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Abstract

Sharpening work of the first two authors, for every proportion λ ∈ (0, 1)
we provide exact quantitative relations between global parameters of n-
dimensional symmetric convex bodies and the diameter of their random
⌊λn⌋-dimensional sections. Using recent results of Gromov and Vershynin,
we obtain an “asymptotic formula” for the diameter of random proportional
sections.

1 Introduction

One of the most important recent developments in asymptotic convex geometry has
been the gradual recognition of the fact that lower dimensional sections and projec-
tions of high-dimensional convex bodies exhibit an unexpectedly uniform structure.
Several questions regarding the asymptotic behaviour of convex bodies can be an-
swered through very precise estimates which depend only on a few “simple param-
eters” and are exact for every sequence of convex bodies of increasing dimension.
We call such exact estimates “asymptotic formulas”.

The aim of this article is to provide such asymptotic formulas for the diameter
of a random ⌊λn⌋-dimensional central section of a symmetric convex body K in Rn,
where the proportion λ ∈ (0, 1) is arbitrary but fixed and the dimension n tends to
infinity. We continue a line of thought which was initiated by the first two authors
in [4], [5] and [6].

In order to give a precise formulation of the problems, we need to introduce
some notation. We work on Rn which is equipped with a Euclidean structure and
write | · | for the corresponding Euclidean norm. The Euclidean unit ball and sphere
are denoted by Bn

2 and Sn−1 respectively. We write σn for the rotationally invariant
probability measure on Sn−1 and µn for the Haar probability measure on O(n). The
Grassmann manifold Gn,k of k-dimensional subspaces of Rn is equipped with the

∗The second named author was supported in part by the Israel Science Foundation
founded by the Academy of Sciences and Humanities.
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Haar probability measure νn,k. Every symmetric convex body K in Rn induces the
norm ‖x‖K = inf{t > 0 : x ∈ tK}. The polar body

{
y ∈ Rn : maxx∈K |〈y, x〉| ≤ 1

}

of K is denoted by K◦. We define

(1.1) M(K) =

∫

Sn−1

‖x‖K σn(dx) and M∗(K) =

∫

Sn−1

max
y∈K

|〈x, y〉| σn(dx).

So, M = M(K) is the average of the norm of K on the sphere and M∗ = M∗(K)
is the mean width of K (in the classical terminology of convexity, the mean width
w(K) of K is equal to 2M∗(K)). Note that M∗ = M(K◦). We also define a and
b as the least positive constants for which (1/a)|x| ≤ ‖x‖K ≤ b|x| holds true for
every x ∈ Rn. Thus, a is the circumradius of K — also denoted by D(K) — and
1/b is the inradius of K — also denoted by d(K).

The approach of [4] was based on the second author’s “M∗-estimate” (see [8],
[9], [16], [2]) which compares the diameter of proportional sections of a symmetric
convex body K in Rn to its mean width M∗(K). A precise quantitative form of
this inequality can be found in [2]: Let K be a symmetric convex body in Rn and
let λ, ε ∈ (0, 1). Then,

(1.2) D(K ∩ E) ≤ M∗(K)

(1 − ε)
√

1 − λ

for all E in a subset An,k of Gn,k of almost full measure, where k = ⌊λn⌋ (the
proof of (1.2) is based on a more general result of Gordon which will be discussed
in Section 2; see Lemma 2.7). A direct consequence of the M∗-estimate is the
following (see [4]):

Theorem A (upper bound for the diameter) Let ε, λ ∈ (0, 1). If K is a

symmetric convex body in Rn, and if r1 is the solution of the equation

(1.3) M∗(K ∩ rBn
2 ) = (1 − ε)

√
1 − λr,

then D(K ∩ E) ≤ r1 for all subspaces E in a subset A(λ) of Gn,⌊λn⌋ with measure

νn,⌊λn⌋(A(λ)) ≥ 1− c1 exp(−c2ε
2(1−λ)n), where c1, c2 > 0 are absolute constants.

2

In other words, solving the equation M∗(K∩rBn
2 ) ≍

√
1 − λr, we get an upper

bound for the diameter of a random ⌊λn⌋-dimensional section of K. The main idea
in [4] was to see if an analogous (or even the same) equation can be used for a lower
bound as well.

The main new ingredient was a “conditional M -estimate”: Let K be a symmet-

ric convex body in Rn with Bn
2 ⊆ K and let λ ∈ (0, 1). If M(K) ≥ 1 − c

1

1−λ , then
there exists a subset B(λ) of Gn,k with νn,k(B(λ)) ≥ 1 − ck, where k = ⌊λn⌋, such

that D(K ∩ E) ≤ C
λ

1−λ for all E ∈ B(λ), where 0 < c < 1 and C > 1 are absolute
constants, and n is large enough. In Section 2 we give two different arguments
which provide better estimates. The first argument uses the M∗-estimate and the
second author’s “distance lemma”; the second one is based on Gordon’s work (see
Lemma 2.7) and was kindly communicated to us by R. Vershynin.
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Theorem B (low M-estimate) Let λ ∈ (0, 1) and let K be a symmetric convex

body in Rn with Bn
2 ⊆ K. Assume that

(1.4) M(K) >
√

λ

and set δ = (M2 − λ)/(1 − M2). Then, a ⌊λn⌋-dimensional central section K ∩ E
of K satisfies

(1.5) D(K ∩ E) ≤ c
√

1 − λ

M −
√

λ

with probability greater than 1 − c1 exp(−c2δ
2(1 − λ)n), where c, c1, c2 > 0 are

absolute constants.

This follows from Theorem 2.3, where the following estimates are proved for a
random E ∈ Gn,⌊λn⌋:

(i) If M2 < 1
2 , then D(K ∩ E) ≤ cM

M2−λ .

(ii) If M2 ≥ 1
2 , then D(K ∩ E) ≤ c

√
1−λ

M2−λ .

By Dvoretzky’s theorem, there exists an absolute constant c ∈ (0, 1) such that
if Bn

2 ⊆ K then a random ⌊cM2n⌋-dimensional section K∩E of K satisfies 1
2M Bn

2 ∩
E ⊆ K∩E ⊆ 2

M Bn
2 ∩E. The Low M -estimate above provides an isomorphic version

of this fact for all dimensions up to the natural bound k∗ := M2n. After this paper
was written, A. Litvak noted that, in fact, analogous estimates can be recovered
from [2]. As Remark 2.9 shows, under additional conditions, modifications of our
first method of proof may give information for dimensions greater than k∗.

An interesting application is given in Section 3, where we improve substan-
tially the estimates from [5] on a question about the comparison of local to global
parameters of symmetric convex bodies.

Theorem C Let ρ > 0, let t ≥ 2 be an integer and let n ≥ 2(t + 1). For every

symmetric convex body K in Rn, if there exist orthogonal transformations u1, . . . , ut

such that u1(K)∩· · ·∩ut(K) ⊆ ρBn
2 then a random ⌊ n

c1t⌋-dimensional section K∩E

of K satisfies D(K ∩ E) ≤ c2

√
tρ, where c1, c2 > 0 are absolute constants.

A qualitative version of the results in [4] reads as follows: There exist two
explicit functions h1, h2 : (0, 1) → (0, 1) such that for every λ ∈ ( 1

2 , 1) and every
symmetric convex body K in Rn, the solutions ri of the equations M∗(K ∩ rBn

2 ) =
hi(λ)r in r (i = 1, 2) determine a confidence interval for the diameter of a random
⌊λn⌋-dimensional section of K. The important point is that the functions h1 and h2

are universal and that the statement holds true for an arbitrary symmetric convex
body K. Another advantage of this statement is that it makes use of the global
(hence computationally simple) parameter M∗ of the body. The estimates in [4] are
not tight and a main disadvantage of the method is the use of Borsuk’s theorem,
which forces one to study only proportions λ ∈ ( 1

2 , 1). The method of [4] gives no
information for small proportions.
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In the last two Sections we show that the upper estimates given by Theorem
A can be complemented by lower estimates for every proportion λ ∈ (0, 1): the

“equation” M∗(K ∩ rBn
2 ) ≍

√
2(1−λ)
2−λ r is enough for a lower bound. The main

new tool is a recent isoperimetric theorem of Gromov [3]: Assume that k < n are
positive integers, n is even and n − k = 2m − 1. For every θ > 0, among all odd
continuous functions f : Sk−1 → Sn−1, the θ-extension of the image f(Sk−1) in
Sn−1 has minimal measure if f is the identity function. Using an application of this
result by Vershynin [18], together with precise concentration estimates of Artstein
[1], we are able to prove the following.

Theorem D (lower bound for the diameter) Suppose that λ ∈ (0, 1) and ε > 0

satisfy (1 + ε)
√

2(1−λ)
2−λ < 1 and let n ≥ n0(λ, ε) ≃ 1

(1−λ)ε2 . If K is a symmetric

convex body in Rn, and if r2 is the solution of the equation

(1.6) M∗(K ∩ rBn
2 ) = (1 + ε)

√
2(1 − λ)

2 − λ
r,

then

(1.7) D(K ∩ E) ≥ ε
√

1 − λ

3
r2

for every E ∈ Gn,⌊λn⌋.

It should be emphasized that the conclusion of Theorem D holds for every
(and not for a random) E ∈ Gn,⌊λn⌋. A striking application of this fact follows by
comparison with Theorem A: roughly speaking, for every fixed proportion µ ∈ (0, 1)
and every 0 < s < 1/(2 − µ), the minimal diameter of ⌊µn⌋-dimensional sections
and the random diameter of ⌊sµn⌋-dimensional sections are comparable up to a
constant depending on µ and s. An analogous result is observed by Vershynin in
[19]. To state the theorem, for every symmetric convex body K in Rn, let a(λ,K)
denote the minimal (and let b(λ,K) denote the “random”) circumradius of a ⌊λn⌋-
dimensional section of K (the precise definitions are given in Section 5).

Theorem E Let 0 < µ < 1 and 0 < s < 1/(2−µ). There exists n0 = n0(µ, s) such

that

(1.8)

(
cµ(1 − s(2 − µ))

1 − sµ

√
1 − µ

)
b(sµ,K) ≤ a(µ,K)

for every n ≥ n0 and every symmetric convex body K in Rn.

Quantitative statements showing that existence implies randomness are still
rare in the theory and should have interesting applications. The fact that the
smallest and the “random” number of rotations of a convex body whose intersection
approximates the Euclidean ball are of the same order (see [13] and [7]) is such an
example. In the local theory, a result of this type appears in [14]: In the language
of Theorem E, [14, Proposition 3.2] states that if most sµn-dimensional sections
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of some µn-dimensional projection of a symmetric convex body K have diameter
bounded by 1 then most tµn-dimensional sections of the whole body have diameter
bounded by f(µ, s, t), where t < s and µ, s, t ∈ (0, 1).

Note: It is not known whether Gromov’s theorem holds true for all positive integers
k < n. If so, then Theorems D and E would take an optimal form (the precise
formulations of the corresponding two conditional statements are given at the end
of the paper – see Remark 5.7).

We refer the reader to the books [12], [15] and [17] for notation and background
information on asymptotic convex geometry; in particular, the letters c, C, c1, c2

etc. denote absolute positive constants which may change from line to line.

Acknowledgment: We would like to express our gratitude to R. Vershynin; his
recent results as well as his very helpful comments have definitely influenced this
work. We would also like to thank the referee for comments and suggestions which
improved our original manuscript.

2 Low M-estimate

In this Section we give two arguments which prove Theorem B. The first one uses
the M∗-estimate and the second author’s “distance lemma” (a similar technique
was used in [6] in a different setting). The second one was communicated to us by
R. Vershynin and is reproduced here with his very kind permission.

First approach (distance lemma). The distance lemma shows that the geomet-
ric distance from a symmetric convex body to the Euclidean ball can be estimated
if the parameters M and M∗ are comparable to 1/b and a respectively.

Lemma 2.1 (Milman [10]) Let T be a symmetric convex body in Rn with ρBn
2 ⊆

T ⊆ rBn
2 . Assume that

(2.1) (M∗(T )/r)2 + (M(T )ρ)2 = 1 + κ

for some κ > 0. Then,

(2.2)
r

ρ
≤ 1

κ
.

If in addition

(2.3) (M∗(T )/r)2 + β(M(T )ρ)2 ≥ 1

for some constant β ∈ (0, 1), then

(2.4)
r

ρ
≤

√
1 − β

1 −√
β

1√
κ

.

Combining with the M∗-estimate we get the following technical statement.
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Proposition 2.2 Let λ ∈ (0, 1) and let K be a symmetric convex body in Rn. For

every δ > 0 we define r to be the solution of the equation

(2.5) M∗(K ∩ rBn
2 ) =

√
δ + λ

δ + 1
r.

Then, for a random E ∈ Gn,⌊λn⌋ and an absolute constant c > 0 we have:

(i) If 0 < λ < 1
2 and 0 < δ < 1 − 2λ, then

(2.6) D(K◦ ∩ E) ≤ c
√

δ + λ

δ

1

r
.

(ii) If 1 − 2λ ≤ δ, then

(2.7) D(K◦ ∩ E) ≤ c√
1 − λ

δ + 1

δ

1

r
.

Proof. Let 0 < s < δ be a constant depending on δ which will be suitably chosen.
We define ρ > 0 by the equation

(2.8) M∗ (
K◦ ∩ ρ−1Bn

2

)
=

√
1 − λ

s + 1

1

ρ
.

Theorem A shows that (with probability greater than 1− c1 exp(−c2s
2(1−λ)n)) a

random E ∈ Gn,⌊λn⌋ satisfies

(2.9) D(K◦ ∩ E) ≤ 1/ρ.

We may assume that ρ < r: if ρ ≥ r then the result is an immediate consequence
of (2.9). We define the convex body T = co

(
(K ∩ rBn

2 ) ∪ ρBn
2

)
. Since ρ < r, we

have ρBn
2 ⊆ T ⊆ rBn

2 . Also, by the definition of T we see that T ⊇ K ∩ rBn
2 and

T ◦ ⊇ K◦ ∩ 1
ρBn

2 . Therefore,

(M∗(T )/r)2 + (M(T )ρ)2 ≥
(
M∗(K ∩ rBn

2 )/r
)2

+
(
M∗ (

K◦ ∩ ρ−1Bn
2

)
ρ
)2

=
δ + λ

δ + 1
+

1 − λ

s + 1

= 1 +
δ − s

(δ + 1)(s + 1)
(1 − λ).

We treat the two cases as follows:

(i) We define γ = s+λ
s+1

δ+1
δ+λ . Since s < δ, we have 0 < γ < 1 and

(2.10) γ(M∗(T )/r)2 + (M(T )ρ)2 ≥ s + λ

s + 1
+

1 − λ

s + 1
= 1.

Applying the distance lemma we get

1

ρ
≤ (

√
(δ + 1)(s + λ) +

√
(s + 1)(δ + λ))

√
(δ + 1)(s + 1)

(δ − s)(1 − λ)

1

r

≤ 2(δ + 1)3/2
√

δ + λ

(δ − s)(1 − λ)

1

r
.
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Choosing s = δ/2 we get (2.6).

(ii) We define β = s+1
δ+1 . Since s < δ we have 0 < β < 1 and

(2.11) (M∗(T )/r)2 + β(M(T )ρ)2 ≥ δ + λ

δ + 1
+

s + 1

δ + 1

1 − λ

s + 1
= 1.

We can then apply the distance lemma to get

(2.12)
1

ρ
≤ (

√
δ + 1 +

√
s + 1)

√
(δ + 1)(s + 1)

(δ − s)
√

1 − λ

1

r
≤ 2(δ + 1)

δ − s

√
s + 1√
1 − λ

1

r
.

We now distinguish two subcases: if δ < 1 we choose s = δ/2, and if δ ≥ 1 we
choose s = 1/2. Then, (2.12) proves (2.7). 2

Proposition 2.2 leads to the following low M -estimate.

Theorem 2.3 Let λ ∈ (0, 1) and let K be a symmetric convex body in Rn with

Bn
2 ⊆ K. Assume that

(2.13) M(K) >
√

λ.

Then, for a random E ∈ Gn,⌊λn⌋ and an absolute constant c > 0 we have:

(i) If M2 < 1
2 , then

(2.14) D(K ∩ E) ≤ cM

M2 − λ
.

(ii) If M2 ≥ 1
2 , then

(2.15) D(K ∩ E) ≤ c
√

1 − λ

M2 − λ
.

Proof. If M = 1 then K = Bn
2 and there is nothing to prove. So, we assume that

M < 1 and set δ = M2−λ
1−M2 . Since Bn

2 ⊆ K, we have

(2.16) M∗(K◦ ∩ Bn
2 ) = M∗(K◦) =

√
δ + λ

δ + 1
.

Consider the following two cases:

(i) If M2 < 1
2 then δ < 1 − 2λ (and λ < M2 < 1

2 ). Therefore, Proposition 2.2(i)
shows that

(2.17) D(K ∩ E) ≤ c
√

δ + λ

δ
<

cM
√

1 − M2

M2 − λ

for a random E ∈ Gn,⌊λn⌋. This proves (2.14).
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(ii) If M2 ≥ 1
2 then 1 − 2λ ≤ δ. In this case, Proposition 2.2(ii) shows that

(2.18) D(K ∩ E) ≤ c√
1 − λ

δ + 1

δ

for a random E ∈ Gn,⌊λn⌋. Since

(2.19)
δ + 1

δ
=

1 − λ

M2 − λ
,

this proves (2.15). 2

Remark 2.4 From the proof of Proposition 2.2 one can check that the results
in Theorem 2.3 hold true for all subspaces E in a subset A(λ) of Gn,⌊λn⌋ with

measure νn,⌊λn⌋(A(λ)) ≥ 1−c1 exp(−c2δ
2(1−λ)n), where δ = M2−λ

1−M2 and c1, c2 > 0
are absolute constants.

Remark 2.5 The inequality M >
√

λ is a necessary condition if we want to have
such bounds for a random subspace E ∈ Gn,⌊λn⌋. This can be checked by analyzing
the example of the cylinder

C =
{
x ∈ Rn : x2

1 + · · · + x2
k ≤ 1

}

where k = ⌊λn⌋. One should emphasize here the relation to Dvoretzky’s theorem:
for some c ∈ (0, 1) and for every symmetric convex body in Rn with Bn

2 ⊆ K, a
random ⌊cM2n⌋-dimensional section K ∩ E of K satisfies 1

2M Bn
2 ∩ E ⊆ K ∩ E ⊆

2
M Bn

2 ∩ E. Theorem 2.3 shows that an isomorphic version of this fact is possible
“for all” dimensions up to the natural bound k∗ := M2n.

Theorem 2.3 may be also stated in the following way.

Theorem 2.6 Let α > 1 and let K be a symmetric convex body in Rn with Bn
2 ⊆

K. Assume that M(K) =
√

1 − ε for some ε ∈ (0, 1) with αε < 1. If ε < 1/2, then

a random E ∈ Gn,⌊(1−αε)n⌋ satisfies

(2.20) D(K ∩ E) ≤ c
√

α

α − 1

1√
ε
,

where c > 0 is an absolute constant. If ε ≥ 1/2, then a random E ∈ Gn,⌊(1−αε)n⌋
satisfies

(2.21) D(K ∩ E) ≤ c
√

1 − ε

α − 1
,

where c > 0 is an absolute constant. 2
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Second approach (Gaussian processes). Vershynin’s approach to the low M -
estimate is based on Gordon’s proof of the M∗-estimate. For the precise statement,
we need to introduce the sequence

ak = E

(
k∑

i=1

g2
i

)1/2

=
√

2Γ

(
k + 1

2

)/
Γ

(
k

2

)
,

where g1, . . . , gk are independent standard Gaussian random variables on some
probability space. It is not hard to check that k/

√
k + 1 < ak <

√
k (since k will

be always assumed large, in what follows we can replace ak by
√

k for simplicity of
the exposition; slight modifications would take care of the “error”). Theorem A is
a consequence of the following very precise result of Gordon (see [2]).

Lemma 2.7 (Gordon) Let S be a closed subset of Sn−1. If

(2.22) w(S) :=

∫

Sn−1

max
y∈S

〈x, y〉σ(dx) <
ak

an
,

then

(2.23) νn,n−k (E ∈ Gn,n−k : E ∩ S = ∅) ≥ 1 − 7

2
exp

(
− (ak − anw(S))2

18

)
.

2

We will use this criterion to prove a low M -estimate in the form of Theorem 2.3.

Proposition 2.8 Let K be a symmetric convex body in Rn with Bn
2 ⊆ K. Assume

that 0 < ε < M(K) and set N = M(K) − ε. Let 0 < α < N and define S =
αK ∩ Sn−1. Then,

(2.24) w(S) :=

∫

Sn−1

max
y∈S

〈x, y〉σ(dx) < γ(α,N) + exp(−cε2n),

where γ(α, β) = αβ +
√

(1 − α2)(1 − β2) and c > 0 is an absolute constant.

Proof. Since ‖ · ‖ is a 1-Lipschitz function on Sn−1, concentration of measure on
the sphere (see [12]) shows that

(2.25) σ(x ∈ Sn−1 : ‖x‖ < N) ≤ exp(−cε2n).

We will prove the following claim:

Claim: If 0 < α < β < 1 and S = αK ∩ Sn−1, then for every x ∈ Sn−1 with

‖x‖ ≥ β we have

(2.26) max
y∈S

〈x, y〉 ≤ γ(α, β) := αβ +
√

(1 − α2)(1 − β2).
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After this is proved, we can write

w(S) =

∫

Sn−1

max
y∈S

〈x, y〉σ(dx)

=

∫

{x∈Sn−1:‖x‖≥N}
γ(α,N)σ(dx) +

∫

{x∈Sn−1:‖x‖<N}
1σ(dx)

< γ(α,N) + exp(−cε2n),

which is the assertion of Proposition 2.8. 2

0 α β 1

y

βy/α

y0

x0

x

Proof of the Claim. To this end, assume that x ∈ Sn−1 \βK and let y ∈ S. We may
restrict ourselves to the two-dimensional plane E spanned by x and y. We know
that βK ∩ E ⊇ βBE and ±(β/α)y ∈ βK ∩ E. Therefore, x /∈ co{βBE ,±(β/α)y}.
Consider the tangent from (β/α)y to βBE . Let x0 and y0 be the points where this
tangent meets SE and βSE respectively (see the picture above).

Then, the angle φ := x̂0y is greater than or equal to the angle φ0 := x̂00y.

From the picture it is clear that φ0 = ψ−ω, where ψ = ŷ00y and ω = ŷ00x0. Since
cos ψ = α and cos ω = β, it follows that 〈x, y〉 = cos φ ≤ cos φ0 = γ(α, β). 2

Second proof of Theorem 2.3. As in the first proof of the theorem, we define
δ > 0 by the equation M2 = δ+λ

δ+1 . We distinguish three cases.

(a) Assume first that 1 − 2λ ≤ δ < 1 (this corresponds to the case 1
2 ≤ M2 <

1+λ
2 ). Let ε = s(1 − λ) and η = α = s

√
1−λ
δ+1 where s ∈ (0, 1) will be chosen. We

define S = αK ∩ Sn−1. If n ≥ n0(s, λ) then exp(−cε2n) < η, and Proposition 2.8
gives

(2.27) w(S) :=

∫

Sn−1

max
y∈S

〈x, y〉σ(dx) < γ(α,N) + η < α +
√

1 − N2 + η,

where N = M − ε. Since

(2.28) 1−N2 = 1−M2 + ε(2M − ε) ≤ 1− δ + λ

δ + 1
+2s(1−λ) =

1 − λ

δ + 1
+2s(1−λ),
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we get

(2.29) 1 − N2 <
1 − λ

(δ/2) + 1

if we choose s ≃ δ. Then,

(2.30) w(S) + η < (1 + 3s)

√
1 − λ

(δ/2) + 1
<

√
1 − λ

provided (again) that s ≃ δ. With this choice of s we have
√

1 − λ − w(S) ≥ η,
and Lemma 2.7 shows that (with probability greater than 1 − c1 exp(−c2η

2n)) a
random E ∈ Gn,⌊λn⌋ satisfies

(2.31) E ∩ αK ∩ Sn−1 = ∅.

This implies easily that

(2.32) D(K ∩ E) ≤ 1

α
≃ 1

δ
√

1 − λ
.

(b) Next, assume that δ ≥ 1 (in this case we have M2 ≥ 1+λ
2 ). We set ε =

s(1 − λ), η = α = s
√

1 − λ and define S = αK ∩ Sn−1. Then, we repeat the
argument in (a). Observe that if s is small enough, we have

(2.33) N2 > M2 − 2ε ≥ 1 + λ

2
− 2s(1 − λ) >

1 + 2λ

3
.

Therefore,

(2.34) w(S) + η < α +
√

1 − N2 + 2η < 3s
√

1 − λ +
√

2
3 (1 − λ) <

√
1 − λ

if s is small enough. This shows that

(2.35) D(K ∩ E) ≤ 1

α
≃ 1√

1 − λ

for a random E ∈ Gn,⌊λn⌋.

Notice that the upper bounds in (2.32) and (2.35) are both of the order of√
1 − λ/(M2 − λ). Thus, cases (a) and (b) prove Theorem 2.3(ii).

(c) Finally, assume that δ < 1 − 2λ (note that λ < 1/2 in this case). We now

choose ε = s(1 − λ), α = s
√

δ+1
δ+λ = s/M and η = s. If s ≤ cδ where c > 0 is an

absolute constant, using (2.29) we get

(2.36) w(S) + η < αM +
√

1 − N2 + 2η <

√
1 − λ

(δ/2) + 1
+ 3

√
2s
√

1 − λ <
√

1 − λ.

11



It follows that

(2.37) D(K ∩ E) ≤ 1

α
≤ c1

√
δ + λ

δ
.

Therefore, case (c) proves Theorem 2.3(i). 2

Remark 2.9 The second proof of Theorem 2.3 is based on Gordon’s approach
to Dvoretzky’s theorem and to the M∗-estimate. In fact, after this paper was
submitted, A. Litvak noted that the estimates of Theorem 2.3 may be also recovered
from the methods developed in [2] for all λ < M2. However, our first proof of
Theorem 2.3 is based on purely geometric tools and could be useful in situations
where one needs to consider λ > M2. This can be done with a suitable choice of
the parameters in Proposition 2.2. For example, assume that Bn

2 ⊆ K and M(K)
is small. Choose λ = δ = αM2 ∈ (0, 1) where α ≫ 1. If ρ > 0 satisfies the equation

(2.38) M(co(K ∪ ρBn
2 )) =

√
2αM√
δ + 1

1

ρ
,

then Proposition 2.2 implies that

(2.39) D(K ∩ E) ≤ c√
δρ

≃ 1√
αMρ

for a random E ∈ Gn,⌊αM2n⌋. In cases where the solution ρ of (2.38) can be
estimated, one has information on the diameter of proportional sections beyond
λ0 := M2.

3 Diameter of random sections and circumradius

of random intersections

Let K be a symmetric convex body in Rn and let t, k ≥ 2 be two integers. We
define the minimal circumradius of an intersection of t rotations of K by
(3.1)

rt(K) = min{ρ > 0 : u1(K) ∩ · · · ∩ ut(K) ⊆ ρBn
2 for some u1, . . . , ut ∈ O(n)},

and the “upper radius” of a random ⌈n/k⌉-dimensional central section of K by

(3.2) Rk(K) = min

{
R > 0 : νn,⌈n/k⌉(E : K ∩ E ⊆ R(Bn

2 ∩ E)) ≥ 1 − 1

k + 1

}

(where ⌈x⌉ denotes the least integer which is greater than or equal to x). In [11] it
is proved that

(3.3) r2k(K) ≤
√

kRk(K).

In [5] the following general reverse inequality was proved for fixed integer values of
t (starting with t = 2): For every symmetric convex body K in Rn, where n is large

12



enough depending on t, a random ctn–dimensional section K ∩ E of K satisfies
D(K ∩ E) ≤ 20Ctrt(K), where 0 < c < 1 and C > 1 are absolute constants.

Using Proposition 2.2 we are able to obtain sharper estimates in this direction.

Theorem 3.1 Let t ≥ 2 be an integer and let n ≥ 2(t + 1). For every symmetric

convex body K in Rn, a random ⌊ n
c1t⌋-dimensional section K ∩ E of K satisfies

(3.4) D(K ∩ E) ≤ c2

√
trt(K),

where c1, c2 > 0 are absolute constants.

Proof. Assume that for some body K in Rn and for some ρ > 0 there exist rotations
u1, . . . , ut ∈ O(n) for which

u1(K) ∩ · · · ∩ ut(K) ⊆ ρBn
2 .

Let k be the least integer for which λ = k
n > t

t+1 . There exists r > 0 satisfying

M∗(uj(K) ∩ rBn
2 ) =

√
(3n + k)/4nr for every j = 1, . . . , t. We can then apply

Proposition 2.2(iii) to find subsets Lj of Gn,k with almost full measure (greater
than 1 − c1 exp(−c2(n − k))) such that

(3.5) [uj(K)]◦ ∩ E ⊆ c1

r

√
n

n − k
(Bn

2 ∩ E)

for all E ∈ Lj . Therefore, we can find L ⊆ Gn,k with νn,k(L) > 0 so that (3.5)
holds for all j ≤ t and E ∈ L. If E ∈ L, passing to polar bodies we get

(3.6) PE(uj(K)) ⊇
√

n − k

n
c2r(B

n
2 ∩ E) , j = 1, . . . , t.

Without loss of generality we may assume that K is strictly convex. We then
define a map T : S(E) → Rt(n−k) as follows: Given θ ∈ S(E) we find xj =
ajθ ∈ bd(PE(uj(K))), j = 1, . . . , t. Then, we have xj = PE(yj) for a unique point
yj ∈ bd(uj(K)). We define

T (θ) = (y1 − x1, . . . , yt − xt),

where we identify (E⊥)t with Rt(n−k). It is easy to check that T is an odd continuous
function on S(E). From the choice of k, we have t(n − k) < k. We can then apply
Borsuk’s antipodal theorem to find θ ∈ S(E) with T (θ) = 0. Consider an index
j0 ≤ t for which aj0 = |xj0 | is minimal. Since xj0 = yj0 , we have xj0 ∈ uj0(K)∩E,
and since aj0 = minj≤t aj we see that xj0 ∈ u1(K) ∩ · · · ∩ ut(K) ∩ E.

On the other hand, xj0 is also on the boundary of PE(uj0(K)), which gives

(3.7) c2r

√
n − k

n
≤ |xj0 | ≤ D(u1(K) ∩ · · · ∩ ut(K) ∩ E) ≤ ρ.

13



This gives an upper bound for r in terms of ρ and t:

(3.8) r ≤ c3

√
n

n − k
ρ.

Let s be the least integer for which (n − s)/n ≤
√

(3n + k)/4n. We define ε ∈ R

(which is easily checked to be in (0, 1)) so that

(3.9) M∗(K ∩ rBn
2 ) = (1 − ε)

√
(n − s)/nr =

√
(3n + k)/(4n)r.

Theorem A implies that there is a subset L′ of Gn,s with almost full measure, such
that

(3.10) D(K ∩ E) ≤ r ≤ c3

√
n

n − k
ρ

for all E ∈ L′. It remains to estimate s and n/(n − k) in terms of t. We had
k ≤ nt/(t + 1) + 1, which gives

(3.11)
n

n − k
≤ 2(t + 1)

if we assume n ≥ 2(t + 1). Also, since (n − s)/n ≤
√

(3n + k)/4n, we have

(3.12) s = n
(n − k)/4n

1 +
√

(3n + k)/4n
≥ n

16(t + 1)
.

This completes the proof of the theorem. 2

By the definition of rt(K) and Rk(K) we may rephrase Theorem 3.1 as follows.

Theorem 3.2 There exist c1, c2 > 0 such that for every integer t ≥ 2 and every

n ≥ 2(t + 1), the inequality

(3.13) Rc1t(K) ≤ c2

√
trt(K)

holds true for every symmetric convex body K in Rn. 2

4 New tools

We consider Sn−1 as a metric probability space, with the geodesic distance ρ and
the probability measure σn. If θ > 0 and A is a Borel subset of Sn−1, then the θ-
extension of A is the set Aθ = {x ∈ Sn−1 : ρ(x,A) ≤ θ}. The following isoperimetric
theorem of Gromov (see [3]) will be crucial for the results of Section 5.

Theorem 4.1 (Gromov) Assume that k < n are positive integers, n is even and

n − k = 2m − 1 for some positive integer m. For every odd continuous function

f : Sk−1 → Sn−1 and every θ > 0,

(4.1) σn

([
f(Sk−1)

]
θ

)
≥ σn,k(θ),

where σn,k(θ) is the measure of the θ-extension of Sk−1 in Sn−1. 2
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Vershynin (see [19]) offers a relaxed version of Gromov’s theorem for all k and n.
This is done by embedding into a higher dimensional sphere so that Theorem 4.1 can
be applied. The embedding is possible because, as shown in [19], for every θ > 0, for
every symmetric Borel set A ⊆ Sn−1 and every m ≥ n, one has σn(Aθ) ≥ σm(Aθ),
where on the right hand side A is viewed as a subset of Sm−1 via the natural
embedding of Sn−1 into Sm−1.

Proposition 4.2 Assume that k < n are positive integers. For every odd contin-

uous function f : Sk−1 → Sn−1 and every θ > 0,

(4.2) σn

([
f(Sk−1)

]
θ

)
≥ σ2n−k,k−2(θ),

where σm,k(θ) is the measure of the θ-extension of Sk−1 in Sm−1. 2

The following lemma of Vershynin (see [18]) makes essential use of Proposition 4.2.

Lemma 4.3 Let K be a symmetric convex body in Rn and assume that for some

a < 1 < b and some E ∈ Gn,k, k > 2 we have

(4.3) aBn
2 ⊆ K and b(Bn

2 ∩ E) ⊆ PE(K).

Then,

(4.4) σn(K ∩ Sn−1) ≥ σ2n−k,k−2(θ),

where θ = arcsin(a) − arcsin(a/b).

Sketch of the proof (Vershynin): Since b(Bn
2 ∩ E) ⊆ PE(K), there exists an

odd continuous function g : bS(E) → K. Consider the function f : S(E) → Sn−1

defined by f(x) = g(bx)/|g(bx)|. We may clearly identify S(E) with Sk−1, and
hence, Proposition 4.2 shows that σn (Yφ) ≥ σ2n−k,k−2(φ) for every φ > 0, where
Y = f(S(E)). To complete the proof, we observe that

(4.5) K ⊇ co{±g(bx), aBn
2 } ⊇ B(f(x), θ)

for every x ∈ S(E), where θ = arcsin(a)− arcsin(a/b). Here, we only need the fact
that |g(bx)| ≥ b > 1 > a and simple trigonometry. 2

Remark 4.4 Assume that Gromov’s Theorem 4.1 holds true for every pair of
positive integers k < n. Then, Lemma 4.3 takes a stronger form: under the same
hypotheses we have

(4.6) σn(K ∩ Sn−1) ≥ σn,k(θ),

where θ = arcsin(a) − arcsin(a/b). In the end of the next section we discuss the
consequences of this statement.
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The asymptotic behaviour of σn,k(θ) has been determined by Artstein [1] (see
also [19]): Let λ ∈ (0, 1). Then, the following estimates hold as n → ∞.

1. If sin2 θ > 1 − λ, then

σn,k(θ) ≃ 1 − 1√
nπ

√
λ(1 − λ)

sin2 θ − (1 − λ)
e

n

2
u(λ,θ).

2. If sin2 θ < 1 − λ, then

σn,k(θ) ≃ 1√
nπ

√
λ(1 − λ)

(1 − λ) − sin2 θ
e

n

2
u(λ,θ),

where

(4.7) u(λ, θ) = (1 − λ) ln
(1 − λ)

sin2 θ
+ λ ln

λ

cos2 θ
.

In particular, there exists a critical value θ(λ) such that: if k ≥ λn and θ >
θ(λ) then σn,k(θ) → 1 as n → ∞. What we really need is the fact that θ(λ) =
arcsin(

√
1 − λ). This already follows by a simple argument: in [1], it is observed

that σn,k(θ) = Prob(Yn ≤ sin2 θ), where Yn is a random variable with distribution

Beta
( (1−λ)n

2 , λn
2

)
. Since

(4.8) E(Yn) = 1 − λ and Var(Yn) =
2λ(1 − λ)

n + 2
,

a simple application of Chebyshev’s inequality shows that

(4.9) Prob(Yn > (1 − λ) + t) ≤ Var(Yn)

t2
≤ 2λ(1 − λ)

(n + 2)t2

for every t > 0. Choosing t = δ(1 − λ) we get the next lemma.

Lemma 4.5 Let δ > 0 and let k = λn for some positive integer k < n. If n ≥
4λ

(1−λ)δ2 and

(4.10) sin2 θ > (1 + δ)(1 − λ),

then σn,k(θ) > 1/2. 2

5 Diameter of proportional sections

In this Section we obtain lower bounds for the diameter of proportional sections of
a symmetric convex body K in Rn. As a first step, we will use Lemma 4.3 to show
the following: if K contains Bn

2 , then a condition of the form M(K) > g(λ) implies
an upper bound for the inradius of every ⌈λn⌉-dimensional projection PE(K) of
K.
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Proposition 5.1 Let λ ∈ (0, 1) and let K be a symmetric convex body in Rn such

that Bn
2 ⊆ K. If

(5.1) M > β(λ) :=

√
2(1 − λ)

2 − λ

and n ≥ C(M − β)−2, then

(5.2) d(PE(K)) ≤ 3

M − β

for every E ∈ Gn,⌊λn⌋.

Proof. Let k = ⌊λn⌋ and let m be the Lévy mean of ‖ · ‖ on Sn−1. This is the
unique m > 0 for which σn(‖x‖ ≥ m) ≥ 1/2 and σn(‖x‖ ≤ m) ≥ 1/2. Equivalently,
m = max{t > 0 : σn(tK ∩ Sn−1) ≤ 1/2}. Since ‖ · ‖ is a 1-Lipschitz function, one
can check that |M −m| ≤ δn where δn ≤ c1/

√
n for some absolute constant c1 > 0

(see [12]).
Consider E ∈ Gn,k for which ρ := d(PE(K)) is maximal. If (M − δn)ρ ≤ 1

then there is nothing to prove: observe that δn ≤ (2M + β)/3 if n ≥ C(M − β)−2.
Otherwise, since (M − δn)K ⊇ (M − δn)Bn

2 we can apply Lemma 4.3 to the body
(M − δn)K. It follows that

σn((M − δn)K ∩ Sn−1) ≥ σ2n−k,k−2(θ),

where θ = arcsin(M − δn) − arcsin(1/ρ). On the other hand,

(5.3) σn((M − δn)K ∩ Sn−1) ≤ σn(mK ∩ Sn−1) ≤ 1/2.

We set λ0 = k−2
2n−k and δ0 = M−β

β . From Lemma 4.5 it follows that (for n ≥
n0(λ0, δ0) ≃ (M − β)−2) we must have

(5.4) sin θ ≤
√

(1 + δ0)
2(n − k − 1)

2n − k
<

√
1 + δ0β.

Observe that

sin θ =
(M − δn)

ρ

√
ρ2 − 1 − 1

ρ

√
1 − (M − δn)2

=
M − δn

ρ

(√
ρ2 − 1 −

√
(M − δn)−2 − 1

)

≥ M − δn

ρ

ρ2 − (M − δn)−2

ρ + (M − δn)−1

= (M − δn) − 1

ρ
.

Then, (5.4) gives

(5.5) ρ
(
(M − δn) −

√
1 + δ0β

)
≤ 1.
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Finally, under the assumption n ≥ C(M − β)−2, it is easily checked that δn +√
1 + δ0β ≤

(
1 + 2δ0

3

)
β. This proves the result. 2

The dual statement is now immediate.

Proposition 5.2 Let λ ∈ (0, 1) and let K be a symmetric convex body in Rn such

that K ⊆ Bn
2 . If

(5.6) M∗ > β(λ) :=

√
2(1 − λ)

2 − λ

and n ≥ C(M∗ − β)−2, then

(5.7) D(K ∩ E) ≥ 1
3 (M∗ − β)

for every E ∈ Gn,⌊λn⌋. 2

An equivalent formulation is the following.

Theorem 5.3 Let λ ∈ (0, 1) and δ > 0 satisfy (1 + δ)
√

2(1−λ)
2−λ < 1, and let n ≥

n1(λ, δ) ≃ 1
(1−λ)δ2 . If K is a symmetric convex body in Rn, and if r2 is the solution

of the equation

(5.8) M∗(K ∩ rBn
2 ) = (1 + δ)

√
2(1 − λ)

2 − λ
r,

then

(5.9) D(K ∩ E) ≥ 1
3δ

√
1 − λr2

for every E ∈ Gn,⌊λn⌋. 2

Remark 5.4 We emphasize the fact that the lower bound for the diameter, in both
Proposition 5.2 and Theorem 5.3, holds true for every ⌊λn⌋-dimensional section of
K. Note also that the equation (5.8) is “comparable” with the equation (1.3) which
implies an upper bound for the diameter of a random ⌊λn⌋-dimensional section of
K. These observations lead to the next definition.

Definition 5.5 Let K be a symmetric convex body in Rn. For every λ ∈ (0, 1)
define

(5.10) a(λ,K) = min
{
D(K ∩ E) : E ∈ Gn,⌊λn⌋

}

and
(5.11)

b(λ,K) = min
{
r > 0 : D(K ∩ E) ≤ r : with probability ≥ 1/2 in Gn,⌊λn⌋

}
.

It is clear that a(λ,K) ≤ b(λ,K) for all λ and K. Combining Proposition 5.2 with
Theorem A we see that a(λ,K) and b(µ,K) are comparable in the following sense:
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Theorem 5.6 Let 0 < µ < 1 and 0 < s < 1/(2 − µ). There exists n0 = n0(µ, s)
such that

(5.12)

(
cµ(1 − s(2 − µ))

1 − sµ

√
1 − µ

)
b(sµ,K) ≤ a(µ,K)

for every n ≥ n0 and every symmetric convex body K in Rn.

Proof. Let ε ∈ (0, 1) be a constant (depending on µ and s) which will be suitably
chosen. Let K be a symmetric convex body in Rn and let r1 be the solution of the
equation

(5.13) M∗(K ∩ rBn
2 ) = (1 − ε)

√
1 − sµr.

If n is large enough, then from Theorem A we have

(5.14) b(sµ,K) ≤ r1.

We choose

(5.15) ε =
µ(1 − s(2 − µ))

4(2 − µ)(1 − sµ)
.

Then, one can check that

(5.16) (1 − ε)
√

1 − sµ ≥ (1 + ε)

√
2(1 − µ)

2 − µ
.

It follows that if r2 is the solution of the equation

(5.17) M∗(K ∩ rBn
2 ) = (1 + ε)

√
2(1 − µ)

2 − µ
r,

then r1 ≤ r2. Now, Theorem 5.3 shows that

(5.18) cε
√

1 − µr2 ≤ a(µ,K).

Combining with (5.14) we complete the proof of (5.12). 2

Remark 5.7 Assume that Gromov’s Theorem 4.1 holds without any restrictions
on n and k. Then, using Remark 4.4 and following the arguments of this Section
one would be able to prove the next two statements:

Fact A (conditional). Let λ ∈ (0, 1) and ε > 0 satisfy (1 + ε)
√

1 − λ < 1, and

let n ≥ n1(λ, ε) ≃ 1
(1−λ)ε2 . If K is a symmetric convex body in Rn, and if r2 is the

solution of the equation

(5.19) M∗(K ∩ rBn
2 ) = (1 + ε)

√
1 − λr,
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then

(5.20) D(K ∩ E) ≥ 1
2ε
√

1 − λr2

for every E ∈ Gn,⌊λn⌋.

Combined with Theorem A this would give a very precise “asymptotic formula” for
the diameter of random ⌊λn⌋-dimensional sections of n-dimensional bodies. Solving
the single “asymptotic equation” M∗(K∩rBn

2 ) ≍
√

1 − λr we would have an upper
and a lower bound (up to a constant depending on λ) for the circumradius of a
random K ∩ E, E ∈ Gn,⌊λn⌋. This would also lead to an improvement of Theorem
5.6.

Fact B (conditional). Let µ, s ∈ (0, 1). There exists n0 = n0(µ, s) such that

(5.21) b(sµ,K) ≤ c

(1 − s)µ
√

1 − µ
a(µ,K)

for every n ≥ n0 and every symmetric convex body K in Rn.

This would show in a very exact way that (with a very small “loss in proportion”)
minimal and random diameter of µn-dimensional sections are comparable up to a
constant depending on µ for every fixed proportion µ ∈ (0, 1).

Remark 5.8 It is an interesting question to check whether isometric results com-
plementing Theorem 2.3 are possible if we assume that Bn

2 ⊆ K and M is very
close to 1. From Proposition 5.2 we can easily see that if 0 < ε < ε0 and if the
symmetric convex body K ⊆ Bn

2 satisfies M∗ > 1− ε, then D(K ∩E) ≥ 1− cε for
every E ∈ Gn,k where n − k < εn.
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