CONCENTRATION OF MASS AND CENTRAL LIMIT
PROPERTIES OF ISOTROPIC CONVEX BODIES

G. PAOURIS

ABSTRACT. We discuss the following question: Do there exist an absolute
constant ¢ > 0 and a sequence ¢(n) tending to infinity with n, such that
for every isotropic convex body K in R™ and every t > 1 the inequality
Prob ({z € K :||z||]2 > cy/nLit}) < exp( — ¢(n)t) holds true? Under the
additional assumption that K is l-unconditional, Bobkov and Nazarov have
proved that this is true with ¢(n) ~ /n. The question is related to the
central limit properties of isotropic convex bodies. Consider the spherical av-
erage fi(t) = [gn—1|K N (0+ + t0)|o(dh). We prove that for every v > 1
and every isotropic convex body K in R"™, the statements (A) “for every
t > 1, Prob ({z € K : ||lz]|]2 > yv/nLkt}) < exp( — ¢(n)t)” and (B) “for
every 0 < t < e1(7)V/é(n)Lik, fx(t) < £2exp (= t?/(ca(7)* L)), where
ci(y) = v”, are equivalent.

1. INTRODUCTION

Let K be an isotropic convex body in R™. This means that K has volume equal
to 1, its centre of mass is at the origin and its inertia matrix is a multiple of the
identity. Equivalently, there exists a positive constant Lx such that

(L.1) / (z,0) dr = L3

K
for every § € S"71. As a direct consequence of (1.1) we have
(12 | el =

K

where || - ||2 denotes the Euclidean norm. Applying Markov’s inequality we see that
|K N (3y/nLk)BY| > 8/9, and Borell’s lemma (see [12], Appendix I) proves the
following;:

Fact 1. If K is an isotropic convex body in R™, then
(1.3) Prob ({z € K : ||z|» > 3vnLkt}) < exp(—t)

for every t > 1.

Alesker [1] showed that if K is isotropic, then the Euclidean norm f(z) = ||z||2
satisfies the 15-estimate

(1.4) 1£lly, < ellfll < evnL,
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where ¢ > 0 is an absolute constant and

(15) 1£llgs = inf {A >0 [ exp (F@I/N?) de < 2}.

In particular, we have the following improvement of the estimate in Fact 1:

FAcT 2: There exists an absolute constant ¢ > 0 such that if K is an isotropic
convez body in R™, then

(1.6) Prob ({z € K : ||z]|> > cv/nLkt}) < 2exp(—t?)

for every t > 1.

Bobkov and Nazarov [7] have recently obtained a striking stronger result in the case
of 1-unconditional isotropic convex bodies.

FAcT 3: There exists an absolute constant ¢ > 0 such that if K is a I-unconditional
isotropic convex body in R™, then

(L.7) Prob ({z € K : ||z|]> > cv/nt}) < exp (—v/nt)

for every t > 1.

Note that Lx ~ 1 in the case of 1-unconditional convex bodies (see [11]). Since
the circumradius R(K) of an isotropic convex body K in R” is always bounded
by (n + 1)Lk [10], the estimate in Fact 3 is stronger than the previous ones for
all t > 1. A question which arises naturally and was actually stated in [7] is the
following:

QUESTION: Do there exist an absolute constant ¢ > 0 and a function ¢ : N — R*
with ¢(n) — 0o as n — oo, such that for every isotropic convezr body K in R™ the
inequality

(1.8) Prob ({z € K : ||z, > ev/nLkt}) < exp (— ¢(n)t)
holds true for every t > 17

As we shall see, the question is related to the central limit properties of isotropic
convex bodies. It has been conjectured that the (n —1)-dimensional volume fx ¢(t)
of the intersections K N (§+ + t#) of an isotropic convex body K with hyperplanes
perpendicular to a fixed direction # € S™!, seen as a function of the distance
t > 0 of the hyperplanes to the origin, is - with high probability - close to the
centered Gaussian density of variance L%. This conjecture can be stated precisely
in several different ways (see [8], [2]) and has been verified only for some special
classes of bodies. Bobkov and Koldobsky [6] (see also [8]) have considered the
spherical average

(19) it = [ Ieolota),

and showed that if K is an isotropic convex body in R, then

_ ﬂ_%LK exp(—ﬁ/(zL%())‘ <C (ZK% + %)

for all 0 < ¢ < ¢y/n, where ¢,C > 0 are absolute constants and the parameter og
is defined by

(1.10) f (1)

Var((joll3)

(1.11) o =
nLj;
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It is conjectured that ok is bounded by an absolute constant (this has been verified
for all £;-balls by Ball and Perissinaki [3]).

The main result of this note shows that the original question is closely related
to the behavior of the function fx.

Theorem 1.1. Let 1 € ¢(n) < n be a positive constant. For every isotropic
convez body K in R™, the following statements are equivalent:

(a) For some v > 1 and for every t > 1,

(1.12) Prob ({z € K : ||z|]» > yv/nLgt}) <exp (— ¢(n)t).
(b) For every 0 <t < c1(v)\/¢(n) Lk,
(1.13) Fie(t) < 7 exp (= /(es(7) L)),

where c;(7y) =~ 7.
(c) For every 2 < q < ea(n),

(1.14) ) = ( ||a:||;dx)1/q < es()ViLic,

where c5(7y) ~ 7.

In a few words, the volume of an isotropic convex body outside a ball of radius
vnLg “suddenly” decreases if and only if fx is subgaussian for a “long initial
interval”. Both conditions are in turn equivalent to the fact that the moments I,
of the Euclidean norm remain of the order of /nLg for large values of q. The
dependence of the constants ¢(y) on - is linear in each of the implications of the
theorem; this will become clear in §3.

We do not know if the question has an affirmative answer. However, our result
has the following consequence (which gives some positive evidence, combined with
the conjectured bound for the parameter ok ).

Theorem 1.2. Let K be an isotropic convex body in R™. Then,

(1.15) Prob ({z € K :||z|]» > Cv/nLkt}) < exp ( — ¢(K)t)
for all t > 1, where

2
(1.16) ¢(K) = min { log (#@”%)) ,logn}

and C > 0 is an absolute constant.

It is easy to check that if ox and Lk are uniformly bounded, then ¢(K) ~ logn,
in which case

(1.17) Prob ({z € K : ||z|]> > Civ/nt}) <n%,
for all ¢ > 1, where C; > 0 is an absolute constant.

Notation. We work in R", which is equipped with a Euclidean structure (-,-). We
denote by || - ||2 the corresponding Euclidean norm, and write By for the Euclidean
unit ball, and S™! for the unit sphere. Volume is denoted by | -|. We write w,
for the volume of B} and o for the rotationally invariant probability measure on
S7=1. The circumradius of K is the quantity R(K) = max{||z||2: z € K}.
Whenever we write a ~ b, we mean that there exist absolute constants ¢y, co > 0
such that cia < b < coa (also, a > b means that a exceeds Cb for some (large)
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absolute constant C' > 1). The letters ¢, ¢, C,c1,co etc. denote absolute positive
constants which may change from line to line. We refer to [12], [14] for background
information on convex bodies and finite dimensional normed spaces, and to [11] for
more information on the isotropic position.

2. PRELIMINARIES

Let Pgq,, denote the space of polynomials f : R" — R of degree less than or equal
to d. Bourgain [5] (see also Bobkov [4]) proved that for every 1 < ¢,r < oo there
exists a constant ¢, .4 > 0 depending only on ¢,r and d, such that [|f||p«(x) <
cqrallfllLr (k) for every f € Py, and every convex body K of volume 1 in R".
Carbery and Wright [9] have recently established the best possible dependence of
the constant ¢4, 4 on g,r and d. We will use some estimates which follow directly
from their work.

Lemma 2.1. There exists an absolute constant o > 0 such that for every convez
body K of volume 1 in R™ and for every f € Pyn

q
(2.1) 171l < a;llf#llr
whenever 1 <r < q < oo, and
(2.2) 1 oo < llF# |1,
where f#(x) = |f(x)|*/?. a

Using Lemma 2.1 one can obtain a variety of tail estimates for polynomials f € Pq,y,.
Lemma 2.2. Let K be a convex body of volume 1 in R" and let f € Pq,. Then,
(2.3) Prob ({z € K : f#(z) > 3a| f*|,-s}) <e
for all g > 1 and s > 1, where « is the constant in Lemma 2.1.
Proof. Let ¢ > 1. Lemma 2.1 implies that
(24) | r#@ms < @py s,
K
for every p > 1. With a simple application of Markov’s inequality we get
ap
(2.5) Prob ({z € K : f#(z) > 3al|f#|), - s}) < (ﬂ) .

3s
Then, the choice p = 3s/e > 1 gives the assertion of the lemma. O

For every ¢ > 0 we consider the ¢-th moment of the Euclidean norm

(2.6) I,(K) = </K ||x||gd:c>1/q.

Applying Lemma 2.2 for the linear functionals z — (z,6) and for the polynomial
f(x) = ||z]|3, we have the following immediate consequence.

Lemma 2.3. Let K be a convex body of volume 1 in R™. If ¢ > 1, then

(2.7) Prob ({z € K : |(z,0)| > 3a|(-,0)|lys) <e™?
for all® € S~ and s > 1, and
(2.8) Prob ({z € K :||z|]> > 3al,(K)s}) <e **

for all s > 1, where « is the constant in Lemma 2.1. a
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Definition. Let K be an isotropic convex body in R™. For every ¢ > 0 and ¢ > 0
we define

1/q
(2.9) Z(q) = </5n1/1(|<x,9>|qu a(d6)>
and
1/q
(2.10) Z(g1) = (/5 /Bm(t) (. B)1da a(d0)>
where
(2.11) Bico(t) = {z € K : |(2,0)] < t}.

Lemma 2.4. Let K be a convex body of volume 1 in R™. For every t > 0 we have
the identity

(2.12) Z(q,t) = 2/0 4 fr (r)dr.

Proof. It is an immediate consequence of Fubini’s theorem:

ZUqt) = 2/SH /Otrqu,g(r)dm(de) :2/; » /SH Fic.s(r)o(d8) dr

2 /Ot r? fi (r)dr,

by the definition of fx. O

The quantities Z(g) and I,(K) are related through the following simple lemma
(for a proof see [13]).

Lemma 2.5. Let K be a convex body of volume 1 in R™. Then,

(2.13) Z(q) ~ /quLan(K).

for every g > 1. O

For every § € S"~! and ¢ > 1 we write H,(#) = ||(-,6)||;- The next lemma shows
that integration of the function |(-,0)|? on the strip Bg ¢(3aH,(#)s) essentially
captures the value of H{(6).

Lemma 2.6. Let K be a convex body of volume 1 in R*. Then, for every § € S™~1
and every q,s > 1,

(2.14) (1 - e*qs/ﬂ’(m)Q) HI(6) < / \(z, 8)|7dz,

BK,g(3qu(9)S)
where a > 0 is the constant in Lemma 2.1.
Proof. Lemma 2.3 shows that
(2.15) |K\ Br,o(3aH,(#)s)| < exp(—gs)
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for all g, s > 1. We write

O (w.0)1da + [ (o, 8)]dz
Bri o(3aHg(0)s) K\Bx ¢(3aHy(0)s)

e+ esptgor2) ([ 1moyaz)

IN

/BK‘9(3qu (6)s)
< / (&, 8)]dx + exp(—gs/2)(20)1HI(8),
BK'9(30(Hq (0)8)

where we have used (2.15), Cauchy-Schwarz inequality and Lemma 2.1 (for the pair
7, 2q). O

Our main technical lemma is the next one: it shows that Z(q) ~ Z(q,t) when ¢
becomes of the order of Z(q).

Lemma 2.7. There exists an absolute constant B > 0 with the following property:
for every convex body K of volume 1 in R™ and every g > 1,

(2.16) Z%(q) <22%q,BZ(q))-

Proof. For every t > 0 we set Uy = {# € S"' : H,(0) > tZ(q)}. Markov’s
inequality shows that o(U;) < ¢~ 7. Using Lemma 2.6, for every s > 1 we write

(1= e 1/220)1)29(q) < / / \(z,0)|*dzor(d)
Sn»—1\U; Y Bk ,o(3aHg(0)s)

—l—// |(z,0)|"dzo(dF)
U: J Bi,o(3aHg(0)s)

<[] (@, 8)|dzo(d6)
S»=1 J Bk ¢(3atsZ(q))
1/2
+o@)? ([ [ lw.o)Prazotan))
sn-1JK
< Z%g,30tsZ(q) + 7 27(2q)
< 79(q,3ats2()) + (ca)t=1271(g),

because Z(2q) < caZ(q), where ¢ > 0 is an absolute constant (this follows from
Lemma 2.5 and the fact that Ir,(K) < 2al,(K) by Lemma 2.1 applied to the
polynomial £(z) = [lall3).

We now choose s,t so that v/t = 4ca e*/? = 8a. Then,

(2.17) (1-4"92%q) < Z%(q,3atsZ(q)) +4 *Z(q).
Inserting the values of ¢,s in (2.17) we compute the value of 3. O
Finally, we will use an integral formula for fx (see [6], [8]).

Lemma 2.8. Let K be a convex body of volume 1 in R™. Then, for every t > 0,

(2.18) Fic(8) / ! <1 r >; d
: k() =cp — 1= T,
Ux () llll2 13
where ¢, ~ \/n asn — oo and Uk (t) = {z € K : ||z|]]2 > t}. O

Remark: From Lemma 2.8 we readily see that fx is a decreasing function.
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3. PROOFS OF THEOREMS 1.1 AND 1.2
Theorem 1.1 is a direct consequence of the following three Propositions.

Proposition 3.1. Let v > 1 and let K be an isotropic convex body in R™. If
1<K ¢(n) € n and

(3.1) Prob ({z € K : ||z|, > yv/nLgt}) <exp (— ¢(n)t)
for every t > 1, then
(3.2) () < = exp (—eat? /L)
Lk
for all 0 <t < c3yy/P(n)Lk.
Proof. We assume that n > 3. From Lemma 2.8 we have
(33) e =co [ gz
UK(t)
for all ¢ > 0, where g; is defined by
n—3

1 t2 2

(3.4) o5 = 1 <1 - _>

on [t,00). Differentiating g; we see that it is increasing on [t,tv/n — 2] and then
decreasing. Let 0 < ¢ < c37\/¢(n) Lk, where the absolute constant c3 > 0 is to
be chosen. Assume first that y/nLx < tv/n — 2 (this is satisfied if ¢ > v/2yLg).

Then, we write
fe(t) = cn/ gt(llwllz)dw+cn/ ge(|[]]2)dx
Kn{t<|lzllz<vvnLlk} Uk (vvnLk)

< enge(7WnLi) + exp(=¢(n))cng: (tvn — 2)
Cn t2 = Cn 1 =
- WLk <1 - VQHL%> i eXp(_Qs(n))t\/n -2 (1 - 2>

c C
< =+ exp(—cat? /y?L3) + - exp(—a(n))
LK LK

2
< Toexp(-et’ /7L,
Lk
because ¢(n) > cot?/y?L3; if we choose ¢35 = 1/,/c3 (we have also used the fact
that ¢, ~ /n).
If 0 < t <min{v2vLg,c37\/¢(n) Lk}, then
c 2c .
(3.5) fic(t) < 7= < —exp(—ert* [/° L),
Lg — Lk
because frp(t) < c¢5/Lk for all § € S™! (see [11]) and exp(—cst?/y*L%) >
exp(—2¢7) > 1/2if ¢7 > 0 is suitably chosen. It follows that (3.2) holds true for all

0<t<esyy/o(n)Lk. O

Proposition 3.2. Lety > 1 and let K be an isotropic convex body in R". Assume
that 8 < y¢(n) < R(K)/Lk, where 8 > 0 is the constant in Lemma 2.7, and

(3.6) fx(t) < E exp (—t2/72L%)
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for all 0 < t < yp(n)Lk. Then, for every 2 < q < ca1p?(n) we have
(3.7) 1,(K) < ex/nLic.

Proof. Note that Z(2) = Li and lims o Z(s) = R(K). Since f < yp(n) <
R(K)/Lk, there exists s > 2 such that 3Z(s) = y)(n)Lg. Then Lemmas 2.7 and
2.4 show that

BZ(s)
Z°%(s) < 2Z°%(s,BZ(s)) = 4/ ¥ fi (r)dr
0
Y(n) L
< 4/ r® fi (r)dr
0
4 Y¥(n)Lx
< “a r® exp(—r?/y* L3 )dr
LK 0
4 o ‘
< 2 rrexp(—r /P L )dr
Lk Jy
< (A7VsLk)®
In other words,
(3.8) Z(s) < cyv/5Lx.
Lemma 2.5 implies that
(3.9) I,(K) < d/\/n/sZ(s) < c3yv/nLk,
and Holder’s inequality gives
(3.10) 1,(K) < 1(K) < es7v/nLic
for all ¢ < s. On the other hand, by the definition of s nd (3.8),
Z*(s) _ ¢¥*(n) 2
3.11 > = =:
( ) Z C%’)ﬂL%{ 232 c2tp”(n),
which completes the proof. O

Remark: The range 8 < y(n) < R(K)/Lk is the interesting range for the
parameter ¢ (n). If 0 < y1(n) < §, then the conclusion of Proposition 3.1 is trivially
true. If y9(n) > R(K)/Lgk, then we have (3.6) for every ¢ > 0. Following the
previous argument, we check that I,(K) ~ Z(n) < ¢yy/nLk. But I,(K) ~ R(K),
and this implies (3.7) for every ¢ > 2.

Proposition 3.3. Let v > 1 and let K be an isotropic convex body in R™. If

(3.12) 1,(K) < WL
for all 2 < g < ¢(n), then
(3.13) Prob ({z € K : ||z|» > ¢yv/nLkt}) <exp ( — ¢(n)t)

for every t > 1, where ¢ > 0 is an absolute constant.
Proof. From Lemma 2.3 we have
(3.14) Prob ({z € K : ||z||> > 3al,(K)t}) < e

for every t > 1, where a > 0 is the constant in Lemma 2.1. Setting ¢ = ¢(n) and
using (3.12), we get

(3.15) Prob ({z € K : ||z|» > 3ayyv/nLkt}) < exp(—p(n)t)
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for every t > 1, and the result follows with ¢ := 3a. |

Theorem 1.1 and the result of Boblov and Nazarov [7] show that fx is subgaussian
on [0, c/n] in the 1-unconditional case.

Corollary 3.4. There exist absolute constants c; > 0 such that if K is an isotropic
1-unconditional convex body in R™, then

(3.16) fk (t) < ¢1 exp(—cat?)
for all 0 <t < c3¢/n. O

Note: We can construct examples of isotropic 1-unconditional convex bodies in R™
for which the length of the interval of ¢’s on which (3.16) holds cannot have order
greater than /n.

For our last remark, recall the estimate of Bobkov and Koldobsky [6]: if K is an
isotropic convex body in R™ then, for every 0 < t < ¢y/n,

(3.17) fr(t) - ﬁ eXp(—tQ/(QLf())‘ <C (% + %) ,

where ¢, C > 0 are absolute constants and 0% = Var(||z||3)/(nLj). Using Theorem
1.1 we get the following.

Theorem 3.5. Let K be an isotropic convex body in R™. Then,

(3.18) Prob ({z € K : ||z|l> > Civ/nLkt}) <exp (— ¢(K)t)
for every t > 1, where
(3.19) ¢(K) ~ min{log(n®/Var(||z[|3)), log n},

and C7 > 0 is an absolute constant.

Proof. Let C be the constant in (3.17) and let ¢ > 0 be an absolute constant to be
chosen (small enough). From (3.19) and the definition of ox we have

n 1 N
2 K) <l =-1 .

(3:20) o) <10 (3172 ) = 506 ()
If VC <t < ey/6(K) Lk, then (3.20) shows that

2
(3.21) IxLie o gaereii

NG
Observe that C/t? < 1, and hence,
okLr _ 1 500202

3.22 —_—— < — il o
(3:22) ©2vn = L.

Also, if ¢ is small enough and n > 1, we have exp(2t2/L%) < n*” < n/(CLk)
since ¢; < Lg < ea4/n (these are the simple bounds on Lg; see [11]). This implies

c 1 I
_ Yo —92 /T2,
(3.23) o exp(—2t”/L¥)
Therefore, (3.17) gives
1 ‘ ‘ UKLK C
t) < —t*/(2L3 =

!

< Zexp(—e"t?/LY),
Lk
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for all t € [VC,c\/¢(K)Lk], where ¢, ¢ > 0 are absolute constants. A similar
bound is trivially true if 0 < t < v/C. We can now use the implication (b)=(a) of
Theorem 1.1 to conclude the proof. O

Assuming that ox and Ly are uniformly bounded, we have ¢(K) ~ logn.
Then, Theorem 1.2 would give a positive answer to our original question: for every
isotropic convex body K in R”,

(3.22) Prob ({z € K : ||z]|> > Cyv/nt}) <n”*,

for every t > 1, where C5 > 0 is an absolute constant.
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