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Origins of Local Theory Banach’s problem

Modes of convergence

Let (X , ∥ · ∥) be a normed space and let (xn) ⊂ X .

Absolute Convergence (AC):
∑

∥xn∥ < ∞.
Unconditional Convergence (UC): ∀ εn = ±1 =⇒

∑
εnxn converges.

(AC) ⇒ (UC). [m < n,
∥∥∑n

k=m+1 εkxk
∥∥ ≤

∑n
k=m+1 ∥xk∥.]

(AC) ⇐ (UC) ?
▶ Yes, if dimX < ∞.

[On R choose εi = sgn(xi ).]
▶ No, if X is infinite Hilbert space.

[Let (xn) be o.s. Pythagoras’s thm
∥∥∑n

i=m+1 εixi
∥∥2

=
∑n

i=m+1 ∥xi∥2.

Question (Banach 1932): Is it true that if (AC) ⇐⇒ (UC) on X , then
dimX < ∞ ?
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Origins of Local Theory Banach’s problem

The Dvoretzky-Rogers lemma

Early (negative) results by Orlicz, Macphail, . . .
Dvoretzky, Rogers (1950): (AC) ⇐⇒ (UC) on X iff dimX < ∞.
Why? All high-dimensional normed spaces contain relatively large
Besselian systems. They proved the following local phenomenon:

Lemma (Dvoretzky, Rogers 1950)
Let (X , ∥ · ∥) be a normed space and let F ⊂ X with dimF = n. Then,
there exist m ≥

√
n and x1, . . . , xm ∈ F with ∥xj∥ = 1 such that∥∥∥∥∥∥

m∑
j=1

αjxj

∥∥∥∥∥∥ ≤ 2

√√√√ m∑
j=1

α2
j , ∀ (αj) ⊂ R.
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Origins of Local Theory Grothendieck’s question

A question of Grothendieck

In fact, Dvoretzky and Rogers proved the following:

1√
3
max
j≤m

|αj | ≤

∥∥∥∥∥∥
m∑
j=1

αjxj

∥∥∥∥∥∥ ≤ 2

√√√√ m∑
j=1

α2
j , ∀ (αj) ⊂ R.

Question (Grothendieck, 1950): Is it possible to have a two-sided ℓ2
estimate and m = m(n) → ∞ as n → ∞?
Let k = k(n, ε) be the largest k for which any n-dimensional space
(X , ∥ · ∥) admits vectors x1, . . . , xk such that

(1 − ε)

∑
j

α2
j

1/2

≤

∥∥∥∥∥∥
∑
j

αjxj

∥∥∥∥∥∥ ≤ (1 + ε)

∑
j

α2
j

1/2

, ∀(αj) ⊂ R.

Determine the asymptotic behavior of k(n, ε).
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Origins of Local Theory Grothendieck’s question

Dvoretzky’s theorem

Alternatively, for any normed space (X , ∥ · ∥) and for any ε > 0 define

k(X , ε) := sup
{
k ∈ N | ℓk2

1+ε
↪→ X

}
.

Then, we have

k(n, ε) := inf {k(X , ε) | dimX = n} .

Theorem (Dvoretzky, 1960)

For all n ∈ N and for any ε ∈ (0, 1) one has k(n, ε) ≥ cε
√
log n

log log n .

Fact. k(ℓn∞, ε) ≍ 1
log(1/ε) log n. Thus, k(n, ε) ≤ C

log(1/ε) log n.
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Randomized Dvoretzky Theorem Concentration of measure

V. Milman’s approach

1 Probabilistic method (sieving): Introduce a probability space with rdm
objects of interest, i.e., rdm operators

G = (gij) : Rk → X ≡ (Rn, ∥ · ∥), gij ∼ N(0, 1).

2 Concentration of measure: for arbitrary (but fixed) θ ∈ Sk−1 note that
Gθ

d
= Z ∼ N(0, In). Hence,

P
( ∣∣∥Gθ∥ − E∥Z∥

∣∣ > εE∥Z∥︸ ︷︷ ︸
Bθ

)
≤ 2e−cε2k(X ), k(X ) :=

(E∥Z∥)2

Lip2(∥ · ∥)
.

3 “Discretize” the sphere Sk−1 using a ε-net N with card(N ) ≤ (3/ε)k ;
apply the previous estimate to obtain

P(
⋃
θ∈N

Bθ) ≤ 2card(N )e−cε2k(X )≪ 1,

as long as k ≤ c
log(1/ε)ε

2k(X ).
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Randomized Dvoretzky Theorem Concentration of measure

V. Milman’s formula

Theorem (V. Milman, 1971)
Let X = (Rn, ∥ · ∥). Then, k(X , ε) ≥ c(ε)k(X ), where
c(ε) ≳ ε2

| log ε| , k(X ) := (E∥Z∥)2/Lip2(∥ · ∥), and Z ∼ N(0, In).

Choosing the linear structure appropriately first (before we apply the
aforementioned random procedure) to optimize the parameters, we
may achieve k(X ) ≥ ck(ℓ

⌊n/2⌋
∞ ) ≍ log n.

(V. Milman ’71). The log n in k(n, ε) is optimal.
Milman’s approach yields the existence of “many” (w.r.t. to the Haar
measure on Grassmannian) almost Euclidean subspaces (in some
canonical position of the ambient space).
Introduces the randomized Dvoretzky number kr (X , ε). Clearly,
k(X , ε) ≥ kr (X , ε).
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Randomized Dvoretzky Theorem Concentration of measure

Known results

Gordon (1985): Comparison theorems for Gaussian processes:
kr (X , ε) ≥ cε2 log n.
Schechtman (1989): kr (X , ε) ≥ cε2 log n. An approach closer to
Milman’s.
Schechtman (2006): k(X , ε) ≥ c ε

log2(1/ε) log n. In part random, in
part deterministic. Exploits a dichotomy between ℓ2 − ℓ∞ structure
due to Alon and Milman (1983).
More results for spaces with symmetries: ℓnp, subspaces of Lp (Figiel,
Lindenstrauss, Milman, Paouris, Zinn, V.); 1-symmetric(Bourgain,
Lindenstrauss, Tikhomirov); permutation invariant (Fresen).
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Optimal form of randomized Dvoretzky Superconcentration

Randomized Dvoretzky in ℓn∞

Recall that k(ℓn∞, ε) ≍ log n/| log ε|.
(Talagrand ’89, Schechtman ’06) If Z ∼ N(0, In), then for ε ∈ (0, 1)

ce−Cε log n ≤ P(|∥Z∥∞ − E∥Z∥∞| > εE∥Z∥∞) ≤ Ce−cε log n.

(Schechtman ’06, Tikhomirov ’13) kr (ℓ
n
∞, ε) ≍ ε

| log ε| log n.

Classical concentration (in terms of the Lipschitz constant) would only
yield

P(|∥Z∥∞ − E∥Z∥∞| > εE∥Z∥∞) ≤ Ce−cε2 log n, ε > 0.

What’s the cause for this inefficiency? The r.v. ∥Z∥∞ is
superconcentrated.
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Optimal form of randomized Dvoretzky Superconcentration

What is superconcentration?

(Chatterjee): Roughly speaking superconcentration happens when the
classical concentration techniques fail to provide optimal bounds.
The classical concentration (in terms of the Lipschitz constant) yields

Var[f (Z )] ≤ Lip2(f ), Z ∼ N(0, In).

For an improvement recall the Gaussian Poincaré inequality:

Var[f (Z )] ≤ E∥∇f (Z )∥2
2 ≤ Lip2(f ), Z ∼ N(0, In).

Superconcentration (formal definition): A function f : Rn → R is
εn-superconcentrated if

Var[f (Z )] ≤ εnE∥∇f (Z )∥2
2, Z ∼ N(0, In).

E.g. ∥Z∥∞ is 1
log n -superconcentrated. Note that ∥∇∥Z∥∞∥2 = 1 a.s.
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Optimal form of randomized Dvoretzky Superconcentration

A superconcentration phenomenon for norms

Theorem (Paouris, V., ’18)
For any norm ∥ · ∥ on Rn, there exists T ∈ GL(n) such that

P
(∣∣∥TZ∥ − E∥TZ∥

∣∣ > εE∥TZ∥
)
≤ 4e−cmax{ε,ε2} log n, ε > 0.

The ℓ∞-structure shows up as the approximate extremal.
Applying a net argument, we readily get that kr (X , ε) ≥ c ε

log(1/ε) log n.
Optimal for the randomized Dvoretzky in ℓn∞.
This result settles the problem of interdependence between ε and n in
the random version of Dvoretzky’s theorem.
It is currently the best known estimate in the existential form of the
theorem, too.
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Optimal form of randomized Dvoretzky Probabilistic dichotomies

Main tools in our approach

Probabilistic component: Quantifying the superconcentration via
Talagrand’s L1 − L2 bound.

Theorem (Talagrand 1994; Cordero-Erausquin, Ledoux 2013)
Let f : Rn → R be a sufficiently smooth . Then,

Var[f (Z )] ≤ C
n∑

j=1

E|∂j f (Z )|2

1 + log((E|∂j f (Z )|2)1/2/E|∂j f (Z )|)
.

Topological component: Balancing the L1-structure via the
Borsuk-Ulam theorem.

Theorem (Paouris, V., ’18)
Let X = (Rn, ∥ · ∥). Then, there exists S ∈ GL(n) such that ∀ε > 0,

P
(∣∣∥SZ∥ − E∥SZ∥

∣∣ > εE∥SZ∥
)
≤ 4 exp

(
− cε log

( en

(uncX )2
))

.
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Optimal form of randomized Dvoretzky Probabilistic dichotomies

Is it true that uncX ≪
√
dimX? No.

Figiel, Kwapien, Pelczynski (1977) and Figiel, Johnson (1980): There exist
spaces X with uncX ≥ c

√
dimX .

End of use of the previous result?
Combinatorial component: Precluding extreme (local) unconditional
structure.

Theorem (Alon, Milman, 1983; Talagrand 1995)

Let X = (Rn, ∥ · ∥) be in John’s position. Then, either k(X ) > cn1/3 or
there exists F ≤ X with dimF > cn1/2 and uncF ≪

√
dimF .

Putting everything together and “lifting” the constructed linear map we
obtain the desired result (in a form of probabilistic dichotomy).
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Epilogue Summary

Summary of the talk

Dvoretzky’s theorem: Every normed space X = (Rn, ∥ · ∥) contains
almost isometrically copies of ℓk2 for k = k(n, ε) → ∞ as n → ∞.
Randomized version due to V. Milman
▶ Concentration of measure phenomenon
▶ kr (n, ε) ≳ cε2 log n; (optimal in n).

Optimal form of randomized Dvoretzky
▶ Superconcentration: a more delicate concentration phenomenon
▶ Probabilistic dichotomies (Randomness & Structure): There are roughly

two heuristic principles that are responsible for uniformity in high-dimensional
structures. Either they have relatively large “typical” parts in which case they
are described by the classical concentration, or they contain an extremal
geometric (or combinatorial) structure which endows the system with
superconcentration properties.

▶ kr (n, ε) ≍ ε
log(1/ε) log n; (optimal in ℓn∞).

Existential form of Dvoretzky’s theorem/Grothendieck’s question
▶ Up-to-date bounds: cε

log(1/ε) log n ≤ k(n, ε) ≤ C
log(1/ε) log n.

▶ Conjecture (open): Is it true that k(n, ε) ≍ k(ℓn∞, ε) ≍ 1
log(1/ε) log n?
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Epilogue Summary

The End

Thank you!
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