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An inequality for moments of log-concave functions on

Gaussian random vectors.

Nikos Dafnis and Grigoris Paouris

Abstract

We prove a sharp moment inequality for a log-concave or a log-convex function,
on Gaussian random vectors. As an application we take a stability result for the
classical logarithmic Sobolev inequality of L. Gross in the case where the function
is log-concave.

1 Introduction and main results

A non-negative function f : Rk → [0,+∞) is called log-concave on its support, if and
only if

f
(

(1− λ)x+ λy
)

≥ f(x)(1−λ)f(y)λ.

for every λ ∈ [0, 1] and x, y ∈ supp(f). Respectively, is called log-convex on its support,
if nd only if

f
(

(1− λ)x+ λy
)

≤ f(x)(1−λ)f(y)λ.

for every λ ∈ [0, 1] and x, y ∈ supp(f). The aim of this note is to present a sharp
inequality for Gaussian moments of a log-concave or a log-convex function, stated below
as Theorem 1.1.

We work on R
k, equipped with the standard scalar product 〈·, ·〉. We denote by

| · |, the corresponding Euclidean norm and the absolute value of a real number. We
additionally use the notation X ∼ N(ξ, T ), if X is a Gaussian random vector in R

k,
with expectation ξ ∈ R

k and covariance the k × k positive semi-definite matrix T . We
say that X is centered, whenever EX = 0, and that X is a standard Gaussian random
vector if it is centered with covariance matrix the identity in R

k, where in that case
γk stands for its distribution law. Finally, Lp,s(γk) stand for the class of all functions
f ∈ Lp(γk) whose partial derivatives up to order s, are also in Lp(γk).

Theorem 1.1. Let k ∈ N, f : Rk → [0,+∞) be a log-concave, g : Rk → [0,+∞) be a
log-convex function, and X be Gaussian random vector in R

k. Then,
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(i) for every r ∈ [0, 1]

Ef
(√

rX
)

≥ (Ef(X)r)
1

r and Eg
(√

rX
)

≤ (Eg(X)r)
1

r , (1.1)

(ii) for every q ∈ [1,+∞)

Ef
(√

qX
)

≤ (Ef(X)q)
1

q and Eg
(√

qX
)

≥ (Eg(X)q)
1

q . (1.2)

In any case, equality holds if r = 1 = q or if f(x) = g(x) = e−〈a,x〉+c, where a ∈ R
k and

c ∈ R.

In section 2 we prove theorem 1.1. In the main step of the proof, which is summarized
in proposition 2.9, we combine techniques from [7] along with Barthe’s inequality [2].

In section 3, we prove a stability type result for the logarithmic Sobolev inequality.
Let X be a random vector in R

k. Define the entropy of a function f ∈ L(X), with
respect to X to be the quantity

EntX(f) := E|f(X)| log |f(X)| − E|f(X)| logE|f(X)|,

provided that the expectations make sense. The classical Logarithmic Sobolev inequal-
ity, proved by L. Gross in [10], states that if X ∼ N(0, In), then

EntX(|f |2) ≤ 2E|∇f(X)|2 (1.3)

for every function f ∈ L2(γk). Of course we may state this for f ≥ 0 without loss
of generality. Moreover, Carlen proved in [6], that equality holds if and only if f is
an exponential function. For more details about the logarithmic Sobolev inequality we
refer the reader to [4], [13], [17], [18] and to the references therein.

Theorem 1.1, after an application of the Gaussian integration by parts formula (see
lemma 3.2), leads us to the following sharp, quantitative stability result for Gross’
inequality, when the function is log concave.

Theorem 1.2. Let X be a standard Gaussian random vector in R
k and f = e−v ∈

L2,1(γk), where v : Rk → R is a convex function (on its support). Then

2E|∇f(X)|2 − Ef(X)2∆v(X) ≤ EntX(f2) ≤ 2E|∇f(X)|2 (1.4)

Theorem 1.2 is actually a quantitative stability result, asserts that, as long as Gross’
right-hand side bound 2E|∇f(X)|2 is finite, then the closer a log-concave function is to
be a maximizer (exponential function), the sharper this bound become.

Moreover, Theorem 1.2 retrieves Carlen’s result, for log-concave functions. Namely
we have the following corollary
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Corollary 1.3. Let f = e−v ∈ L2,1(γk), where v : Rk → R is a convex function (on its
support) such that

EntX(|f |2) = 2E|∇f(X)|2.
Then f is an exponential function (a.e)

Proof. Since we have equality everywhere in (1.4) we get that Ef(X)2∆v(X) = 0. Thus
∆v = 0 a.e. and this means that there exist a ∈ R

k and c ∈ R such that v(x) = 〈x, a〉+c
for almost every x ∈ R

k.

For more stability results on the logarithmic-Sobolev inequalities we refer to the
papers [11], [9], [8] and the references therein.
Acknowledgement Part of this work was done while the first named author was a
postdoctoral research fellow at the Department of Mathematics at the University of
Crete, and he was supported by the Action Supporting Postdoctoral Researchers of the
Operational Program Education and Lifelong Learning (Actions Beneficiary: General
Secretariat for Research and Technology), co-financed by the European Social Fund
(ESF) and the Greek State.

2 Proof of the main result

The first main tool in the proof theorem 1.1 is the following inequality for Gaussian
random vectors, proved in [7]. Recall that for two N × N matrices A and B, we say
that A ≤ B if and only if B −A is positive semi-definite.

Theorem 2.1. Let m,n1, . . . , nm ∈ N and set N =
∑m

i=1 ni. For every 1 ≤ i ≤ m, let
Xi be a Gaussian random vector in R

ni, such that X := (X1, . . . ,Xm), is a Gaussian
random vector in R

N with covariance the N ×N matrix T = (Tij)1≤i,j≤m, where Tij is
the covariance matrix between Xi and Xj for 1 ≤ i, j ≤ m. Let P be the block diagonal
matrix,

P = diag(p1T11, . . . , pmTmm).

Then for any set of nonnegative measurable functions fi on R
ni, i = 1, . . . ,m,

(i) If T ≤ P , then

E

m
∏

i=1

fi(Xi) ≤
m
∏

i=1

(

Efi(Xi)
pi
) 1

pi . (2.1)

(ii) If T ≥ P , then

E

m
∏

i=1

fi(Xi) ≥
m
∏

i=1

(

Efi(Xi)
pi
)

1

pi . (2.2)
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Theorem 2.1 generalizes many fundamental results in analysis, such as Hölder in-
equality and its reverse, Sharp Young inequality and its reverse (see [3] and [5]), and
Nelson’s Gaussian Hypercontractivity and its reverse (see [15] and [14]). Actually, the
first part of theorem 2.1 is a reforlmulation of the famous Bascamp-Lieb inequality, first
prooved in [5] (see also [12] for the fully generalized version), while the second part
provides us with its generalized reverse form.

The second main tool in our proof, is the other famous reverse form of the Brascamp-
Lieb inequality proved by F. Barthe [2], that generalizes the Prékopa-Leindler inequality.
Next we state the Geometric form of Barthe’s theorem, first put forward by k.Ball [1]:

Theorem 2.2. Let n,m, n1, . . . , nm ∈ N. For every i = 1, . . . ,m let Ui be a ni × n
matrix with UiU

∗
i = Ini

and c1, . . . , cm be positive numbers such that

m
∑

i=1

ci U
∗
i Ui = In

Let h : Rn → [0,+∞) and fi : R
ni → [0,+∞), i = 1, . . . ,m measurable functions such

that

h

(

N
∑

i=1

ciU
∗
i ξi

)

≥
m
∏

i=1

fi(ξi)
ci ∀ ξi ∈ R

ni (2.3)

then
∫

Rn

h(x) dγn(x) ≥
m
∏

i=1

(
∫

Rni

fi(x) dγni
(x)

)ci

(2.4)

2.1 Decomposing the identity

We are going to apply theorem 2.1 in the special case where the covariance matrix is of
the form T =

(

[Tij ]
)

i,j≤n
kn × kn, with Tii = Ik and Tij = tIk if i 6= j, t ∈ [− 1

n−1 , 1].

Equivalently, in this case X1, · · · ,Xn are standard Gaussian random vectors in R
k, such

that

E(XiX
∗
j ) =

{

Ik , i = j
tIk , i 6= j

(2.5)

For any t ∈ [0, 1], a natural way to construct such random vectors is to consider n
independent copies Z1, . . . , Zn, of a Z ∼ N(0, Ik) and set

Xi :=
√
t Z +

√
1− t Zi , i = 1, . . . , n.

It’s then easy to check that condition (2.5) holds true for these vectors. However, we
are going to construct such vectors using a more geometric language. We first make
this construction the “k = 1” case of the theorems, and then we pass it for any k ∈ N,
using a tensorization argument. We begin with the definition of the SR-simplex.
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Definition 2.3. We say that S = conv{v1, . . . , vn} ⊆ R
n−1 is the spherico-regular sim-

plex (in short SR-simplex) if v1, . . . , vn are unit vectors in R
n−1 enjoying the properties

(SR1) 〈vi, vj〉 = − 1
n−1 , for any i 6= j

(SR2)
∑n

i=1 vi = 0.

Using the vertices of the SR-simplex in R
n−1, one can create n vectors in R

n with the
same angle between them. This is done in next lemma, which is a special case of a more
general fact, observed in [7, sec. 3.1]

Lemma 2.4. Let n ≥ 2 and v1, . . . , vn be the vertices of any RS-Simplex in R
n−1. For

every t ∈ [− 1
n−1 , 1], let u1, . . . , un in R

n be the unit vectors in R
n with

ui = ui(t) =

√

t(n− 1) + 1

n
en +

√

n− 1

n
(1− t) vi. (2.6)

Then we have that

〈ui, uj〉 = t , ∀ i 6= j. (2.7)

Moreover, using those vectors we can decompose the identity in R
n:

(i) If t ∈ [0, 1], then

1

t(n− 1) + 1

n
∑

i=1

uiu
∗
i +

nt

t(n− 1) + 1

n−1
∑

j=1

eje
∗
j = In. (2.8)

(ii) If t ∈ [− 1
n−1 , 0], then

1

1− t

n
∑

i=1

uiu
∗
i +

−nt

1− t
ene

∗
n = In. (2.9)

Proof. A direct computation shows that (2.7), (2.8) and (2.9) holds true.

Remark 2.5. If Z ∼ N(0, In), then Xi := 〈ui, Z〉, i = 1, . . . , n, are standard Gaussian
random variables, satisfying the condition (2.5) in the 1-dimensional case.

In order to make the same construction in the general k-dimensional case, we use a
more or less standard tensorization argument. We start with the definition of the tensor
product between two matrices.
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Definition 2.6. Let A ∈ R
m×n and B ∈ R

k×ℓ. Then the tensor product of A and B is
the matrix

A =







a11B · · · a1nB
...

. . .
...

am1B · · · amnB






∈ R

km×ℓn.

Every vector a ∈ R
n is considered to be a column n × 1 matrix, and with this

notation in mind, we state some basic properties for the tensor product.

Lemma 2.7. 1. Let a = (a1, . . . , am)∗ ∈ R
m and b = (b1, . . . , bn)

∗ ∈ R
n. Then

a⊗ b∗ = ab∗ =







a1b1 · · · a1bn
...

. . .
...

amb1 · · · ambn






∈ R

m×n.

As linear transformation: a⊗ b∗ = ab∗ : Rn 7→ R
m with

(a⊗ b∗)(x) = (ab∗)(x) = 〈x, b〉 a,

for every x ∈ R
n.

2. Let Ai ∈ R
m×n and B ∈ R

k×ℓ. Then (
∑

i Ai)⊗B =
∑

iAi ⊗B

3. Let A1 ∈ R
m×n, B1 ∈ R

k×ℓ, and A2 ∈ R
n×r, B2 ∈ R

ℓ×s.Then

(A1 ⊗B1) (A2 ⊗B2) = A1A2 ⊗B1B2 ∈ R

4. For all A and B,
(A⊗B)∗ = A∗ ⊗B∗

Consider now the matrices

Ui := u∗i ⊗ Ik =
[

[

ui1Ik
]

· · ·
[

uinIk
]

]

(k × kn) , i = 1, . . . , n (2.10)

Ej := e∗j ⊗ Ik =
[

[

ej1Ik
]

· · ·
[

ejnIk
]

]

(k × kn) , j = 1, . . . , n. (2.11)

Then,

U∗
i Ui = (u∗i ⊗ Ik)

∗(u∗i ⊗ Ik) = uiu
∗
i ⊗ Ik, kn× kn

and

E∗
jEj = (e∗j ⊗ Ik)

∗(e∗j ⊗ Ik) = eje
∗
j ⊗ Ik, kn× kn
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and thus, by taking the tensor product with Ik, in both sides of (2.8), we have that

1

p

n
∑

i=1

U∗
i Ui +

nt

p

n−1
∑

j=1

E∗
jEj = Ikn, (2.12)

for every t ∈ [0, 1], where p := (n− 1)t+ 1.

With the help of these matrices we are ready now to construct the general situation,
describing in (2.5). We summarize in next lemma.

Lemma 2.8. Let Z1, . . . , Zn be iid N(0, Ik), Z = (Z1, . . . , Zn) ∼ N(0, Ikn), end for
every i = 1, . . . , n consider the random vectors

Xi := UiZ =
n
∑

a=1

uiaZa (2.13)

Then Xi ∼ N(0, Ik) for every i = 1, . . . , n, while for i 6= j

E
[

Xi ⊗X∗
j

]

=
[

EXirXjℓ

]

r,ℓ≤k
=
[

tδrℓ
]

r,ℓ≤k
= tIk (2.14)

Proof. Clearly, EXi = 0, for every i, j = 1, . . . , n, and since

E
[

Za ⊗ Z∗
b

]

=
[

EZarZbℓ

]

r,ℓ≤k
= δαβIk

we have that

EXirXjℓ = E

(

n
∑

a=1

uiaZar

)(

n
∑

b=1

ujbZbℓ

)

=

n
∑

a=1

n
∑

b=1

uiaujb EZarZbℓ

=

n
∑

a=1

uiauja EZarZaℓ

=
n
∑

a=1

uiauja δrℓ

= 〈ui, uj〉 δrℓ.

and from (2.7) the proof is complete.
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2.2 Proof of theorem 1.1

Next proposition, that has a separate interest by its own, gives the first step for the
proof of our main result, theorem 1.1.

Proposition 2.9. Let t ∈ [0, 1], n ∈ N, p = t(n − 1) + 1, X be a standard Gaussian
random vector in R

k, k ∈ N and X1, · · · ,Xn be copies of X such that

E(Xi X
∗
j ) =

(

EXirXjℓ

)

r,ℓ≤k
= tIk, i 6= j.

Then, for any log-concave (on its support) function f : Rk → [0,+∞), we have that

E

(

n
∏

i=1

f(Xi)

)
1

n

≤
(

Ef(X)
p

n

)n
p

≤ Ef

(

1

n

n
∑

i=1

Xi

)

(2.15)

Note that, since f is log-concave we always have that
(
∏n

i=1 f(Xi)
)

1

n ≤ f
(

1
n

∑n
i=1 Xi

)

,

while equality is achieved if f(x) = e〈a,x〉+c, a ∈ R
k and c ∈ R.

Proof. The left-hand side inequality in (2.15), follows after the application of theorem
2.1 in the special case describing in lemma 2.8. Note that the assumption that f is
log-concave is not needed here. This inequality holds for any measurable function f .
To make this more precise, the following simple remark is helpful.

Remark 2.10. Let t ∈ [− 1
n−1 , 1] and X1, . . . ,Xn be standard Gaussian random vectors

in R
k satisfying the condition (2.14) of lemma 2.8. Thus X := (X1, . . . ,Xn), is a

centered Gaussian vector in R
kn with covariance matrix T = [Ti,j ]i,j≤n, with block entries

the k × k matrices Tii = Ik for every i = 1, . . . , n, and Tij = tIk, for i 6= j. If we set

p := (n− 1)t+ 1 and q := 1− t,

then it’s not hard to check that, for t ≤ 0 q is the biggest and p is the smallest singular
value of T . On the other hand, if t ≥ 0 then, p is the biggest singular value of T and q
is the smallest one. Thus we have that

(i) if t ≥ 0 then
qIkn ≤ T ≤ pIkn

(ii) if t ≤ 0 then
pIkn ≤ T ≤ qIkn

Thus, in the above situation, theorem 2.1 reads as follows:
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Theorem 2.11. Let k, n ∈ N, t ∈ [− 1
n−1 , 1] and let X1, . . . ,Xn be standard Gaussian

random vectors in R
k, with E[Xi ⊗X∗

j ] = tIk, for all i 6= j. Setting p := (n − 1)t + 1

and q := 1 − t, we have that for every set of measurable functions fi : R
k → [0,+∞),

i = 1, . . . , n,

(i) if t ∈ [0, 1], then

n
∏

i=1

(

Efi(Xi)
q
)1/q

≤ E

n
∏

i=1

fi(Xi) ≤
n
∏

i=1

(

Efi(Xi)
p
)1/p

, (2.16)

(ii) if t ∈ [− 1
n−1 , 0], then

n
∏

i=1

(

Efi(Xi)
p
)1/p

≤ E

n
∏

i=1

fi(Xi) ≤
n
∏

i=1

(

Efi(Xi)
q
)1/q

(2.17)

Now, the left-hand side inequality of (2.15), follows immediately from (2.16), by
taking fi = f for every i = 1, . . . , n.

In order to prove the right-hand side inequality of (2.15), we apply Barthe’s theorem,
using the decomposition of the identity (2.12). To do so we first state, in the following
lemma, some technical details we are going to need.

Lemma 2.12. Let Ui and Ei, i = 1, . . . , n the matrices defined in (2.10) and (2.11),
and set p = (n− 1)t+ 1, q = 1− t. Then

U∗
i =

√

p

n
en ⊗ Ik +

√

n− 1

n
q vi ⊗ Ik ∈ R

kn×k.

UiU
∗
j = 〈ui, uj〉Ik

UiE
∗
j =

√

n− 1

n
q 〈vi, ej〉Ik

for every i ≤ n and j ≤ n− 1.

Proof. The first and the second can be verified after some obvious and trivial compu-
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tations. For the third one, we have

UiE
∗
j = (u∗i ⊗ Ik)(e

∗
j ⊗ Ik)

∗

=

(

√

p

n
e∗n ⊗ Ik +

√

n− 1

n
q v∗i ⊗ Ik

)

(ej ⊗ Ik)

=

√

p

n
(e∗n ⊗ Ik)(ej ⊗ Ik) +

√

n− 1

n
q (v∗i ⊗ Ik)(ej ⊗ Ik)

=

√

p

n
e∗nej ⊗ Ik +

√

n− 1

n
q v∗i ej ⊗ Ik

=

√

p

n
〈en, ej〉Ik +

√

n− 1

n
q 〈vi, ej〉Ik

= O+

√

n− 1

n
q 〈vi, ej〉Ik.

To this end, we will apply Barthe’s theorem 2.2, using the decomposition of the identity
appearing in (2.12). More precisely, we choose the parameters: n ↔ kn, m := 2n − 1,
ni := k for all i = 1, . . . , 2n− 1, and

ci :=

{

1
p , i = 1, . . . , n
nt
p , i = n+ 1, . . . , 2n− 1

and we apply theorem 2.2 to the functions,

f̃i(x) :=

{

f(x)
p

n , i = 1, . . . , n
1 , i = n+ 1, . . . , 2n− 1

, x ∈ R
k

and

h(x) := f

(

1

n

n
∑

i=1

Uix

)

, x ∈ R
kn.

10



Note then that under lemma 2.12, we have that for every ξj ∈ R
k, j = 1, . . . , n,

h





n
∑

j=1

1

p
U∗
j ξj +

n−1
∑

a=1

nt

p
E∗

aξn+a





= f





1

n

n
∑

i=1

n
∑

j=1

1

p
UiU

∗
j ξj +

1

n

n
∑

i=1

n−1
∑

a=1

nt

p
UiE

∗
aξn+a





= f





1

n

n
∑

i=1

n
∑

j=1

1

p
UiU

∗
j ξj +

1

n

n
∑

i=1

n−1
∑

a=1

nt

p

√

n− 1

n
q〈vi, ea〉ξn+a





= f





1

n

n
∑

i=1

n
∑

j=1

1

p
UiU

∗
j ξj





(

since
∑

vi = 0
)

= f





1

n

n
∑

i=1

n
∑

j=1

1

p
〈ui, uj〉ξj





= f





1

n

n
∑

i=1

(1

p
ξi +

∑

j 6=i

t

p
ξj

)





= f

(

1

n

n
∑

i=1

(1

p
+ (n− 1)

t

p

)

ξi

)

= f

(

1

n

n
∑

i=1

ξi

)

≥
n
∏

i=1

f(ξi)
1

n =
n
∏

i=1

(

f(ξi)
p

n

)
1

p
=

n
∏

i=1

f̃(ξi)
ci

Thus, theorem 2.2 gives that

Ef

(

1

n

n
∑

i=1

Xi

)

= Ef

(

1

n

n
∑

i=1

UiZ

)

≥
n
∏

i=1

(

Ef(Xi)
p

n

)
1

p
=
(

Ef(X)
p

n

)
n
p

(2.18)

and the proof is complete

Proof of theorem 1.1. Suppose first that X ∼ N(0, Ik). Then, under the notation of
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lemma 2.8 we have that

1

n

n
∑

i=1

UiZ =
1

n

n
∑

i=1

√

p

n
(e∗n ⊗ Ik)Z +

1

n

n
∑

i=1

√

n− 1

n
q (v∗i ⊗ Ik)Z

=

√

p

n
(e∗n ⊗ Ik)Z +

1

n

√

n− 1

n
q

(

n
∑

i=1

v∗i

)

⊗ Ik Z

=

√

p

n
EnZ +

1

n

√

n− 1

n
q

(

n
∑

i=1

vi

)∗

⊗ Ik Z

=

√

p

n
Zn.

Thus, the right hand side of (2.15) can be written as

Ef

(
√

p

n
X

)

≥
(

f(X)
p

n

)n
p
. (2.19)

where p = (n− 1)t+ 1, n ∈ N, and t ∈ [0, 1].

Consequently, if f : Rk → [0,+∞) is a log-concave function and r ∈ (0, 1], then

there exist, t ∈ [0, 1] and n ∈ N, such that r = p
n = (n−1)t+1

n , and so by (2.19) we get
that

Ef
(√

rX
)

≥ (Ef(X)r)
1

r (2.20)

for every r ∈ (0, 1]. We deal independently with the case where r = 0. Since f is
log-concave, there exists a convex function v : Rk 7→ R, such that f = e−v. Then for
r = 0, inequality (1.1) is equivalent to Jensen’s inequality

v(0) = v(EX) ≤ Ev(X), (2.21)

and the proof of (1.1) is now complete.

For every q ≥ 1 consider r = 1
q ∈ (0, 1]. Let F (x) = f(x/

√
r)1/r which is also

log-concave and so (2.20) for F and r implies

Ef(X)q ≥
(

Ef(
√
qX)

)q
, (2.22)

and (1.2) follows.

Assume now that g : Rn → [0,+∞) is log-convex and r ∈ (0, 1]. By the log-convexity
of g and theorem 2.11(i), we have that

Eg

(

1

n

n
∑

i=1

Xi

)

≤ E

n
∏

i=1

g(Xi)
1

n ≤
(

Eg(Z)
p

n

)
n
p
. (2.23)
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As we have seen at the beginning of the proof, we have that 1
n

∑n
i=1 Xi ∼

√

p
n X. So,

using (2.23) for t ∈ [0, 1] and n ∈ N such that p
n = (n−1)t+1

n = r, we derive that

Eg
(√

rZ
)

≤ (Eg(Z)r)
1

r .

for every r ∈ (0, 1]. The rest of the proof for a log-convex function g is identical to the
log-concave one.

Finally for the equality case, a straightforward computation shows that for f(x) =
e〈a,x〉+c, we have that

Ef(
√
qX) = C exp

(q

2
|a|2
)

=
(

Ef(X)q
)

1

q .

for every q ≥ 0.

At the end, suppose that X is a general Gaussian random vector in R
k with expectation

ξ ∈ R
k and covariance matrix T = UU∗ where U ∈ R

k×k. Note, that if f is a log-concave
(or log-convex) and positive function on R

k, then so is F (x) := f(Ux − ξ). Moreover,

if Z ∼ N(0, Ik) then UZ − ξ
d
= X ∼ N(0, T ). Thus, we get the general theorem by

applying the previous case with function F .

3 Entropy Inequalities and Stability in Log-Sobolev

Proposition 3.1. Let X be a Gaussian random vector in R
k, and f : Rk → [0,+∞).

Then,

(i) if f is log-concave, then

EntX(f) ≥ 1

2
E〈X,∇f(X)〉 (3.1)

(ii) if f is log-convex, then

EntX(f) ≤ 1

2
E〈X,∇f(X)〉 (3.2)

In any case, one has equality when f(x) = exp
(

〈a, x〉 + c
)

, a ∈ R
k, c ∈ R.

Proof. Let M(q) :=
(

Ef(X)q
)

1

q and H(q) := Ef(
√
qX). Then we have that

M(1) = Ef(X) = H(1) and M ′(1) = EntX(f) , H ′(1) =
1

2
E〈X,∇f(X)〉.

Thus, Theorem 1.1 immediately implies the desired result.
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Gaussian random vectors have a special property known as the Gaussian Integration
by Parts formula, which we state in the next lemma (see [16, Appendix 4] for a simple
proof).

Lemma 3.2. Let X,Y1, . . . , Yn be centered jointly Gaussian random variables, and F
be a real valued function on R

n, that satisfy the growth condition

lim
|x|→∞

|F (x)| exp
(

−a|x|2
)

= 0 ∀ a > 0. (3.3)

Then

EXF (Y1, . . . , Yn) =

n
∑

i=1

EXYi E∂iF (Y1, . . . , Yn). (3.4)

Involving the Gaussian Integration by Parts formula, we can further elaborate proposi-
tion 3.1 in order to prove theorem 1.2.

More precisely, let Gk, be the class all the functions in R
k, such that their first

derivatives satisfy the growth condition (3.3). Then for any f ∈ Gk, lemma 3.2 implies
that

E〈X,∇f(X)〉 =
k
∑

i=1

EXi∂if(X) =
k
∑

i=1

k
∑

j=1

EXiXj E∂ijf(X) = E tr
(

THf (X)
)

. (3.5)

where, Hf (x) stands for the Hessian matrix of f at x ∈ R
k. In the special case where

X ∼ N(0, Ik), we have proved the following

Corollary 3.3. Let k ∈ N, and X be a standard Gaussian vector in R
k. Then

(i) for every log-concave function f ∈ Gk we have that

EntX(f) ≥ 1

2
E∆f(X), (3.6)

(ii) for every log-convex function f ∈ Gk we have that

EntX(f) ≤ 1

2
E∆f(X). (3.7)

Proof of Theorem 1.2. Let f ∈ L2,1(γk), and without loss of of generality we may also
assume that Ef2(X) = 1. Suppose first that f has a bounded support. Then f2 ∈ Gk,
and so Corollary 3.3, after an application of the chain rule 1

2∆f2 = |∇f |2 + f∆f , gives
that

E|∇f(X)|2 + Ef(X)∆f(X) ≤ EntX(f2) ≤ 2E|∇f(X)|2 (3.8)
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Finally, for f = e−v, where v : supp(f) → R is a convex function, and by another
application of the chain rule:

f∆f = f2|∇v|2 − f2∆v = |∇f |2 − f2∆v,

we get that
Ef(X)∆f(X) = E|∇f(X)|2 − Ef(X)2∆v(X). (3.9)

Equation (3.8) combined with (3.9), proves theorem 1.2 in this case.

In order to drop the assumption of the bounded support, we proceed with a standard
approximation argument. We consider the functions fn := f 1nBk

2

, where 1nBk
2

is the

indicator function of the Euclidean Ball in R
k with radius n ∈ N. Then, every fn

has bounded support and we also have that 0 ≤ fn ր f , 0 ≤ |∇fn|2 ր |∇f |2, and
0 ≤ f2

n∆vn ր f2∆v. Thus by the monotone convergence theorem

E|∇fn(X)|2 −→ E|∇f(X)|2 < ∞ and Efn(X)2∆vn(X) −→ Ef(X)2∆v(X) (3.10)

Moreover, f2
n log f

2
n → f2 log f2 and |f2

n log f
2
n| ≤ |f2 log f2|, for every n ∈ N (where we

have taken that 0 log 0 = 0). By Gross’ inequality |f2 log f2| ∈ L1(γk), and so after
applying the Lebesgue’s dominated convergence theorem we also get that

EntX(f2
n) −→ EntX(f2). (3.11)

Since equation (1.4) holds true for every fn, we pass to the limit using (3.10) and (3.11),
and we get that (1.4) is also true for f . Theorem is now proved.
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random vectors. Adv. in Math. 280, pp. 643-689 (2015).

15



[8] M. Fathi, E. Indrei, and M. Ledoux. Quantitative logarithmic Sobolev inequalities and stability esti-

mates. to appear in Discrete and Continuous Dynamical Systems. arXiv:1410.6922.

[9] A. Figalli, F. Maggi and A. Pratelli. Sharp stability theorems for the anisotropic Sobolev and log-

Sobolev inequalities on functions of bounded variation. Advances in Mathematics 242, pp. 80101
(2013).

[10] L. Gross. Logarithmic Sobolev inequalities. American Journal of Math. 97, pp. 1061-1083 (1975).

[11] E. Indrei and D. Marcon Quantitative Log-Sobolev Inequality for a Two Parameter Family of Func-

tions. International Mathematics Research Notices, 20, pp. 55635580 (2014).

[12] E. H. Lieb. Gaussian kernels have only Gaussian maximizers. Inv. Math., 102, pp. 179-208 (1990).

[13] E.H.Lieb, M. Loss. Analysis, Second Edition. Graduate Studies in Mathematics, vol 14. American
Mathematical Society (2001).

[14] E. Mossel, K. Oleszkiewicz and A. Sen. On reverse Hypercontractivity. Geom. and Funct. Analysis,
23, no. 3, pp. 1062-1097 (2013).

[15] E. Nelson. The free Markov field. Journal of Funct. Analysis, 12, pp. 211-227 (1973).

[16] M. Talagrand. Mean Field Models for Spin Glasses. Volume I Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 54, Springer, Berlin (2010).

[17] C. Villani. Topics in optimal transportation. Graduate Studies in Mathematics, vol 58. American
Mathematical Society (2003).

[18] C. Villani. Optimal transport. Old and new. Grundlehren der mathematischen Wissenschaften vol
338. Springer, Berlin (2009).

Nikos Dafnis Grigoris Paouris
Department of Mathematics Department of Mathematics
Technion - Israel Institute of Technology Texas A&M University
Haifa 32000 College Station, TX 77843
Israel USA
nikdafnis@gmail.com grigorios.paouris@gmail.com

16

http://de.arxiv.org/abs/1410.6922

	1 Introduction and main results
	2 Proof of the main result
	2.1 Decomposing the identity
	2.2 Proof of theorem ??

	3 Entropy Inequalities and Stability in Log-Sobolev

