
ar
X

iv
:2

00
5.

08
89

9v
2 

 [
m

at
h.

PR
] 

 2
3 

M
ar

 2
02

1

Non-asymptotic Results for Singular Values of Gaussian Matrix

Products

Boris Hanin∗, Grigoris Paouris†
*,†Dept. of Mathematics, Texas A&M University, College Station, TX, 77843

*Google, Mountain View, CA, 94043

March 24, 2021

Abstract

This article provides a non-asymptotic analysis of the singular values (and Lyapunov
exponents) of Gaussian matrix products in the regime where N, the number of terms in
the product, is large and n, the size of the matrices, may be large or small and may depend
on N . We obtain concentration estimates for sums of Lyapunov exponents, a quantitative
rate for convergence of the empirical measure of the squared singular values to the uniform
distribution on [0, 1], and results on the joint normality of Lyapunov exponents when N is
sufficiently large as a function of n. Our technique consists of non-asymptotic versions of
the ergodic theory approach at N = ∞ due originally to Furstenberg and Kesten [FK60]
in the 1960’s, which were then further developed by Newman [New86] and Isopi-Newman
[IN92] as well as by a number of other authors in the 1980’s. Our key technical idea is
that small ball probabilities for volumes of random projections gives a way to quantify
convergence in the multiplicative ergodic theorem for random matrices.

1 Introduction

This article is about the spectral theory of random matrix products

XN,n := AN · · ·A1, (1.1)

where Ai are independent n × n matrices with independent real Gaussian entries (Ai)αβ ∼
N (0, 1/n) of mean zero and variance 1/n. We are primarily interested in the situation when
N is large and finite, while n may depend on N and may be either small or large. Our results
concern the singular values of XN,n :

s1(XN,n) ≥ · · · ≥ sn(XN,n), (1.2)

and can be summarized informally as follows:

1. We prove that as N,n tend to infinity at any relative rate the global distribution of the
normalized squared singular values

{
si(XN,n)2/N , i = 1, . . . , n

}
converges to the uniform

distribution on [0, 1] (see §1.2 and Theorem 1.2). Unlike previous results, we obtain
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quantitative concentration estimates valid for all N,n larger than a fixed constant. See
also §1.3 for a heuristic explanation of why the uniform distribution appears in this
context.

2. We prove that as long as N is sufficiently large as a function of n, the Lyapunov
exponents

λi = λi(XN,n) :=
1

N
log si(XN,n) (1.3)

of XN,n are approximately independent and Gaussian (see Theorem 1.3 in §1.4). Unlike
previous results, our estimates simultaneously treat all the Lyapunov exponents and
provide quantitative concentration estimates when N is large but finite even when n
grows with N.

3. The statements listed above derived from our main technical result, Theorem 1.1, which
gives quantitative deviation estimates on sums of Lyapunov exponents of XN,n:

P

(∣∣∣∣∣
1

n

k∑

i=m

(λi − µn,i)

∣∣∣∣∣ ≥ s

)
≤ c1e

−c2nNsmin{1,ngn,k(s)}, s ≥ k

nN
log
(en
k

)
,

where µn,i is defined in (1.5) and gn,k(s) is a function defined in (1.4). It is known that
(e.g. equations (1) and (7) in [New86]) µn,i is the almost sure limit of λi when N → ∞.

In this article, we exclusively treat the case of Ai having iid real Gaussian entries. This
simplifies a number of arguments, but we conjecture that similar results hold if we assume
only that the distribution of the entries of Ai have finite fourth moments and bounded density.
We leave this for future work.

1.1 Main Technical Result

Let us set some notation. Denote as in (1.3) by λi = λi(XN,n) the Lyapunov exponents of
XN,n. Further, define for any s > 0

gn,k(s) =

{
min

{
1, nsk

}
, k ≤ n

2

min
{
δn,k,

s
log 1/δn,k

}
, n

2 < k ≤ n
, (1.4)

where for k ≥ n/2 we’ve set

δn,k :=
n− k + 1

n
∈
[

1

n
,
n− 1

n

]
.

Finally, write

µn,k := E

[
1

2
log

(
1

n
χ2
n−k+1

)]
=

1

2

(
log

(
2

n

)
+ ψ

(
n− k + 1

2

))
, (1.5)

where ψ(z) = d
dz log Γ(z) is the digamma function and χ2

m is a chi-squared random variable
with m degrees of freedom. Our main technical result is the following
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Theorem 1.1 (Deviation Estimates for Sums of Lyapunov Exponents). There exist universal
constants c1, c2, c3 > 0 with the following property. Fix 1 ≤ m ≤ k ≤ n as well as N ≥ 1.
Then,

P

(∣∣∣∣∣
1

n

k∑

i=m

(λi − µn,i)

∣∣∣∣∣ ≥ s

)
≤ c2 exp (−c3nNsmin {1, ngn,k(s)}) , (1.6)

provided s ≥ c1
k
nN log(en/k).

Theorem 1.1 holds for every n,N ≥ 1 and reveals a great deal about the singular values
and Lyapunov exponents of XN,n. For instance, in the bulk (i.e. when k is comparable to
n), the restriction on s in (1.6) reduces simply to s > C/N , giving information about XN,n

as soon as N is large, regardless of n. This turns out to be enough to prove Theorem 1.2,
given in §1.2 below, which states that the squared singular values of XN,n approximate the
uniform distribution on [0, 1] when N,n tend to infinity at any relative rate.

Theorem 1.1 also gives precise information about the top Lyapunov exponents of XN,n.
Indeed, taking k to be fixed in (1.6) gives non-trivial information on λ1, . . . , λk as soon as
N ≫ log(n). Further, note that standard estimates for the digamma function ψ yield

µn,k = log

(
1 − k − 1

n

)
− 1

n− k + 1
+O

(
1

(n− k + 1)2

)
. (1.7)

This shows that the difference between the means µn,1 and µn,2 of λ1 and λ2 is on the order
of 1/n. As soon as N ≫ n log(n), we may apply (1.6) with s≪ λ1 − λ2 to conclude that

s1(XN,n)

s2(XN,n)
= eN(λ1−λ2) ≥ ecN/n with high probability.

Hence, we find that XN,n begins to have a large spectral gap in the “near ergodic” regime
N ≫ n log(n). In fact, in Theorem 1.3, we prove that in this regime λ1, . . . , λk are also
approximately independent Gaussians. We refer the reader to §1.4 for the details.

A notable aspect of Theorem 1.1 is that it applies to any finite n,N ≥ 1, allowing us to
“interpolate” between the ergodic N ≫ n and free n ≫ N regimes. To explain this point,
note that matrix products of the form (1.1) have been studied primarily in two setting. The
first, which we refer to as the free probability regime occurs when N is fixed and n→ ∞. This
is a kind of maximum entropy regime in which the global distribution of singular values can be
characterized in terms of maximizing the non-commutative entropy (cf eg [AG97, BBCC11]).
The second, which we call the ergodic regime, occurs when n is fixed and N → ∞. This is
a kind of minimal entropy regime in which the Lyapunov exponents (and singular values of
XN,n) tend to almost sure limits.

In both the ergodic and the free regimes, it is often difficult to obtain finite size corrections.
Theorem 1.1 supplies such information. Moreover, since the ergodic and free regimes are
usually treated by rather different means, it is unclear which techniques can give information
that can interpolate between them. Our approach extends the ergodic techniques pioneered by
Furstenburg-Kesten [FK60], further developed in connection to random Schrödinger operators
by Carmona [Car82] and Le Page [LP82] (cf also [BLR85]), and applied in a very similar
context as ours by Newman [New86] and Isopi-Newman [IN92]. It is therefore not surprising
that in all of our results, we need N to be in some sense large.

Although we do not take this approach in the present article, it is also natural to study
spectra of random matrix products by adapting techniques originally developed to treat the
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case when N = 1. Indeed, in this setting, there has been considerable effort to obtain non-
asymptotic analogs of classical random matrix theory results when n = ∞ [Rud14, Ver12,
Rud17], culminating in the resolution of a number of long-standing open problems [RV08,
RV09, ALPTJ10, Tik20]. More recently, several groups of authors [HW20, HNWTW20,
KMS20] have started to extend techniques for obtaining concentration for random matrices
tailored (see [Tro15]) to the small N regime for understanding the kinds of matrix products
considered in this article. From this point of view, our article takes a complementary approach,
finding extensions of techniques originally coming from the ergodic theory used to analyze
the case when N = ∞.

1.2 Convergence of Squared Singular Values to the Uniform Distribution

Prior work [IN92, Kar08, Tuc10, GS18, LWW18, Ahn19] shows that in a variety of settings

where n,N → ∞, the global distribution of singular values of X
1/N
N,n converges to the so-called

triangle law after proper normalization. Informally, this means

lim
N,n→∞

1

n
#
{
j ≤ n | s1/Ni (XN,n) ≤ t

}
=

∫ t

−∞
2s1{s∈[0,1]}ds =: TL(t). (1.8)

The graph of the density 2s1{s∈[0,1]} of TL has the shape of a triangle, giving the distribution
its name. With the exception of the articles [LWW18, GS18], which obtain much more precise
information for products of complex Gaussian matrices and the article [Ahn19] concerning
β−Jacobi products as well as the real Gaussian case, the majority of prior results about (1.8)
(e.g. [IN92, Kar08, Tuc10]) do not allow n,N to tend to infinity simultaneously. Moreover,
all prior results we are aware of do not give quantitative rates of convergence. Theorem 1.2
provides both for the real Gaussian case we consider here. To state it, we note that if a random
variable T is distributed according to the triangle law, then T 2 is uniformly distributed on
[0, 1], i.e. has the following cumulative distribution function:

U(t) :=

∫ t

−∞
1[0,1](t)dt.

Theorem 1.2 (Global Convergence to Triangle Law). There exist universal constants c1, c2, c3, c4 >
0 with the following property. For all ε ∈ (0, c1), if N > c2/ε

2 and n > c3 log(1/ε)/ε, then
the probability

P

(
sup
t∈R

∣∣∣∣
1

n
#
{

1 ≤ i ≤ n | s2/Ni (XN,n) ≤ t
}
− U(t)

∣∣∣∣ ≥ ε

)

that the cumulative distribution for the squared singular values of XN,n deviates from the
uniform distribution by more than ε is bounded above by

4 exp
[
−c4nNε2 min

{
1, ngn,k(ε2)

}]
.

In the next section we use the circular law (1.12) for the (complex) eigenvalues of X
1/N
N,n to

give an intuitive but heuristic explanation for why the uniform distribution (or equivalently
the triangle law) should appear as the limiting distribution of singular values on XN,n. Before
doing so, we briefly discuss the dependence of Theorem 1.2 on N,n, starting with the former.
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For fixed N , consider an iid random sequence {XN,n}∞n=1 with the product measure. Taking

ε = 2(c2/N)1/2 =: CN−1/2, Theorem 1.2 shows that

P

(
sup
t∈R

∣∣∣∣
1

n
#
{

1 ≤ i ≤ n | s2/Ni (XN,n) ≤ t
}
− U(t)

∣∣∣∣ ≥
C√
N

)
≤ 4e−cn, c > 0.

Thus, by Borel-Cantelli, we find that

sup
t∈R

∣∣∣∣ lim
n→∞

1

n
#
{

1 ≤ i ≤ n | s2/Ni (XN,n) ≤ t
}
− U(t)

∣∣∣∣ ≤
C√
N

with probability 1, (1.9)

where by limn→∞ an we mean any limit point of the sequence an. This 1/
√
N can be seen as

a Berry-Esseen-type estimate. To make this precise, consider

ρN,∞ := lim
n→∞

1

n

n∑

i=1

δsi(XN,n)1/N
,

the large matrix limit for the empirical distribution of normalized singular values for XN,n.
It is known [BBCC11, Thm 6.1] that

ρN,∞ = qc⊠N , qc(x) :=
1

2π

√
x(2 − x)1{[0,2]}(x),

where qc is the quarter circle law and ⊠ is the multiplicative free convolution. Kargin [Kar08]
and Tucci [Tuc10] show that, consistent with Theorem 1.2,

lim
N→∞

ρN,∞ = TL.

As far as we know, the optimal rate of convergence for such repeated multiplicative free
convolution is unknown. However, from this point of view, (1.9) shows that the rate of
convergence is at least as fast as in the usual central limit theorem.

To understand the dependence of Theorem 1.2 on n, we send N to infinity in Theorem
1.2 to obtain as before that there is C > 0 so that

sup
t∈R

∣∣∣∣ lim
N→∞

1

n
#
{

1 ≤ i ≤ n | s2/Ni (XN,n) ≤ t
}
− U(t)

∣∣∣∣ ≤
C log(n)

n
with probability 1,

(1.10)
Apart from the log(n), this estimate is sharp. Indeed, the empirical distribution

ρ∞,n := lim
N→∞

1

n

n∑

i=1

δsi(XN,n)1/N

of singular values in the large number of matrices limit exists almost surely and is deterministic
by the Multiplicative Ergodic Theorem. Among other things, Theorem 1.3 below computes,
in agreement with the early work of Newman [New86], this limit in our Gaussian case. The
subsequent work of Isopi-Newman [IN92] showed that, under minimal assumptions,

lim
n→∞

ρ∞,n = TL.

This of course agrees with Theorem 1.2, which via (1.10) provides a natural rate of conver-
gence. This rate is optimal, perhaps up to the log(n), because the spacing of the atoms in
ρ∞,n is approximately 1/n. Hence, the distance between ρ∞,n and triangle law TL, which is
a continuous distribution, is bounded below by a constant times 1/n.
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1.3 Why the Uniform Distribution in Theorem 1.2?

A number of articles [New86, IN92, Kar08, Tuc10, LWW18, GS18] show as in (1.8) that in
the limit where n,N tend to infinity, the singular values si(XN,n)1/N (or for similar matrix
products) converge to the triangle law (and hence their squares converge to the uniform
distribution on [0, 1]). These articles use a variety of techniques ranging from free probability
to ergodic theory and special functions. Why does the uniform distribution appear? The
purpose of this section to give an intuitive explanation for this phenomenon. After writing
an initial draft of this article, we learned from G. Akemann that an explanation similar to
the one below can be found on pages 3,4 in [ABK14]. We also refer the reader to the work of
Kieberg-Kösters [KK16] about an exact relation between eigenvalues and singular values for
products of complex Ginibre matrices.

Since XN,n is not normal with probability 1, its spectral properties are captured not only
its singular values but also by its eigenvalues

|ζ1(XN,n)| ≥ · · · ≥ |ζn(XN,n)| , ζi(XN,n) ∈ C. (1.11)

Our argument for why the triangle law appears in Theorem 1.2 relates the singular values
and eigenvalues of XN,n and consists of two observations. First, consider the (complex)

eigenvalues of X
1/N
N,n as defined in (1.11). It is shown in [GT10, OS11] that for each fixed N

the empirical distribution of the eigenvalues of X
1/N
N,n converges weakly almost surely to the

uniform measure on the unit disk in C. This result is often called the circular law. Informally,
it reads

lim
n→∞

1

n

n∑

i=1

δ
ζ
1/N
i

(z) =
1

π
1{|z|≤1}, z ∈ C (1.12)

Precise results on the rate of convergence can be found in [GJ18, Jal19] and local limit
theorems are obtained in [Nem17]. Since in polar coordinates (r, θ) the radial part of the
uniform measure on the unit disk is 2rdr, a corollary of the circular law is that

For N fixed, as n→ ∞, squared eigenvalue moduli |ζi|2/N of X
1/N
N,n converge to U . (1.13)

Thus, the uniform distribution U appears naturally as the distribution of the squared moduli

of eigenvalues of X
1/N
N,n for every N ! On the other hand, it has been proved that for any fixed

finite n [Red16, Red19] that when N is large

∀i = 1, . . . , n |ζi|1/N ≈ s
1/N
i .

Thus, we extract another piece of intuition:

For n fixed, as N → ∞, eigenvalue moduli and singular values of X
1/N
N,n coincide. (1.14)

Putting together (1.13) and (1.14), we conclude heuristically that if both n,N tend to infinity

then the distribution of the singular values s
1/N
i should converge to the triangle law. This is

precisely the content of Theorem 1.2. While the heuristic for (1.14) was previously established
only when n is fixed, we believe it can also be proved in the regime where n is allowed to
grow with N but leave this for future work.
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1.4 Distribution of Lyapunov Exponents in the Near Ergodic Regime

In addition to studying the global distribution of singular values of XN,n, we also obtain in
Theorem 1.3 precise estimates for the joint distribution of the Lyapunov exponents

λi = λi(XN,n) =
1

N
log si(XN,n) (1.15)

of XN,n in the regime when N ≫ n log2(n). To state it, we need some notation. Recall first
that for each 1 ≤ k ≤ n we had set

µn,k = E

[
1

2
log

(
1

n
χ2
n−k+1

)]
=

1

2

(
log

(
2

n

)
+ ψ

(
n− k + 1

2

))
, (1.16)

where ψ(z) = d
dz log Γ(z) is the digamma function and χ2

m is a chi-squared random variable
with m degrees of freedom. We also recall the estimate (1.7):

µn,k = log

(
1 − k − 1

n

)
− 1

n− k + 1
+O

(
1

(n− k + 1)2

)
.

The quantity µn,k already appears in [New86, IN92] as the mean of λk when N → ∞. We
futher define

σ2n,k := Var

[
1

2
log

(
1

n
χ2
n−k+1

)]
= ψ′

(
n− k + 1

2

)
=

1

2(n − k + 1)
+O

(
1

(n− k + 1)2

)
,

(1.17)
and set

µn,≤k := (µn,1, . . . , µn,k) , σ2n,≤k :=
(
σ2n,1, . . . , σ

2
n,k

)
. (1.18)

Finally, we will consider for two R
k-valued random variablesX,Y the following high-dimensional

generalization of the usual Kolmogorov-Smirnov distance:

d(X,Y ) := sup
C∈Ck

|P(X ∈ C) − P(Y ∈ C)| , (1.19)

where Ck is the collection of all convex subsets of Rk.

Theorem 1.3 (Asymptotic Normality of Lyapunov Exponents). There exist constants C1, C2 >
0 with the following property. Suppose XN,n is as in (1.1), fix 1 ≤ k ≤ n, and write

Λk = (λ1, . . . , λk)

for the vector of the top k Lyapunov exponents of XN,n. Then, λ1, . . . , λk are approximately
independent and Gaussian when N is sufficiently large as a function of k, n:

d

(
Λk, N

(
µn,≤k,

1

N
Diag

(
σ2n,≤k

)))
≤ C2

(
k7/2n log2(n) log2(N/n)

N

)1/2

. (1.20)

Here N (µ,Σ) denotes a Gaussian with mean µ and co-variance Σ and for any v = (v1, . . . , vk) ∈
R
k we have written Diag(v) for the diagonal matrix with Diag(v)ii = vi.
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Remark 1.4. The arguments in [AB12, AB12, ABK14, ABK19] strongly suggest (see §2.2)
that for k fixed and independent of n, a necessarily and sufficient condition for λ1, . . . , λk to
be close to independent and Gaussian is N ≫ n. Thus, the log2(n) log2(N/n) in (1.20) is
likely sub-optimal. It is not clear whether the power k7/2 can be improved.

For k ≥ 1 fixed independent of n,N , Theorem 1.3 shows that the top k Lyapunov expo-
nents of XN,n are close to independent Gaussian as soon as N ≫ n log2(n) log2(N/n). This
is a significant refinement of the result in [Car82] (see also Theorem 5.4 in [BLR85]), which
states that when n is fixed λ1 is asymptotically normal. It also refines the recent result of
Reddy [Red19, Theorem 11], which holds only for fixed finite n and does not give estimates
at finite N . The advantage of Theorem 1.3 is that it treats simultaneously any number of
Lyapunov exponents and gives a rate of convergence. For example, taking k = n, we find
that if N ≫ n9/2 log2(n) log2(N/n), then all Lyapunov exponents of XN,n are approximately
independent Gaussians. However, results in articles such as [Car82] are for matrix products
AN · · ·A1 in which the entries of Ai have mean zero, variance 1/n and satisfy some mild
regularity assumptions, whereas our results hold only for the Gaussian case. We conjecture
that Theorem 1.3 holds in this more general setting as well but leave this to future work.

2 Prior Work and Intuitions

The purpose of this section is to give an exposition of prior work and provide several intuitions
for thinking about the matrix products XN,n, especially about the differences between the
near-ergodic N ≫ n and the near-free n ≫ N regimes. We do this by first giving in §2.1 a
basic intuition from dynamical systems, which suggests that one can think of N as a time
variable and n as a system size. This intuition dovetails with the multiplicative ergodic
theorem. We proceed in §2.2 to explain an exact correspondence derived in [AB12, ABKN14,
ABK14, ABK19] at a physical level of rigor in which n/N plays the role of a time parameter
for the evolution of the n singular values of XN,n. This helps to explain why even simple
linear statistics behave differently depending on the relative size of n,N .

2.1 XN,n at Fixed n as a Dynamical System

One way to intuitively think of XN,n = AN · · ·A1 is as defining the time 0 to time N map
for a dynamical system in which the time one dynamics are very chaotic and are modelled
as multiplication by an iid random matrix. In this analogy, N takes on the role of a time
parameter, whereas n denotes the system size. Since large systems take longer to come to
equilibrium, we should expect that N and n are “in tension.” If we fix n and let N tend to
infinity, then the size of the long time image ||XN,nu|| of an unit length input u ∈ R

n satisfies
a pointwise ergodic theorem:

lim
N→∞

1

N
log ||XN,nu|| = E, (2.1)

where E is a constant (independent of u) depending on the measure µ according to which the
entries of the matrices Ai making up the matrix product XN,n are distributed. This can be
proved in a variety of ways (e.g. Corollary 3.2 in [CN84]). In fact, much more is true. It was
shown by Kesten-Furstenberg in [FK60], that this statement tolerates taking a supremum
over u:

lim
N→∞

λ1(XN,n) = E almost surely.
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Later, in his seminal work [Ose68] Oseledets proved the multiplicative ergodic theorem. In
the context of iid products of N matrices of size n×n, it says that under some mild conditions
on µ if n is fixed, then the full list of Lyapunov exponents λ1(XN,n), . . . , λn(XN,n) converges
almost surely to a deterministic limit. We refer the reader to [Fil19] for a review of the vast
literature on this subject and to [BLR85] for an exposition specifically about matrix products.

Determining the values of the limiting Lyapunov exponents in the multiplicative ergodic
theorem is in general quite difficult and has applications to Anderson localization for random
Schrödinger operators [BLR85, Dam11].

Moreover, the work of LePage [LP82] as well as subsequent analysis [Car82, BLR85]
showed that the top Lyapunov exponent of matrix products such as XN,n (not necessarily
Gaussian) is asymptotically normal in the sense that there exist an, bN,n ∈ R so that

bN,n (λ1(XN,n) − an)
d−→ N (0, 1),

where the d indicates that the convergence is in the sense of distribution. As far as we
are aware, all known mathematical proofs of asymptotic normality results hold only for fi-
nite fixed n, for the top Lyapunov exponent λ1 and do not include quantitative rates of
convergence. For the real Gaussian case we study, our Theorem 1.3 overcomes these defi-
ciencies. However, at the physical level of rigor, we refer the reader to the excellent articles
[AB12, ABKN14, ABK14, AI15, ABK19] that derive in the case of complex Gaussian matrix
products asymptotic normality and much more for the top Lyapunov exponents (cf §2.2).

While the preceding discussion concerned matrix products with any entry distribution
µ with mean 0 and variance 1/n, the Gaussian µ = N (0, 1/n) considered in this article
leads to some significant simplifications. For instance, Newman [New86] computed the exact
expression, which can be written in terms of the digamma function, for the limiting Lyapunov
exponents. Similarly, (2.1) is a simple fact in this case since 1

N log ||XN,nu|| turns out to be
sum of iid random variables (see Lemma 10.5). These simplifications stem from the fact
that the distribution of each matrix Ai is left and right-invariant under multiplication by an
orthogonal matrix.

2.2 n/N as a Time Parameter in an Interacting Particle System

In the regime where n/N is bounded away from 0 and ∞ as n,N → ∞, even the behavior
of an innocuous seeming log-linear statistic depends very much on the ratio of n and N .
Informally,

log ||XN,nu|| ≈ N
(
−N

4n
,
N

4n

)
+O

(
N

n2

)
, u ∈ R

n, ||u|| = 1, (2.2)

where N (µ,Σ) denotes a Gaussian with mean µ and covariance Σ. As mentioned above, in
the Gaussian case we consider in this article, this approximate normality is easy to see since
log ||XN,nu|| is a sum of iid variables (see Lemma 10.5). Precise versions of (2.2) also hold
true when the matrices Ai in the definition (1.1) of XN,n have symmetric but non-Gaussian
entries (see Theorem 1 in [HN19]). It is interesting to compare the almost sure convergence
to a constant in (2.1) (note that 1/N normalization) with the asymptotic normality in (2.2).

The relation (2.2) already suggests that t = n/N is an important parameter for interpolat-
ing between the ergodic regime, defined by t = 0 and the asymptotically free regime, in which
t = ∞. A number of remarkable articles [AB12, ABKN14, ABK14] and especially [ABK19]
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establish a correspondence between t and the time parameter in the stochastic evolution of
an interacting particle system. This correspondence between singular values for products of
complex Ginibre matrices and DBM appears to be initially due to Maurice Duits.

The particles in question are the limiting Lyapunov exponents λi of XN,n. When t = 0,
they are approximately uniformly spaced (see Theorem 1.3) and are interpreted as an initial
condition for Dyson Brownian motion (DBM)

dλi = dBi +
∑

j 6=i

dt

λi − λj
, i = 1, . . . , n (2.3)

the dynamics induced on the spectrum of a matrix by allowing each entry to evolve for time t
under and independent Brownian motion [Dys62]. The surprising observation is that, at least
in the bulk of the spectrum (i.e. λk with k proportional to n) the joint distribution of the
Lyapunov exponents of XN,n satisfies (2.3) at time t with an equally spaced initial condition
in the limit when n/N = t and n,N → ∞.

The idea of the derivations in [AB12, ABKN14, ABK14, ABK19] is to use that when XN,n

is a product of complex Ginibre matrices, the joint distribution of all of its singular values,
at any finite n,N , is given by a determinental point process. One may then study the scaling
limit of the corresponding determinental kernel at any fixed t = n/N . This kernel coincides
with the solution to DBM from equally spaced initial conditions, which is also determinental
[Joh04].

A rigorous analysis of the determinental kernel for the joint distribution of singular values
for products of complex Gaussian matrices was undertaken in a variety of articles [For13,
For14, FL16, LWZ16, LWW18]. In particular, [LWZ16] shows that when N is arbitrary but
fixed and n → ∞, the determinental kernel for singular values in products of N iid complex
Gaussian matrices of size n × n converges to the familiar sine and Airy kernels that arise in
the local spectral statistics of large GUE matrices in the bulk and edge, respectively. This
agrees with the prediction from [ABK19]. Indeed, in this regime, the time parameter t = n/N
is infinite and the limiting distribution of DBM is that of the eigenvalues for a large GUE
matrix. Moreover, [LWW18] rigorously obtained an expression for the limiting determinental
kernel when t = n/N is arbitrary in the context of products of complex Ginibre matrices.We
refer the reader also to the subsequent article of Liu-Wang [LW19] that performs a similar
analysis for the eigenvalues in the same setting.

Also in the regime where n/N is fixed while n,N → ∞, we refer the reader to Gorin-Sun
[GS18]. This article shows that the fluctuations of the singular values of XN,n around the
triangle law always converge to a Gaussian field. We also refer the reader to [Ahn19], which
obtains a CLT for linear statistics of top singular values when n/N is fixed and finite.

3 Idea of Proof: Reduction to Small Ball Estimates

Before turning to the formal proofs of Theorems 1.2 and 1.3, we give a brief overview of our
approach, which begins with the following representation (cf e.g. [New86, IN92]) for sums of
Lyapunov exponents from Lemma 6.1 (see §6):

λ1 + · · · + λk = sup
Θ∈Frn,k

1

N
log ||XN,n(Θ)|| . (3.1)
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In the previous line, we’ve denoted by Frn,k the collection of all orthonormal k−frames in R
n

(i.e. collections of k orthonormal vectors v1, . . . , vk). We have also set

XN,n(Θ) = XN,nθ1 ∧ · · · ∧XN,nθk, Θ = (θ1, . . . , θk) ∈ Frn,k,

where we recall that for a, b ∈ R
n a1 ∧ · · · ∧ ak is the anti-symmetrization of a1⊗ · · ·⊗ ak. We

refer the reader to §6 for more background and to the start of §7 in [Spi70] and to §2.6.1 in
[Tao10] for more on wedge products. As pointed out in [IN92], information about the sums
λ1 + · · ·+λk can easily be translated into the information about their cumulative distribution
function, ultimately resulting in Theorem 1.2. Similarly, the vector of the top k Lyapunov
exponents considered in Theorem 1.3 can be obtained by an affine transformation of the vector
of partial sums λ1, λ1 +λ2, . . . , λ1 + · · ·+λk. Thus, the focus of our proofs is to obtain precise
concentration estimates for the expression on the right hand side of (3.1). An important idea
for analyzing (3.1), which goes back to the work of Furstenburg-Kesten [FK60] is that when
N is large, one can almost drop the supremum:

lim
N→∞

∣∣∣∣∣
1

N
log ||XN,n(Θ)|| − sup

Θ′∈Frn,k

1

N
log
∣∣∣∣XN,n(Θ′)

∣∣∣∣
∣∣∣∣∣ = 0 (3.2)

for any fixed Θ ∈ Frn,k. As explained below this is plausible since the ratio sk(XN,n)/sk+1(XN,n)
of the kth and (k+1)st singular values grows exponentially with N , causing the wedge product
XN,n(Θ) to align almost entirely with the wedge product of the top k singular vectors of XN,n

for almost every Θ.
The “pointwise” quantity 1

N log ||XN,n(Θ)|| is a sum of iid random variables (Lemma 10.5)
and can be analyzed using a result of  Lata la [Lat97] (see Theorem 7.1). It then remains to
obtain quantitative versions of (3.1) valid for large but finite N,n. One possible approach is
via energy-entropy estimates using ε-nets on Frn,k. However, while this gives some results,
this approach is suboptimal for large N . The reason that ε-nets fail is that, due to the N−1

normalization,

N large ⇒ VarΘ

[
1

N
log ||XN,n(Θ)||

]
≪ VarXN,n

[
1

N
log ||XN,n(Θ)||

]

by which we mean that the variance of 1
N log ||XN,n(Θ)|| over Θ ∈ Frn,k for a typical realization

of XN,n is much smaller than its variance over the randomness in XN,n for any fixed Θ, causing
the optimal net to have constant cardinality.

The main technical novelty of our proofs is that we quantify (3.2) not through net argu-
ments but rather via small ball probabilities for volumes of random projections, which are
already known (cf Proposition 9.3). The key result is the following:

Proposition 3.1. For any ε ∈ (0, 1) and any Θ ∈ Frn,k we have

P

(∣∣∣∣∣
1

N
log ||XN,nΘ|| − sup

Θ′∈Frn,k

1

N
log
∣∣∣∣XN,nΘ′

∣∣∣∣
∣∣∣∣∣ ≥

1

N
log

(
1

ε

))
≤ P (||PF (Θ)|| ≤ ε) ,

where F is a Haar distributed k−dimensional subspace of Rn and

PF (Θ) = PF θ1 ∧ · · · ∧ PF θk

with PF denoting the orthogonal onto F.
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For the proof of Proposition 3.1 see Lemma 9.2. The appearance of small ball probabilities
is natural, although perhaps somewhat unexpected. Let us briefly describe why in the simplest
case of k = 1. Denote by v(i) the right eigenvector of XN,n corresponding to the singular value
si(XN,n). For any θ ∈ Sn−1, we may write

||XN,nθ||2 =
n∑

i=1

∣∣∣
〈
XN,nθ, v

(i)
〉∣∣∣

2
.

When N ≫ n, the matrix XN,n is highly degenerate in the sense that there exists a universal
constant C > 0 so that

s1(XN,n)

s2(XN,n)
≥ eCN/n.

This is easy to see intuitively since in this regime λ1 − λ2 ≈ 1
n (cf Theorem 1.3). Hence,

||XN,nθ||2 ≈
∣∣∣
〈
XN,nθ, v

(1)
〉∣∣∣

2
(3.3)

unless
∣∣〈θ, v(1)

〉∣∣ is unusually small. In fact, for all θ

0 ≥ 1

N
log ||XN,nθ|| − λ1 =

1

2N
log

(
||XN,nθ||2
s21(XN,n)

)
≥ 1

N
log
∣∣∣
〈
θ, v(1)

〉∣∣∣ .

This lower bound is essentially sharp by (3.3) unless θ has small overlap with v(1), an event
whose probability is controlled precisely by a small ball estimate.
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5 Organization of the Rest of the Article

The rest of this article is structured as follows. First, in §6 we collect some well-known results
on the relation between the exterior algebra of Rn and the singular values of any linear map
A : Rn → R

n. We also record several elementary observations (Lemmas 6.3 and 6.4) about
polar decompositions and Haar measures on orthonormal frames and their flags. We will use
this formalism throughout our proofs.

Next, in §7 recalls two kinds of results. The first, Theorem 7.1, is a result of  Lata la [Lat97]
that gives precise information on moments (and hence tail behavior) for sums of independent
centered random variables. The second is a set of results related to the multivariate central
limit theorem (Theorem 7.4) and the Gaussian content of boundaries of convex sets (Theorem
7.5). The latter allows us to prove Proposition 7.3, a stability result for the Kolmogorov-
Smirnov-type distance function d used in the statement of Theorem 1.3. Section 8 follows,
containing a brief road map to the proofs of Theorems 1.1, 1.2 and 1.3. Then, §9 is devoted
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to explaining how to use small ball estimates on volumes of random projections to formalize
the ergodicity (3.2).

Further, the results in §10 are used in all our proofs. The main result there is Proposition
10.1, which together with Proposition 9.1 and Lemma 10.5 explains the appearance of chi-
squared random variables in the statement of Theorem 1.3. The proof of Proposition 10.6 is
the most technical part of our arguments. Next, we complete the proof of Theorem 1.1 in
§11. We then use Theorem 1.1 to complete in §12 and §13 the proofs of Theorems 1.2 and
1.3, respectively.

6 Singular Values via Wedge Products

In this section, we recall some background on wedge products and refer the reader to the start
of §7 in [Spi70] and to §2.6.1 in [Tao10] for more details. The usual ℓ2-structure on R

n gives
rise in a functorial way to an ℓ2 structure on the exterior powers Λk

R
n. If x1, · · · , xk are in

R
n (e.g. are a frame for an element of Gn,k) we denote the resulting norm by

||x1 ∧ · · · ∧ xk|| .

If we denote by X∗ the n× k matrix (x1, · · · , xk), the Gram identity reads

‖x1 ∧ · · · ∧ xk‖ =
√

det(XX∗) = volk (P (x1, . . . , xk)) , (6.1)

where P (x1, . . . , xk) is the parallelopiped spanned by x1, . . . , xk. The following Lemma gives
a well-known characterization of products of singular values in terms of norms of wedge
products, which we will use repeatedly in the proofs of our results.

Lemma 6.1. Let A be an n×n real matrix with singular values s1(A) ≥ s2(A) ≥ · · · ≥ sn(A).
If θ1, · · · , θk are unit vectors in R

n, then

‖Aθ1 ∧ · · · ∧Aθk‖ ≤ sup
θ′1,...,θ

′
k∈S

n−1

‖Aθ′1 ∧ · · · ∧Aθ′k‖ =
k∏

i=1

si(A), (6.2)

with equality if and only if θi are orthonormal and span{θi, i ≤ k} is the subspace spanned by
the eigenvectors of AA∗ that correspond to the largest singular values of A.

Proof. The inequality on the left is clear. To derive the equality, note that, for any θ1,
′ , . . . , θ′k ∈

Sn−1,
θ′1 ∧ · · · ∧ θ′k = θ′′1 ∧ · · · ∧ θ′′k ,

where
θ′′j = Π⊥

≤j−1θ
′
j, θ′′1 = θ1

and Π⊥
≤j−1 is the projection onto the orthogonal complement of the span of θ′1, . . . , θ

′
j−1. This

follows immediately from the fact that a1∧· · ·∧ak is zero if {aj} is linearly dependent. Thus,
the supremum in (6.2) can be taken over θ′1, . . . , θ

′
k that are orthogonal. Over such collections,

the supremum is obtained by letting θ′1, . . . , θ
′
k be any permutation of the k right singular

vectors of A.

Next, we record in Lemma 6.2 some basic properties of this norm of wedge products that we
will use.

13



Lemma 6.2. Let x, x1, · · · , xk be vectors in R
n. Then we have the following basic properties:

1. Homogeneity: If λi > 0

‖λx1 ∧ · · · ∧ λkxk‖ =

(
n∏

i=1

λi

)
‖x1 ∧ · · · ∧ xk‖ (6.3)

2. Projection formula: Let PV ⊥
i

be the orthogonal projection onto the orthogonal com-

plement of Vi := span{x1, · · · , xk}, V0 = {0}, 1 ≤ k ≤ n− 1. We have

‖x1 ∧ · · · ∧ xk‖ =

k∏

i=1

‖PV ⊥
i−1
xi‖2. (6.4)

3. Pythagorean Theorem: Let e1, . . . , en be any orthonormal basis of R
n, and define

for each multi-index I = (i1, . . . , ik)

eI := ei1 ∧ · · · ∧ eik .

Then,

||x1 ∧ · · · ∧ xk||2 =
∑

I=(i1,...,ik)
1≤i1<···<ik≤n

〈x1 ∧ · · · ∧ xk, eI〉2 . (6.5)

4. Generalized Gram Identity: Let Θ = (θ1, . . . , θk) be an orthonormal system of
k vectors in R

n and write PΘ for the orthogonal projection onto the span of the θi.
Consider arbitrary linearly independent vectors v1, . . . , vk in R

n, and denote by V the
n× k matrix whose columns are vi. Then

〈v1 ∧ · · · ∧ vk, θ1 ∧ · · · ∧ θk〉2 = det(PΘV V
∗PΘ) = ||PΘv1 ∧ · · · ∧ PΘvk||2 . (6.6)

Proof. Homogeneity is immediate from the multi-linearity of the determinant (6.1). The
projection formula (6.4) follows from (6.1) and the fact that

√
det(XX∗) is the volume of the

parallelopiped spanned by x1, . . . , xk.. Next, the Pythagorean theorem follows from the fact
that in the definition of the ℓ2 structure on Λk

R
n,

{eI , I = (i1, . . . , ik) , 1 ≤ i1 < · · · < ik ≤ n}

is an orthonormal basis. Finally, to show (6.6), assume first that

θj = ej , j = 1, . . . , k

are the first k standard unit vectors. Then the right equality follows immediately from the
Gram identity (6.1). To see the left equality, write

vj =
n∑

i=1

vj,iei.

We have

v1 ∧ · · · ∧ vk =
∑

i1,...,ik

k∏

j=1

vj,ijei1 ∧ · · · ∧ eik =
∑

I=(i1,...,ik)
1≤i1<···<ik≤n



∑

σ∈Sk

(−1)sgn(σ)
k∏

j=1

vj,σ(j)


 eI .
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Hence, writing Vk for the matrix obtained from V by keeping only the first k rows, we find
from the Pythagorean theorem (6.5),

〈v1 ∧ · · · ∧ vk, θ1 ∧ · · · ∧ θk〉2 = det(Vk)2 = det(VkV
∗
k ).

The case of general θi follows by considering any orthogonal matrix U satisfying

θi = Uei, i = 1, . . . , k.

Then
〈v1 ∧ · · · ∧ vk, θ1 ∧ · · · ∧ θk〉2 = det((UTV )k(UTV )∗k) = det(PΘV (PΘV )∗).

6.1 Haar Measure on Frames

It well-know that if ξ is a standard Gaussian on R
n, then ξ̂ = ξ/ ||ξ|| is independent of ||ξ||

and that ξ̂ is uniform on the unit sphere. We will need natural generalizations of these facts
to orthonormal frames, Lemma 6.3 and 6.4.

Lemma 6.3 (Polar Decomposition for Haar Measure on Flags). Fix integers n ≥ k ≥ 1. Let
ξ1, . . . , ξk ∈ R

n be independent standard Gaussian random vectors. The following collections
of random variables are independent:

{||ξ1|| , ||ξ1 ∧ ξ2|| , . . . , ||ξ1 ∧ · · · ∧ ξk||} ,
{

ξ1
||ξ1||

, . . . ,
ξ1 ∧ · · · ∧ ξk

||ξ1 ∧ · · · ∧ ξk||

}
. (6.7)

Moreover, denote by P≤i the orthogonal projection onto the complement of the span of ξ1, . . . , ξi.
Then, the random variables terms ||P≤i−1ξi|| are joiltly independent.

Proof. We begin by recalling a fact from elementary probability. Namely, let X,Y,Z be any
random variables defined on the same probability space. Then,

X ⊥ Y and X ⊥ Z|Y ⇒ X ⊥ (Y,Z). (6.8)

In words, if X is independent of Y and Z is independent of X given Y , then, (Y,Z) is
independent of X.

We proceed by induction on k. The case k = 1 follows from the fact that the radial and
angular parts of a standard Gaussian are independent. Suppose now k ≥ 2 and we have
proved the statement for k − 1. For any ξ ∈ R

k\ {0}, let us write Pξ⊥ for the orthogonal
projection onto the orthogonal complement to the line spanned by ξ. Define for ℓ = 2, . . . , k

ξ′ℓ := Pξ⊥1
ξℓ.

Note that
||ξ1 ∧ · · · ∧ ξℓ|| = ||ξ1||

∣∣∣∣ξ′2 ∧ · · · ∧ ξ′ℓ
∣∣∣∣

and that
ξ1 ∧ · · · ∧ ξℓ = ξ1 ∧ ξ′2 ∧ · · · ∧ ξ′ℓ.

With this notation, it is enough to show that the collections

{
||ξ1|| ,

∣∣∣∣ξ′2
∣∣∣∣ , . . . ,

∣∣∣∣ξ′2 ∧ · · · ∧ ξ′k
∣∣∣∣} ,

{
ξ1

||ξ1||
,
ξ′2

||ξ′2||
, . . . ,

ξ′2 ∧ · · · ∧ ξ′k∣∣∣∣ξ′2 ∧ · · · ∧ ξ′k
∣∣∣∣

}
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are independent since if X,Y are independent, then so are f(X), g(Y ) for any measurable
functions f, g. To see this, first observe that, aside from ||ξ1||, all other random variables in all
both collections are measurable functions of ξ1/ ||ξ1|| , ξ2, . . . , ξk. Hence, ||ξ1|| is independent
of all other variables in both collections. It therefore remains to check only that

A =
{∣∣∣∣ξ′2

∣∣∣∣ , . . . ,
∣∣∣∣ξ′2 ∧ · · · ∧ ξ′k

∣∣∣∣} , B =

{
ξ1

||ξ1||
,
ξ′2

||ξ′2||
, . . . ,

ξ′2 ∧ · · · ∧ ξ′k∣∣∣∣ξ′2 ∧ · · · ∧ ξ′k
∣∣∣∣

}

are independent. Observe that, given, ξ1/ ||ξ1||, the random variables ξ′ℓ, ℓ = 2, . . . , k are pro-
jections of iid standard Gaussians onto a fixed dimension k subspace and hence are themselves
iid standard Gaussians. By the inductive hypothesis, conditional on ξ1/ ||ξ1||, the collection
A is independent of the collection B\{ξ1/ ||ξ1||}. Moreover, the random variables in A are
independent of ξ1. Invoking (6.8) therefore completes the proof of the statement that the two
collections in (6.7) are independent. To finish the proof of this Lemma, let us check that the
terms

||ξ1|| , ||P≤1ξ2|| , . . . , ||P≤k−1ξk|| (6.9)

are independent by induction on k. When k = 1 the claim is trivial. For the inductive step,
use the projection formula (6.4) to we write

||P≤k−1ξk|| =

∣∣∣∣
∣∣∣∣
ξ1 ∧ · · · ∧ ξk−1

||ξ1 ∧ · · · ∧ ξk−1||
∧ ξk

∣∣∣∣
∣∣∣∣ .

By the first part of this Lemma, we know that

ξ1 ∧ · · · ∧ ξk−1

||ξ1 ∧ · · · ∧ ξk−1||
, {||ξ1 ∧ · · · ∧ ξj|| , j ≤ k − 1}

are independent. Hence, since ξk is independent of ξ1, . . . , ξk−1, we conclude that the terms
in (6.9) are indepenedent as well.

We will also use this following result:

Lemma 6.4 (Haar Measure on Flags). Fix integers n ≥ k ≥ 1. Let ξ1, . . . , ξk ∈ R
n be

independent standard Gaussian random vectors. For each i = 1, . . . , k define

ξ′i =

{
ξ1, i = 1

PVi−1ξi, i > 1
,

where Vi−1 = Span {ξj , 1 ≤ j < i}⊥ and PVi−1 is the orthogonal projection onto Vi−1. Then
{ξ′i/ ||ξ′i|| , i = 1, . . . , k} is distributed according to Haar measure on the space of such flags of
orthonormal frames. In particular, if v1, . . . , vk is Haar-distributed in the space of k−frames
in R

n, then

v1 ∧ · · · ∧ vk d
=

ξ1 ∧ · · · ∧ ξk
||ξ1 ∧ · · · ∧ ξk||

(6.10)

Proof. The random variable (ξ′i, i = 1, . . . , k) clearly takes values in the set of k-frames in
R
n. Moreover, it is invariant under the action of the orthogonal group on such frames and

hence must be distributed according to the Haar measure. Indeed, since the angular part of
a standard Gaussian is uniform on the sphere, ξ′1/ ||ξ′i|| is uniform on Sn−1. Similarly, ξ′2 is
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a standard Gaussian in the orthogonal complement ξ′1
⊥ to ξ′i. Hence, ξ′2/ ||ξ′2|| is uniform on

the unit sphere in ξ′1
⊥ and so on. Finally, to derive (6.10), note that

ξ1 ∧ · · · ∧ ξk = ξ′1 ∧ · · · ξ′k

since the wedge product of any linearly dependent set of vectors vanishes. Combining this
with the projection formula (6.4), we conclude that

ξ1 ∧ · · · ∧ ξk
||ξ1 ∧ · · · ∧ ξk||

=
ξ′1

||ξ′1||
∧ · · · ∧ ξ′k∣∣∣∣ξ′k

∣∣∣∣

and (6.10) follows from the first part of this Lemma.

7 Background on Sums of Independent Random Variables

7.1 A Result of  Lata la: Precise Behavior for Moments of Sums

In the proof of our pointwise esimate Proposition 10.1, we will use the following result of R.
 Lata la [Lat97, Thm. 2, Cor. 2, Rmk. 2]:

Theorem 7.1. Let X1, · · · ,XN be mean zero, independent r.v. and p ≥ 1. Then


E



∣∣∣∣

N∑

j=1

Xj

∣∣∣∣
p





1
p

≃ inf



t > 0 :

N∑

j=1

log

[
E|1 +

Xj

t
|p
]
≤ p



 , (7.1)

where a ≃ b means there exist universal constants c1, c2 so that c1a ≤ b ≤ ac2. Moreover, if
Xi are also identically distributed then


E



∣∣∣∣

N∑

j=1

Xj

∣∣∣∣
p





1
p

≃ sup
max{2, p

N
}≤s≤p

p

s

(
N

p

) 1
s

‖Xi‖s. (7.2)

7.2 Small Ball Estimates for Sums of iid Random Variables with Bounded

Density

We will have occasion to use the following standard result (e.g. Lemma 2.2 in [RV08]).

Theorem 7.2. Let ζk, k = 1, . . . , n be iid non-negative random variables and suppose there
exists K such that P (ζk < ε) ≤ Kε for all ε ≥ 0, then for all ε ≥ 0

P

(
n∑

k=1

ζ2k < nε2

)
≤ (CKε)n,

where C is an absolute constant.
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7.3 Quantitative Multivariate CLT

One of our goals in this article is to measure the approximate normality for Lyapunov ex-
ponents of XN,n when N ≫ n (see Theorem 1.3). As explained in the introduction, we will
measure normality using a distance function that is a natural high-dimensional generalization
of the usual Kolmogorov-Smirnov distance:

d(X,Y ) := sup
C∈Ck

|P(X ∈ C) − P(Y ∈ C)| , (7.3)

where Ck is the collection of all convex subsets of R
k. The distance function d has three

desirable properties. First, it is affine invariant in sense that if T is any invertible affine
transformation and A is any convex set, then T−1A is also convex and hence for any random
variables X,Y on the same probability space

d(TX, TY ) = d(X,Y ). (7.4)

The second desirable property of d is that it is stable to small ℓ2 perturbations, as explained
in Proposition 7.3 below. To state this result, we write

N (µ,Σ), µ ∈ R
k, Σ ∈ Sym+

k

for a Gaussian with mean µ and invertible covariance Σ.

Proposition 7.3. There exists c > 0 with the following property. Suppose that X,Y are
R
k-valued random variables defined on the same probability space. For all µ ∈ R

k, invertible
symmetric matrices Σ ∈ Sym+

k , and δ > 0 we have

d(X + Y,N (µ,Σ)) ≤ 3d(X,N (µ,Σ)) + cδ
√

||Σ−1||HS + 2P (||Y ||2 > δ) . (7.5)

We prove Proposition 7.3 in §7.4 below. Before doing so, however, we state the third
desirable property of the distance d, namely, that it measures convergence in the multivariate
CLT. We follow the notation in Bentkus [Ben05] and define

S := SN = X1 + · · · +XN ,

where X1, . . . ,XN are independent random vectors in R
k with common mean EXj = 0. We

set
C := cov(S)

to be the covariance matrix of S, which we assume is invertible. With the definition

βj := E‖C− 1
2Xj‖32, β :=

N∑

j=1

βj , (7.6)

we have the following [Ben05]:

Theorem 7.4 (Multivariate CLT with Rate). There exists an absolute constant c > 0 such
that

d(S,C
1
2Z) ≤ ck

1
4β, (7.7)

where Z ∼ N (0, Idk) denotes a standard Gaussian on R
k.
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7.4 Proof of Proposition 7.3

We rely on the following result (Theorem 7.5) of Nazarov [Naz03], which was an extension of
a Theorem of Ball [Bal93].

Let Zk be the standard Gaussian in R
k. Let C be a positive definite symmetric matrix and

let γC be the density of the C− 1
2Zk, i.e.

dγC(y) :=

√
|detC|
(2π)

k
2

e−
〈Cy,y〉

2 dy.

Let

Kǫ := {x ∈ R
k : ∃y ∈ K, ‖x − y‖2 < ǫ} and K−ǫ : {x ∈ K := x+ ǫBk

2 ⊆ K} (7.8)

We define

Γ(C) := sup
K∈C

{
lim
ǫ→0+

γC (Kǫ \K)

ǫ

}
. (7.9)

Our proof of Proposition 7.3 crucially relies on the following result of Nazarov.

Theorem 7.5 ([Naz03]). There exists absolute constants c1, c2 > 0 such that

c1
√

‖C‖HS ≤ Γ(C) ≤ c2
√

‖C‖HS . (7.10)

We will need an elementary corollary of (7.10).

Corollary 7.6. For any ε ∈ (0, 1) and K ∈ Dk, we have

∣∣∣P(C− 1
2Zk ∈ Kǫ) − P(C− 1

2Zk ∈ K−ǫ)
∣∣∣ ≤ c2ǫ

√
‖C‖HS . (7.11)

Proof. Our argument is along the lines of the proof in [Ben05] of equations (1.3), (1.4) or
[Ben03] equation (1.2), which obtain similar statements in the special case where C = Id. We
will use a standard estimate (see e.g. Lemma 10.5 in [Kal02]) that if K is any convex set in
R
k and (∂K)ǫ is the ǫ-neighborhood of the boundary of K, then

vol((∂K)ǫ) ≤ 2

[(
1 +

ǫ

r(K)

)k

− 1

]
vol(Br(K)), (7.12)

where r(K) is the radius of the smallest ball containing K, vol is the Euclidean volume, and
Br is a ball of radius r. The crucial point is that the right hand side is bounded for all
ǫ ∈ (0, 1) by cǫ with c depending only on r(K) and the ambient dimension k.

To derive from this estimate (7.11), observe that for every ǫ > 0, if K ∈ Ck then also
Kǫ and K−ǫ are in Ck. Note also that the difference of probabilities on the left-hand side of

(7.11) can be bounded above by P(W ∈ Kǫ \K) + P(W ∈ K \K−ǫ) where W := C− 1
2Zk. It

is therefore enough to check that each of these probabilities is in turn bounded above by the
right hand side of (7.11). To see this for P(W ∈ Kǫ \K), denote for K convex and t > 0,

ωK(t) := P (W ∈ Kt \K) .
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Since Kt+ǫ \K = (Kt+ǫ \Kt) ∪ (Kt \K) we have that

ωK(t + ǫ) − ωK(t) = ωKt(ǫ). (7.13)

This relation, together with (7.12), implies that ωK(t) is absolutely continuous. Indeed, we
may write

ωKt(ǫ) = P

(
Zk ∈ C1/2Kt+ǫ\C1/2Kt

)
≤ vol

(
C1/2Kt+ǫ\C1/2Kt

)

(2π)k/2
.

Denoting by λmax the maximal eigenvalue of C1/2, we may write

C1/2Kt+ǫ = C1/2 (Kt)ǫ ⊆ (C1/2Kt)λmaxǫ.

Thus,

ωKt(ǫ) ≤
vol
(
(C1/2Kt)λmaxǫ\C1/2Kt

)

(2π)k/2
.

Denoting by R the radius of the smallest ball containing (C1/2K1)λmax , we obtain from (7.12)
that there exists a constant c > 0 depending on C, k and R so that for any 0 ≤ t, ǫ ≤ 1

ωKt(ǫ) ≤ cǫ.

Thus, using (7.13), we indeed see that ωK(t) is absolutely continuous on [0, 1]. Hence, its
derivative ω′

K(t) exists almost everywhere and

ωK(t) =

∫ t

0
ω′
K(s)ds.

Moreover, combining (7.13) with (7.10), we find for any t ∈ (0, 1) that

0 ≤ ω′
K(t) = lim

ǫ→0+

ωK(t + ǫ) − ωK(t)

ǫ
= lim

ǫ→0+

ωKt(ǫ)

ǫ
≤ c
√

||C||HS

Hence, since ωK(0) = 0, we find that ωK(t) ≤ ct
√

‖C‖HS , for all t ≤ 1. Using a similar
argument for ω̄K(t) := P(W ∈ K \K−t), we conclude that (7.11) indeed holds.

We are now ready to prove Proposition 7.3. Note that if S, T are any events on the same
probability space, then

|P (S) − P (T )| ≤ P (S∆T ) ,

where S∆T is the symmetric difference. For any convex set A ⊆ R
k, we have

|P (X + Y ∈ A) − P (X ∈ A)|

is bounded above by

|P (X + Y ∈ A, ||Y ||2 ≤ δ) − P (X ∈ A, ||Y ||2 ≤ δ)| + 2P (||Y ||2 > δ) .
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Note that

{X + Y ∈ A, ||Y ||2 ≤ δ}∆ {X ∈ A, ||Y ||2 ≤ δ} ⊆ {X ∈ Aδ \A−δ}.

Thus, we find

|P (X + Y ∈ A) − P (X ∈ A)| ≤ P (X ∈ Aδ) − P (X ∈ A−δ) + 2P (||Y ||2 > δ)

≤ |P (X ∈ Aδ) − P (N (µ,Σ) ∈ Aδ) |
+ |P (X ∈ A−δ) − P (N (µ,Σ) ∈ A−δ) |
+ P (N (µ,Σ) ∈ Aδ) − P (N (µ,Σ) ∈ A−δ) + 2P (||Y ||2 > δ)

≤ 2d(X,N (µ,Σ)) + c0δ
√

||Σ−1||HS + 2P (||Y ||2 > δ)

where we have used (7.11). Putting this all together, we find

d(X + Y,N (µ,Σ)) ≤ d(X,N (µ,Σ)) + d(X + Y,X)

≤ 3d(X,N (µ,Σ)) + c0δ
√

||Σ−1||HS + 2P (||Y ||2 > δ) .

�

8 Roadmap for Proofs of Theorems 1.2 and 1.3

In this section, we explain the organization of the proofs of Theorems 1.2 and 1.3. Our starting
point is in §9. There, in Proposition 9.1 we explain how to provide surprisingly useful bounds
on the size of the difference

1

N
log ||XN,n(Θ)|| − (λ1 + · · · + λk) (8.1)

using small ball estimates on determinants of volumes of random projections. This makes
precise (3.2). We remind the reader that λ1, . . . , λk are the top k Lyapunov exponents for
XN,n and that

XN,n(Θ) = XN,nθ1 ∧ · · ·XN,nθk,

where θj are is a fixed orthonormal k−frame in R
n. We think of XN,n(Θ) as a pointwise

analog of λ1 + · · · + λk since by Lemma 6.1 the supremum over Θ of 1
N log ||XN,n(Θ)|| equals

λ1 + · · · + λk.
Using Proposition 9.1, we analyze in §10 the concentration properties of 1

N log ||XN,n(Θ)|| .
By Lemma 10.5 it is a sum of independent random variables, allowing us to apply Theorem
7.1 several times. The main result is Proposition 10.1, whose proof is the most technical part
of this article.

Combining these concentration estimates for 1
N log ||XN,n(Θ)|| with the bounds on (8.1)

derived in Proposition 9.1, we derive Theorem 1.2 in §12, giving quantitative estimates about
convergence of the global distribution of singular values of XN,n to the Triangle Law.

Finally, in §13, we combine Theorem 1.1 with Proposition 10.1 and the multivariate CLT
(see §7.3) to prove the approximate normality of Lyapunov exponents stated in Theorem 1.3.
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9 Lyapunov Sums Via Small Ball Estimates

The purpose of this section is to explain how to use small ball estimates on volumes of random
projections to obtain concentration estimates on the difference

1

N
log ||XN,n(Θ)|| − sup

Θ′∈Frn,k

1

N
log
∣∣∣∣XN,n(Θ′)

∣∣∣∣ =
1

N
log ||XN,n(Θ)|| − (λ1 + · · · + λk)

between the sum of the first k Lyapunov exponents of XN,n and the “pointwise” analog of
this quantity evaluated at any fixed orthonormal system Θ = (θ1, . . . , θk) of k vectors in R

n.
Our main result is the following

Proposition 9.1. There exists C > 0 with the following property. For any ε ∈ (0, 1) and
any Θ ∈ Frn,k we have

P

(∣∣∣∣∣
1

N
log ||XN,n(Θ)|| − sup

Θ′∈Frn,k

1

N
log
∣∣∣∣XN,n(Θ′)

∣∣∣∣
∣∣∣∣∣ ≥

k

2N
log
( n

kε2

))
≤ (Cε)k/2 .

Proof. The key observation is the following:

Lemma 9.2. For any ε ∈ (0, 1) and any Θ ∈ Frn,k we have

P

(∣∣∣∣∣
1

N
log ||XN,n(Θ)|| − sup

Θ′∈Frn,k

1

N
log
∣∣∣∣XN,n(Θ′)

∣∣∣∣
∣∣∣∣∣ ≥

1

N
log

(
1

ε

))
≤ P (||PF (Θ)|| ≤ ε) ,

where F is a Haar distributed k−dimensional subspace of Rn and

PF (Θ) = PF θ1 ∧ · · · ∧ PF θk

with PF denoting the orthogonal onto F.

Proof of Lemma 9.2. Denote by v(1), . . . , v(n) the right singular vectors of XN,n corresponding
to its singular values s1 ≥ · · · ≥ sn. By abuse of notation, we will write XN,n : Λk

R
n → Λk

R
n

for the linear transformation given by

XN,n(x1 ∧ · · · ∧ xk) = XN,nx1 ∧ · · · ∧XN,nxk.

The right singular vectors of XN,n acting on Λk
R
n are

v(I) := v(i1) ∧ · · · ∧ v(ik), I = (i1, . . . , ik) , i1 < · · · < ik

and the corresponding singular values are

sI :=
∏

i∈I

si.

Hence, the Pythagorean theorem for wedge products and the generalized Gram identity (see
Lemma 6.2) yield

||XN,n(Θ)||2 =
∑

I=(i1,...,ik)
1≤i1<···<ik≤n

s2I

〈
v(I),Θ

〉2
≥
(

k∏

i=1

s2i

)〈
v(1,...,k),Θ

〉2
=

(
k∏

i=1

s2i

)
||Pk(Θ)||2 ,
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where in the last equality we’ve denote by Pk the orthogonal projection into the span of the
top k right singular vectors of XN,n. We therefore obtain, using Lemma 6.1:

0 ≥ 1

N
log ||XN,n(Θ)|| − sup

Θ′∈Frn,k

1

N
log
∣∣∣∣XN,nΘ′

∣∣∣∣

=
1

2N
log

(
||XN,n(Θ)||2
∏k

i=1 s
2
i

)

=
1

N
log ||Pk(Θ)|| .

Since XN,n is invariant under right multiplication by a Haar orthogonal matrix, we see that
Pk is equal in distribution to the orthogonal projection onto a Haar distributed k-dimensional
subspace of Rn.

In order to apply Lemma 9.2 we need small ball estimates on ||PF (Θ)||. Gaussian analogs of
such estimates are essentially available in the literature, but are phrased in the language of
determinants of random matrices. To reduce to this case, note that if F is Haar distributed
among k−dimensional subspaces of R

n, an orthonormal basis v1, . . . , vk for F is Haar dis-
tributed on the space of such k−frames in R

n. Thus, by (6.10) from Lemma 6.4, we find

||PF (Θ)|| = ‖PF θ1 ∧ · · · ∧ PF θk‖
= |〈v1 ∧ · · · ∧ vk, θ1 ∧ · · · ∧ θk〉|
d
=

∣∣∣∣
〈

g1 ∧ · · · ∧ gk
||g1 ∧ · · · ∧ gk||

, θ1 ∧ · · · ∧ θk
〉∣∣∣∣

d
=

‖Gθ1 ∧ · · · ∧Gθk‖
det(GG∗)

1
2

=

(
det(GkG

∗
k)

det(GG∗)

)1
2

(9.1)

where
d
= denotes equality in distribution, G is a k × n matrix with iid standard Gaussian

columns gi, Gk is the obtained from G by keeping only the first k columns, and we have
used the Gram identity (6.1) and (6.6) in the last two lines. The relation (9.1), combined in
Lemma 9.2, therefore gives that

P

(∣∣∣∣∣
1

N
log ||XN,n(Θ)|| − sup

Θ′∈Frn,k

1

N
log
∣∣∣∣XN,n(Θ′)

∣∣∣∣
∣∣∣∣∣ ≥

1

N
log

(
1

ε

))

is bounded above by

P

((
det(GkG

∗
k)

det(GG∗)

) 1
2

≤ ε

)
, (9.2)

To complete the proof, we recall the following result.

Proposition 9.3 (Lemma 4.2 in [PP13]). There exist universal constants c, C > 0 with the
following property. Let G be a k×n matrix with iid standard N (0, 1) Gaussian entries. Then

(
E

[
det(GG∗)

p
2k

]) 1
p ≤ C

√
n, 0 < p ≤ kn. (9.3)
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and (
E

[
det(GG∗)−

p
2k

])− 1
p ≥ c

√
n, 0 < p ≤ k(n − k + 1 − e−k(n−k+1)). (9.4)

This allows use to estimate the probability in (9.2) via the following corollary, which in
combination with (9.2) and Lemma 9.2 completes the proof of Proposition 9.1.

Corollary 9.4. There exists a universal constant c > 0 with the following property. Let G
be a k × n matrix with iid Standard Gaussian entries, and denote by Gk the matrix obtained
from G by keeping only the first k columns.

P

((
det(GkG

∗
k)

det(GG∗)

) 1
2k

≤ ε

√
k

n

)
≤ (cε)

k
2 , ε > 0 (9.5)

Proof. Using (9.3) and (9.4) and Markov’s inequality, we have that for t ≥ 1,

P

(
det(GG∗)

1
2k ≥ tC

√
n
)
≤ 1

tnk
and P

(
det(GG∗)

1
2k ≤ εc

√
n
)
≤ (cε)k(n−k+1−e−k(n−k+1)).

Note that Gk has the same distribution as a k× k matrix with iid standard N (0, 1) Gaussian
entries. So, we have that

P

((
det(GkG

∗
k)

det(GG∗)

) 1
2k

≤ ε

√
k

n

)
≤ P

(
det(GkG

∗
k)

1
2k

det(GG∗)
1
2k

≤ ε

√
k

n
and det(GG∗)

1
2k ≤ tC

√
n

)

+ P

(
det(GG∗)

1
2k ≥ tC

√
n
)

≤ P

(
det(GkG

∗
k)

1
2k ≤ εtC

√
k
)

+ P

(
det(GG∗)

1
2k ≥ tC

√
n
)

≤ (c′tε)k(1−e−k) +
1

tkn
≤ (cε)k/2 ,

where in the last line we’ve taken t = ε−1/2n.

10 Concentration for 1
N log ||XN,n(Θ)||

As mentioned above, a key step towards proving Theorems 1.2 and 1.3 is to obtain precise
concentration estimates for

1

N
log ||XN,n(Θ)|| =

1

N
log ||XN,nθ1 ∧ · · · ∧XN,nθk|| , (10.1)

where Θ = (θ1, . . . , θk) is a fixed orthonormal system in R
n. Define

Mj := n− j + 1, ξn,k =
1

n

k∑

j=1

1

Mj
(10.2)

and as in (1.5) set

µn,j :=
1

2
E

[
log

(
1

n
χ2
n−j+1

)]
.

Our main result about the concentration for log ||XN,n(Θ)|| is the following.
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Proposition 10.1. There exists a universal constant c > 0 with the following property. Fix
any orthonormal system Θ of k vectors in R

n. With XN,n(Θ) as in (10.1), we have

P



∣∣∣∣∣∣

1

nN
log ||XN,n(Θ)|| − 1

n

k∑

j=1

µn,j

∣∣∣∣∣∣
≥ s


 ≤ 2 exp

{
−cnN min{Mks,

s2

ξn,k
}
}
, s > 0.

(10.3)

Remark 10.2. The double behavior in the exponent of the estimates (10.3) is of Bernstein-
type. We do not use any off-the-shelf Bernstein estimates for deriving it however, relying
instead on Theorem 7.1 of  Lata la [Lat97]. One advantage of our approach is that  Lata la’s
estimates are all reversible (i.e. have matching upper and lower bounds). Hence, with a bit
more work it is possible to show that the estimate (10.3) is sharp. We will not need this fact,
however, and will provide only a proof of the upper bound.

Remark 10.3. Although we focus in this article on the Gaussian case, we believe it is possible
to prove that Proposition 10.1 holds under minimal assumptions on the distribution of the
entries of Ai. Somewhat weaker results in this directions are proved in [LP82, Thms. 7,8]
and [BLR85, Thm. 5.1].

Remark 10.4. By Lemma 10.5 below, we have

E

[
1

N
log ||XN,n(Θ)||

]
=

k∑

j=1

µn,j.

The proof of Proposition 10.1 proceeds from the observation that for the Gaussian case
we consider here, logXN,n(Θ) is a sum of independent random variables.

Lemma 10.5. Fix n,N ≥ 1 and 1 ≤ k ≤ n as well as a collection Θ of k orthonormal vectors
in R

n. We have

log ||XN,n(Θ)|| d
=

N∑

i=1

k∑

j=1

Yi,j,

where
d
= denotes equality in distribution, Yi,j are independent, and for each i, j the random

variable Yi,j is distributed like the logarithm 1
2 log( 1

nχ
2
n−j+1) of a normalized chi-squared ran-

dom variable with n− j + 1 degrees of freedom.

Proof. We have

log ||XN,n(Θ)|| = log ||AN · · ·A1 (Θ)||

= log

∣∣∣∣
∣∣∣∣AN · · ·A2

A1 (Θ)

||A1(Θ)||

∣∣∣∣
∣∣∣∣+ log ||A1(Θ)|| . (10.4)

Note that by Lemma 6.3, we have that

||A1(Θ)|| = ||A1θ1 ∧ · · · ∧A1θk||

is independent of
A1(Θ)

||A1(Θ)|| =
A1θ1 ∧ · · · ∧A1θk

||A1θ1 ∧ · · · ∧A1θk||
.
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Hence the two terms in (10.4) are independent. Moreover, A2

(
A1(Θ)

||A1(Θ)||

)
is independent of

A3, . . . , AN and, in distribution, we have

A2

(
A1(Θ)

||A1(Θ)||

)
d
= A2(Θ). (10.5)

Indeed, we may write

A1(Θ)

||A1(Θ)|| =
A1θ1 ∧ · · · ∧Akθk

||A1θ1 ∧ · · · ∧Akθk||
=

A1θ1
||A1θ1||

∧ Π≤1A1θ1
||Π≤1A1θ1||

∧ · · · ∧ Π≤k−1A1θk
||Π≤k−1A1θk||

,

where we’ve written Π≤i for the projection onto the complement of the span of A1θ1, . . . , A1θi.
Next, we may choose an orthogonal matrix M so that

Π≤i−1A1θi = Mei,

where ei is the ith standard basis vector. For this choice of M, we find

A1(Θ)

||A1(Θ)|| = Me1 ∧ · · · ∧Mek = M(e1 ∧ · · · ∧ ek).

Since A2
d
= A2M , we conclude that (10.5) holds. In particular, we find that, in distribution,

log ||XN,n(Θ)|| d
=

N∑

i=1

log ||Ai(Θ)||

is a sum of iid terms. Finally, for any fixed i = 1, . . . , N

||Ai(Θ)|| d
= ||ξ1 ∧ · · · ∧ ξk|| ,

where ξi are iid n-dimensional standard Gaussians. Hence, by the projection formula (6.4),
we find that

||Ai(Θ)|| d
=

k∏

i=1

||P≤i−1ξi|| ,

where we’ve denoted by P≤j the projection onto the orthogonal complement of the span of
ξ1, . . . , ξj . The terms in the product are independent by Lemma 6.3, and the distribution of

the ith term is precisely the same as that of
√

1
nχ

2
n−i+1, completing the proof.

Lemma 10.5 allows us to obtain precise estimates on the rate of growth of moments of
logXN,n(Θ) using the result of  Lata la [Lat97] (Theorem 7.1 above). These moment esti-
mates, in turn, yield Proposition 10.1 via Markov’s inequality applied to the optimal power
of log ||XN,n(Θ)||. We carry out these details in §10.1.

10.1 Details for Proof of Proposition 10.1

The purpose of this section is to prove Proposition 10.1. Throughout this section C,C ′, c, c′

etc will be universal constants that may change from line to line. Recalling from (10.2) the
notation

Mj = n− j + 1, ξn,k =
1

n

k∑

j=1

1

Mj
, (10.6)

26



we seek to show that for s > 0

P



∣∣∣∣∣∣

1

nN
log ||XN,n(Θ)|| − 1

n

k∑

j=1

µn,j

∣∣∣∣∣∣
≥ s


 ≤ 2 exp

(
−cnN min

{
Mks,

s2

ξn,k

})
. (10.7)

where we remind the reader that as in (1.5), we’ve set

µn,j :=
1

2
E

[
log

(
1

n
χ2
n−j+1

)]
.

According to Lemma 10.5, we have in distribution that

2

N
log ||XN,n(Θ)|| =

1

N

N∑

i=1

Ti,

where Ti are independent and

Ti =

k∑

j=1

ti,j, ti,j ∼ log

(
1

n
χ2
n−j+1

)
iid. (10.8)

Hence, we find in particular that

E

[
1

N
log ||XN,n(Θ)||

]
=

k∑

j=1

µn,j (10.9)

and see that Proposition 10.1 is equivalent to showing that for any s > 0

P

(∣∣∣∣∣
1

nN

N∑

i=1

T i

∣∣∣∣∣ ≥ s

)
≤ 2 exp

(
−cnN min

{
Mks,

s2

ξn,k

})
, (10.10)

where for any random variable Y we will use the shorthand

Y := Y − E [Y ] .

We will obtain (10.10) by Markov’s inequality applied to certain moments of the sum of the
Ti’s. Specifically, we will prove the following estimate.

Proposition 10.6. There exists a universal constant C so that for any n,N, k and p ≥ 1

(
E

[∣∣∣∣
N∑

i=1

T i

∣∣∣∣
p
])1/p

≤ C



√√√√pN

k∑

j=1

1

Mj
+

p

Mk


 .

The proof of Proposition 10.6, which is straightforward but tedious, is given in §10.2
below. We assume it for now and complete the proof of (10.10). Write

p0 := M2
k

k∑

j=1

1

Mj
(10.11)
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and note that

p ≤ Np0 ⇐⇒ p

Mk
≤

√√√√pN

k∑

j=1

1

Mj
.

Thus, applying Markov’s inequality to Proposition 10.6 shows that there exists C > 0 so that
for 1 ≤ p ≤ Np0

P



∣∣∣∣

1

nN

N∑

i=1

T i

∣∣∣∣ ≥
C

n
√
N

√√√√p

k∑

j=1

1

Mj


 ≤ e−p.

Equivalently, recalling that

ξn,k =
1

n

k∑

j=1

1

Mj
,

we see that there exists c > 0 so that

P

(∣∣∣∣
1

nN

N∑

i=1

T i

∣∣∣∣ ≥ s

)
≤ 2e

−cnN s2

ξn,k , 0 ≤ s ≤ Cξn,kMk.

This establishes (10.10) in this range of s. To treat s ≥ CMkξn,k, we again apply Markov’s
inequality to Proposition 10.6 to see that there exists C > 0 so that

p ≥ Np0 =⇒ P

(∣∣∣∣
N∑

i=1

T i

∣∣∣∣ > C
p

Mk

)
≤ e−p.

Hence, there exists c > 0 so that

P

(∣∣∣∣
1

nN

N∑

i=1

T i

∣∣∣∣ ≥ s

)
≤ e−cnNMks, s ≥ CMkξn,k,

completing the proof of (10.10).

10.2 Proof of Proposition 10.6

We seek to estimate the moments of

N∑

i=1

Ti =

N∑

i=1

k∑

j=1

ti,j, ti,j ∼ log(
1

n
χ2
n−j+1).

By Theorem 7.1, we have

(
E

[∣∣∣∣
N∑

i=1

T i

∣∣∣∣
p
])1/p

≃ sup
max

{

2,
p
N

}

≤s≤p

p

s

(
N

p

) 1
s

E
[∣∣T i

∣∣s] 1s . (10.12)

Our strategy is therefore to estimate E
[∣∣T i

∣∣s]1/s and optimize over s. In particular, we seek
to show that there exists C > 0 so that for every p ≥ 1, we have

(
E
[∣∣T i

∣∣p])1/p ≤ C



√√√√p

k∑

j=1

M−1
j +

p

Mk


 . (10.13)
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Our first step towards showing (10.13) is to obtain the following estimates on the moments
of ti,j .

Lemma 10.7. There exist C1 > 0 such that

(
E
[∣∣ti,j

∣∣p])1/p ≤ C1 max

{√
p

Mj
,
p

Mj

}
.

Proof. We first make a reduction. Namely, let us check that the estimates in Lemma 10.7 for

ti,j = ti,j − E

[
log(n−1χ2

Mj
)
]

follow from the same estimates for

t̂i,j := ti,j − log(n−1Mj).

To see this, recall that by (1.16) and (1.7), we have

E

[
log

(
1

n
χ2
Mj

)]
= log

(
2

n

)
+ ψ

(
Mj

2

)
= log

(
Mj

n

)
+ εj , εj = O(M−1

j )

where ψ is the digamma function, and we have used its asymptotic expansion ψ(z) ∼ log(z)+
O(z−1) for large arguments. Thus, we have for each i that

E
[∣∣ti,j

∣∣p] = E

[∣∣t̂i,j + εj
∣∣p
]
≤

p∑

k=0

(
p

k

)
E

[∣∣t̂i,j
∣∣k
]
|εj |p−k .

So assuming that t̂i,j satisfy the conclusion of Lemma 10.7, we find

E
[∣∣ti,j

∣∣p] ≤
p∑

k=0

(
p

k

)
ζkk,j |εj |p−k , ζk,j := Cmax

{√
k

Mj
,
k

Mj

}
.

Since for 0 ≤ k ≤ p we have ζk,j ≤ ζp,j, we see that

E
[∣∣ti,j

∣∣p] ≤
p∑

k=0

(
p

k

)
ζkp,j |εj |p−k ≤ (ζp,j + |εj |)p .

Finally, since εj = O(M−1
j ) = O(ζp,j), we find that there exists C > 0 so that

(
E
[∣∣ti,j

∣∣p])1/p ≤ Cζp,j ≤ Cmax

{√
p

Mj
,
p

Mj

}
,

as desired. It therefore remains to show that t̂i,j = ti,j − log
(
n−1Mj

)
satisfies the conclusion

of Lemma 10.7. To do this, we begin by checking that there exists c1 > 0 so that, with
Mj = n− j + 1, for all s ≥ 0

P

(∣∣∣∣ti,j − log

(
Mj

n

)∣∣∣∣ ≥ s

)
≤ 4e−c1Mj min{s,s2}. (10.14)

We have

P

(∣∣∣∣ti,j − log

(
Mj

n

)∣∣∣∣ ≥ s

)
= P

(∣∣∣∣log

(
1

n
χ2
Mj

)
− log

(
Mj

n

)∣∣∣∣ ≥ s

)

= P

(∣∣∣∣log

(
1

Mj
χ2
Mj

)∣∣∣∣ ≥ s

)

= P

(
χ2
Mj

≥Mje
s
)

+ P

(
χ2
Mj

≤Mje
−s
)
.
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Let us first bound P

(
χ2
Mj

≥Mje
s
)

. Note that the mean of χ2
Mj

is Mj and that χ2
Mj

−Mj is a

sub-exponential random variable with parameters (4Mj , 4). Thus, Bernstein’s tail estimates
for sub-exponential random variables yield the existence of c > 0 such that for all t ≥ 0

P

(∣∣∣M−1
j χ2

Mj
− 1
∣∣∣ ≥ t

)
≤ 2e−cMj min{t,t2}. (10.15)

In particular,

P

(
χ2
Mj

≥Mje
s
)

= P

(
M−1

j χ2
Mj

− 1 ≥ es − 1
)
≤ 2e−cMj min{es−1,(es−1)2} ≤ 2e−cMj min{s,s2},

where in the last inequality we used that es − 1 ≥ s. This gives the first half of (10.14).

Let us now obtain a similar estimate on P

(
χ2
Mj

≤Mje
−s
)

, which is a small ball estimate

for a sum of iid random variables with bounded density. We need to consider two cases.
Theorem 7.2 on small ball estimates for sums of iid random variables shows that there exists
a universal constant C > 0 so that

P

(
χ2
Mj

≤Mje
−s
)
≤ (Ce−s/2)Mj .

Hence,

s > s∗ := 2 log(C) ⇒ ∃c > 0 s.t. P

(
χ2
Mj

≤Mje
−s
)
≤ e−csMj ,

giving the desired estimate in this range. Finally, suppose s ≤ s∗. Then,

e−s ≤ 1 − e−s∗s

since both sides equal 1 at s = 0 and the derivative −e−s of the left hand side is more negative
than the derivative −e−s∗ of the right hand side for all s ∈ (0, s∗). Thus, we find for s ∈ (0, s∗)
that

P

(
χ2
Mj

≤Mje
−s
)
≤ P

(
χ2
Mj

≤Mj(1 − e−s∗s)
)
≤ P

(∣∣∣M−1
j χ2

Mj
− 1
∣∣∣ > e−s∗s

)

Using the Bernstein inequality (10.15), we obtain that there exists c > 0 depending only on
s∗ such that for s ∈ (0, s∗),

P

(
χ2
Mj

≤Mje
−s
)
≤ 2e−cMj min{s,s2},

giving the desired estimate in this range as well. This establishes (10.14). To complete the
proof that t̂i,j satisfy Lemma 10.7, we use (10.14) to write

E

[∣∣t̂i,j
∣∣p
]

=

∫ ∞

0
P
(∣∣t̂i,j

∣∣ > x
)
pxp−1dx

≤ p

[∫ 1

0
e−cMjx2

xp−1dx+

∫ ∞

1
e−cMjxxp−1dx

]
.

The first term can be estimated by comparing to the moments of a Gaussian as follows:

p

∫ 1

0
e−cMjx2

xp−1dx = p (2cMj)
−p/2

∫ (2cMj)1/2

0
e−x2

xp−1dx

≤ p (2cMj)
−p/2

∫ ∞

0
e−x2

xp−1dx

≤ p (2cMj)
−p/2 2

p
2 Γ
(p

2

)

≤ p

(
p

2cMj

)p/2

,
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where we used that for z > 0 we have Γ(z) ≤ zz. The second term can similarly be estimated
by comparing the moments of an exponential:

p

∫ ∞

1
e−cMjxxp−1dx = p(cMj)

−p

∫ ∞

cMj

e−xxp−1dx

= p(cMj)
−p(p− 1)!

≤ p

(
p

cMj

)p

.

Putting these two estimates together and taking 1/p powers, we find that there exists C > 0
so that (

E

[∣∣t̂i,j
∣∣p
])1/p

≤ C max

{√
p

Mj
,
p

Mj

}

for all p ≥ 1. This completes the proof.

With Lemma 10.7 in hand, we are now in a position to show (10.13). Since

T i =

k∑

j=1

ti,j,

we have by Theorem 7.1 that

(
E|T i|p

) 1
p ≃ inf



t > 0 :

k∑

j=1

log

[
E|1 +

ti,j
t
|p
]
≤ p



 , (10.16)

where ≃ means bounded above and below by absolute constants. We will use the notation
from (10.11):

p0 = M2
k

k∑

j=1

M−1
j .

Since √√√√p
k∑

j=1

M−1
j ≤ p

Mk
⇐⇒ p ≥ p0,

we will show (10.13) by breaking into two cases. Namely, we will show that there exists C > 0
so that

p ≤ p0 =⇒
(
E
∣∣T i

∣∣p) 1
p ≤ C

√√√√p
k∑

j=1

M−1
j (10.17)

as well as

p ≥ p0 =⇒
(
E
∣∣T i

∣∣p) 1
p ≤ C

p

Mk
. (10.18)

We may assume without loss of generality that p is an even integer. Indeed, once we’ve show
(10.17) and (10.18) for even integers p (and a uniform constant C), we may use that

(
E
[∣∣T i

∣∣p])1/p ≤
(
E

[∣∣T i

∣∣p′
])1/p′

,
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where p′ is the smallest even integer greater than or equal to p. This yields (10.17) and (10.18)
for any p with C replaced by 2C.

We now turn to showing that (10.17) holds with p an even integer. To do this, we will
need to evaluate the expectation E

[
|1 + t−1ti,j|p

]
appearing in (10.16). A key point is to use

that ti,j are centered. Since p is even, we may bring this to bear most directly by noting that
the absolute value in E

[
|1 + t−1ti,j|p

]
is unnecessary and using that E

[
ti,j
]

= 0. Lemma 10.7
and the well-known estimate

(n
k

)k
≤
(
n

k

)
≤
(n
k

)k
ek, k ≥ 1 (10.19)

yield that for all i, j we have:

E

[(
1 +

ti,j
t

)p]
= 1 +

p∑

ℓ=2

(
p

ℓ

)
E

[
t
ℓ
i,j

]

tℓ

≤ 1 +

min{p,Mj}∑

ℓ=2

(
p

ℓ

)(
Cℓ

t2Mj

)ℓ/2

+

p∑

ℓ=Mj+1

(
p

ℓ

)(
Cℓ

tMj

)ℓ

≤ 1 +

min{p,Mj}∑

ℓ=2

(p
ℓ

)ℓ( Cℓ

t2Mj

)ℓ/2

+

p∑

ℓ=Mj+1

(
Cp

tMj

)ℓ

≤ 1 +

min{p,Mj}∑

ℓ=2

(p
ℓ

)ℓ/2( Cp

t2Mj

)ℓ/2

+

p∑

ℓ=Mj+1

(
Cp

tMj

)ℓ

. (10.20)

We now bound the first two terms in the previous line by breaking into the terms where ℓ is
even and odd. When ℓ is even the terms in (10.20) are bounded above by

1 +

min{p,Mj}∑

ℓ=2
ℓ even

(p
ℓ

)ℓ/2( C ′p

t2Mj

)ℓ/2

≤ 1 +

min{p,Mj}∑

ℓ=2
ℓ even

(
p/2

ℓ/2

)(
C ′p

t2Mj

)ℓ/2

≤
(

1 +
C ′p

t2Mj

)p/2

.

(10.21)

To bound the odd terms in (10.20), let us first note that for any 0 ≤ m ≤ ℓ ≤ p, we have

(p
ℓ

)ℓ
≤ pm

(
p

ℓ−m

)
.

Indeed, when ℓ = m, this equality simply reads

(p
ℓ

)ℓ
≤ pℓ+1,

while if m < ℓ, we note that the inequality is equivalent to

pℓ−m

ℓℓ
≤
(

p

ℓ−m

)
,

which follows by estimating the expression on the left hand side using (10.19) as follows:

(p
ℓ

)ℓ−m 1

ℓm
=

(
p

ℓ−m

)ℓ−m(ℓ−m

ℓ

)ℓ−m 1

ℓm
≤
(

p

ℓ−m

)
.
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Thus, the odd terms in (10.20) are bounded above by

min{p,Mj}∑

ℓ=3
ℓ odd

(p
ℓ

)ℓ/2( Cp

t2Mj

)ℓ/2

≤ min
m=1,3





(
Cp2

t2Mj

)m
2

p−1∑

ℓ=3
ℓ odd

(
p

ℓ−m

) 1
2
(
Cp

t2Mj

) ℓ−m
2




.

To proceed, note that for any 0 ≤ b ≤ a

(
2a

2b

)
≤ 2b

(
a

b

)2

.

This inequality follows by observing that for any j = 0, . . . , b− 1, we have

(2a− 2j)(2a − 2j − 1)

(2b− 2j − 1)
=

(a− j)(a− j − 1/2)

(b− j)(b− j − 1/2)
≤ 2

(
a− j

b− j

)2

and repeatedly applying this estimate to the terms in
(2a
2b

)
. Thus, we obtain

min{p,Mj}∑

ℓ=3
ℓ odd

(p
ℓ

)ℓ/2( Cp

t2Mj

)ℓ/2

≤ min
m=1,3

{(
Cp2

t2Mj

)m
2

} p/2∑

ℓ=0

(
p/2

ℓ

)(
Cp

t2Mj

)ℓ

= min
m=1,3

{(
Cp2

t2Mj

)m
2

}(
1 +

Cp

t2Mj

)p/2

≤
(
Cp2

t2Mj

)(
1 +

Cp

t2Mj

)p/2

, (10.22)

where in the last inequality we’ve used that min
{
x1/2, x3/2

}
≤ x for all x ≥ 0. Putting

together (10.21) and (10.22) we see that there exists C > 0 so that

E

[(
1 +

ti,j
t

)p]
≤
(

1 +
Cp2

t2Mj

)(
1 +

Cp

t2Mj

)p/2

+

p∑

ℓ=Mj+1

(
Cp

tMj

)ℓ

. (10.23)

Let us now verify (10.17). Recall that for j ≤ k we have Mj ≥ Mk and that p ≤ p0 =

M2
k

∑k
j=1

1
Mj

. We set

t =

√√√√C ′p
k∑

i=1

M−1
i (10.24)

where
C ′ = max

{
(16C)2 , 2C1/2

}

is an absolute constant depending only on the constant C appearing in (10.23). For this
choice of C ′, we have

Cp

tMj
= C

√
p2

C ′pM2
j

∑k
i=1M

−1
i

≤ C

√
p

C ′M2
k

∑k
i=1M

−1
i

= C

√
p

C ′p0
≤ 1

16
,∀j ≤ k
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and
k∑

j=1

Cp

t2Mj
≤ C

(C ′)2
≤ 1

4
.

In particular for j ≤ k such that Mj ≤ p,

p∑

ℓ=Mj+1

(
Cp

tMj

)ℓ

≤
p∑

ℓ=Mj+1

1

16ℓ
≤ 1

4Mj

Hence, since log (a+ b) ≤ (log a) + b for a ≥ 1 and b > 0,

k∑

j=1

logE

[(
1 +

(
ti,j
t

)p)]
≤ p

2

k∑

j=1

log

(
1 +

Cp

t2Mj

)
+

k∑

j=1

log

(
1 +

Cp2

t2Mj

)
+

k∑

j=1

(
1

4

)Mj

≤ p

2

k∑

j=1

Cp

t2Mj
+

k∑

j=1

Cp2

t2Mj
+

n∑

s=n−k+1

1

4s

=
3p

8
+

1

2
≤ p.

Hence, (10.17) follows from (10.16). We now turn to the case when p ≥ p0 and seek to show
(10.18). Rather than (10.24), to show (10.18), we set

t =
C ′p

Mk
(10.25)

with
C ′ = max

{
4C, 2C1/2

}
.

Then,
Cp

tMj
=
CMk

C ′Mj
<
C

C ′
≤ 1

4

and
k∑

j=1

Cp

t2Mj
=

k∑

j=1

CM2
k

(C ′)2pMj
=

C

(C ′)2
p0
p

≤ C

(C ′)2
≤ 1

4
.

Hence from (10.23), we find

k∑

j=1

logE

[(
1 +

(
ti,j
t

)p)]
≤ p

2

k∑

j=1

log

(
1 +

Cp

t2Mj

)
+

k∑

j=1

log

(
1 +

Cp2

t2Mj

)
+

k∑

j=1

(
1

4

)Mj

≤ p

2

k∑

j=1

Cp

t2Mj
+

k∑

j=1

Cp2

t2Mj
+

1

2

≤ 3Cp

2(C ′)2
+

1

2

≤ p.
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Thus, we see that relation (10.18) also follows from (10.16). We are now in a position to finish
the proof of Proposition 10.1 by combining (10.12) with (10.17) and (10.18). We find from
(10.12) that

(
E

[∣∣∣∣∣

N∑

i=1

T i

∣∣∣∣∣

p])1/p

≤ sup
max{2, p

N }≤s≤p

p

s

(
N

p

)1/s

E
[∣∣T i

∣∣s]1/s .

If p ≤ p0, then (10.17) implies

(
E

[∣∣∣∣∣

N∑

i=1

T i

∣∣∣∣∣

p])1/p

≤ C sup
max{2, p

N }≤s≤p

p

s

(
N

p

)1/s
√√√√s

k∑

j=1

M−1
j . (10.26)

Define

f(s) = log

(
p

s

(
N

p

)1/s √
s

)
= log(p) − 1

2
log(s) +

1

s
log

(
N

p

)
.

Note that

f ′(s) = − 1

2s
− 1

s2
log

(
N

p

)
.

When p ≤ N the function f is manifestly monotone decreasing in s > 0. Therefore, taking
s = 2, we find

p ≤ N ⇒
(
E

[∣∣∣∣∣

N∑

i=1

T i

∣∣∣∣∣

p])1/p

≤ C

√√√√pN
k∑

j=1

M−1
j

On the other hand, when p ≥ N , we have

p

s

(
N

p

)1/s
√√√√s

k∑

j=1

M−1
j ≤ ps−1/2

√√√√
k∑

j=1

M−1
j ,

which is strictly decreasing in s > 0. Hence, taking s = p/N , we again find

p ≥ N ⇒
(
E

[∣∣∣∣∣

N∑

i=1

T i

∣∣∣∣∣

p])1/p

≤ C

√√√√pN

k∑

j=1

M−1
j .

Hence, we find that if p ≤ p0, then

(
E

[∣∣∣∣∣

N∑

i=1

T i

∣∣∣∣∣

p])1/p

≤ C

√√√√pN

k∑

j=1

M−1
j ,

as desired. Finally, if p ≥ p0, then (10.18) implies

(
E

[∣∣∣∣∣

N∑

i=1

T i

∣∣∣∣∣

p])1/p

≤ C sup
max{2, p

N }≤s≤p

p

s

(
N

p

)1/s s

Mk
=
Cp

Mk
sup

max{2, p
N }≤s≤p

(
N

p

)1/s

.

(10.27)
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Note that if p/N ≥ 1, then for every s ≥ 2 we have (N/p)1/s ≤ 1 and hence

Cp

Mk
sup

max{2, p
N }≤s≤p

(
N

p

)1/s

≤ Cp

Mk
.

Further, if p/N ≤ 1, then (N/p)1/s is monotonically decreasing with s and hence

Cp

Mk
sup

max{2, p
N }≤s≤p

(
N

p

)1/s

≤ Cp

Mk

(
N

p

)1/2

= C
√
pNM−2

k ≤ C

√√√√pN
k∑

j=1

M−1
j .

Thus, in all cases we find

(
E

[∣∣∣∣
N∑

i=1

T i

∣∣∣∣
p
])1/p

≤ C



√√√√pN

k∑

j=1

1

Mj
+

p

Mk


 ,

which is precisely the statement of Proposition 10.6. �

11 Lyapunov Sums: Proof of Theorem 1.1

To prove Theorem 1.1, we start by combining previous estimates for 1
N log ||XN,n(Θ)|| from

Proposition 10.1 with the deviation estimates in Proposition 9.1. Let recall the definition of
the function g (cf (1.4))

gn,k(s) =

{
min

{
1, nsk

}
, k ≤ n

2

min
{
δn,k,

s
log 1/δn,k

}
, k > n

2

, (11.1)

where we recall that for k ≥ n
2

δn,k :=
n− k + 1

n
.

Let s > 0 and 1 ≤ k < m ≤ n. Writing

ps,k,m := P

(∣∣∣∣∣
1

n

k∑

i=m

(λi − µn,i)

∣∣∣∣∣ ≥ s

)
,

we seek to show that there exist universal constants c1, c2, c3 > 0 such that for any 1 ≤ m ≤
k ≤ n and every s ≥ c1

k
nN log en

k we have

ps,k,m ≤ c2 exp
{
−c3 min

{
nNs, n2Nsgn,k(s)

}}
. (11.2)

To see this, note that the triangle inequality yields

ps,k,m ≤ ps/2,k,1 + ps/2,m−1,1.

Hence, it suffices to prove (11.2) with m = 1. To do this, fix Θ ∈ Frn,k, an orthonormal
k−frame in R

n. We may write for any s > 0

ps,k,1 ≤ P

(∣∣∣∣∣
1

n

k∑

i=1

λi −
1

nN
log ||XN,n(Θ)||

∣∣∣∣∣ ≥
s

2

)
(11.3)

+ P

(∣∣∣∣∣
1

nN
log ||XN,n(Θ)|| − 1

n

k∑

i=1

µn,i

∣∣∣∣∣ ≥
s

2

)
. (11.4)
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We will show separately that the probabilities in (11.3) and (11.4) are both bounded above by
the right hand side of (11.2). To check this for (11.4), note that Proposition 10.1 guarantees

P



∣∣∣∣∣∣
log ‖XN,n(Θ)‖

nN
− 1

n

k∑

j=1

µn,j

∣∣∣∣∣∣
≥ s


 ≤ 2 exp

{
−cnN min{Mks,

s2

ξn,k
}
}
, s > 0, (11.5)

where we remind the reader that

Mj := n− j + 1, ξn,k :=
1

n

k∑

j=1

1

Mj
, µn,k :=

1

2
E

[
log

(
1

n
χ2
n−j+1

)]
.

Some routine algebra reveals

k ≤ n

2
⇒ nξn,k ≃ k

n
, Mk ≃ n (11.6)

and

k ≥ n

2
⇒ nξn,k ≃ log

(
1

δn,k

)
, Mk = δn,kn, (11.7)

where a ≃ b means that there exists c1, c2 > 0 so that c1a ≤ b ≤ c2a. Hence,

k ≤ n

2
⇒ min

{
Mks,

s2

ξn,k

}
≃ nsmin

{
1,
ns

k

}

and similarly

k ≥ n

2
⇒ min

{
Mks,

s2

ξn,k

}
≃ ns

{
δn,k,

s

log(1/δn,k)

}
.

Putting these two estimates together, we find that (11.5) yields for any s > 0

P



∣∣∣∣∣∣
log ||XN,n(Θ)||

nN
− 1

n

k∑

j=1

µn,j

∣∣∣∣∣∣
≥ s


 ≤ 2 exp

{
−cn2Nsgn,k(s)

}
, (11.8)

as desired. Turning to the probability in (11.3), recall that in Proposition 9.1, we have shown
that for every ε ∈ (0, 1),

P

(∣∣∣∣∣
1

nN
log ||XN,n(Θ)|| − 1

n

k∑

i=1

λi

∣∣∣∣∣ ≥
k

2Nn
log
( n

kε2

))
≤ (Cε)

k
2 .

If we set s := k
nN log en

kε2
, then

(Cε)k/2 = exp

[
−1

4
snN +

k

4
log
(en
k

)
+
k

2
log(C)

]
.

Hence, assuming that

s ≥ C ′ k

nN
log
(en
k

)
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for C ′ sufficiently large, we arrive to the following expression:

P

(∣∣∣∣∣
1

n

k∑

i=1

λi −
log ||XN,n(Θ)||

nN

∣∣∣∣∣ ≥ s

)
≤ e−

snN
4 , s ≥ C ′ k

nN
log
(en
k

)
. (11.9)

Thus, putting together (11.8) and (11.9), we find that

ps,k,1 ≤ c2 exp
{
−c3 min

{
nNs, n2Nsgn,k(s)

}}
,

completing the proof. �

12 Convergence to the Triangle Law: Proof of Theorem 1.2

In this section, we derive Theorem 1.2 from Theorem 1.1. We will need the following elemen-
tary result.

Lemma 12.1. Fix positive integers n, q,m satisfying 4 ≤ m ≤ q ≤ n. Then

m

2n
log (q/n) − 1

n

n−q+m∑

j=n−q+1

µn,j ≥
(m− 1)2

4nq
.

Further, assuming that n− q −m ≥ 0, we also have

m

2n
log(q/n) − 1

n

n−q∑

j=n−q−m+1

µn,j ≤ −m(m− 3)

3nq
.

Proof. Let us first prove the lower bound. Recall that

µn,j =
1

2

(
log

(
2

n

)
+ ψ

(
n− j + 1

2

))
. (12.1)

Moreover, a well-known estimate [AS64, eq.6.3.18, p.259] for the digamma function is:

ψ(x) < log(x).

Using this we obtain

µn,j <
1

2
log

(
1 − j − 1

n

)
,

which allows us to write

m

2n
log (q/n) − 1

n

n−q+m∑

j=n−q+1

µn,j ≥
1

2n

n−q+m∑

j=n−q+1

log

(
q

n− j + 1

)
=

1

2n

m−1∑

j=1

log

(
1

1 − j/q

)
.

Since q, n are fixed, let us temporarily introduce

ξ :=
q

n
.
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With this notation, because log(1/(1 − t)) is monotonically increasing for t ∈ [0, 1), we have

1

2n

m−1∑

j=1

log

(
1

1 − j/q

)
=

1

2

m−1∑

j=1

1

n
log

(
1

1 − (j/n)/ξ

)
≥ 1

2

∫ m−1
n

0
log

(
1

1 − t/ξ

)
dt.

Some routine calculus therefore reveals that

m

2n
log (q/n) − 1

n

n−q+m∑

j=n−q+1

µn,j ≥
ξ

2
[(1 − ε/ξ) log (1 − ε/ξ) + ε/ξ] ,

where we’ve set ε := (m− 1)/n. Finally, note that for x > 0

(1 − x) log(1 − x) + x =
∑

k≥2

xk

k(k − 1)
≥ x2/2.

Hence, we obtain

m

2n
log (q/n) − 1

n

n−q+m∑

j=n−q+1

µn,j ≥
ε2

4ξ
=

(m− 1)2

4nq
,

as claimed. Let us now derive the upper bound. Using (12.1), we get

m

2n
log (q/n) − 1

n

n−q∑

j=n−q−m+1

µn,j =
1

2n

n−q∑

j=n−q−m+1

{
log
(q

2

)
− ψ

(
n− j + 1

2

)}

=
1

2n

m∑

j=1

{
log
(q

2

)
− ψ

(
q + j

2

)}
.

Using the inequality (see again [AS64, eq.6.3.18, p.259])

ψ(x) > log (x) − 1/x,

we arrive at the estimate

m

2n
log (q/n) − 1

n

n−q∑

j=n−q−m+1

µn,j ≤
1

2n

m∑

j=1

{
log

(
q

q + j

)
+

2

q + j

}
.

As before, we will estimate this sum above by an integral. Still writing ξ = q/n, we have as
before

1

2n

m∑

j=1

log

(
1

1 + j/q

)
≤ ξ

2

∫ ε/ξ

0
log

(
1

1 + t

)
dt =

ξ

2
[−(1 + ε/ξ) log (1 + ε/ξ) + ε/ξ]

where we’ve now set ε = m/n (which is slightly different than above). For x ∈ (0, 1), we have

−(1 + x) log(1 + x) + x =
∑

k≥2

(−1)k+1 xk

k(k − 1)
≤ −x

2

2
+
x3

6
≤ −x

2

3
,
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we therefore find
1

2n

m∑

j=1

log

(
1

1 + j/q

)
≤ − ε

2

3ξ
.

Next,

1

q

m∑

j=1

1

n

1

1 + ξ−1(j/n)
≤ 1

q

∫ ε

0

dt

1 + t/ξ
=
ξ

q
log (1 + ε/ξ) ≤ ε

q
.

So all together we find the upper bound

m

2n
log (q/n) − 1

n

n−q∑

j=n−q−m+1

µn,j ≤ −m2

3nq
+
m

nq
= −m(m− 3)

3nq
.

This completes the proof.

We now conclude the proof of Theorem 1.2. To do this, fix ε > 0 and assume that

n >
c1
√

log(1/ε)

ε
, N >

c2
ε2

for some constants c1, c2 > 1 that we will fix later. To prove Theorem 1.2 note that the bound
above on n guarantees that ε > c1/n. Hence, we need only consider such ε. Moreover, we may
always assume that

ε =
m

n

for some integer 5 ≤ m ≤ n since U(t) is 1-lipschitz, and will use ε and m/n interchangeably.
Next, recall the following notation for the cumulative distributions

HN,n(s) :=
1

n
#
{
j ≤ n

∣∣ sj(XN,n)2/N ≤ s
}
, U(s) :=





0, s < 0

s, 0 ≤ s ≤ 1

1, s > 1

of the squared singular values of XN,n and the uniform distribution on [0, 1]. Let us define
the event

Sn,m := {∀q ∈ {m+ 1, . . . , n} |HN,n (q/n) − U (q/n)| ≤ ε} .
On this event, since HN,n and U are both monotone we have for t ≤ (m+ 1)/n that

HN,n(t) ≤ HN,n ((m+ 1)/n) ≤ ε+ U ((m + 1)/n) = ε+ (m + 1)/n ≤ 3ε.

Similarly if t > 1

1 −HN,n(t) ≤ 1 −HN,n (1) ≤ 1 − U (1) + ε = ε

Using the same idea we may write for any t ∈ [(m + 1)/n, 1]

HN,n(t) − U(t) ≤ HN,n((j + 1)/n) − U((j + 1)/n) + U(t) − U((j + 1)/n)

≤ ε+ 1/n

≤ 2ε,
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where m+ 1 ≤ j ≤ n is the unique integer for which

j

n
≤ t <

j + 1

n
.

Hence,

P

(
sup
t∈R

|HN,n(t) − U(t)| > 3ε

)
≤ P

(
Sc
n,m

)

and we must therefore bound P
(
Sc
n,m

)
from above. We will do this by rewriting all events

involving the singular values si in terms of the Lyapunov exponents λj. Moving forward, let
us agree that any event that involves λ−s or λn+s for s > 0 is by definition empty. Since

sj(XN,n)2/N ≤ q

n
⇔ λj ≤

1

2
log
( q
n

)
,

we find

|HN,n (q/n) − U (q/n)| =

∣∣∣∣
1

n
#

{
j ≤ n : λj ≤

1

2
log (q/n)

}
− q/n

∣∣∣∣

=

∣∣∣∣
1

n
#

{
j ≤ n : λj >

1

2
log (q/n)

}
− (n− q)/n

∣∣∣∣ .

For any positive integer m+ 1 ≤ q ≤ n, define

p := p(n,m, q,N) = P

(∣∣∣∣
1

n
#

{
j ≤ n : λj >

1

2
log (q/n)

}
− (n− q)/n

∣∣∣∣ ≥
m

n

)
. (12.2)

We have

P
(
Sc
n,m

)
≤

n∑

q=m+1

p(n,m, q,N),

and the proof of Theorem 1.2 therefore reduces to estimating the probabilities in this sum. To
do this, we fix n,m, q,N and observe that since λj are decreasing, the event whose probability
we’ve denoted by p(n,m, q,N) is equal to

{
λn−q+m >

1

2
log (q/n)

}
∪
{
λn−q−m+1 ≤

1

2
log (q/n)

}
,

where we remind the reader that the second event is empty if q ≥ n−m+ 1. Again using the
monotonicity of λj , this implies





1

n

n−q+m∑

j=n−q+1

λj >
m

2n
log (q/n)



 ∪





1

n

n−q∑

j=n−q−m+1

λj ≤
m

2n
log (q/n)



 .

So, the probability p(n,m, q,N) we seek to bound is itself bounded above by

p1 + p2 := P


 1

n

n−q+m∑

j=n−q+1

λj >
m

2n
log (q/n)


+ P


 1

n

n−q∑

j=n−q−m+1

λj ≤
m

2n
log (q/n)


 .
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To estimate p1 note that by Lemma 12.1,

m

2n
log (q/n) − 1

n

n−q+m∑

j=n−q+1

µn,j ≥
(m− 1)2

4nq
.

Hence, we obtain

p1 ≤ P



∣∣∣∣∣∣
1

n

n−q+m∑

j=n−q+1

{λj − µn,j}

∣∣∣∣∣∣
≥ (m− 1)2

4nq


 .

We will bound the right hand side by using Theorem 1.1. To do this, we must ensure that for
c2 sufficiently large, our assumption N > c2/ε

2 implies that for the constant c1 in Theorem
1.1, we have

(m− 1)2

4nq
≥ c1

n− q +m

nN
log

(
en

n− q +m

)
. (12.3)

To check this, note that since x log(e/x) ≤ 1 for x ∈ [0, 1] this estimate holds as soon as

N ≥ c1
4nq

(m− 1)2
. (12.4)

Recall that by construction, we have

q ≤ n, (m− 1)2 ≥ 1

2
m2 =

1

2
ε2n2.

Hence, (12.4) is satisfied once
N ≥ 8c1ε

−2,

as claimed. Thus, we may apply Theorem 1.1 to conclude that

p1(n,m, q,N) ≤ c3 exp
(
c4 min

{
nNs, n2Nsgn,k(s)

})
, s = s(n,m, q) =

(m− 1)2

4nq
.

Since

inf
q=m+1,...,n

s(n,m, q) ≥ ε2

8
,

we find that

n∑

q=m+1

p1(m,n, q,N) ≤ c3 exp
(
−c4 min

{
nNε2, n2Nε2gn,k(ε2)

}
+ log(n)

)

for some universal constants c3, c4 > 0. Further, note that by assumption,

nNε2 > c2n > log(n)

as soon as c2 > 1. Hence, at the cost of replacing c4 by a slightly larger constant c′4, we find
that

n∑

q=m+1

p1(m,n, q,N) ≤ c3 exp
(
−c′4 min

{
nNε2, n2Nε2gn,k(ε2)

})
.

Essentially the identical argument (but this time the upper bound from Lemma 12.1) implies
that this same upper bound holds for p2 as well, completing the proof of Theorem 1.2. �
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13 Asymptotic Normality: Proof for Theorem 1.3

Theorem 1.3 concerns

Λk = (λ1, . . . , λk) = (λ1(XN,n), . . . , λk(XN,n)) ,

the vector of the first k Lyapunov exponents of XN,n. Our aim is to prove that there exist
universal constants C,C ′ > 0 so that once N ≥ Cn log(n) we have

d (Λk,N (µn,≤k,Σn,k,N)) ≤ C ′

(
k7/2n log2(n) log(N/n)

N

)1/2

, Σn,k,N :=
1

N
Diag(σ2n,≤k)

(13.1)
where µn,≤k, σ

2
n,≤k are the vectors of means and variances of

(
1
2 log

(
1
nχ

2
n−m+1

)
, m = 1, . . . , k

)

(see (1.18)) and d is the distance function defined in (7.3). To prove (13.1), we introduce

Sk = (λ1, λ1 + λ2, . . . , λ1 + · · · + λk)∗

and note that
Sk = TΛk, (13.2)

where T is a lower triangular matrix all of whose lower-triangular entries are equal to 1. The
explain the strategy for proving Theorem 1.3, let us fix Θ = θ1 ∧ · · · ∧ θk, where {θj} form an
orthonormal k-frame in R

n. For 1 ≤ m ≤ k, we will abbreviate

Θ≤m = θ1 ∧ · · · ∧ θm.

The idea of the proof is to compare Sk,Λk to their “pointwise” analogs

Ŝk :=
1

N
(log ||XN,n(Θ≤1)|| , . . . , log ||XN,n(Θ≤k)||)∗

and
Λ̂k := T−1Ŝk, (13.3)

where Θ = (θ1, . . . , θk) is any fixed collection of k orthonormal vectors in R
n. Specifically, by

Proposition 7.3 and the affine invariance (7.4) of d, we find that there exists c0 > 0 so that
for all δ > 0

d (Λk,N (µn,k,Σn,k)) = d (Sk,N (Tµn,k, TΣn,k,NT
∗))

≤ 3d
(
Ŝk,N (Tµn,k, TΣn,k,NT

∗)
)

+ c0δ
∣∣∣
∣∣∣(TΣn,kT

∗)−1
∣∣∣
∣∣∣
1/2

HS

+ 2P
(∣∣∣
∣∣∣Sk − Ŝk

∣∣∣
∣∣∣ > δ

)

= 3d
(

Λ̂k,N (µn,k,Σn,k,N)
)

+ c0δ
∣∣∣
∣∣∣(TΣn,k,NT

∗)−1
∣∣∣
∣∣∣
1/2

HS

+ 2P
(∣∣∣
∣∣∣Sk − Ŝk

∣∣∣
∣∣∣ > δ

)
. (13.4)

The remainder of the proof consists of bounding each of these three terms and then optimizing
over δ. To start, let us check that the first term in (13.4) is small:
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Lemma 13.1. In distribution,

Λ̂k =
1

N

N∑

i=1

(Yi,1, . . . , Yi,k) , (13.5)

where {Yi,j, 1 ≤ i ≤ N, 1 ≤ j ≤ k} are independent with

Yi,j ∼
1

2
log

(
1

n
χ2
n−j+1

)
.

Consequently, by the multivariate central limit theorem, there exists C > 0 so that

d
(

Λ̂k,N (µn,≤k,Σn,k,N)
)
≤ Ck7/4

N1/2
(13.6)

where Σn,k,N = 1
N Diag(σ2n,≤k), σ2n,j := Var

[
1
2 log

(
1
nχ

2
n−j+1

)]
.

Proof. Fix integers N,n ≥ 1 and 1 ≤ k ≤ n and recall that XN,n = AN · · ·A1 with Ai iid
n× n Gaussian matrices. Note that for each 1 ≤ m ≤ k, we have

log ||XN,n(Θ≤m)|| =

N∑

i=1

log
∣∣∣
∣∣∣Ai(Θ

(i)
≤m)

∣∣∣
∣∣∣ , (13.7)

where

Θ
(1)
≤m = Θ≤m, Θ

(i+1)
≤m =

Ai

(
Θ

(i)
≤m

)

∣∣∣
∣∣∣Ai

(
Θ

(i)
≤m

)∣∣∣
∣∣∣
.

Repeatedly applying Lemma 6.4, we therefore conclude that in distribution

Ŝk =
1

N

N∑

i=1

(log ||Ai(Θ≤1)|| , . . . , log ||Ai(Θ≤k)||)∗

is equal to a sum of iid random vectors. Thus, using the definition (13.3) of Λ̂k, we find that
in distribution

Λ̂k =
1

N

N∑

i=1

Λ̂k,i, Λ̂k,i := T−1 (log ||Ai(Θ≤1)|| , . . . , log ||Ai(Θ≤k)||)∗ ,

where we recall that T is a lower triangular matrix with all lower triangular entries equal to
1. Namely,

T =




1 0 0 · · · 0
1 1 0 · · · 0
... · · · . . .

. . .
...

1 · · · 1 1 0
1 · · · 1 1 1



, T−1 =




1 0 0 · · · 0
−1 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · −1 1 0
0 · · · 0 −1 1



.
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Note that
{

Λ̂k,i, m = 1, . . . , k
}

are independent collection for different i. Next, the mth

component of Λ̂k,i is

(
Λ̂k,i

)
m

= log ||Ai(Θ≤m)|| − log ||Ai(Θ≤m−1)|| = log

∣∣∣∣
∣∣∣∣
Ai(Θ≤m−1)

||Ai(Θ≤m−1)|| ∧Aθm
∣∣∣∣
∣∣∣∣ (13.8)

Since {θi} are orthonormal, the collection {Aθi} are iid Gaussians. In particular, we see
that Aθm is independent of {A(Θ≤j), 1 ≤ j ≤ m− 1} . Also, by Lemma 6.3, the following
collections of random variables are independent:

{||A(Θ≤1)|| , . . . , ||A(Θ≤m−1)||} ,
{

A(Θ≤1)

||A(Θ≤1)||
, . . . ,

A(Θ≤m−1)

||A(Θ≤m−1)||

}
.

The left hand side of relation (13.8) shows that the 1, . . . ,m− 1st components of Λk,i depend
only {||A(Θ≤j)|| , j = 1, . . . ,m− 1}, whereas the right hand side of (13.8) shows that the mth

component of Λk,i depends only on A(Θ≤m−1)/ ||A(Θ≤m−1)|| and on Aθm. Therefore, the

mth component of Λ̂k,i is independent of all the previous components. Proceeding in this way

for m = k, k − 1, . . . , 1, we find that the components of Λ̂k,i are independent. Finally, let us
denote by Π≤m−1 the orthogonal projection onto the orthogonal complement of the span of
{θ1, . . . , θm−1} . We have by Lemma 6.2 that in distribution

(
Λ̂k,i

)
m

= log ||Π≤m−1(Aθm)|| .

Note that Aθm is independent of Π≤m−1 since the latter depends only on Aθ1, . . . , Aθm−1.
Hence, we have the following equality in distribution:

(
Λ̂k,i

)
m

=
1

2
log

(
1

n
χ2
n−m+1

)
.

This completes the proof of (13.5). To conclude (13.6), we apply the multivariate CLT
(Theorem 7.4) to

Λ̂k − E

[
Λ̂k

]
=

N∑

i=1

1

N

(
Λ̂k,i − µn,≤k

)
.

Since the covariance matrix of (Yi,1, · · · , Yi,k) is Diag(σ2n,≤k) by independence we have that

C := Cov(Λ̂K) := 1
N Diag(σ2n,1, · · · , σ2n,k). Recall that βi := E‖C− 1

2 (Y i,1, · · · , Y i,k)‖32. It

is not difficult to check that logχ2
m is a log-concave random variable (i.e. its density is

a log-concave function). Moreover, since σ−1
n,jY i,j have mean zero and variance 1, D :=

(σ−1
i,1 Y i,1, · · · , σ−1

i,k Y i,k) is a log-concave random vector in R
k with covariance matrix equals

to the identity. Therefore E‖D‖22 = k. It is known that the Euclidean norm of such vectors
satisfies a reverse Hölder inequality with a universal constant, and in particular (see e.g.
[Pao06] or [[AAGM15] Theorem 10.4.6] for a stronger result) that

(
E‖D‖32

) 1
3 ≤ C

(
E‖D‖22

) 1
2 = C

√
k,

where C > 0 is an absolute constant. So,

βi =
1

N
3
2

E‖D‖32 ≤
C3k

3
2

N
3
2

1 ≤ i ≤ N.
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Therefore,

β :=

N∑

j=1

βj ≤
C3k

3
2

N
1
2

and we conclude that there exists an absolute constant c > 0 so that

d(Λ̂k,N (µn,≤k,Σn,k)) ≤ ck7/4N−1/2.

Having bounded the first term in (13.4), we write

(TΣn,k,NT
∗)−1 = (T ∗)−1 Σ−1

n,k,NT
−1

and bound the second term using that the matrix Σ is diagonal and that T−1 a bi-diagonal:

Lemma 13.2. There exists C > 0 so that

∣∣∣
∣∣∣(TΣn,k,NT

∗)−1
∣∣∣
∣∣∣
1/2

HS
≤ Ck1/4(nN)1/2. (13.9)

Proof. We have

T =




1 0 0 · · · 0
1 1 0 · · · 0
... · · · . . .

. . .
...

1 · · · 1 1 0
1 · · · 1 1 1



, T−1 =




1 0 0 · · · 0
−1 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · −1 1 0
0 · · · 0 −1 1



.

Thus, recalling that

Σn,k,N =
1

N
Diag (σn,≤k) =

1

N

(
σ2n,1, . . . , σ

2
n,k

)
,

we find

(T ∗)−1Σ−1
n,k,NT

−1 = N




σ−2
n,1 + σ−2

n,2 −σ−2
n,2 0 · · · 0

−σ−2
n,2 σ−2

n,2 + σ−2
n,3 −σ−2

n,3 · · · 0
... · · · . . .

. . .
...

0 · · · −σ−2
n,k−1 σ−2

n,k−1 + σ−2
n,k −σ−2

n,k

0 · · · 0 −σ−2
n,k σ−2

n,k




Hence, using (1.17), we find that for some C > 0

∣∣∣
∣∣∣(T ∗)−1Σ−1

n,k,NT
−1
∣∣∣
∣∣∣
HS

≤ 2N




k∑

j=1

σ−4
n,k,j




1/2

≤ CN




k∑

j=1

(n− k + 1)2




1/2

≤ CNnk1/2,

and Lemma 13.2 follows.
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Thus far, combining the previous two Lemma with (13.4), we’ve shown that

d (Λk,N (µn,k,Σn,k)) ≤ Ck7/4

N1/2
+ c0δk

1/4(nN)1/2 + 2P
(∣∣∣
∣∣∣Sk − Ŝk

∣∣∣
∣∣∣ > δ

)
. (13.10)

So it remains to estimate
P

(∣∣∣
∣∣∣Sk − Ŝk

∣∣∣
∣∣∣
2
≥ δ
)

and optimize over δ. To do this, write Sk,j, Ŝk,j for the jth components of Sk, Ŝk. By (11.9),
there exists C > 0 so that for 1 ≤ j ≤ k ≤ n,

P

(
|Sk,j − Ŝk,j| ≥ s

)
≤ 2e−sN/4, s ≥ C

j

N
log

(
en

j

)
.

For any collection positive real numbers δj > C j
N log

(
en
j

)
we therefore have,

P



∣∣∣
∣∣∣Sk − Ŝk

∣∣∣
∣∣∣
2
≥




k∑

j=1

δ2j




1/2

 ≤

k∑

j=1

P

(
|Sk,j − Ŝk,j| ≥ δj

)
≤ 2

k∑

j=1

e−δjN/4.

Setting

δj :=
Cj

N
log

(
en

j

)
log

(
N

n

)
,

for a sufficiently large constant C we find

P

(∣∣∣Sk,j − Ŝk,j

∣∣∣ ≥ δj

)
≤ 2e−Cj log(en/j) log(N/n) ≤ 2(n/N)j/2.

Hence, as soon as N > n, we have

P

(∣∣∣
∣∣∣Sk − Ŝk

∣∣∣
∣∣∣
2
≥ δ
)
≤ C

( n
N

)1/2

where

δ :=




k∑

j=1

δ2j




1/2

≤ Ck3/2 log(n) log(N/n)

N
.

In conjunction with (13.10) yields

d (Λk,N (µn,k,Σn,k)) ≤ Ck7/4

N1/2
+

(
Ck7/2n log2(n) log2(N/n)

N

)1/2

+ C
( n
N

)1/2

≤
(

4Ck7/2n log2(n) log2(N/n)

N

)1/2

,

as claimed.
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