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Abstract

The Petty projection inequality is a fundamental affine isoperimetric principle for convex

sets. It has shaped several directions of research in convex geometry which forged new connec-

tions between projection bodies, centroid bodies, and mixed volume inequalities. We establish

several different empirical forms of the Petty projection inequality by re-examining these key

relationships from a stochastic perspective. In particular, we derive sharp extremal inequalities

for several multiple-entry functionals of random convex sets, including mixed projection bodies

and mixed volumes.

1 Introduction

1.1 The Petty projection inequality and its reach

Affine isoperimetric inequalities concern functionals on classes of sets in which ellipsoids play an
extremal role. Typically such inequalities involve convex bodies, taken modulo affine (or linear)
transformations, and are strictly stronger than their Euclidean counterparts. The standard isoperi-
metric inequality can be derived from several different affine strengthenings. Such affine inequalities
have come to form an integral part of convex geometry and have been extensively investigated within
Brunn-Minkowski theory; see the expository survey [22] and books [9, 34] for foundational work on
this subject.

A fundamental example is the Petty projection inequality. Recall that the projection body Π(K)
of a convex body K in R

n is defined as follows: given a direction θ on the sphere Sn−1, the support
function of Π(K) is the volume of orthogonal projection of K onto θ⊥ (see §2 for precise definitions).
We write Π◦(K) for the polar of the projection body. Petty’s inequality states that among all convex
bodies of the same volume, ellipsoids maximize the volume of the polar projection body. Formally,
it can be stated as

|Π◦(K)| ≤ |Π◦(K∗)| (1)

where K∗ = rBn2 is the centered Euclidean ball with radius r chosen to satisfy |K∗| = |rBn2 |.
The polar projection operator Π◦ satisfies Π◦(TK) = TΠ◦(K) for any volume-preserving affine
transformation T , which explains the use of ‘affine’ in this context.

Projection bodies are an important class of convex bodies in geometry and functional analysis
[2, 3, 14, 35]. The volume of Π◦(K) is related to the surface area S(K) via

ω1/n
n |Π◦(K)|−

1
n ≤ S(K),

where ωn = |Bn2 |; the latter follows directly from Cauchy’s formula and Hölder’s inequality (see [34,
Remark 10.9.1]). Thus Petty’s inequality implies the classical isoperimetric inequality for convex
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sets. Up to normalization, the surface area S(K) is one of the quermassintegrals of K, while the
quantity |Π◦(K)|−1/n is an affine quermassintegral ofK. Alexandrov’s inequalities state that among
convex bodies of a given volume, all quermassintegrals are minimized on balls (see [34, §7.4]) . In
a recent breakthrough [27], E. Milman and Yehudayoff proved that all affine quermassintegrals are
minimized on ellipsoids, verifying a long-standing conjecture of Lutwak. This result establishes
a family of affine inequalities that interpolate between the Petty projection inequality and the
fundamental Blaschke-Santaló inequality for the volume of the polar body of K. The latter is
equalivalent to the affine isoperimetric inequality, see e.g., [22].

Petty originally built on work of Busemann concerning the expected volume of random simplices
in convex bodies, and established what is known as the Busemann-Petty centroid inequality [30]. He
connected the latter to projection bodies [31] by using an inequality about mixed volumes, known
as Minkowski’s first inequality ([34, §7.2]), which asserts that

V1(K,L) ≥ |K|n−1|L|.

This idea was further developed by Lutwak and plays an important role in kindred inequalities (see
[22]).

Since Petty’s seminal work in 1972, his inequality has been proven by a number of different
methods, e.g., [22, 33, 26, 27]. Moreover, several generalizations of the inequality have been es-
tablished. In particular, Lutwak, Yang and Zhang introduced Lp and Orlicz versions of the pro-
jection body and proved the corresponding Petty inequalities [24, 25]. In [11, 1], a generalization
to Minkowski valuations was obtained (see also [18] for a characterization of the projection body
operator). Another generalization, established by Lutwak involves the notion of mixed projection
bodies. Let K1, · · · ,Kn−1 be convex sets in R

n. The support function of the mixed projection body
Π(K1, · · · ,Kn−1) in a direction θ is defined as the following mixed volume:

hΠ(K1,...,Kn−1)(θ) = nV (K1, . . . ,Kn−1, [0, θ]), (2)

where [0, θ] is the line segment joining the origin and θ. Lutwak established several inequalities
for mixed projection bodies, one of which gives Petty’s projection inequality as a special case [19,
Theorem 3.8]; namely,

|Π◦(K1, . . . ,Kn−1)| ≤ |Π◦(K∗
1 , . . . ,K

∗
n−1)|. (3)

Recent active investigation around the notion of the projection body with respect to other measures
and generalizations appear in [16, 15].

In this note we establish empirical versions of the Petty projection inequality and its generaliza-
tions for mixed projection bodies. The study of empirical versions of affine isoperimetric inequalities
for centroid bodies and their Lp-analogues was initiated by the first two authors in [28] and further
developed in [6]. A number of inequalities in Brunn-Minkowski theory have been shown to have
stronger empirical forms [29], but Petty’s projection inequality has eluded our previous efforts. In-
spired by recent results of E. Milman and Yehudayoff [27], and also by the approach of Campi and
Gronchi in [4], our work here is intended to fill this gap.

1.2 Empirical mixed projection body inequalities

Our main results concern randomly generated sets, obtained as linear images of a compact, convex
set C ⊆ R

m under an n×m random matrix X. Namely, we will consider sets of the form

XC = {c1X1 + . . .+ cNXN : (cj) ∈ C} ,

where X1, . . . , Xm are independent random vectors distributed according to densities of continuous
probability distributions on R

n. We will writeX# for the n×m random matrix that has independent
columns distributed according to f∗, the symmetric decreasing rearrangement of f (see § 2.3).

More generally, it will be convenient to work with matrices X whose column vectors are grouped
into blocks. Assume that {Xij} is a collection of independent random vectors such that Xij is
distributed according to fij , i = 1, . . . , n, j = 1, . . . ,mi, where mi ≥ 1. For ℓ = 1, . . . , n, we write

2



m(ℓ) = m1+ · · ·+mℓ, and form X = [X1 . . .Xℓ] with n×mi blocks Xi = [Xi1 . . .Ximi
]. We adopt

a similar convention for X
#, which consists of n ×mi blocks X

#

i = [X∗
i1 · · ·X

∗
imi

], where X∗
ij are

independent and distributed according to f∗
ij . For ease of reference, we summarize this notation in

Table 1.

n×m matrix
with ℓ blocks

n×mi block,
1 ≤ i ≤ ℓ

columns with
densities

X = [X1 . . .Xℓ] Xi = [Xi1 . . . Ximi
] Xij ∼ fij

X
# = [X#

1 . . .X
#

ℓ ] X
#

i = [X∗
i1 . . .X

∗
imi

] X∗
ij ∼ f∗

ij

Table 1: Random matrices with independent columns

With this notation, our first main result concerns mixed projection bodies of random sets gen-
erated by X and X

#.

Theorem 1.1 Let C1, . . . , Cn−1 be compact convex sets such that dim(Ci) = mi for i = 1, . . . , n−1
and let m = m1 + . . .+mn−1. Let X and X

# be n×m random matrices with ℓ = n− 1 in Table 1.
Then for any radial measure ν with a decreasing density,

Eν (Π◦(XC1, . . . ,XCn−1)) ≤ Eν (Π◦(X#C1, . . . ,X
#Cn−1)) .

A special case of central importance concerns the classical projection body operator. Taking
ℓ = 1 and writing m = m(1) = m1 and C = C1 = . . . = Cn, we have the following consequence.

Theorem 1.2 Let C be a compact convex set in R
m. Let X and X

# be n×m random matrices with
independent columns distributed according to f and f∗, respectively. Then for any radial measure ν
with a decreasing density,

Eν(Π◦(XC)) ≤ Eν(Π◦(X#C)).

Theorem 1.2 extends the Petty projection inequality (1) in various ways. Indeed, let K be a
convex body in R

n and let X1, . . . , Xm be independent random vectors drawn uniformly from K.
We denote their convex hull by

[K]m = conv{X1, . . . , Xm}.

In matrix notation, we have [K]m = XSm, where X = [X1 . . . Xm] and Sm is the simplex Sm :=
conv{e1, . . . , em}. Thus if ν is Lebesgue measure, the above theorem states that

E|Π◦([K]m)| ≤ E|Π◦([K∗]m)|. (4)

Note that Π◦([K∗]m) is not a ball and the above statement does not follow from Petty’s inequality.
However, when m → ∞, we get that [K]m → K, which implies Π◦([K]m) → Π◦(K), hence (1)
follows from (4). The inequality ν (Π◦(K)) ≤ ν (Π◦(K∗)) that we get from Theorem 1.2 as m→ ∞
can also be directly obtained by adapting the proof of Petty’s inequality in [27, Section 8.2].

More generally, let K and L be convex bodies in R
n and assume that the columns of X1 and

X2 are distributed according to 1
|K|1K and 1

|L|1L. For p1, p2 ≥ 1, we define [K]p1m1
= X1B

m1
p1 and

[L]p2m2
= X2B

m2
p2 , we have

Eν(Π◦([K]p1m1
+p [L]

p2
m2

)) ≤ Eν(Π◦([K∗]p1m1
+p [L

∗]p2m2
)), (5)

where +p denotes Lp-addition of sets p ≥ 1 (see § 2); in fact, we can accommodate more general
M -addition and Orlicz addition operations (see § 2). In a similar manner, Theorem 1.1 implies

Eν(Π◦([K]p1m1
, . . . , [K]pn−1

mn−1
)) ≤ Eν(Π◦([K∗]p1m1

, . . . , [K∗]pn−1

mn−1
)) (6)

where we used the same notation as above. When ν is the Lebesgue measure, then (6) can be seen
as a local version of (3) for natural families of random convex sets associated to K1, . . . ,Kn−1.
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Further specializing to the case when p1 = . . . = pn−1 = ∞, we get a corollary for the mixed
projection body of centroid bodies. Recall that the centroid body Z(L) of a convex body L in R

n

is defined by its support function via

hZ(L)(u) =
1

|L|

∫

L

|〈x, u〉|dx.

The Busemann-Petty centroid inequality mentioned above is a sharp extremal inequality for the
volume of Z(K), which heavily influenced affine isoperimetric principles [22] and the development
of Lp-Brunn–Minkowski theory [24, 25].

A stochastic notion of centroid bodies was developed in [28], which defines a random variant
Zm(L) of L as the body with support function

hZm(L)(u) =
1

m

m∑

i=1

|〈Xi, u〉|,

whereX1, . . . , Xm are independent and identically distributed according to the normalized Lebesgue
measure on L. Our next result concerns mixed projection bodies of independent empirical centroid
bodies Zm(K1), . . . , Zm(Kn−1) whose support function is given by

hΠ(Zm(K1),...,Zm(Kn−1))(y) = nV (Zm(K1), . . . , Zm(Kn−1), [0, y]).

Corollary 1.3 Let K1, . . . ,Kn−1 be convex bodies in R
n and let Zm(K1), . . . , Zm(Kn−1) be inde-

pendent empirical centroid bodies. Then

Eν(Π◦(Zm(K1), . . . , Zm(Kn−1))) ≤ Eν(Π◦(Zm(K∗
1 ), . . . , Zm(K

∗
n−1))).

We note that when m→ ∞,

V (Zm(K1), . . . , Zm(Kn−1), [0, y]) → c̃n

∫

K1

· · ·

∫

Kn−1

|det[x1, . . . xn−1, y]|dx1 . . . dxn−1 (7)

where we use [34, eq. (5.81)]. Haddad recently established a family of isoperimetric inequalities for
a new class of convex bodies [12] that are defined using similar determinantal expressions as in (7)
and their Lp-generalizations. Our work shows that such bodies arise naturally as limiting cases of
mixed projection bodies of random sets in Theorem 1.1 when the Ci’s are chosen to be cubes.

1.3 Empirical mixed volume inequalities

We also present an alternate empirical version of Petty’s projection inequality. This approach is
inspired by the proof of the inequality based on Busemann-Petty centroid inequality and Minkowski’s
first inequality [22, 34]. We will use an empirical approximant of centroid bodies, defined as follows.
For each convex body L in R

n, we use the notation [L]∞m2
= X2B

m2
∞ ; this is nothing but the

Minkowski sum of m2 random segments [−X2j , X2j ], where X21, . . . , X2m2
are independent random

vectors sampled according to 1
|L|1L, i.e.,

[L]∞m2
=

m2∑

j=1

[−X2j , X2j].

Note that 1
m [L]∞m = Zm(L). Using this notation with L = Π◦(K), we establish a sharp extremal

inequality for the following quantity:

EV1([K]m1
, [Π◦(K)]∞m2

)

=
1

|K|m1

1

|Π◦(K)|m2

∫

Km1

∫

(Π◦(K))m2

V1


conv{x11, . . . , x1m1

},

m2∑

j=1

[−x2j , x2j ]


 dx11 . . . dx1m1

dx21 . . . dx2m2
;

here we implicitly assume that the m1 random vectors from K and m2 random vectors from Π◦(K)
are independent. With these notational conventions, we have the following theorem.
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Theorem 1.4 Let K be a convex body in R
n and m1,m2 ≥ n. Then

EV1([K]m1
, [Π◦(K)]∞m2

) ≥ EV1([K
∗]m1

, [(Π◦(K))
∗
]∞m2

).

As we will explain at the end of § 7, when m1,m2 → ∞, Theorem 1.4 also implies Petty’s
inequality (1).

For the proof of Theorem 1.4 we first need to establish an empirical version of Minkowski’s first
inequality which we believe is of independent interest. In fact, we establish a generalization of the
latter, stated as follows.

Theorem 1.5 Let C1, . . . , Cn be compact convex sets such that Ci ⊆ R
mi , mi ≥ 1, and set m =

m1 + . . .+mn. Let X and X
# be n×m random matrices with ℓ = n in Table 1. Then

EV (XC1, . . . ,XCn) ≥ EV (X#C1, . . . ,X
#Cn).

Consequently, for any k = 1, . . . , n− 1,

EV (XC1, . . . ,XCk;B
n
2 , n− k) ≥ EV (X#C1, . . . ,X

#Ck;B
n
2 , n− k).

Theorem 1.4 follows directly from the latter theorem since

EV1([K]m1
, [Π◦(K)]∞m2

) = EV1(X1Sm1
,X2B

m2
∞ ).

In each of Theorems 1.1, 1.4 and 1.5, we have used a single matrix X with columns arranged
in blocks Xi according to Table 1, and multiple bodies C1, . . . , Cn. When the Ci are all equal to a
given compact convex set C in R

m1 , we have

V (XC1, . . . ,XCn) = V (X1C, . . . ,X1C) = |X1C|,

and only the first block X1 is involved in the expression; in particular, the block matrices in the
above mixed entry functional are dependent. When the Ci’s are compact convex sets placed in
consecutive orthogonal subspaces R

mi , then the use of independent blocks Xi allows for distinct
entries in

V (XC1, . . . ,XCn) = V (X1C1, . . . ,XnCn)

and all blocksXi ofX are used (and are independent). The block notation forX also accommodates
scenarios between these two extremes, where some of the Ci’s are repeated while others are taken
in orthogonal subspaces.
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dation grant #635531. The third-named author was supported in part by NSERC Grant no 2022-
02961.

2 Preliminaries

2.1 Convex bodies and mixed volumes

We work in Euclidean space R
n and use | · | for the n-dimensional Lebesgue measure. The unit

Euclidean ball in R
n is Bn2 , while the unit sphere is Sn−1. We use PH to denote the orthogonal

projection onto a subspace H . We write u⊥ = {x ∈ R
n : 〈x, u〉 = 0} for the (n − 1)-dimensional

subspace of Rn that is orthogonal to u ∈ Sn−1.
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A convex bodyK ⊂ R
n is a compact, convex set with non-empty interior. The set of all compact,

convex sets is denoted by Kn. We say that K is origin-symmetric if K = −K. We also say that K is
1-unconditional ifK is symmetric with respect to reflections in the standard coordinate hyperplanes.

The support function of K ∈ Kn is defined by

hK(x) = max
y∈K

〈x, y〉 , x ∈ R
n.

The polar body K◦ of an origin-symmetric convex body K in R
n is defined as K◦ = {x ∈ R

n :
hK(x) ≤ 1}. The gauge function (or Minkowski functional) of an origin-symmetric convex body K is
defined as ||x||K = inf{t ≥ 0 : x ∈ tK}. IfK contains the origin in its interior, then ||x||K = hK◦(x).

The Minkowski combination of K1, . . . ,Km ∈ Kn is defined as

λ1K1 + · · ·+ λmKm = {λ1x1 + · · ·+ λmxm : xi ∈ Ki}

where λ1, . . . , λm ≥ 0. The Minkowski theorem on volume of Minkowski combinations says that

|λ1K1 + · · ·+ λmKm| =

m∑

i1,...,in=1

λi1 · · ·λinV (Ki1 , . . . ,Kin).

The coefficient V (Ki1 , . . . ,Kin) is the mixed volume ofKi1 , . . . ,Kin ; when the last bodyKin appears
ℓ times, we write V (Ki1 , . . . ,Kiℓ ;Kin , ℓ), where 1 ≤ ℓ ≤ n. For K,L ∈ Kn and 0 ≤ i ≤ n, we write
Vi(K,L) to denote the mixed volume of K repeated n− i times and L repeated i times.

If K1, . . . ,Kn−1 are convex bodies in R
n and u ∈ Sn−1, then we write v(Pu⊥K1, . . . , Pu⊥Kn−1)

for the (n− 1)-dimenisonal mixed volume of Pu⊥K1, . . . , Pu⊥Kn−1 in u⊥. It is known (see e.g. [34,
p. 302]) that for u ∈ Sn−1,

v(Pu⊥K1, . . . , Pu⊥Kn−1) = nV (K1, . . . ,Kn−1, [0, u]) (8)

where [0, u] denotes the line segment connecting the origin and u.
The projection body ΠK of a convex body K is defined as the origin-symmetric convex body

such that hΠK(u) = |Pu⊥K| for all u ∈ Sn−1. It follows from (8) that hΠK(u) = nV1(K, [0, u]) for
u ∈ Sn−1. We will denote the polar projection body (ΠK)◦ by Π◦K.

More generally, the mixed projection body Π(K1, . . . ,Kn−1) of the convex bodies K1, . . . ,Kn−1

is defined by

hΠ(K1,...,Kn−1)(u) = v(Pu⊥K1, . . . , Pu⊥Kn−1) = nV (K1, . . . ,Kn−1, [0, u])

for all u ∈ Sn−1, where we used (8) in the last identity. The polar of the mixed projection body
Π◦(K1, . . . ,Kn−1) is defined as (Π(K1, . . . ,Kn−1))

◦ so that

||θ||Π◦(K1,...,Kn−1) = nV (K1, . . . ,Kn−1, [0, θ]).

For background on mixed projection bodies, see [21] and [34].

2.2 Lp and M-addition operations

We recall the notion of Lp-addition of convex bodies from Lp-Brunn–Minkowski theory, e.g. [8, 20,
23]. For K,L ∈ Kn containing the origin and p ≥ 1, we will write K +p L for their Lp-sum, i.e.,

hpK+pL
(u) = hpK(u) + hpL(u), u ∈ R

n. (9)

A general framework for addition of sets, called M -addition, was developed by Gardner, Hug
and Weil [10]. LetM be an arbitrary subset of Rm and define the M -combination ⊕M (K1, . . . ,Km)
of arbitrary sets K1, . . . ,Km in R

n by

⊕M (K1, . . . ,Km) =

{
m∑

i=1

aixi : xi ∈ Ki, (a1, . . . , am) ∈M

}
.
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If M = {(1, 1)} and K1, and K2 are convex sets, then K1 ⊕M K2 = K1 + K2, i.e., ⊕M is
the usual Minkowski addition. If M = Bnq , q ≥ 1 with 1/p+ 1/q = 1, and K1 and K2 are origin-
symmetric convex bodies, then K1⊕MK2 = K1+pK2, i.e., ⊕M corresponds to Lp-addition as in (9).
More generally, let ψ : [0,∞)2 → [0,∞) be convex, increasing in each argument, and ψ(0, 0) = 0,
ψ(1, 0) = ψ(0, 1) = 1. Let K and L be origin-symmetric convex bodies and let M = B◦

ψ , where

Bψ = {(t1, t2) ∈ [−1, 1]2 : ψ(|t1|, |t2|) ≤ 1}. Then we define K +ψ L to be K ⊕M L. In this way,
M -addition encompasses previous notions of Orlicz addition, e.g. [25].

It was shown in [10, Section 6] that when M is 1-unconditional and K1, . . . ,Km are origin-
symmetric and convex, then ⊕M (K1, . . . ,Km) is origin-symmetric and convex. For our purposes,
for such M and C1, . . . , Cm, we have

⊕M (X1C1, . . . ,XnCn) = [X1 · · ·Xn]⊕M (C1, . . . , Cn); (10)

see [29, Sections 4 and 5] for further background, details and references.

2.3 Symmetrization of sets and functions

Let K ∈ Kn and u ∈ Sn−1. We define fK : Pu⊥K → R by

fK(x) = sup{λ : x+ λu ∈ K}

and gK : Pu⊥K → R by
gK(x) = inf{λ : x+ λu ∈ K}.

Notice that −fK and gK are convex functions.
The Steiner symmetral of a non-empty Borel set A ⊆ R

n of finite measure with respect to u⊥,
denoted here by Su⊥A, is constructed as follows: for each line l orthogonal to u⊥ such that l ∩A is
non-empty and measurable, the set l ∩ Su⊥A is a closed segment with midpoint on u⊥ and length
equal to the one-dimensional measure of l ∩A. In particular, if K is a convex body

Su⊥K =

{
x+ λu : x ∈ Pu⊥K,−

fK(x)− gK(x)

2
≤ λ ≤

fK(x) − gK(x)

2

}
.

This shows that Su⊥K is convex, since the function fK − gK is concave. Moreover, Su⊥K is
symmetric with respect to u⊥, it is closed, and by Fubini’s theorem it has the same volume as K.

For a Borel set A ⊂ R
n with finite volume, the symmetric rearrangement A∗ of A is the open

Euclidean ball centered at the origin whose volume is equal to the volume of A. The symmetric
decreasing rearrangement of 1A is defined as 1∗

A = 1A∗ . It will be convenient to use the following
bracket notation for indicator functions:

1A(x) = Jx ∈ AK . (11)

Let f : Rn → R+ be an integrable function. Its layer-cake representation is given by

f(x) =

∫ ∞

0

Jx ∈ {f > t}K dt. (12)

The symmetric decreasing rearrangement f∗ of f is defined by

f∗(x) =

∞∫

0

Jx ∈ {f > t}∗K dt.

The function f∗ is radially-symmetric, radially decreasing and equimeasurable with f , i.e. {f > t}
and {f∗ > t} have the same volume for each t > 0. For integrable functions f , the Steiner symmetral
f∗(·|u) of f with respect to u⊥ is defined as follows:

f∗(x|u) =

∫ ∞

0

Jx ∈ Su⊥{f > t}K

In other words, we obtain f∗(·|u) by rearranging f along every line parallel to u. For more back-
ground on rearrangements, see [17].
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3 Convexity and rearrangement inequalities

3.1 Shadow systems

Rogers–Shephard [32] and Shephard [36] systematized the use of Steiner symmetrization as a means
of proving geometric inequalities with their introduction of linear parameter systems and shadow
systems, respectively. A linear parameter system is a family of sets

Kt = conv{xi + αitu : i ∈ I}, (13)

where {αi}i∈I and {xi}i∈I are bounded sets, and I is an index set. For a unit vector u ∈ R
n and a

convex body C in R
n+1 = R

n ⊕ R, a shadow system is a family of sets of the form

Kt = PtC,

where Pt : R
n+1 → R

n is the projection parallel to en+1 − tu. Setting

C = conv{x+ α(x)en+1 : x ∈ K ⊆ e⊥n+1}

where α is a bounded function on K, gives rise to the shadow system for t ∈ [0, 1],

Kt = conv{x+ tα(x) : x ∈ K}.

The choice of α(x) = −g(Pu⊥x)− f(Pu⊥x) has the property that K0 = K, while K1/2 is the Steiner

symmetral of K about u⊥, and K1 is the reflection of K about u⊥. For background on linear
parameter systems and shadow systems, we refer to [34, 4].

We will make essential use of the following fundamental theorem of Shephard

Theorem 3.1 Let K1
t , . . . ,K

n
t be shadow systems in common direction u. Then

[0, 1] ∋ t 7→ V (K1
t , . . . ,K

n
t )

is convex.

3.2 Analytic tools

A non-negative, non-identically zero function f is called log-concave if log f is concave on {f > 0}.
We note that if f is a convex function, then the function Jf(x) ≤ 1K is log-concave. Also, f is
quasi-concave if for all t the set {x : f(x) > t} is convex, and f is quasi-convex if for all t the set
{x : f(x) ≤ t} is convex.

The Prékopa–Leindler inequality states that for 0 < λ < 1 and functions f, g, h : Rn → R+ such
that for any x, y ∈ R

n

h(λx + (1− λ)y) ≥ f(x)λg(y)1−λ,

the following inequality holds

∫

Rn

h ≥

(∫

Rn

f

)λ(∫

Rn

g

)1−λ

.

We will use the following consequence of the Prékopa–Leindler inequality: if f : Rn × R
m → R+ is

log-concave, then

g(x) =

∫

Rm

f(x, y)dx

is a log-concave function on R
n; see [13].

We also make use of Christ’s form [5] of the Rogers–Brascamp–Lieb–Lutinger inequality, see the
survey [29] for the related inequalities, their applications and further references.
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Theorem 3.2 Let f1, . . . , fm : Rn → R+ be integrable functions and let F : (Rn)m → R+. Suppose
that F satisfies the following condition: for any u ∈ Sn−1 and for any ω = (ω1, . . . , ωm) ⊂ u⊥,
the function Fu,ω : Rm → R+ defined by Fu,ω(t1, . . . , tm) = F (ω1 + t1u, . . . , ωm + tmu) is even and
quasi-concave. Then

∫

Rn

· · ·

∫

Rn

F (x1, . . . , xm)

m∏

i=1

fi(xi)dx1 . . . dxm ≤

∫

Rn

· · ·

∫

Rn

F (x1, . . . , xm)

m∏

i=1

f∗
i (xi)dx1 . . . dxm.

When each Fu,ω is even and quasi-convex, then the inequality in Theorem 3.2 is reversed.
For subsequent reference, we note that the theorem is proved by iterated Steiner symmetrization

and the key step involves Steiner symmetrization as follows:

∫

Rn

· · ·

∫

Rn

F (x1, . . . , xm)
m∏

i=1

fi(xi)dx1 . . . dxm =

=

∫

(u⊥)m

∫

Rm

Fu,ω(t1, . . . , tm)

m∏

i=1

fi(ωi + tiu)dt1 . . . dtmdω1 . . . dωm

≤

∫

(u⊥)m

∫

Rm

Fu,ω(t1, . . . , tm)

m∏

i=1

f∗
i (ωi + tiu|u)dt1 . . . dtmdω1 . . . dωm

=

∫

Rn

· · ·

∫

Rn

F (x1, . . . , xm)

m∏

i=1

f∗
i (xi|u)dx1 . . . dxm,

where f∗
i (·|u) is the Steiner symmetral of fi in direction u.

4 Minimizing the mixed volume of random convex sets

The proof of Theorem 1.5 relies on Theorem 3.1 about the convexity of mixed volumes of shadow
systems along a common direction. Here we show how this interfaces with the use of random linear
operators.
Proof of Theorem 1.5. We start by associating a shadow system to linear images of convex sets.
To fix the notation, let C be a compact convex set in R

m and let x1, . . . , xm ∈ R
n. We will attach

a shadow system in direction u ∈ Sn−1 to the set

[x1 . . . xm]C =

{
m∑

i=1

cixi : (ci) ∈ C

}
.

Decompose xi as xi = ωi + tiu, where ωi ∈ u⊥ for i = 1, . . . ,m. Let ω = (ω1, . . . , ωm). For
t = (t1, . . . , tm) ∈ R

m, we form the n×m matrix

Tω(t) = [ω1 + t1θ . . . ωm + tmθ].

Fix t, t′ ∈ R
m and c = (cj) ∈ C. Then for each λ ∈ [0, 1],

Tω(λt + (1− λ)t′)c =
m∑

j=1

cj(ωj + (λtj + (1− λ)t′j)u)

=
m∑

j=1

cj(ωj + t′ju) + λ
( m∑

j=1

ci(tj − t′j)
)
u.

For c ∈ C, we write xc =
∑m

j=1 cj(ωj + t′ju) and αc =
∑m

j=1 cj(tj − t′j) so that

Tω(λt + (1− λ)t′)C = {xc + λαcu : c ∈ C} . (14)
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As a linear image of the convex set C, the latter is convex and hence takes the form of a linear
parameter system in (13), which is indexed by C and generated by the bounded sets {xc}c∈C and
{αc}c∈C .

Similarly, assume we have n compact convex sets C1, . . . , Cn and xij = ωij+tiju, where ωij ∈ u⊥.
For i = 1, . . . , n, let ωi = (ωi1, . . . , ωim). For t = (t1, . . . , tn) ∈ R

m1 × · · · × R
mn , we write

ti = (ti1, . . . , timi
) ∈ R

mi and set

T i
ωi
(ti) = [ωi1 + ti1θ . . . ωimi

+ timi
θ].

We first consider the case when C1, . . . , Cn are in mutually orthogonal subspaces, then XCi =
XiCi and the quantity under consideration is

EV (X1C1, . . . ,XnCn)

=

∫

Rn

· · ·

∫

Rn

V ([x11 · · ·x1m1
]C1, . . . , [xn1 · · ·xnmn

]Cn)

n∏

i=1

mi∏

j=1

f(xij) dx11 · · · dxnmn
. (15)

As we will apply Theorem 3.2, it is sufficient to show that

R
m1 × · · · × R

mn ∋ (t1, . . . , tn) 7→ V (T 1
ω1
(t1)C1, . . . , T

n
ωn

(tn)Cn)

is convex. We need only show that the function is convex on any line joining given points t =
(t1, . . . , tn) and t′ = (t′1, . . . , t

′
n) in R

m1 × · · · × R
mn , i.e., we need only to establish convexity of

[0, 1] ∋ λ 7→ V (T 1
ω1
(λt1 + (1− λ)t′1)C1, . . . , T

n
ωn

(λtn + (1− λ)t′n)Cn).

By the discussion at the beginning of this section, each argument in the mixed volume is a
shadow system in the common direction u. Therefore, we can apply Theorem 3.1 to obtain the
required convexity in λ.

In the case Ci are not necessarily mutually orthogonal, then XC1, . . .XCn share some common
columns. The proof then applies verbatim but on a smaller product space. For example, in the case
when all Ci are identical, the mixed volume reduces to the volume and one works with

∫

Rn

· · ·

∫

Rn

|[x11 · · ·x1m1
]C1|

m1∏

j=1

f(x1j)dx11 . . . dx1m1
;

here the product space involves only the first m1 random vectors. As Theorem 3.1 concerns any n
shadow systems (whether or not some are identical), it remains applicable in this case.

�

5 An empirical Petty projection inequality for measures

While Theorem 1.2 follows directly from Theorem 1.1, we will first prove the former for simplicity
of exposition.
Proof of Theorem 1.2. We will first assume that ν is a rotationally invariant, log-concave measure
on R

n with density ρ(x), i.e. dν(x) = ρ(x)dx. For u ∈ Sn−1 and y ∈ u⊥, let ρy(s) = ρ(y + su)
be the restriction of ρ to the line that passes through y parallel to u. We note that since ν is a
rotationally invariant, log-concave measure then ρy(s) is even and log-concave for any fixed y ∈ u⊥.

Fix u ∈ Sn−1 and ω1, . . . , ωm ∈ u⊥. As in §4, we write Tω(t) = [ω1 + t1u . . . ωm + tmu]. Using
the notation for indicator functions (11), we have

ν(Π◦(Tω(t)C)) =

∫

u⊥

∫

R

Jy + su ∈ Π◦Tω(t)CK ρy(s)dsdy (16)

=

∫

u⊥

∫

R

JnVn−1(Tω(t)C, [0, y + su]) ≤ 1K ρy(s)dsdy. (17)
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Fixed y ∈ u⊥ and set h(t, s) = nVn−1(Tω(t)C, [0, y + su]), and define

Gy(t) =

∫

R

Jh(t, s) ≤ 1K ρy(s)ds.

Note that h is jointly convex in t and s. To see this, it is sufficient to show that, given any
two points (t, s) and (t′, s′) in R

m × R, the restriction of h to the line segment [0, 1] ∋ λ 7→
λ(t, s) + (1 − λ)(t′, s′) is convex. Set

f(λ) = h(λt+ (1 − λ)t′, λs+ (1− λ)s′),

and observe that

f(λ) = nVn−1(Tω(λ(t− t′) + t′)C, [0, y + (λ(s − s′) + s′)u]).

Each of the arguments are shadow systems in a common direction u as observed above. Thus the
convexity of f(λ), and hence that of h(t, s), follows from Theorem 3.1.

Using the joint convexity of h in t and s, we have that Jh(t, s) ≤ 1K is log-concave. As Gy is the
marginal of log-concave function on R

m×R, it is also log-concave by the Prekopa–Leinder inequality
(see §2.3). In particular, Gy is quasi-concave.

Next, we note that h is an even function. Indeed, the sets [ω1 + t1u, . . . , ωm + tmu]C and
[ω1 − t1u, . . . , ωm − tmu]C are reflections of one another with respect to u⊥, hence

h(−t,−s) = nVn−1(Tω(−t)C, [0, y − su])

= nVn−1(Ru([ω1 + t1u, . . . , ωm + tmu]C), Ru[0, y + su])

= nVn−1([ω1 + t1u, . . . , ωm + tmu]C, [0, y + su])

= h(t, s),

where Ru denotes the reflection with respect to u⊥. The rotational invariance of the density ρ
implies that ρy is even in s. Thus, by a change of variables, we have that Gy is even

Gy(−t) =

∫

R

Jh(−t, s) ≤ 1K ρy(s)ds =
∫

R

Jh(t,−s) ≤ 1K ρy(s)ds =
∫

R

Jh(t, s) ≤ 1K ρy(−s)ds = Gy(t).

Thus for every u ∈ Sn−1 and for every ω, the function Gy(t) is quasi-concave for every y ∈ u⊥.
We write

E (ν(Π◦(XC))) =

∫

Rn

· · ·

∫

Rn

ν(Π◦([x1 · · ·xm]C))
m∏

i=1

f(xi) dx1 · · · dxm

=

∫

(u⊥)m

∫

Rm

ν(Π◦(Tω(t)C)

m∏

i=1

f(ωi + tiu) dtdy

=

∫

(u⊥)m

∫

Rm

∫

u⊥

Gy(t)dy

m∏

i=1

f(ωi + tiu) dtdy

=

∫

(u⊥)m

∫

u⊥

∫

Rm

Gy(t)

m∏

i=1

f(ωi + tiu)dtdydy.

Applying the key step in the proof of Theorem 3.2 from §3.2, we obtain:

E (ν(Π◦(XC))) ≤ E (ν(Π◦(XuC))) ,

where X
u has independent columns distributed according to the Steiner symmetrals f∗(·|u). By

iterated symmetrizations, we obtain

E (ν(Π◦(XC))) ≤ E (ν(Π◦(X#C))) .
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As the proof shows, Theorem 3.2 does not require densities to be identical. Hence, Theorem 1.2
holds under this less restrictive assumption.

Up to this point, we dealt with a log-concave measure ν. The above applies, in particular, to
the case of the Lebesgue measure restricted to a centered Euclidean ball. Next, we can consider a
measure ν such that

dν(x) = ρ(x)dx with ρ : [0,∞) → [0,∞) decreasing.

Using Fubini’s theorem, we have

Eν(Π◦(XC)) = E

∞∫

0

|Π◦(XC) ∩ {ρ ≥ t}|dt =

ρ(0)∫

0

E|Π◦(XC) ∩R(t)Bn2 |dt

where R(t) is a radius of an Euclidean ball {ρ ≥ t} which implies the result for any radial measure
ν with a decreasing density ρ. �

Corollary 5.1 Let K and L be convex bodies in R
n. Let M ⊆ R

2 be 1-unconditional and compact.
Then for p1, p2 ≥ 1

Eν(Π◦([K]p1m1
⊕M [L]p2m2

)) ≤ Eν(Π◦([K∗]p1m1
⊕M [L∗]p2m2

)).

If M = B2
q , with 1/p+ 1/q = 1, then ⊕M coincides with +p-addition as defined in §2.2. Thus

the corollary immediately implies (5).
Proof. Let the columns of X1 and X2 be independent and distributed according to 1

|K|1K and
1
|L|1L, respectively. As in the introduction, [K]p1m1

= X1B
m1
p1 and [L]p2m2

= X2B
m2
p2 . Assuming

Bm1
p1 ⊆ span{e1, . . . , em1

} and writing B̂m2
p2 for the copy of Bm2

p2 lying in span{em1+1, . . . , em1+m2
},

we have

[K]p1m1
⊕M [L]p2m2

= X1B
m1

p1 ⊕M X2B
m2

p2

= [X1X2](B
m1
p1 ⊕M B̂m2

p2 )

= X(Bm1

p1 ⊕M B̂m2
p2 ).

In this way theM -addition operation coincides with the image of the convex body C = Bm1
p1 ⊕M B̂

m2
p2

under X. Similarly, we have

[K∗]p1m1
⊕M [L∗]p2m2

= X
#(Bm1

p1 ⊕M B̂m2
p2 ).

Thus Theorem 1.2 applies directly. �

Remark 5.2 The latter corollary is a special case of the following inequality

Eν(Π◦(⊕M (X1C1, . . . ,XnCn))) ≤ Eν(Π◦(⊕M (X#
1 C1, . . . ,X

#
n Cn))),

which follows directly from Theorem 1.2 and (10) whenever ⊕M (C1, . . . , Cn) is compact and convex.

6 Mixed projection bodies

In this section, we prove Theorem 1.1. As the argument is similar to the proof given in § 5, we
simply outline the additional steps.
Proof of Theorem 1.1. Let ν be a log-concave, rotationally invariant measure on R

n with a
density ρ(x) as in § 5. As in § 4, we start by assuming that C1, . . . , Cn lie in the mutually orthogonal
subspaces.
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Fix u ∈ Sn−1 and ωi = (ωi1, . . . , ωim) such that ωij ∈ u⊥ for i = 1, . . . , n− 1. Using notation in
§ 4, we write T i

ωi
(ti) = [ωi1 + ti1θ · · ·ωim + timθ]. Thus, we have

ν(Π◦(T 1
ω1

(t1)C1, . . . , T
n−1
ωn−1

(tn−1)Cn−1))

=

∫

u⊥

∫

R

r
y + su ∈ Π◦(T 1

ω1
(t1)C1, . . . , T

n−1
ωn−1

(tn−1)Cn−1)
z
ρy(s)dsdy

=

∫

u⊥

∫

R

r
nV (T 1

ω1
(t1)C1, . . . , T

n−1
ωn−1

(tn−1)Cn−1, [0, y + su]) ≤ 1
z
ρy(s)dsdy. (18)

For fixed y ∈ u⊥, we define

h(t, s) = V (T 1
ω1
(t1)C1, . . . , T

n−1
ωn−1

(tn−1)Cn−1, [0, y + su])

and

Gy(t) =

∫

R

Jh(t, s) ≤ 1K ρy(s)ds.

Using the same reasoning as in Section 5, h(t, s) is jointly convex in t and s, and an even
function. In particular, joint convexity implies that Jh(t, s) ≤ 1K is log-concave. Also, we have that
Gy is even, i.e., Gy(−t) = Gy(t). Therefore, for every u ∈ Sn−1 and for every ωi, the function Gy(t)
is quasi-concave for every y ∈ u⊥.

Repeating the same argument on (Rn)m1 × · · · × (Rn)mn−1 as in §5, we get

E (ν(Π◦(X1C1, . . . ,Xn−1Cn−1))) ≤ E
(
ν(Π◦(Xu

1C1, . . . ,X
u
n−1Cn−1))

)
,

and after iteration of the repeated symmetrization in suitable directions, we arrive at the following

E (ν(Π◦(X1C1, . . . ,Xn−1Cn−1))) ≤ E
(
ν(Π◦(X#

1 C1, . . . ,X
#

n−1Cn−1))
)
.

Once again, when C1, . . . , Cn are non-mutually orthogonal, the argument applies verbatim on
the smaller product space.

Finally, as above, the proof shows that densities need not be identical. �

7 Laws of large numbers and convergence

In this section, we detail how one can obtain deterministic inequalities from our main stochastic
inequalities. As in the introduction, the centroid body Z(L) of a convex body L in R

n,is defined by

hZ(L)(u) =
1

|L|

∫

L

|〈x, u〉|dx.

Similarly, the empirical centroid body Z1,N(L) of L is given by

hZ1,N (L)(u) =
1

N

N∑

i=1

|〈Xi, u〉|,

whereX1, . . . , XN are independent and identically distributed according to the normalized Lebesgue
measure on L. Note that by the strong law of large numbers (as in e.g., [28]), we have convergence
a.s. in the Hausdorff metric:

Z1,N (L) → Z(L). (19)

Proposition 7.1 Let K be a convex body in R
n and m1,m2 ≥ n. Then

1

m2
EV1([K]m1

, [Π◦(K)]∞m2
) → V1(K,Z(Π

◦(K))). (20)
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Proof. We have convergence a.s. in the Hausdorff metric

[K]m1
= conv{X11, . . . , X1m1

} → K;

see, e.g., [7] for a stronger quantitative result on the rate of convergence. Similarly, by (19)

1

m2
[L]∞m2

=
1

m2

m2∑

j=1

[−X2j, X2j ] → Z(L).

It follows that we have convergence a.s., as m1,m2 → ∞,

1

m2
V1([K]m1

, [Π◦(K)]∞m2
) → V1(K,Z(Π

◦(K))).

Note that

V1([K]m1
, [Π◦(K)]∞m2

) ≤ V1(K, [Π
◦(K)]∞m2

)

=
1

n

∫

Sn−1

h[Π◦(K)]∞m2
(u)dσK(u)

=
1

n

1

m2

m2∑

j=1

∫

Sn−1

|〈u,X2j〉|dσK(u)

≤
1

n
R(Π◦(K))R(K)S(K)

whereR(K) is the circumradius ofK and S(K) is the surface area ofK. By the bounded convergence
theorem, we have as m1,m2 → ∞,

1

m2
EV1([K]m1

, [Π◦(K)]∞m2
) → V1(K,Z(Π

◦(K))).

�

Lastly, we show that Thereom 1.4 implies Petty’s projection inequality (1). Applying Theo-
rem 1.4 as m1,m2 → ∞ and using Proposition 7.1, we get

V1(K,Z(Π
◦(K))) ≥ V1(K

∗, Z((Π◦(K))∗)). (21)

Now we appeal to the fact that

V1(K,Z(Π
◦(K))) = cn,

where cn is a constant independent of K; see, e.g., [22], and compute the right-hand side of (21).

For this, we first observe that (Π◦K)∗ = |Π◦(K)|
1
n

|Π◦(K∗)|
1
n

Π◦(K∗) (see [9, Corollary 9.1.4]). Then

V1(K
∗, Z((Π◦(K))∗)) =

|Π◦(K)|
1
n

|Π◦(K∗)|
1
n

V1(K
∗, Z(Π◦(K∗))) = cn

|Π◦(K)|
1
n

|Π◦(K∗)|
1
n

where we used homogeneity of mixed volumes and Z(φK) = φZ(K) for φ ∈ GLn. Thus,

cn ≥
|Π◦(K)|

1
n

|Π◦(K∗)|
1
n

cn

which implies (1).

Remark 7.2 The above derivation closely resembles the proof of the Petty projection inequality
using the first Minkowski inequality and Busemann centroid inequality which can be found in [22].
However, the stochastic inequality in Theorem 1.4 in effect combines the use of these two inequalities
into one step.
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