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AbstratWe prove inequalities about the quermassintegrals Vk(K) of a onvexbody K in Rn (here, Vk(K) is the mixed volume V ((K; k); (Bn; n � k))where Bn is the Eulidean unit ball).(i) The inequalityVk(K + L)Vk�1(K + L) � Vk(K)Vk�1(K) + Vk(L)Vk�1(L)is true for every pair of onvex bodies K and L in Rn if and only if k = 2 ork = 1.ii) Let 0 � k � p � n. Then, for every p-dimensional subspae E of Rn ,Vn�k(K)jKj � 1�n�p+kn�p � Vp�k(PEK)jPEKj :where PEK denotes the orthogonal projetion of K onto E. The proof isbased on a sharp upper estimate for the volume ratio jKj=jLj in terms ofVn�k(K)=Vn�k(L), whenever L and K are two onvex bodies in Rn suhthat K � L.1 IntrodutionLet Kn denote the lass of all non-empty ompat onvex subsets of Rn . IfK 2 Kn has non-empty interior, we will say that K is a onvex body. We denoteby jKj the volume of a onvex body K in Rn . Generally there is no ambiguity, butwhen A is a onvex body in a p-dimensional subspae of Rn , 1 � p � n � 1, thenjAj means its p-dimensional volume.In this paper we prove some inequalities about mixed volumes of onvex bodies.Mixed volumes are introdued by a lassial theorem of Minkowski whih desribesthe way volume behaves with respet to the operations of addition and multiplia-tion of onvex bodies by nonnegative reals: If K1; : : : ;Km 2 Kn, m 2 N, then the1



volume of t1K1 + : : : + tmKm is a homogeneous polynomial of degree n in ti � 0(see [BZ℄, [S℄). That is,��t1K1 + : : :+ tmKm�� = X1�i1;:::;in�mV (Ki1 ; : : : ;Kin)ti1 : : : tin ;where the oeÆients V (Ki1 ; : : : ;Kin) are hosen to be invariant under permuta-tions of their arguments. The oeÆient V (Ki1 ; : : : ;Kin) is alled the mixed volumeof the n-tuple (Ki1 ; : : : ;Kin).Steiner's formula is a speial ase of Minkowski's theorem. Let Bn denote theEulidean unit ball in Rn . Then, the volume of K + tBn, t > 0, an be expandedas a polynomial in t: jK + tBnj = nXk=0�nk�Vn�k(K)tk;where Vn�k(K) := V ((K;n� k); (Bn; k)) is the k-th quermassintegral of K.The Aleksandrov-Fenhel inequality states that if K;L;K3; : : : ;Kn 2 Kn, thenV (K;L;K3; : : : ;Kn)2 � V (K;K;K3; : : : ;Kn)V (L;L;K3; : : : ;Kn):In partiular, this implies that the sequene (V0(K); : : : ; Vn(K)) is log-onave. Aonsequene of the Aleksandrov-Fenhel inequality is the Brunn-Minkowski inequal-ity as well as the following generalization for the quermassintegrals:(1) Vk(K + L)1=k � Vk(K)1=k + Vk(L)1=k;for every k = 1; : : : ; n.There is a lose relationship between inequalities about quermassintegrals ofonvex bodies and inequalities about symmetri funtions of positive reals or de-terminants of symmetri matries. For example, an inequality of Bergstrom assertsthat if A and B are symmetri positive de�nite matries and Ai; Bi denote thesubmatries obtained by deleting the i-th row and olumn, thendet(A+B)det(Ai +Bi) � det(A)det(Ai) + det(B)det(Bi) :Milman asked if there is a version of Bergstrom's inequality in the theory of mixedvolumes. This question an be formulated as follows: For whih values of k is ittrue that(2) Vk(K + L)Vk�1(K + L) � Vk(K)Vk�1(K) + Vk(L)Vk�1(L)for every pair of onvex bodies K and L in Rn? If true for all k = 1; : : : ; n, thiswould formally imply (1). 2



The same question (ase k = n) was asked by Dembo, Cover and Thomas in[DCT℄, where the inequality jK + Ljj�(K + L)j � jKjj�Kj + jLjj�Ljis proposed as the dual of the Fisher information inequalityJ(X + Y )�1 � J(X)�1 + J(Y )�1:Here, j�Aj denotes the surfae area of A, while J(X) is the Fisher information of therandom vetor X in Rn . It is worth mentioning that (2) holds true for every k whenL = rBn (this is a simple onsequene of the Aleksandrov-Fenhel inequality; see[GHP℄). As we shall see in Setion 2, the answer to the above question is negativein general. In fat, the only values of k for whih (2) is always true are k = 2 andk = 1.Theorem 1.1 Let 1 � k � n. Then, the inequalityVk(K + L)Vk�1(K + L) � Vk(K)Vk�1(K) + Vk(L)Vk�1(L)is true for every pair of onvex bodies K and L in Rn if and only if k = 2 or k = 1.It is an interesting question to desribe the lass L of ompat onvex subsetsL of Rn for whih (2) holds true for every onvex body K. In partiular, if linesegments belonged to this lass, then taking k = n and L = [��; �℄ where � 2 Sn�1we would have(3) j�(P�?K)jjP�?Kj � j�KjjKjfor every onvex body K in Rn , where P�? denotes the orthogonal projetion onto�?. In [GHP℄ it was onjetured that this inequality is orret. Moreover, it wasproved that(4) j�(PEK)jjPEKj � 2(n� 1)n j�KjjKj ;for every onvex body K and every (n� 1)-dimensional subspae E of Rn .In Setion 4 we show that (3) is not true; this gives a negative answer to thequestion of Dembo, Cover and Thomas (alternative to the one in Theorem 1.1). Infat, the onstant in (4) is optimal. Moreover, we present a generalization of thislast inequality to subspaes of arbitrary dimension and quermassintegrals of anyorder.Theorem 1.2 Let K be a onvex body in Rn and let 0 � k � p � n. Then forevery p-dimensional subspae E of Rn , if PEK denotes the orthogonal projetionof K onto E, we haveVn�k(K)jKj � 1�n�p+kn�p � Vp�k(PEK)jPEKj = 1Qki=1 �1 + n�pi � Vp�k(PEK)jPEKj :3



We show by examples that the onstants in Theorem 1.2 are sharp, althoughthere are no ases of equality. The proof of Theorem 1.2 is based on an inequalitywhih estimates the volume ratio jKj=jLj in terms of Vn�k(K)=Vn�k(L), wheneverL and K are two onvex bodies in Rn suh that K � L.Theorem 1.3 Let L and K be two onvex bodies in Rn suh that K � L. Then,for 1 � k < n we have jKjjLj � �n;k�Vn�k(K)Vn�k(L) �;where �n;k : [0; 1℄ 7! [0; 1℄ is de�ned by�n;k(t) = �nk�Z t0 �1� s 1n�k �kds:The proof of Theorem 1.3, as well as examples showing that it is optimal, willbe given in Setion 3.Basi referenes on lassial onvexity and the theory of mixed volumes are thebooks [BZ℄ and [S℄. The reader may wish to onsult [BB℄ for numerial and matrixinequalities related to the questions disussed in this work.2 Mixed volumes of Minkowski sumsIn this setion we prove Theorem 1.1. Our �rst lemma is a onsequene of theAleksandrov-Fenhel inequality. Inequalities of this type may be found in [S,Setion 6.4℄, but we reprodue a proof for ompleteness (the argument below is dueto R. Shneider).Lemma 2.1 Let C = (K3; : : : ;Kn) be an (n� 2)-tuple of Kj 2 Kn. If A;B 2 Kn,we denote V (A;B; C) by V (A;B). Then, for all A;B;C 2 Kn we have(V (B;A)V (C;A) � V (B;C)V (A;A))2 � [V (B;A)2 � V (A;A)V (B;B)℄�[V (C;A)2 � V (A;A)V (C;C)℄: 2Proof: By the Aleksandrov-Fenhel inequality, for all t; s � 0 we haveV (B + tA;C + sA)2 � V (B + tA;B + tA)V (C + sA;C + sA) � 0and V (sB + tC;A)2 � V (sB + tC; sB + tC)V (A;A) � 0:Using the linearity of mixed volumes, from the �rst inequality we arrive at0 � g(t; s) + t2 �V (C;A)2 � V (A;A)V (C;C)�+s2 �V (B;A)2 � V (A;A)V (B;B)�+2ts (V (B;C)V (A;A) � V (B;A)V (C;A)) ;4



where g is a linear funtion of t and s. It follows that the quadrati term is non-negative and hene, either V (B;C)V (A;A) > V (B;A)V (C;A) or its disriminant(V (B;A)V (C;A) � V (B;C)V (A;A))2 � [V (B;A)2 � V (A;A)V (B;B)℄�[V (C;A)2 � V (A;A)V (C;C)℄is non-positive.Working in the same way with the seond inequality, we arrive at0 � t2(V (C;A)2 � V (A;A)V (C;C)) + s2(V (B;A)2 � V (A;A)V (B;B))+2ts(V (B;A)V (C;A) � V (B;C)V (A;A)):This shows that if V (B;C)V (A;A) > V (B;A)V (C;A) then the disriminant ofthis seond quadrati form (whih is the same as before) is non-positive. Thus, thelemma is proved. 2From the previous lemma, we dedue the following inequality.Proposition 2.1 Let C = (K3; : : : ;Kn) be an (n � 2)-tuple of Kj 2 Kn. In thenotation of Lemma 2.1, for all A;B;C 2 Kn we haveV (B + C;B + C)V (B + C;A) � V (B;B)V (B;A) + V (C;C)V (C;A) :Proof: From Lemma 2.1 and the arithmeti-geometri means inequality we getV (B;A)V (C;A) � V (B;C)V (A;A)� �V (B;A)2 � V (A;A)V (B;B)�1=2�V (C;A)2 � V (A;A)V (C;C)�1=2� 12 � V (C;A)V (B;A)�V (B;A)2 � V (A;A)V (B;B)�+12 � V (B;A)V (C;A) �V (C;A)2 � V (A;A)V (C;C)�:Thus 2V (B;C) � V (C;A)V (B;A) � V (B;B) + V (B;A)V (C;A) � V (C;C) :From this and the linearity of mixed volumes, we haveV (B + C;B + C) = V (B;B) + 2V (B;C) + V (C;C)� V (B;B)�1 + V (C;A)V (B;A)�+ V (C;C)�1 + V (B;A)V (C;A)� ;whih is the inequalityV (B + C;B + C)V (B + C;A) � V (B;B)V (B;A) + V (C;C)V (C;A) : 2Setting B = K, C = L and A = K3 = : : : = Kn = Bn, we immediately get thefollowing. 5



Proposition 2.2 Let L and K be two onvex bodies in Rn . Then,V2(K + L)V1(K + L) � V2(K)V1(K) + V2(L)V1(L) : 2We will next show that if 3 � k � n, then the inequality(�) Vk(K + L)Vk�1(K + L) � Vk(K)Vk�1(K) + Vk(L)Vk�1(L)is not true for all pairs of onvex bodies L and K in Rn .Our proof will make use of tangential bodies. Let 0 � p � n � 1. If K andM are onvex bodies in Rn and M � K, then K is alled a p-tangential body ofM if every (n � p � 1)-extreme support plane of K is a support plane of M (werefer to [S, Setion 2.2℄ for more details). It is easily seen that if p < q � n � 1then every p-tangential body of M is a q-tangential body of M . Tangential bodiesof balls are losely related to the question of equality in the Aleksandrov-Fenhelinequalities for the quermassintegrals of onvex bodies. A result whih we will needis the following.Fat. Let K be a entrally symmetri onvex body in Rn and let 1 � k � n � 1.Then, we have Vk(K)2 = Vk+1(K)Vk�1(K)if and only if K is a (k � 1)-tangential body of a ball.We will also use the observation that for every 0 � p < n�2 there exist entrallysymmetri (p + 1)-tangential bodies of a ball whih are not p-tangential bodies ofa ball.Lemma 2.2 Let 1 � k � n. Assume that (�) holds true for all onvex bodies Kand L in Rn . Then, the funtiong(t) = Vk(K + tL)Vk�1(K + tL)is onave on [0;+1) for every K and L. In partiular, if 3 � k � n, for everyonvex body K in Rn we havekVk�2(K)�V 2k�1(K)� Vk(K)Vk�2(K)�� (k � 2)Vk(K)�V 2k�2(K)� Vk�1(K)Vk�3(K)�:Proof: We hek thatg� t+ s2 � = Vk((K + tL)=2 + (K + sL)=2)Vk�1((K + tL)=2 + (K + sL)=2)� Vk((K + tL)=2)Vk�1((K + tL)=2) + Vk((K + sL)=2)Vk�1((K + sL)=2)= 12 Vk(K + tL)Vk�1(K + tL) + 12 Vk(K + sL)Vk�1(K + sL)= g(t) + g(s)2 :6



For the seond assertion, let K be a onvex body in Rn , n � 3. For every k � nwe set fk(t) = Vk(K + tBn). Then,fk(t+ ") = fk(t) + "kfk�1(t) +O("2);and therefore f 0k(t) = kfk�1(t):The derivative of the funtiongk(t) = fk(t)fk�1(t) = Vk(K + tBn)Vk�1(K + tBn)is thus given by g0k(t) = k � (k � 1)fk(t)fk�2(t)f2k�1(t) ;By the �rst part of the lemma, gk is onave. This implies that fkfk�2=f2k�1 is aninreasing funtion, and di�erentiating again we see thatkf2k�1fk�2 + (k � 2)fkfk�1fk�3 � 2(k � 1)fkf2k�2 � 0on (0;+1). This an be equivalently written in the formkfk�2(f2k�1 � fkfk�2) � (k � 2)fk(f2k�2 � fk�1fk�3):Letting t! 0+, we onlude the lemma. 2Proposition 2.3 Let 3 � k � n. There exist onvex bodies K and L in Rn forwhih (�) is not true.Proof: Assume the ontrary and let K be a entrally symmetri (k�2)-tangentialbody of a ball. Then, V 2k�1(K)� Vk(K)Vk�2(K) = 0 and Lemma 2.2 implies thatV 2k�2(K)� Vk�1(K)Vk�3(K) = 0. This shows that K is a (k � 3)-tangential bodyof a ball.On the other hand, for every 0 � p < n�2 there exist (p+1)-tangential bodiesof a ball whih are not p-tangential bodies of a ball. One an easily onstrut suhan example by taking the onvex hull of the ball and 2(p+1) suitably hosen pointsoutside the ball. This leads to a ontradition. 2Finally, we observe that when k = 1, then (�) redues to the inequality V1(A+B) � V1(A) + V1(B), whih holds as an equality for every pair of onvex bod-ies; mean width is linear with respet to Minkowski addition. This remark andPropositions 2.2 and 2.3 prove the following.Theorem 2.1 Let 1 � k � n. Then, the inequalityVk(K + L)Vk�1(K + L) � Vk(K)Vk�1(K) + Vk(L)Vk�1(L)is true for every pair of onvex bodies K and L in Rn if and only if k = 2 or k = 1.7



Remark.An interesting speial ase is when n = 3 and k = 2. If A and w denote surfaearea and mean width respetively, we obtain the inequalityA(K + L)w(K + L) � A(K)w(K) + A(L)w(L)for all onvex bodies K and L in R3 .3 Comparison of the mixed volumes of K and Lwhen K � LReall that, for every 1 � k < n, the funtion �n;k : [0; 1℄ 7! [0; 1℄ is de�ned by�n;k(t) = �nk�Z t0 �1� s 1n�k �kds:Proposition 3.1 Let L and K be two onvex bodies in Rn suh that K � L. Let1 � k < n and write P for the orthogonal projetion onto an (n � k)-dimensionalsubspae E of Rn . Then, jKjjLj � �n;k� jPKjjPLj �:Proof: Let F be the orthogonal subspae of E in Rn . For notational onvenienewe may assume that Rn = Rn�k � Rk = E � F . Let L1 and K1 be the Shwarzsymmetrals of L and K with respet to E. It is lear that jL1j = jLj, jK1j = jKj,PL1 = PL and PK1 = PK. Moreover, there is a non-negative onave funtionf : PL! R suh that L1 = f(x; y) : x 2 PL; y 2 f(x) ~Bkgwhere ~Bk denotes the Eulidean ball of volume 1 in Rk . Therefore, if we de�neK 0 = f(x; y) : x 2 PK; y 2 f(x) ~Bkg;then it is lear that K1 � K 0 and thusjKj = jK1j � jK 0j:For u 2 [0;max f ℄, we de�ne �(u) = jff � ugj. Then, � : [0;max f ℄ 7! [0; jPLj℄ isnon-inreasing and(1) either there exists t 2 [0;max f ℄ suh that �(t) = jPKj,(2) or �(u) > jPKj for all u 2 [0;maxf ℄.8



In ase (1), by the de�nition of t we have jPK \ ff < tgj = j(PL nPK)\ ff � tgj.Therefore,jKj � jK 0j = ZPK fk(x)dx= ZPK\ff�tg fk(x)dx + ZPK\ff<tg fk(x)dx� ZPK\ff�tg fk(x)dx + tkjPK \ ff < tgj= ZPK\ff�tg fk(x)dx + tkj(PL n PK) \ ff � tgj� ZPK\ff�tg fk(x)dx + Z(PLnPK)\ff�tg fk(x)dx= Zff�tg fk(x)dx:It follows that if K 00 = f(x; y) : f(x) � t; y 2 f(x) ~Bkg, thenjK 0j � jK 00j:Now, jLj = ZPL fk(x)dx = k ZPL Z f(x)0 uk�1dudx = k Z max f0 �(u)uk�1duand jK 00j = k�(t) Z t0 uk�1du+ k Z max ft �(u)uk�1du= tk�(t) + k Z max ft �(u)uk�1du:By the Brunn-Minkowski inequality, � 1n�k (u) = jff � ugj 1n�k is onave and non-inreasing on [0;max f ℄. We set � = � jPKjjPLj � 1n�k and for every u � 0 we de�ne (u) = �(0) 1n�k max �1� (1� �)u=t; 0�:Then,  is aÆne on [0; t1�� ℄ and satis�es (0) = �(0) 1n�k = jPLj 1n�kand  (t) = ��(0) 1n�k = jPKj 1n�k = �(t) 1n�k :9



Moreover, it is easy to see that  n�k � � on [0; t℄,  n�k � � on [t;max f ℄ and � 0 on [t; t1�� ℄.Thus, we getjLjjKj � jLjjK 00j = k Rmax f0 uk�1�(u)dutk�(t) + k Rmax ft uk�1�(u)du= k R t0 uk�1�(u)du+ k Rmax ft uk�1�(u)dutk�(t) + k Rmax ft uk�1�(u)du� k R t0 uk�1 n�k(u)du+ k R max ft uk�1�(u)dutk�(t) + k R max ft uk�1�(u)du= 1 + k R t0 uk�1 n�k(u)du� tk�(t)tk�(t) + k Rmax ft uk�1�(u)du :Now, sine  is non inreasing, we havek Z t0 uk�1 n�k(u)du� tk�(t) = k Z t0 uk�1 n�k(u)du� tk n�k(t) � 0and sine � �  n�k on [t;max f ℄ we getjLjjK 00j � 1 + k R t0 uk�1 n�k(u)du� tk n�k(t)tk n�k(t) + k R +1t uk�1 n�k(u)du= k R +10 uk�1 n�k(u)dutk n�k(t) + k R +1t uk�1 n�k(u)du:It follows thatjLjjKj � jLjjK 00j � k R t1��0 �1� (1��)ut �n�k uk�1dutk�n�k + k R t1��t �1� (1��)ut �n�k uk�1du= 1�nk��(1� �)k�n�k + k R 11��(1� v)n�kvk�1dv�= 1�n;k(�n�k)In ase (2), we have jff = max fgj > jPKj. We onsider a onvex body A in Rksuh that A � ff = max fg and jAj = jPKj;and we de�ne K 00 = f(x; y) : x 2 A; y 2 f(x) ~Bkg:Then jK 0j � jK 00j and we may apply the same method as in ase (1). 210



Theorem 3.1 Let L and K be two onvex bodies in Rn suh that K � L. Then,for 1 � k < n we have jKjjLj � �n;k�Vn�k(K)Vn�k(L) �:In partiular, for every 1 � k � n, the following inequality holds :Vn�k(K)jKj � 1�nk� Vn�k(L)jLjProof: Sine �n;k : [0; 1℄ 7! [0; 1℄ is inreasing, �n;k = ��1n;k is inreasing. Proposi-tion 3.1 shows that for every orthogonal projetion P onto an (n� k)-dimensionalsubspae of Rn , we have �n;k� jPKjjPLj � � jKjjLj :It follows that jPKjjPLj � �n;k� jKjjLj �;that is jPKj � �n;k� jKjjLj � jPLj:Integrating over the Grassman manifold Gn;n�k of all (n�k)-dimensional subspaeswe get Vn�k(K) � �n;k� jKjjLj �Vn�k(L):Sine �n;k = ��1n;k we return to the desired result. On observing that atually�n;k(t) � �nk�t for every t 2 [0; 1℄, we obtain the seond inequality. 2Cases of equality: We will show by examples that the estimates in Proposition3.1 and Theorem 3.1 are optimal.1. The inequality of Proposition 3.1 is sharp.Fix � = � jPKjjPLj � 1n�k 2 (0; 1). The proof shows that there is equality in Proposition3.1 if and only if  = � 1n�k and K 0 = K1. This is satis�ed if and only if(1) The Shwarz symmetral L1 of L with respet to E is the onvex hull of PL andx0 + aB for some x0 2 PL and some a > 0, where B denotes the Eulidean unitball of E?(2) The Shwarz symmetral K1 of K with respet to E isK1 = fx 2 L : Px 2 x0 + �(PL� x0)g:For example, these onditions are satis�ed in the following situation: Let G besome (n � k)-dimensional subspae of Rn suh that Rn = E? � G and let Q be11



the projetion from Rn onto G parallel to E?. Let D and C be two onvex bodiesin E? and G respetively. If L = onv(D [ C) and K = fx 2 L : Qx 2 �Cg,then (1) and (2) hold true. But this may happen in many other ases. In fat,there does not seem to exist a omplete haraterization of those onvex bodies Lwhih satisfy the following: for some k-dimensional subspae E of Rn and for somex0 2 PL, �nk�jLj = jPELj � j(E? + x0) \ Lj;where PE denotes the orthogonal projetion onto E.2. The inequalities of Theorem 3.1 are sharp.We write Rn = Rn�k � Rk and denote the orthogonal projetion onto Rn�k byPn�k and the Eulidean unit ball of Rk by Bk. Given b > 0, letLb = onv�(Bn�k � f0g) [ (f0g � bBk)�:For a �xed r 2 (0; 1), letKb = fx 2 Lb : Pn�kx 2 rBn�kg:Then, for every b > 0 jLbjjKbj = 1�n;k(rn�k)and by Lemma 3.1 below, limb!0 Vn�k(Kb)Vn�k(Lb) = rn�k :This shows that Theorem 3.1 is optimal.Lemma 3.1 Let M be a onvex body in Rn and let PE be the orthogonal projetiononto an (n� k)-dimensional subspae E. Let b > 0 andMb = fx+ by : x 2 E; y 2 E?; (x; y) 2Mg:Then limb!0Vn�k(Mb) = n;kjPEM j;where n;k depends only on n and k.Proof: This follows from the ontinuity of mixed volumes and the fat that Mb !PEM in the sense of Hausdor�. 2Remarks.1. When k = 1, Theorem 3.1 shows that for any two onvex bodies K;L in Rnsuh that K � L, j�KjjKj � 1n j�LjjLj :12



This was proved by Wills [W℄ as a onsequene of the following fat: If M is aonvex body in Rn and r > 0 is the inradius of M , thenj�M jnjM j � 1r � j�M jjM j :2. When k = n� 1, Proposition 3.1 shows that for K � L,1� w(K; �)w(L; �) � �1� jKjjLj �1=nfor every � 2 Sn�1, where w(M; �) denotes the width of M in the diretion of �. Ifwe assume that K and L are entrally symmetri, this implies that for K � L, 1��1� jKjjLj �1=n!L � K;a fat whih appears already in [GMP℄.3. The results of Theorem 3.1 an be extended to mixed volumes with zonoids,instead of quermassintegrals.4 Comparison of the mixed volumes of a onvexbody and the mixed volumes of its projetionsWe begin with two simple lemmas.Lemma 4.1 Let K be a onvex body in Rn and, for 1 � p � n � 1, let E be ap-dimensional subspae of Rn and F = E?. Let PF be the orthogonal projetiononto F , and for every y 2 PFK writeKy = fx 2 E : x+ y 2 Kg:Then, for every 0 � k � p the following holds:�nk�Vn�k(K) � �nk�V ((K;n� k); (Bp(E); k)) = �pk�ZPFK Vp�k(Ky)dy:Proof: Let Bn be the Eulidean unit ball in Rn and Bp(E) = Bn \ E be theEulidean unit ball of E. Sine mixed volumes are inreasing, we haveVn�k(K) = V ((K;n� k); (Bn; k)) � V ((K;n� k); (Bp(E); k)):Now, it easy to see that for t � 0K + tBp(E) = fx0 + y : y 2 PFK;x0 2 Ky + tBp(E)g13



and hene, jK + tBp(E)j = ZPFK jKy + tBp(E)jdyFor every y 2 PFK we writejKy + tBp(E)j = pXk=0�pk�V ((Ky; p� k); (Bp(E); k))tk= pXk=0�pk�Vp�k(Ky)tk:Integrating, we getjK + tBp(E)j = pXk=0�pk��ZPFK Vp�k(Ky)dy�tk;and thus, for every integer k with 0 � k � p we have�nk�Vn�k(K) � �nk�V ((K;n� k); (Bp(E); k)) = �pk�ZPFK Vp�k(Ky)dy: 2The next lemma is in the spirit of Berwald's inequality [Be℄.Lemma 4.2 Let h be a onave funtion on [0; 1℄ suh that h(0) = 0. Let C be aonvex body in Rq and � : C ! R a non-negative funtion suh that �1=r is onaveon C for some r > 0 and supC � = 1. Then,ZC h(�(y))dy � R 10 �1� t1=r�qh0(t)dtR 10 �1� t1=r�qdt ZC �(y)dyProof: We writeZC h(�(y))dy = ZC �Z �(y)0 h0(t)dt�dy = Z 10 jfy 2 C;�(y) � tgjh0(t)dt:Let  (t) = jfy 2 C;�(y) � tgj. Then,  in non-inreasing on [0; 1℄, and sine �1=ris onave, using the Brunn-Minkowski inequality in Rq , we get that the funtiong : [0; 1℄ 7! R de�ned by g(t) =  1=q(tr) is onave and non-inreasing on [0; 1℄. Let = R 10  (t)dtR 10 �1� t1=r�qdtand de�ne  1 on [0; 1℄ by  1(t) = �1� t1=r�q :14



Then, Z 10  (t)dt = Z 10  1(t)dt =  Z 10 �1� t1=r�qdt:The funtion F (s) = Z s0 � 1(t)�  (t)� dtsatis�es F (0) = F (1) = 0and F 0(s) =  1(s)�  (s):Claim: F (s) � 0 for every s � 0.Proof of the laim: For s � 0, we de�ne g1(s) =  1=q1 (sr). It is lear that g1 isaÆne. We have seen that g is is onave and non-inreasing, and this implies thatg1 � g hanges sign not more than one on [0; 1℄. Sine 0 = g1(1) � g(1) andr Z 10 �gq1(u)� gq(u)�ur�1du = Z 10 � 1(t)�  (t)�dt = 0;it is easy to see that there exists u0 2 [0; 1℄ suh that g1 � g on [0; u0℄ and g1 � gon [u0; 1℄. It follows that  1 �  on [0; u0℄ and  1 �  on [u0; 1℄. Sine F 0 =  1� and F (0) = F (1) = 0, we onlude the proof of the laim. 2We now go bak to the proof of the lemma: learly,R 10 �1� t1=r�qh0(t)dtR 10 �1� t1=r�qdt ZC �(y)dy � ZC h(�(y))dy = Z � 1(s)�  (s)�h0(s)ds= Z 10 F 0(s)h0(s)ds:Sine h is onave, h0 is non-inreasing. Sine F � 0 and F (0) = F (1) = 0, weonlude using the seond mean value theorem. 2Theorem 4.1 Let K be a onvex body in Rn and let 0 � k � p � n. Then forevery p-dimensional subspae E of Rn , we haveVn�k(K)jKj � 1�n�p+kn�p � Vp�k(PEK)jPEKjwhere PEK denotes the orthogonal projetion of K onto E.Proof: Sine quermassintegrals derease by Shwarz symmetrization, we may re-plae K by its Shwarz symmetral with respet to E. In the notation of Lemma4.1 we have �nk�Vn�k(K) � �pk�ZPFK Vp�k(Ky)dy:15



We de�ne � : PFK ! R by �(y) = Vp�k(Ky)Vp�k(PEK) :Then, supPFK � = 1 and�nk�Vn�k(K) � �pk�Vp�k(PEK) ZPFK �(y)dy:By the Aleksandrov-Fenhel inequality, �1=(p�k) is onave on PFK. We applyLemma 4.2 with C = PFK � Rn�p ; q = n� p ; r = p� kand h(t) = �p;k(t) = �pk�Z t0 �1� s 1p�k �kdsto get ZPFK �p;k(�(y))dy � R 10 �1� t1=r�q�0p;k(t)dtR 10 �1� t1=r�qdt ZPFK �(y)dy:After some omputations, this inequality takes the formZPFK �(y)dy � � np�k��n�kp�k��pk� ZPFK �p;k(�(y))dy:If follows thatVn�k(K) � �pk��nk�Vp�k(PEK) ZPFK �(y)dy� �pk��nk� � np�k��n�kp�k��pk�Vp�k(PEK) ZPFK �p;k(�(y))dy:For every y 2 PFK, the onvex bodies Ky and PEK in E(= Rp ) learly satisfyKy � PEK:Applying Theorem 3.1, we get�p;k��(y)� = �p;k� Vp�k(Ky)Vp�k(PEK)� � jKyjjPEKj ;and hene, ZPFK �p;k��(y)�dy � 1jPEKj ZPFK jKyjdy = jKjjPEKj :16



It follows that Vn�k(K) � Vp�k(PEK)�n�p+kk � jKjjPEKj :The ase k = p follows form the fat that if F = E?, then�nk�Vn�k(K)jKj � jPFKjjKj jBpjby Lemma 4.1, and the observation that jKj � jPEKj�jPFKj and jBpj = V0(PEK).Sine the ases k = 0 and p = n are trivial, the proof is omplete. 2Case of equality in Theorem 4.1.The onstants are sharp but there is no ase of equality in the inequalities of thistheorem.To see this, we need to go bak to the ase of equality in Proposition 3.1 andTheorem 3.1, and see what happens in the lemmas 4.1 and 4.2 whih were used inthe proof of Theorem 4.1.(i) If Rp = Rk � Rp�k , let C � Rk and D � Rp�k be two onvex bodies with0 2 C \ D. Denote the orthogonal projetions from Rp onto Rk and Rp�k by Pkand Pp�k. For every b > 0, we de�ne the onvex body L(b) in Rp to be the onvexhull of bC := bC � 0 and D := 0�D. Then,L(b) = f�x+ (1� �)y : x 2 bC; y 2 D; 0 � � � 1gFor every t 2 [0; 1℄, we also de�neKt(b) = fz 2 L(b);Pp�kz 2 tDg:It is lear that jPp�k(Kt(b))j = tp�kjDj = tp�kjPp�k(L(b))j for every b > 0. Bythe equality ase in Proposition 3.1,jKt(b)jjL(b)j = �p;k(tp�k):Now, when b! 0, it is easy to see thatVp�k�Kt(b)�Vp�k(L(b)) ! jPp�k�Kt(b)�jjPp�k�L(b)�j = tp�kuniformly in t 2 [0; 1℄. It follows that when b! 0,jL(b)jVp�k�L(b)� R 10 tn�p�1Vp�k�K1�t(b)�dtR 10 tn�p�1jK1�t(b)jdt = Z 10 tn�p�1Vp�k�K1�t(b)�Vp�k�L(b)� dtR 10 tn�p�1ap;k�(1� t)p�k�dt17



! R 10 tn�p�1(1� t)p�kdtR 10 tn�p�1ap;k�(1� t)p�k�dt :This means thatR 10 tn�p�1Vp�k�K1�t(b)�dtR 10 tn�p�1jK1�t(b)jdt �b!0 Vp�k�L(b)�jL(b)j R 10 tn�p�1(1� t)p�kdtR 10 tn�p�1ap;k�(1� t)p�k�dtand a short alulation givesR 10 tn�p�1Vp�k�K1�t(b)�dtR 10 tn�p�1jK1�t(b)jdt �b!0 � nn�p+k��pk��n�kp�k� Vp�k�L(b)�jL(b)j :So given " > 0, we may hoose b0 small enough so thatR 10 tn�p�1Vp�k�K1�t(b0)�dtR 10 tn�p�1jK1�t(b0)jdt � p1 + " � nn�p+k��pk��n�kp�k� Vp�k�L(b0)�jL(b0)j :(ii) Let now A be a onvex body in Rn�p ontaining 0 in its interior, and onsiderthe Minkowski funtionaljjwjjA = inff� � 0 : w 2 �Ag; w 2 Rn�p :Following the notation of (i), we de�ne a body M in Rn = Rn�p � Rp byM = fw + z : w 2 A; z 2 K1�kwkA(b0)g:Then M is onvex. Indeed, we haveM = onv(A� Pp�k(L(b0)); 0� L(b0))Now, for a > 0, we de�ne a new onvex body M(a) in Rn byM(a) = faw + z : w 2 Rn�p ; z 2 Rp ; w + z 2Mg:Let Ta : Rn 7! Rn be the linear mapping de�ned by Ta(w) = aw if w 2 Rn�p � 0and Taz = z for z 2 0� Rp . Then M(a) = Ta(M) so thatVn�k�M(a)�jM(a)j = V �(Ta(M); n� k); (Bn; k)�)jTa(M)j= V �(M;n� k); (T�1a (Bn); k)�)jM j :If Bp denotes the Eulidean ball of Rp ,T�1a (Bn)! Bp18



in the sense of Hausdor� as a ! +1. From the ontinuity of mixed volumes, weget �nk�Vn�k�M(a)�jM(a)j ! �nk�V �(M;n� k); (Bp; k)�jM jFrom Lemma 4.1 and the de�nition of M we atually get�nk�Vn�k�M(a)�M(a) ! �pk�RA Vp�k�K1�kwkA(b0)�dwRA jK1�kwkA(b0)j dw= �pk�R 10 Vp�k�K1�t(b0)�tn�p�1dtR 10 jK1�t(b0)jtn�p�1dt :Now if Pp is the anonial projetion from Rn = Rn�p � Rp to Rp , we havePp�M(a)� = L(b0);so that Vp�k�Pp�M(a)��jPp�M(a)�j = Vp�k�L(b0)�jL(b0)j :For a big enough, the estimate that we got in (i) shows thatVn�k�M(a)�jM(a)j � p1 + " �pk��nk� R 10 Vp�k�K1�t(b0)�tn�p�1dtR 10 jK1�t(b0)jtn�p�1dt� �pk��nk� � nn�p+k��pk��n�kp�k� (1 + ")Vp�k�Pp�M(a)��jPp�M(a)�j= (1 + ")�n+k�pk � Vp�k�Pp�M(a)��jPp�M(a)�j :(iii) The above disussion indiates that if the estimate of Theorem 4.1 is sharp,then the limiting bodies are degenerated in two di�erent diretions.Remarks.1. When p = n� 1, Theorem 4.1 givesVn�k(K)jKj � 1k + 1 Vn�1�k(PHK)jPHKjfor every onvex body K in Rn and every (n � 1)-dimensional subspae H . Fork = 1 this was proved in [GHP℄. From this and Steiner's formula we havejK + tBj � jtBjjKj = n�1Xk=0�nk�Vn�k(K)jKj tk19



� n�1Xk=0�nk�Vn�1�k(PHK)jPHKj tkk + 1= n�1Xk=0�nk�Vn�1�k(PHK)jPHKj Z t0 skds :Using �nk� � �n�1k � we getjK + tBjjKj � jK + tBj � jtBjjKj � Z t0 jPH(K + sB)jjPHKj ds :2. Let En�i, 2 � i � n � 1, be a dereasing sequene of (n � i)-dimensionalsubspaes of Rn . Write Pn�i for the orthogonal projetion onto En�i. The resultsfrom [GHP℄ show that Vn�1(K)jKj � 12 Vn�2(Pn�1K)jPn�1KjVn�2(Pn�1K)jPn�1Kj � 12 Vn�3(Pn�2K)jPn�2Kj: : :Therefore, for all 1 � q � n� 2, we haveVn�1(K)jKj � 12q Vn�1�q(Pn�qK)jPn�qKj :Applying Theorem 4.1 diretly, we getVn�1(K)jKj � 1q + 1 Vn�1�q(Pn�qK)jPn�qKj ;whih is a better estimate.3. It might be possible to generalize Theorem 4.1 as follows: Let 0 � l � k � pand let PE be the orthogonal projetion onto a p-dimensional subspae E of Rn .Then, Vn�k(K)Vn�l(K) � 1�n�p+k�ln�p � Vp�k(PEK)Vn�l(PEK) :Theorem 4.1 orresponds to the ase l = 0, while the ase p = n� 1 and l = k � 1was established in [GHP℄.
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