, . . . , we have s1 = 1 and using Newton identities for

symmetric functions, we express 2
∑

i<j a
2
i a

2
j = 1 − s2, 6

∑
i<j<k a

2
i a

2
ja

2
k = 1 − 3s2 + 2s3.

Moreover, s3 ≤ s2. As a result,

ES2 =
2

d
(1− s2),

ES3 =
8

d2
(1− 3s2 + 2s3) ≤

8

d2
(1− s2).

Therefore,

E

∣∣∣∣∣∣
n∑
j=1

ajξj

∣∣∣∣∣∣
−p

≥ 1 +
2p(p+ 2)

9d
(1− s2)−

p(p+ 2)(p+ 4)

9d2
(1− s2)

= 1 +
p(p+ 2)(2d− p− 4)

9d2
(1− s2).

�

Now we are able to deduce a stability result for minimal hyperplane sections of the cube, (3)
for p =∞. For convenience, we restate this here.

Theorem 21. Let a = (a1, . . . , an) be a unit vector in Rn with a1 ≥ a2 ≥ · · · ≥ 0. Then,

voln−1

(
Qn ∩ a⊥

)
≥ 1 +

1

54
|a− e1|2.

Proof. Note that under the assumption on a,

1

2
|a− e1|2 =

1

2

(
(1− a1)2 +

n∑
i=2

a2i

)
= 1− a1 ≤ 1− a21 = 1−

∑
i

a21a
2
i ≤ 1−

∑
i

a4i .

Thus the assertion follows immediately from Theorem 19 applied to p = 1 and d = 3, in view
of Lemma 10. �

Remark 22. The dependence on δ(a) = 1−
∑n

j=1 a
4
j in Theorem 19 modulo a constant factor is

best possible: there are examples of unit vectors a with δ(a)→ 0 for which E|
∑
ajξj |−p−1 =

Op,d(δ(a)). For instance, take a = (
√

1− ε,
√
ε, 0, . . . , 0) with ε < 1

16 . Since for 0 < p < 2 and

x ∈ [−1
2 , 1] one has (1 + x)−

p
2 ≤ 1− p

2x+ 8x2 (use Taylor formula with Lagrange remainder),
it follows that

E|
∑

ajξj |−p = E(1 + 2
√
ε(1− ε) 〈ξ1, ξ2〉)−p/2 ≤ 1 + 32ε(1− ε)E 〈ξ1, ξ2〉2 = 1 +

32ε(1− ε)
d

.

Since 1−
∑n

j=1 a
4
j = 2ε(1− ε), we get E|

∑
ajξj |−p ≤ 1 + 16

d (1−
∑n

j=1 a
4
j ).

In particular, the same remark applies to Theorem 21 as well.

It remains to prove the point-wise inequality we used.

Proof of Lemma 20. From the Taylor formula with Lagrange reminder for the function (1 +

x)−
p
2 one gets that for x ≤ 2

p+4

(1 + x)−p/2 − 1 +
p

2
x ≥ p(p+ 2)

8
x2 − p(p+ 2)(p+ 4)

48
x3 ≥ p(p+ 2)

9
x2 − p(p+ 2)(p+ 4)

72
x3.
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We now show how to treat the case x ≥ 0. Define

ψ(x) = (1 + x)−p/2 − 1 +
p

2
x− p(p+ 2)

9
x2 +

p(p+ 2)(p+ 4)

72
x3.

Our goal is to prove that ψ(x) ≥ 0 for x ≥ 0. Note that ψ(0) = ψ′(0) = 0. Thus it suffices to

show that for x ≥ 0 we have ψ′′(x) ≥ 0. This is equivalent to (1 + x)−
p+4
2 ≥ 8

9 −
1
3(p + 4)x.

Define α = 1
2(p + 4). Our inequality reads (1 + x)−α ≥ 8

9 −
2
3αx. We shall verify this for

arbitrary α, x > 0. Let t = αx. Rewriting gives (1+ t
α)−α ≥ 8

9 −
2
3 t. We have (1+ t

α)−α ≥ e−t
(take the logarithm and use the inequality ln(1 + y) ≤ y) and thus it is enough to show that
e−t ≥ 8

9 −
2
3 t for t > 0. The function h(t) = e−t − 8

9 + 2
3 t has a minimum for t = ln(32). It is

enough to verify that 2
3 ≥

8
9 −

2
3 ln(32). This is ln(32) ≥ 1

3 which is true. �

4.2. Maximal hyperplane cube sections. Our goal here is to prove (4). We recall two
formulae (see Lemma 10 and Remark 11),

voln−1(Qn ∩ a⊥) = E

∣∣∣∣∣∣
n∑
j=1

ajξj

∣∣∣∣∣∣
−1

(9)

=
2

π

∫ ∞
0

n∏
j=1

sin(ajt)

ajt
dt,(10)

as well as the fact that

(11) ‖a‖Bus =
|a|

voln−1(Qn ∩ a⊥)

defines a norm on Rn, thanks to Busemann’s theorem (see [12], or, e.g. Theorem 3.9 in [37]).
It follows that the function a 7→ voln−1(Qn ∩ a⊥) is 2-Lipschitz on the unit sphere.

Lemma 23. For every unit vectors a, b in Rn, we have∣∣∣voln−1(Qn ∩ a⊥)− voln−1(Qn ∩ b⊥)
∣∣∣ ≤ 2|a− b|.

Proof. Letting F (a) = voln−1(Qn ∩ a⊥), by the triangle inequality we have

|F (a)− F (b)|
F (a)F (b)

= |‖a‖Bus − ‖b‖Bus| ≤ ‖a− b‖Bus =
|a− b|
F (a− b)

.

Using that 1 ≤ F (x) ≤
√

2 for every vector x concludes the proof. �

We will also need the following observation.

Lemma 24. Let X and Y be two independent rotationally invariant random vectors in R3.
Then

E|X + Y |−1 = Emin
{
|X|−1, |Y |−1

}
≤ min{E|X|−1,E|Y |−1}.

In particular,

voln−1(Qn ∩ a⊥) ≤ min{|aj |−1}.

Proof. Since X and Y are rotationally invariant, their distributions can be written as |X|ξ1
and |Y |ξ2, where ξ1, ξ2 are uniform on S2. By conditioning it suffices to verify the identity

16



Eξ1,ξ2 |rξ1 + sξ2|−1 = min(r, s)−1. Note that by rotation invariance 〈ξ1, ξ2〉 has the same
distribution as 〈ξ1, e1〉, that is a uniform distribution on [−1, 1]. Therefore

Eξ1,ξ2 |rξ1 + sξ2|−1 = Eξ1,ξ2(|rξ1 + sξ2|2)−1/2 =
1

2

∫ 1

−1
(r2 + s2 + 2rsu)−1/2du

=
(r2 + s2 + 2rsu)1/2

2rs

∣∣∣1
−1

=
|r + s| − |r − s|

2rs
=

min{r, s}
rs

= min{r−1, s−1}−1.

To prove the second part it suffices to take X =
∑n−1

j=1 ajξj , Y = anξn and use the inequality

E|X + Y |−1 ≤ E|Y |−1. �

Since the maximal section has volume
√

2, that is voln−1(Qn ∩ ( e1+e2√
2

)⊥) =
√

2, our stability

result (4) for maximal sections of the cube can be equivalently stated as follows

(12) voln−1(Qn ∩ a⊥) ≤
√

2− c0
∣∣∣∣a− e1 + e2√

2

∣∣∣∣ ,
for every n and every unit vector a in Rn with a1 ≥ a2 ≥ · · · ≥ an ≥ 0, for some universal
constant c0.

The proof involves different arguments, depending on whether a is close to the extremiser or
not and whether its largest coordinate is large or not. We assume throughout that a is a unit
vector in Rn with a1 ≥ a2 ≥ · · · ≥ an ≥ 0 and set

δ(a) =

∣∣∣∣a− e1 + e2√
2

∣∣∣∣2 = 2−
√

2(a1 + a2).

For vectors a close to the extremiser, we have the following local stability result (it is to some
extent in the spirit of Lemma 3.7 from [16]).

Lemma 25. There are universal constants δ0 ∈ (0, 1√
2
) and c0 > 0 such that (12) holds for

every a with δ(a) ≤ δ0.

For vectors a away from the extremiser with largest coordinate sufficiently close to 1√
2
, we

prove the following lemma.

Lemma 26. Let δ0 be the constant from Lemma 25. There are positive universal constants
γ0, c1 such that

(13) voln−1(Qn ∩ a⊥) ≤
√

2− c1
holds for every a with δ(a) > δ0 and a1 ≤ 1√

2
+ γ0.

The remaining case is straightforward: taking these two lemmas for granted, it is very easy
to prove (12).

Proof of (12). In view of Lemmas 25 and 26, it remains to consider the case when a1 >
1√
2
+γ0.

From Lemma 24, we have

voln−1(Qn ∩ a⊥) ≤ 1

a1
<

1

1/
√

2 + γ0
<
√

2− γ0 <
√

2− γ0√
2

√
δ(a),

17



because δ(a) < 2, so in this case (12) also holds. �

It remains to prove the lemmas.

Proof of Lemma 25. The idea is to argue that Ball’s inequality voln−1(Qn ∩ a⊥) ≤
√

2 allows
for a self-improvement near the extremiser. We shall assume that n ≥ 3 and a21 + a22 < 1 (the
case n = 2 can be analysed directly). A starting point is formula (9), combined with Lemma
24,

voln−1(Qn ∩ a⊥) = EX,Y min
{
|X|−1, |Y |−1

}
,

where we apply it to X = a1ξ1 + a2ξ2 and Y =
∑n

j=3 ajξj . By Ball’s inequality,

EY |Y |−1 ≤
√

2(1− a21 − a22)−1/2.

Thus, thanks to the independence of X and Y and the simple inequality

EY min
{
|X|−1, |Y |−1

}
≤ min

{
|X|−1,EY |Y |−1

}
,

we obtain

voln−1(Qn ∩ a⊥) ≤ EX min
{
|X|−1,

√
2(1− a21 − a22)−1/2

}
Note that |X| has the same distribution as (a21+a22+2a1a2U)1/2, where U is a random variable

uniform on [−1, 1]. To evaluate EX , observe that |X|−1 <
√

2(1 − a21 − a22)−1/2 corresponds
to U > u0, where

u0 =
1− 3(a21 + a22)

4a1a2
,

We need to consider two cases. Let δ = δ(a)/2, that is

a1 + a2 =
√

2(1− δ).

Case 1: u0 ≤ −1. Then

EX min
{
|X|−1,

√
2(1− a21 − a22)−1/2

}
= E|X|−1 = min(a1, a2)

−1 = a−11 .

Given a1 +a2 =
√

2(1− δ), the condition u0 ≤ −1 implies that a1 ≥ ā1, where ā1 is the larger
of the two solutions to the quadratic equation

1− 3(a21 + (
√

2(1− δ)− a1)2) = −4a1(
√

2(1− δ)− a1).

This yields

voln−1(Qn ∩ a⊥) ≤ 1

ā1
=
√

2

(
1− δ +

√
δ

5

√
2− δ

)−1
≤
√

2− c0
√
δ

for a universal constant c0 > 0, provided that δ is sufficiently small.

Case 2: u0 > −1. It is clear that for all δ sufficiently small, u0 < 1 (in fact since a1 + a2 ≤√
2(a21 + a22) ≤

√
2, the equality a1 + a2 =

√
2(1 − δ) for small δ implies that both numbers
18



a1, a2 are close to 1√
2

and thus u0 is close to −1). Then

EX min
{
|X|−1,

√
2(1− a21 − a22)−1/2

}
=

1

2
(u0 + 1)

√
2(1− a21 − a22)−1/2 +

1

2

∫ 1

u0

(a21 + a22 + 2a1a2u)−1/2du

=
u0 + 1√

2(1− a21 − a22)
+
a1 + a2 −

√
a21 + a22 + 2a1a2u0
2a1a2

.

Plugging in u0 and rewriting in terms of s = a1 +a2, ρ = a21 +a22 results with an upper bound
on voln−1(Qn ∩ a⊥) by

h(s, ρ) =
s

s2 − ρ
+

2s2 − 1− 3ρ

2
√

2(s2 − ρ)
√

1− ρ
.

Note that s2

2 ≤ ρ < 1. We claim that for every 1 ≤ s ≤
√

2, function ρ 7→ h(s, ρ) is decreasing

on ( s
2

2 , 1). Thus,

voln−1(Qn ∩ a⊥) ≤ h(s, s2/2) =
2

s
−
√

1− s2/2√
2s2

=
√

2(1− δ)−2
(

1− δ −
√
δ

2
√

2

√
2− δ

)
<
√

2− c0
√
δ

for a universal constant c0 > 0 and all sufficiently small δ.

To prove that ρ 7→ h(s, ρ) is decreasing on ( s
2

2 , 1), we fix 1 ≤ s ≤
√

2 and compute the
derivative

∂h

∂ρ
= −2

√
2− 3

√
2ρ(1 + ρ)− 8(1− ρ)3/2s+ 3

√
2s2(1 + ρ)− 2

√
2s4

8(1− ρ)3/2(s2 − ρ)2
.

Note that the numerator

h̃(s, ρ) = 2
√

2− 3
√

2ρ(1 + ρ)− 8(1− ρ)3/2s+ 3
√

2s2(1 + ρ)− 2
√

2s4

is a concave function of ρ ∈ (s2/2, 1), as a sum of concave functions. It suffices to show that
the values at the endpoints are non-negative. At ρ = 1, we have

h̃(s, 1) = −2
√

2(s4 − 3s2 + 2) = 2
√

2(s2 − 1)(2− s2) ≥ 0.

At ρ = s2/2, we get

h̃(s, s2/2) =
2− s2

2
√

2

(
5s2 + 4− 8s

√
2− s2

)
≥ 2− s2

2
√

2

(
5s2 − 4

)
≥ 0,

by 2s
√

2− s2 ≤ s2 + (2− s2) = 2. �

Proof of Lemma 26. Assume that δ(a) > δ0. In particular,

(14) a2 ≤
1

2
(a1 + a2) =

2− δ(a)

2
√

2
<

1√
2
− δ0

2
√

2
.
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The argument is now split into two cases: when a1 ≤ 1√
2
, we employ (10) and use Ball’s

approach to show that savings simply come from a2 being small, whilst when a1 > 1√
2
,

provided a1 is close to 1√
2
, we employ Busemann’s theorem to reduce this case to the previous

one.

Case 1: a1 ≤ 1√
2
. For s ≥ 2, we define

Ψ(s) =
2

π

√
s

∫ ∞
0

∣∣∣∣sin tt
∣∣∣∣s dt.

To establish his cube-slicing result, Ball showed in [3] that

Ψ(s) < Ψ(2) =
√

2, s > 2.

Moreover, since sin(t
√
s)

t/
√
s

= 1− t2

6s +O(s−2) as s→∞,

lim
s→∞

Ψ(s) =

√
6

π
<
√

2.

In particular, by continuity, for every s0 > 2, there is 0 < θ0 < 1 such that

(15) Ψ(s) ≤ θ0
√

2, s ≥ s0.

As in [3], applying Hölder’s inequality in (10) yields

voln−1(Qn ∩ a⊥) ≤
n∏
j=1

Ψ(a−2j )a
2
j .

Letting s0 = 2 (1− δ0/2)−2, from (14), we know that a−2j ≥ s0 for each j ≥ 2, thus (15)

applied to each j ≥ 2 and Ψ(a−21 ) ≤
√

2 give

voln−1(Qn ∩ a⊥) ≤ θ1−a
2
1

0

√
2 ≤ θ1/20

√
2 =
√

2− c1.

Case 2: 1√
2
< a1. We argue that there are positive universal constants γ0, c2 such that if

additionally a1 <
1√
2

+ γ0, then voln−1(Qn ∩ a⊥) ≤
√

2 − c2. To this end, we modify a and

consider the unit vector

b =

(
1√
2
,

√
a21 + a22 −

1

2
, a3, . . . , an

)
.

Note that b1 ≥ b2 and since b2 ≥ a2, also b2 ≥ b3 ≥ · · · ≥ bn. Moreover, crudely,√
a21 + a22 −

1

2
− a2 =

a21 − 1
2√

a21 + a22 − 1
2 + a2

≤
√
a21 −

1

2
≤
√

2γ0,

thus

|a− b|2 =

(
a1 −

1√
2

)2

+

(√
a21 + a22 −

1

2
− a2

)2

< γ20 + 2γ0.

Lemma 23 yields

voln−1(Qn ∩ a⊥) ≤ voln−1(Qn ∩ b⊥) + 2
√
γ20 + 2γ0.
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If δ(b) > δ0, then Case 1 applied to b gives

voln−1(Qn ∩ b⊥) <
√

2− c1.
Otherwise, observing that

δ(b) = δ(a)−
√

2

(
1√
2

+

√
a21 + a22 −

1

2
− a1 − a2

)

> δ0 −
√

2

(√
a21 + a22 −

1

2
− a2

)
> δ0 − 2

√
γ0,

Lemma 25 applied to b gives

voln−1(Qn ∩ b⊥) <
√

2− c0
√
δ0 − 2

√
γ0.

In any case, choosing γ0 sufficiently small (depending on the values of c0, c1, δ0), we can ensure
that

voln−1(Qn ∩ a⊥) ≤
√

2− c2
with a positive universal constant c2. �

Remark 27. The dependence on δ(a) in (12) (modulo the universal constant c0) is best pos-

sible: if we consider aε =
(√

1
2 + ε,

√
1
2 − ε, 0, . . . , 0

)
with ε→ 0, then δ(a) = ε2 +O(ε4) and

voln−1(Qn ∩ a⊥) = a−11 =
√

2−
√

2δ(a) + o(
√
δ(a)).

5. Hyperplane sections of Bn
p , 0 < p <∞

5.1. Case 0 < p < 2. As remarked in [18], formula (7) immediately yields the Schur-convexity
of the function

(b1, . . . , bn) 7→ voln−1(B
n
p ∩ (

√
b1, . . . ,

√
bn)⊥)

on Rn+, in particular asserting that the subspaces of minimal and maximal volume cross-

section are ( 1√
n
, . . . , 1√

n
)⊥ and (1, 0, . . . , 0). Moreover, the formula allows to obtain stability

results for these extremisers, which has not been observed before.

5.1.1. Case 0 < p < 2: maximal sections. Thanks to Schur-convexity the case of maximal
sections is straightforward.

Proof of (1). By (7) and Schur-convexity,

voln−1(B
n
p ∩ a⊥)

voln−1(B
n−1
p )

= E

 n∑
j=1

a2j V̄j

−1/2 ≤ E
(
a21V̄1 + (1− a21)V̄2

)−1/2
=

vol1(B
2
p ∩ (a1,

√
1− a21)⊥)

vol1(B1
p)

,

which is exactly the right hand side of (1). �
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Remark 28. The bound is clearly optimal as it is attained in the case of vectors with at most
two nonzero coordinates. Moreover, the right hand side of (1) in terms of δ = δ(a) = |a− e1|
is asymptotic to 1− 1

pδ
p as δ → 0+.

5.1.2. Case 0 < p < 2: minimal sections. Here our goal is to establish (2). We begin with
a relevant stability result for negative moments. We rely on the fact that x 7→ x−q, q >
0 is completely monotone, which allows to use simple convexity properties of log-moment
generating functions.

Lemma 29. Let Y be a nonnegative random variable and Λ(u) = logEe−uY , u ≥ 0. For
every nonnegative real numbers b1, . . . , bn with B =

∑n
j=1 bj, we have

(16)

n∑
j=1

Λ(bj) ≥ nΛ(B/n) + c

n∑
j=1

(bj −B/n)2,

where

c =
1

4
sup

0<α<β<γ
e−L(α+γ)(β − α)2P (Y < α)P (β < Y < γ)

with L = maxj≤n bj.

Proof. By Taylor’s theorem with Lagrange’s reminder,

Λ(bj) = Λ(B/n) + (bj −B/n)Λ′(B/n) +
1

2
(bj −B/n)2Λ′′(θj),

for some θj between bj and B/n. Adding these inequalities over j ≤ n gives (16) with
c = 1

2 inf(0,maxj bj) Λ′′. Let Y1, Y2 be independent copies of Y . Crudely, Ee−uY1 ≤ 1, so for
0 < α < β < γ,

Λ′′(u) =
1

2

1

(Ee−uY1)2
E(Y2 − Y1)2e−uY1e−uY2

≥ 1

2
E(Y2 − Y1)2e−uY1e−uY21{Y1<α}1{β<Y2<γ}

≥ 1

2
(β − α)2e−u(α+γ)P (Y1 < α)P (β < Y2 < γ) ,

which proves (16). �

Theorem 30. Let q > 0. Let Y be a nonnegative random variable which is not constant a.s.
with EY < ∞. Let Y1, Y2, . . . be its i.i.d. copies. For every b1, . . . , bn ≥ 0 with

∑n
j=1 bj = 1,

we have

(17) E

 n∑
j=1

bjYj

−q ≥ E

 n∑
j=1

1

n
Yj

−q + cq,Y

n∑
j=1

(bj − 1/n)2,

for some positive constant cq,Y which depends only on q and the distribution of Y .

Proof. Using x−q = Γ(q)−1
∫∞
0 e−txtq−1dt, x > 0, we have

(18) E

 n∑
j=1

bjYj

−q = Γ(q)−1
∫ ∞
0

exp

 n∑
j=1

Λ(tbj)

 tq−1dt,
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where Λ(u) = logEe−uY . We apply Lemma 29 to the numbers tbj which add up to t. It is
clear that under our assumptions on Y , the constant c from Lemma 29 satisfies c ≥ c1e

−c2t,
for some positive constants c1, c2 > 0 which depend only on the distribution of Y . Thus, from
(16), we get

E

 n∑
j=1

bjYj

−q ≥ Γ(q)−1
∫ ∞
0

exp
(
nΛ(t/n) + c1e

−c2tt2δ
)
tq−1dt

with δ =
∑n

j=1(bj − 1/n)2. Using exp
(
c1e
−c2tt2δ

)
≥ c1e−c2tt2δ + 1, we obtain

E

 n∑
j=1

bjYj

−q ≥ E

 n∑
j=1

1

n
Yj

−q + δ · c1Γ(q)−1
∫ ∞
0

exp (nΛ(t/n)) e−c2ttq+1dt

By the convexity of Λ, the sequence (nΛ(t/n))n is nonincreasing with the limit −tEY , hence∫ ∞
0

exp (nΛ(t/n)) e−c2ttq+1dt ≥
∫ ∞
0

e−(c2+EY )ttq+1dt,

which gives (17).

�

We are ready to establish the desired stability results for minimal sections.

Proof of (2). Let

An,p = E

 n∑
j=1

1

n
V̄j

−1/2 .
From (7) and (17) applied to the V̄j and q = 1

2 , we have

voln−1(B
n
p ∩ a⊥)

voln−1(Bn
p ∩ ( 1√

n
, . . . , 1√

n
)⊥)

=
1

An,p
E

 n∑
j=1

aj V̄j

−1/2(19)

≥ 1 +
cp
An,p

n∑
j=1

(a2j − 1/n)2

with a positive constant cp which depends only on p (through the distribution of V̄1). It
remains to note that thanks to Schur-convexity, the sequence An,p is nonincreasing, thus

An,p ≤ A1,p = EV̄ −1/21 = 1. �

Remark 31. The sequence An,p is in fact bounded below as well, namely by

lim
n→∞

An,p ≥ E

 lim
n→∞

 n∑
j=1

1

n
V̄j

−1/2
 =

(
EV̄1

)−1/2
.

Moreover, as n→∞, we have

(20) An,p = c0(p) +
c1(p)

n
+O(n−3/2)
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for some constants c0(p), c1(p) which depend only on p. This is justified by first noting that
An,p = gn(0), where here gn(x) is the density of 1√

n

∑n
j=1 Yj (plug in a = e1 in (19) and recall

Corollary 13) and then evoking the Edgeworth expansion for gn (see, e.g. Theorem 3.2 in [11]
and classical references therein).

Remark 32. The dependence on δn(a) =
∑n

j=1(a
2
j − 1/n)2 in (2) modulo a constant factor is

best possible, in the following two scenarios.

1) As n → ∞, there are unit vectors a in Rn with δn = δn(a) → 0 such that the left hand
side of (2) is in fact of the order 1 + c(p) · δn + o(δn). Consider a = ( 1√

n−1 , . . . ,
1√
n−1 , 0) in

Rn. Then δn = δn(a) = (n− 1)
(

1
n−1 −

1
n

)2
+ 1

n2 = 1
n2 +O

(
1
n3

)
and, using (20),

voln−1(B
n
p ∩ ( 1√

n−1 , . . . ,
1√
n−1 , 0)⊥)

voln−1(Bn
p ∩ ( 1√

n
, . . . , 1√

n
)⊥)

=
An−1,p
An,p

= 1 +
c(p)

n2
+O

(
1

n5/2

)
.

2) For a fixed n, there are unit vectors a in Rn with δ = δn(a) → 0 such that the left hand
side of (2) is of the order 1 + c(p, n)δ+ o(δ). For simplicity, let n be a fixed even integer. Let
ε→ 0+ and consider

aε = (

√
1

n
+ ε, . . . ,

√
1

n
+ ε︸ ︷︷ ︸

n/2

,

√
1

n
− ε, . . . ,

√
1

n
− ε︸ ︷︷ ︸

n/2

).

Then δε = δn(aε) = nε2 and with

X = V̄1 + · · ·+ V̄n/2, Y = V̄n/2+1 + · · ·+ V̄n,

which are i.i.d., we have

voln−1(B
n
p ∩ a⊥ε )

voln−1(Bn
p ∩ ( 1√

n
, . . . , 1√

n
)⊥)

=
1

An,p
E
(
X + Y

n
+ ε(X − Y )

)−1/2
=

1

An,p
E

[(
X + Y

n

)−1/2(
1 + εn

X − Y
X + Y

)−1/2]
.

Since
∣∣∣εnX−YX+Y

∣∣∣ ≤ εn < 1
2 , for sufficiently small ε, using (1 + x)−1/2 ≤ 1 − 1

2x + x2, x > −1
2 ,

we can thus upper bound the right hand side by

1

An,p
E

[(
X + Y

n

)−1/2(
1− 1

2
εn
X − Y
X + Y

+ ε2n2
(
X − Y
X + Y

)2
)]

= 1 + c(p, n)ε2,

where we use that
∣∣∣X−YX+Y

∣∣∣ ≤ 1 to guarantee the existence of the expectations involved and

symmetry to conclude that term linear in ε vanishes.

5.2. Case 2 < p <∞. Here we prove (3). We use the formula from Corollary 13, that for a
unit vector a ∈ Rn, we have

voln−1(B
n
p ∩ a⊥)

voln−1(B
n−1
p )

= fa(0),
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where fa is the density of
∑n

j=1 ajYj , Y1, Y2, . . . are i.i.d. random variables, each with density

exp(−βpp |x|p), where βp = 2Γ(1 + 1/p).

Lemma 33. Let 2 < p < ∞. For every u0 > 0, there is c > 0 depending only on u0 and p
such that for every 0 < u < u0, we have

(21) (1 + u)1/2
∫
R

exp
{
−βppup/2 |x|

p − πx2
}

dx ≥ 1 + cu.

Proof. Fix 2 < p <∞ and u0 > 0. Using exp(−t) ≥ 1− t, we obtain∫
R

exp
{
−βppup/2 |x|

p − πx2
}

dx ≥ 1−Apup/2

with Ap = βpp
∫
R |x|

pe−πx
2
dx. Thus it is clearly possible to choose sufficiently small u1 > 0

and c > 0 which depend only on p such that (21) holds for all 0 < u < u1. Moreover, a change

of variables x = u−1/2y yields∫
R

exp
{
−βppup/2 |x|

p − πx2
}

dx = u−1/2E exp
{
−πu−1Y 2

}
,

where Y is a random variable with density exp(−βpp |x|p) which is more peaked than a Gaussian
random variable G with density exp(−πx2). Thus, for every u > 0,∫

R
exp

{
−βppup/2 |x|

p − πx2
}

dx > u−1/2E exp
{
−πu−1G2

}
= (1 + u)−1/2.

Thus, by continuity, the infimum of left hand side of (21) over u1 < u < u0 is strictly larger
than 1. Decreasing c if necessary allows to finish the argument. �

Proof of (3). We use different arguments, depending on whether the vector a is close or not
to the minimising one e1. With hindsight, fix θp to be a positive sufficiently small constant
which depends only on p such that

(2πEY 2
1 )−1/2 exp(−0.28θp(E|Y1|3)(EY 2

1 )−5/2)

− (0.56θp(E|Y1|3)(EY 2
1 )−3/2)1/2 > 1.

(22)

Such a choice is possible since 2πEY 2
1 < 1 for p > 2, as explained later in the proof.

Case 1: a1 > θp. Here the starting point is a formula obtained from writing fa(0) as the con-
volution of the densities 1

aj
exp(−βpp |xj/aj |p) and changing the variables yj = xj/aj , leading

to

fa(0) =
1

a1
E exp

−βpp
∣∣∣∣∣∣
n∑
j=2

bjYj

∣∣∣∣∣∣
p ,

with bj =
aj
a1

. Let

u =

n∑
j=2

b2j =
1− a21
a21

.
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Note that our assumption a1 ≥ θp is equivalent to u ≤ θ−2p − 1. Since Yj is more peaked than

a Gaussian with density exp(−πx2), we get

E exp

−βpp
∣∣∣∣∣∣
n∑
j=2

bjYj

∣∣∣∣∣∣
p ≥

∫
R

exp

−βpp
 n∑
j=2

b2j

p/2

|x|p − πx2

dx.

Note that 1
a1

=
√

1 + u. Lemma 33 applied with u0 = θ−2p − 1 thus yields

fa(0) ≥ 1 + cpu = 1 + cp
1− a21
a21

≥ 1 + cp(1− a1).

with a positive constant cp which depends only on p.

Case 2: a1 ≤ θp. Since in this case

ρ =
n∑
j=1

E|ajYj |3 ≤ a1E|Y1|3
n∑
j=1

a2j ≤ θpE|Y1|3,

we can use the Berry-Esseen theorem to argue that fa(0) is large. Let

σp = (EY 2
1 )1/2.

We have (see, e.g. [45] which provides the current best value of the numerical constant in the
Berry-Esseen theorem),

sup
x∈R

∣∣∣∣∣∣P
 n∑
j=1

ajYj ≤ x

− P (Zp ≤ x)

∣∣∣∣∣∣ ≤ 0.56σ−3p ρ,

where Zp is a Gaussian random variable with variance σp. Let φp denote the density of Zp.
Crucially, peakedness yields

φp(0) =
1√

2πσp
>

1√
2πσ2

= 1,

since p > 2. Thanks to the symmetry and monotonicity of the densities involved, in particular
we obtain that for every δ > 0,

δfa(0) ≥
∫ δ

0
fa(x)dx ≥

∫ δ

0
φp(x)dx− εp

with εp = 0.56θpσ
−3
p E|Y1|3. Letting, say δ = ε

1/2
p and using δ−1

∫ δ
0 φp(x)dx > φp(δ) =

φp(0)e−δ
2/(2σ2

p), we see that θp chosen sufficiently small according to (22) guarantees that

fa(0) ≥ ε−1/2p

∫ ε
1/2
p

0
φp(x)dx− ε1/2p ≥ φp(0)e−εp/(2σ

2
p) − ε1/2p = 1 + cp

with a positive constant cp which depends only on p. This gives fp(0) ≥ 1 + cp, which finishes
the proof. �

Remark 34. It can be seen again by taking vectors with exactly two nonzero coordinates
that the dependence on δ(a) = |a − e1|2 in (3) modulo a constant factor is best possible.
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For instance, take ε → 0 and consider aε = (
√

1− ε,
√
ε, 0, . . . , 0). Then δε = δ(aε) =

2(1−
√

1− ε) = ε+O(ε2) and

voln−1(B
n
p ∩ a⊥ε )

voln−1(B
n−1
p )

=
(

(1− ε)p/2 + εp/2
)−1/p

= 1 +
1

2
ε+O(εp/2) = 1 +

1

2
δε + o(δε),

since p > 2.

6. Conclusion

Our result of Theorem 1 confirms the intuition that the (unknown) extremal subspaces for
minimal-volume central sections of Bn

p , 0 < p < 2, are conceivably as symmetric as possible.
Note that in the case of the corresponding question for maximal-volume sections and p > 2,
the situation is more delicate, at least for large p, as suggested by Ball’s results (even in the
hyperplane case).

It has been elusive how to extend the arguments from Section 3 to other values of p than
p = 1, or higher dimensions k than k = 2. We conjecture that when k = 2, the minimising
subspace H is the same as in Theorem 1 for all 0 < p < 2.

Theorem 2 deals only with the case of hyperplane sections. It would be of interest to ask for
corresponding stability results for lower dimensional sections. We believe that (at least some
of) our methods are robust enough to yield satisfactory answers. Another challenging and
intriguing question is that of a sharp dependence on p of the constants cp in Theorem 2.
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