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1 Introduction and main results

The aim of this article is to present a general “large deviations approach” to the ge-
ometry of polytopes spanned by random points with independent coordinates. The
origin of our work is in the study of the structure of ±1-polytopes, the convex hulls
of subsets of the combinatorial cube En

2 = {−1, 1}n. Understanding the complexity
of this class of polytopes is important for the “polyhedral combinatorics” approach
to combinatorial optimization, and was put forward by Ziegler in [20]. Many natu-
ral questions regarding the behavior of ±1–polytopes in high dimensions are open,
since, for many important geometric parameters, low-dimensional intuition does
not help to identify the extremal ±1-polytopes. The study of random ±1-polytopes
sheds light to some of these questions, the main reason being that random behavior
is often the extremal one.

A natural way to define random ±1-polytopes is to fix N > n and to consider
N independent random points ~X1, . . . , ~XN , uniformly distributed over En

2 . Let

Kn,N = conv
{

± ~X1, . . . ,± ~XN

}

denote their absolute convex hull. This “Bernoulli
model” of random polytopes was studied in [10]; the emphasis there was on the
structure of the corresponding random normed spaces Xn,N as N varies from “poly-
nomial” to “exponential” in n. An observation in [10], demonstrating that random
behavior is extremal, is that a random polytope Kn,N has the largest possible vol-
ume among all ±1–polytopes with N vertices, at every scale of n and N . This is a
consequence of the following fact: if n > n0 and if N > n(ln n)2, then

Kn,N ⊇ c
(

√

ln(N/n)Bn
2 ∩ Bn

∞

)

with probability greater than 1− e−n, where c > 0 is an absolute constant ; here Bn
2

is the Euclidean unit ball in Rn and Bn
∞ is the unit cube [−1, 1]n.

∗The project is co-funded by the European Social Fund and National Resources —
(EPEAEK II) “Pythagoras II”.
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In [14], Litvak, Pajor, Rudelson and Tomczak–Jaegermann considered a more
general class of symmetric random polytopes Kn,N , spanned by the rows of a matrix
Γn,N = (ξij)1≤i≤N, 1≤j≤n, whose entries ξij are independent symmetric random
variables satisfying the following conditions: ‖ξij‖L2 > 1 and ‖ξij‖Lψ2

6 b for some

b > 1, where ‖·‖Lψ2
is the Orlicz norm corresponding to the function ψ2(t) = et2−1.

In this setting, which contains the Bernoulli model as well as the Gaussian model,
the authors generalized and improved the estimates from [10] in two ways. First,
they obtained estimates for N as small as N = (1 + δ)n, where δ > 0 can be as
small as 1/ ln n. And second, they proved that, for every 0 < β < 1, the inclusion

Kn,N ⊇ c(b)
(

√

β ln(N/n)Bn
2 ∩ Bn

∞

)

holds true with probability greater than 1 − exp(−c1n
βN1−β) − exp(−c2N), where

c(b) is a constant depending only on the parameter b, and c1 and c2 are constants
depending on the underlying probabilistic model . The approach in [14] is through
random matrices; the authors obtain a lower bound of the order of

√
N for the

smallest singular value of the random matrix Γn,N (under the assumptions above),
with probability greater than 1 − exp(−cN).

Finally, the study of ±1-polytopes was continued by Mendelson, Pajor and
Rudelson in [15], where it was shown that the behavior of random ±1-polytopes is
indeed extremal also for other geometric parameters, such as combinatorial dimen-
sion and entropy, at every scale of n and N .

Our approach in this paper has a different origin; namely the work of Dyer, Füredi
and McDiarmid [4], which establishes a sharp threshold for the expected volume
of random ±1–polytopes (see Section 8 for the precise statement and a recent
generalization of this result). The method introduced in [4] proved to be extremely
useful and accurate, and plays a key role in the proof of the fact that there exist
±1–polytopes with superexponential number of facets; it was first used for this
purpose by Bárány and Pór in [2], and it was recently further exploited in [8] and
[9]. We will call this the “large deviations approach”. Our aim is to present a
general version of this approach, and to compare the results to those obtained by
the “random matrices approach”, wherever possible.

We start with a description of the model and then state our main results.

1.1 The Model: Independent Coordinates

We first fix some standard notation. We work in Rn which is equipped with a
Euclidean structure 〈·, ·〉. We denote by ‖·‖2 the corresponding Euclidean norm,
by ‖·‖∞ the max-norm, and write Bn

2 for the Euclidean unit ball and Sn−1 for
the unit sphere; we also write Bn

∞ for the unit ball of the norm ‖·‖∞. Volume,
surface area and the cardinality of a finite set are denoted by |·| (this will cause no
confusion). The boundary of a set A ⊂ Rn is denoted by ∂A. All logarithms are
natural. Whenever we write a ≃ b, we mean that there exist absolute constants
c1, c2 > 0 such that c1a 6 b 6 c2a. The letters c, c′, C, c1, c2 etc. denote absolute
positive constants which may change from line to line.
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We fix a Borel probability measure µ on the real line, and let X be a random
variable, on some probability space (Ω,F , P ), with distribution µ, i.e., µ(B) :=
P (X ∈ B), B ∈ B(R) (B(R) the Borel σ-field of R). We shall assume that µ is
symmetric, i.e.,

µ(B) = µ(−B) ∀B ∈ B(R),(1.1)

and that
∫

R

etx dµ(x) = E
(

etX
)

< ∞ for all t in an open interval.(1.2)

Given (1.1), condition (1.2) ensures that X has finite moments of all orders, and
we shall assume throughout that µ is normalized to have

Var(X) = 1;(1.3a)

of course, by (1.1), we automatically also have that

E(X) = 0.(1.3b)

Let also

x∗ := sup {x ∈ R : µ([x,∞)) > 0}(1.4)

and

p := max
x∈R

P (X = x);(1.5)

notice that, by our assumption that Var(X) 6= 0, we have that

p < 1.(1.6)

Thus in particular, the only condition that we impose on X is that it be ψ1 (besides
symmetry, which merely serves to simplify exposition). Recall that a variable X is
said to be ψα, α > 0, precisely when ‖X‖Lψα := inf {t > 0: E(ψα(X/t)) 6 1} < ∞
where ψα is the Orlicz function ψα(x) := exp(|x|α) − 1.

Let X1, . . . ,Xn be independent and identically distributed random variables,
defined on the product space (Ωn,F⊗n, Pn), each with distribution µ. Set ~X =
(X1, . . . ,Xn) and, for a fixed N satisfying N > n, consider N independent copies
~X1, . . . , ~XN of ~X, defined on the product space (ΩnN ,F⊗nN ,Prob). This proce-
dure defines the random polytope

KN := conv
{

~X1, . . . , ~XN

}

.(1.7)

The random polytope KN is the principal object of study of this paper.
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1.2 Main results

In order to state our results, we briefly introduce some terminology; see the next
Section for details. Let ϕ(t) := E

(

etX
)

(t ∈ R) denote the moment generat-
ing function of X, ψ(t) := lnϕ(t) its cumulant generating function, and let J :=
{t ∈ R : ϕ(t) < ∞}. The function ψ is C∞ on J◦ — the interior of J — and con-
tinuous on J . Furthermore, ψ is strictly convex and ψ′ is strictly increasing on J◦,
and ψ′(J◦) is an open interval contained in I◦ := (−x∗, x∗).

The Legendre transform of ψ is the function

λ(x) := sup {tx − ψ(t) : t ∈ R} (x ∈ R).

For ~x = (x1, . . . , xn) ∈ (−x∗, x∗)n set

Λ(~x) =
1

n

n
∑

i=1

λ(xi).

Let r∗ = sup {λ(x) : x ∈ I◦}. For 0 6 r < r∗, define Λr by

Λr = {~x ∈ (−x∗, x∗)n : Λ(~x) 6 r} .

Since λ is a convex function on I◦, Λr is a convex body contained in (−x∗, x∗)n.
The key quantity for our description of the typical KN is the function q, defined

for ~x ∈ (−x∗, x∗)n, by

q(~x) = inf
{

Pn
(

~X ∈ H
)

: ~x ∈ ∂H, H a closed half-space
}

.

Using convexity arguments and the definition of q, one can prove the following two
facts:

Fact 1.1. Let γ > 0 and 0 < r < r∗ be such that λ(γ) > r. Then

1 − Prob
(

KN ⊇ Λr ∩ γBn
∞

)

6

(

N

n

)

pN−n + 2

(

N

n

)

(

1 − inf q(~x)
)N−n

,

where the inf is over all ~x ∈ ∂(Λr) ∩ γBn
∞, and p is given by (1.5).

Fact 1.2. Let γ > 0 and 0 < r < r∗ be such that λ(γ) > r. Then

E
(

|∂(Λr) ∩ γBn
∞ ∩ KN |

)

6 N · sup q(~x) · |∂(Λr) ∩ γBn
∞| ,

where the sup is over all ~x ∈ ∂(Λr) ∩ γBn
∞.

Our main task is to give precise estimates for the quantities inf q(~x) and sup q(~x)
over all ~x ∈ ∂(Λr) ∩ γBn

∞. We prove:

Theorem 1.3. If γ > 0 is sufficiently small, there exists n0 = n0(γ) ∈ N with the
following property : if n > n0 and λ(γ) > r, then

q(~x) 6 exp
(

−rn − 1
2 ln(rn) + c(γ)

)

for every ~x ∈ ∂(Λr) ∩ γBn
∞, where c(γ) is a constant depending only on γ and µ.
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Theorem 1.4. If γ > 0 is sufficiently small, there exists n0 = n0(γ) ∈ N with the
following property : for n > n0, and ε > 3 ln n/n,

q(~x) > exp(−(r + ε)n)

for every ~x ∈ Λr ∩ γBn
∞ and r in the range 0 < r 6 λ(γ).

Fix N > n and define ρ := (ln N)/n. Using the above we show that, with high
probability, KN ∩ γBn

∞ is “weakly sandwiched” between Λρ−2ε ∩ γBn
∞ and Λρ−δ:

Theorem 1.5. For γ sufficiently small, and N in the range n6 < N 6 enλ(γ),

Prob
(

KN ⊇ Λρ−2ε ∩ γBn
∞

)

> 1 − 2−n+1

for all ε > 3 ln n/n, and all sufficiently large n.

Theorem 1.6. For γ sufficiently small, n large enough, and n < N 6 enλ(γ),

Prob
(

|∂(Λρ−δ) ∩ γBn
∞ ∩ KN | > α |∂(Λρ−δ) ∩ γBn

∞|
)

6
1

α

c(γ)

(lnN)1/6
,

for all δ 6
1
3 (ln lnN)/n (δ > 0) and any 0 < α < 1, where c(γ) is a constant

depending only on γ and µ.

Using the method of proof of Theorem 1.5 one also obtains the following result:

Theorem 1.7. For γ > 0 sufficiently small, and for any β ∈ (0, 1) and α ∈
(0,− ln p) the following holds: for all n sufficiently large, and N in the range
n1+4/β < N 6 n1+4/βenβλ(γ),

Prob
(

KN ⊇ Λ̺ ∩ γBn
∞

)

> 1 − e−αN − e−nβN1−β

with ̺ := βn−1 ln(N/n) − 4n−1 lnn.

As will be seen in the next Section (Proposition 2.13), nΛ(~x) ≃ 1
2 ‖~x‖

2
2 when ‖~x‖∞

is small; more precisely, for any ε > 0, there exists γ = γµ(ε) > 0 such that
1
2 (1 − ε) ‖~x‖2

2 6 nΛ(~x) 6
1
2 (1 + ε) ‖~x‖2

2 for all ~x ∈ γBn
∞. Thus for γ small, Λ̺ ∩

γBn
∞ ≃

(√
2n̺Bn

2

)

∩ γBn
∞ =

(√

2β ln(N/n) − 8 ln n Bn
2

)

∩ γBn
∞. In this way, we

give a different proof of [14, Theorem 4.2] and actually extend it to the case where

the underlying distribution µ of the coordinates of the random vertex ~X is ψ1.

We next turn to an application of a different flavor. For a polytope P in Rn

with non-empty interior, we shall write fn−1(P ) for the number of its facets, i.e.,
its (n − 1)-dimensional faces. We then have the following:

Theorem 1.8. There exist two positive constants a and b such that, for all suffi-
ciently large n, and all N satisfying n6 < N 6 exp(bn), one has that

E[fn−1(KN )] >

(

lnN

a lnn

)n/2

.
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Using Theorem 1.8 for the special case where the distribution µ is the distribution
µ({−1}) = µ({1}) = 1

2 , it was shown in [9] that there exist ±1-polytopes with as

many as (cn/ ln n)n/2 facets, where c > 0 is a universal constant.

Our last application concerns a generalization of the result in [4]. Given a
compactly supported (symmetric) probability measure µ, define

κ = κ(µ) :=
1

2x∗

∫ x∗

−x∗

λ(x) dx.(1.8)

In [7], we establish the following threshold for the expected volume of KN , for a
large class of distributions µ:

Theorem 1.9. Let µ be an even, compactly supported, Borel probability measure
on the real line and assume that 0 < κ(µ) < ∞. Then, for every ε > 0,

lim
n→∞

sup{(2x∗)−nE(|KN |) : N 6 exp((κ − ε)n)} = 0,

and whenever the distribution µ satisfies

lim
x↑x∗

− lnµ
(

[x,∞)
)

λ(x)
= 1,(1.9)

also

lim
n→∞

inf{(2x∗)−nE(|KN |) : N > exp((κ + ε)n)} = 1.

The main technical estimate needed to prove Theorem 1.9 is the following.

Proposition 1.10. Assume that the probability distribution µ satisfies (1.9). Then,
for every ε > 0, there exists nµ(ε) ∈ N, depending only on ε and µ, such that for
all 0 < r < λ(α) and all n > nµ(ε) we have that

q−(Λr) > exp(−(1 + ε)rn − εn),

where q−(Λr) = inf{q(~x) : ~x ∈ ∂(Λr)}.

Naturally, many of the arguments in this paper generalize the ones introduced
in [4], [2], [8] and [9]. We chose to present complete proofs in the general setting in
order to make the presentation self-contained, and to facilitate future references.

2 Large Deviations Preliminaries

In this Section we recall some basic facts concerning moment generating and cu-
mulant generating functions. For more information on large deviations techniques
the reader may wish to consult the books [3] and [18].
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Let

ϕ(t) := E
(

etX
)

(t ∈ R)(2.1)

denote the moment generating function of X,

ψ(t) := lnϕ(t)(2.2)

its cumulant generating function (or logarithmic moment generating function), and
let

J := {t ∈ R : ϕ(t) < ∞} .(2.3)

Observe that, by Hölder’s inequality, ψ is a convex function on J . Therefore, ϕ
is also convex. By our assumption (1.2), i.e., that X is ψ1, J is a non-degenerate
interval (necessarily centered at zero, by assumption (1.1)). We shall write

t∗ := supJ,(2.4)

whence J◦ = (−t∗, t∗).

Lemma 2.1. E(|X|n) < ∞ for all n ∈ N, and

ϕ(t) =
∞
∑

n=0

tn

n!
E(Xn)

for all t with |t| < t∗.

Lemma 2.2. The function ϕ is C∞ on J◦ and

dn

dtn
ϕ(t) = E

(

XnetX
)

(n ∈ N).

Furthermore, ϕ is continuous on J .

Note. In fact, by Fatou’s lemma, when t∗ < ∞, limt↑t∗ ϕ(t) = ϕ(t∗) also when
ϕ(t∗) = ∞.

Definition 2.3. For t ∈ J define the probability measure Pt on (Ω,F) by

Pt(A) := E
(

etX−ψ(t)1A

)

(A ∈ F).

Define also µt(A) := Pt(X ∈ A) for A ∈ B(R). Notice that P0 = P and µ0 = µ.

Lemma 2.4. For t ∈ J◦, µt has finite moments of all orders, and

Et(X) = ψ′(t) , Vart(X) = ψ′′(t) , Et

(

[X − ψ′(t)]3
)

= ψ′′′(t).

Corollary 2.5. The function ψ is C∞ on J◦ and continuous on J . Furthermore, ψ
is strictly convex and ψ′ is strictly increasing on J◦, and ψ′(J◦) is an open interval
contained in (−x∗, x∗).
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Proof. The fact that ψ is C∞ on J◦ follows from Lemma 2.2 and the fact that ϕ
is (strictly) positive. The continuity of ψ on J also follows from Lemma 2.2. Since

(ψ′)′(t) = ψ′′(t) = Vart(X) > 0,

by Lemma 2.4, ψ′ is also non-decreasing and in fact strictly increasing if X is not
constant almost surely. Finally, the continuity and strict monotonicity of ψ′ imply
that ψ′(J◦) is an open interval when X is not constant; the inclusion ψ′(J◦) ⊆
(−x∗, x∗) follows from the inequality −x∗etX 6 XetX 6 x∗etX , which holds with
probability one for each fixed t, and the formula ψ′(t) = E

(

XetX
)

/E
(

etX
)

of
Lemma 2.4.

We shall write

ψ′(−t∗) := lim
t↓−t∗

ψ′(t) and ψ′(t∗) := lim
t↑t∗

ψ′(t).(2.5)

Thus ψ′(J◦) = (ψ′(−t∗), ψ′(t∗)). We shall also write I := ψ′(J), whence

I◦ = ψ′(J◦) = (ψ′(−t∗), ψ′(t∗)).(2.6)

Remark 2.6. If P (X = x) = 1 for some x ∈ R (a case that we have explicitly
excluded, see (1.6)), then obviously ϕ(t) = etx and ψ(t) = tx is linear, −x∗ = x∗ = x
and I = {x}, and J = J◦ = R.

Remark 2.7. The inclusion ψ′(J◦) ⊂ (−x∗, x∗) may be proper. Consider, for ex-
ample, the measure µ with density fp(x) := cp |x|−p

e−|x|1[1,∞)(|x|) with respect
to Lebesgue measure , where p > 2 and cp is the normalizing constant making µ a
probability measure.

Remark 2.8. If t∗ ∈ J , then ψ′(±t∗), as defined by (2.5), agrees with the one-sided
derivative of ψ at ±t∗; i.e., ψ has a continuous derivative on J .

Given that condition (1.6) is in force throughout the paper, we may give the
following definition:

Definition 2.9. Define h : I◦ → J◦ by h := (ψ′)−1.

Lemma 2.10. h : I◦ → J◦ is a strictly increasing C∞ function, and

h′(x) =
1

ψ′′(h(x))
.

Definition 2.11. The Legendre transform of ψ is the function

λ(x) := sup {tx − ψ(t) : t ∈ R} , x ∈ R.

Proposition 2.12. (i) λ > 0.

(ii) x ∈ I◦, λ(x) = tx − ψ(t) ⇐⇒ ψ′(t) = x, t ∈ J◦; hence

λ(x) = xh(x) − ψ(h(x)) for x ∈ I◦.
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(iii) λ is a strictly convex C∞ function on I◦, and

dn

dxn
λ(x) =

dn−1

dxn−1
h(x) n ∈ N.

(iv) λ(0) = 0; in particular, λ attains its unique minimum on Io at x = 0.

(v) λ(x) = ∞ for x ∈ R \ [−x∗, x∗].

Proof. Assertion (i) follows from the fact that the function t 7→ tx − ψ(t) takes on
the value 0 at t = 0.

For (ii) suppose first that t ∈ J◦ and ψ′(t) = x. Then x ∈ I◦, by definition
of I◦, and s 7→ sx − ψ(s) has a local extreme point at s = t, which by the strict
concavity of this function on J◦ must be a global maximum; i.e.,

tx − ψ(t) = max {sx − ψ(s) : s ∈ J◦} = λ(x),

the second equality being a consequence of the continuity of ψ on J and the fact
that ψ(s) = ∞ for s ∈ R \ J .

Conversely, suppose that x ∈ I◦ and that λ(x) = tx − ψ(t) for some t. Since
sx − ψ(s) = −∞ for s ∈ R \ J , and since λ > 0, we must have that t ∈ J . On
the other hand, by definition of I◦, there exists s ∈ J◦ with ψ′(s) = x, and by the
argument of the preceding paragraph, we must then have that λ(x) = sx − ψ(s).
The strict concavity of the function u 7→ ux − ψ(u) and its continuity on J imply
then that s = t, and hence ψ′(t) = x.

For (iii) observe that since ψ and h are C∞, (ii) shows that λ also is. Further-
more,

d

dx
λ(x) = h(x) + xh′(x) − ψ′(h(x))h′(x) = h(x),

by (ii) and the definition of h as (ψ′)−1, whence

dn

dxn
λ(x) =

dn−1

dxn−1
h(x)

for all n ∈ N. Finally,

d2

dx2
λ(x) = h′(x) =

1

ψ′′(h(x))
> 0

on I◦; hence λ is strictly convex on I◦.
For assertion (iv) observe first that ψ′(0) = E(X), by Lemma 2.2. This implies

that h(E(X)) = 0, and assertion (ii) then implies that λ(E(X)) = 0. By (1.3b)
then, λ(0) = 0.

Finally, for (v) observe that, if x∗ < ∞, then ϕ(t) 6 etx∗

for all t > 0. This
implies that

tx − ψ(t) > t(x − x∗) for t > 0, x ∈ R,
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and hence

λ(x) = sup
x∈R

[tx − ψ(t)] > lim
t→∞

[t(x − x∗)] = ∞

for x > x∗. For t 6 0 on the other hand, ϕ(t) 6 e−tx∗

, and hence λ(x) >

limt→−∞[t(x + x∗)] = ∞ when x < −x∗.

Proposition 2.13. For any a > 0 with [−a, a] ⊂ I◦, there exist constants c1, . . . , c6

in (0,∞) for which:

(i) c1 6 ψ′′(h(x)) 6 c2 for all x ∈ [−a, a].

(ii) |h(x) − x| 6 c3x
2 for all x ∈ [−a, a].

(iii)
∣

∣λ(x) − 1
2x2

∣

∣ 6 c4 |x|3 for all x ∈ [−a, a].

(iv) c5 6 λ(x)/[h(x)]2 6 c6 for all x ∈ [−a, a].

Proof. The facts that ψ, and hence ψ′′, is C∞ and that ψ′′ > 0 on J◦ imply that

c1 = min
x∈[−a,a]

ψ′′(h(x)) > 0 and c2 = max
x∈[−a,a]

ψ′′(h(x)) < ∞,

for any interval [−a, a] contained in I◦. Here we also use the fact that h is C∞,
hence continuous, on I◦, whence h([−a, a]) is a compact subset of J◦ (in fact a
symmetric interval, ψ′, and hence h, being increasing and odd).

Next note that

ψ′(0) = E(X) =⇒ h(E(X)) = 0,(2.7)

and

h′(E(X)) =
1

ψ′′(h(E(X)))
=

1

ψ′′(0)
=

1

Var(X)
,(2.8)

by Lemma 2.4, and by Proposition 2.12,

λ(E(X)) = E(X)h(E(X)) − ψ(h(E(X))) = 0,(2.9)

λ′(E(X)) = h(E(X)) = 0,(2.10)

λ′′(E(X)) = h′(E(X)) =
1

Var(X)
.(2.11)

By our assumptions E(X) = 0, Var(X) = 1, and Taylor’s theorem,

h(x) = h(0) + h′(0)x + 1
2x2h′′(xh) = 0 + x + 1

2x2h′′(xh)

for some xh between 0 and x, and since h′′ is bounded on any interval [−a, a]
contained in I◦, h being C∞ on I◦, assertion (ii) follows.
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Similarly,

λ(x) = λ(0) + xλ′(0) + 1
2x2λ′′(0) + 1

6x3λ′′′(xλ)

= 1
2x2 + 1

6x3λ′′′(xλ)

for some xλ between 0 and x, and λ′′′ is bounded on any interval [−a, a] contained
in I◦, λ being C∞ on I◦.

Finally, since h is strictly increasing and h(0) = 0, we have that h(x) 6= 0
for any x 6= 0. It follows that the function x 7→ λ(x)/[h(x)]2 is continuous on
I◦ \ {0}. Since also λ(x)/[h(x)]2 → 1

2 as x → 0, by (ii) and (iii), the function
x 7→ λ(x)/[h(x)]2 extends to a continuous function on I◦, f say. Notice also that
λ(x) > 0 for x 6= 0, by Proposition 2.12 (i) and (iv), and therefore also f(x) 6= 0
for all x ∈ I◦. Therefore [c5, c6] := f([−a, a]) must be a compact interval contained
in (0,∞).

If the random variable X is bounded, i.e., if x∗ < ∞ (recall the notation (1.4)),
then clearly

Et

(

|X − ψ′(t)|3
)

Et

(

|X − ψ′(t)|2
) 6 2x∗.(2.12)

The ratio on the left hand side of (2.12) need not be bounded for unbounded X

however; the Laplace distribution, with density f(x) = e−
√

2|x|/
√

2 with respect to
Lebesgue measure on R, provides a counterexample. In the general case we have
the following.

Lemma 2.14. For t ∈ J◦ and ε > 0 such that (t − ε, t + ε) ⊆ J◦,

Et

(

|X − ψ′(t)|3
)

Et

(

|X − ψ′(t)|2
) 6

ψ′′(t + ε)

ψ′′(t)

ϕ(t + ε)

εϕ(t)
+

ψ′′(t − ε)

ψ′′(t)

ϕ(t − ε)

εϕ(t)

+
|ψ′(t + ε) − ψ′(t)|2

ψ′′(t)

ϕ(t + ε)

εϕ(t)
+

|ψ′(t − ε) − ψ′(t)|2
ψ′′(t)

ϕ(t − ε)

εϕ(t)
+ |ψ′(t)| .

Proof. Since

Et

(

|X − ψ′(t)|3
)

6 Et

(

|X − ψ′(t)|2 |X|
)

+ |ψ′(t)|Et

(

|X − ψ′(t)|2
)

=
E

(

|X − ψ′(t)|2 |X| etX
)

ϕ(t)
+ |ψ′(t)|ψ′′(t),

and |X| 6 ε−1eε|X| 6 ε−1
(

eεX + e−εX
)

for any ε > 0, it follows that

Et

(

|X − ψ′(t)|3
)

6
1

ε

E
(

|X − ψ′(t)|2 e(t+ε)X
)

ϕ(t)

+
1

ε

E
(

|X − ψ′(t)|2 e(t−ε)X
)

ϕ(t)
+ |ψ′(t)|ψ′′(t)
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for any ε > 0 with (t − ε, t + ε) ⊆ J◦. Now

E
(

|X − ψ′(t)|2 e(t±ε)X
)

= E
(

|X − ψ′(t ± ε)|2 e(t±ε)X
)

+ |ψ′(t ± ε) − ψ′(t)|2 E
(

e(t±ε)X
)

= ψ′′(t ± ε)ϕ(t ± ε) + |ψ′(t ± ε) − ψ′(t)|2 ϕ(t ± ε),

and hence

Et

(

|X − ψ′(t)|3
)

6 ψ′′(t + ε)
ϕ(t + ε)

εϕ(t)
+ ψ′′(t − ε)

ϕ(t − ε)

εϕ(t)

+ |ψ′(t + ε) − ψ′(t)|2 ϕ(t + ε)

εϕ(t)
+ |ψ′(t − ε) − ψ′(t)|2 ϕ(t − ε)

εϕ(t)
+ |ψ′(t)|ψ′′(t),

from where the Lemma follows.

Corollary 2.15. For any interval [−b, b] contained in J◦, there exists C ∈ (0,∞)
for which

Et

(

|X − ψ′(t)|3
)

Et

(

|X − ψ′(t)|2
) 6 C for all t ∈ [−b, b].

Proof. Apply Lemma 2.14 with ε such that b+ε < t∗, and use the facts that ϕ and
ψ′′ are bounded away from zero and infinity on the interval [−(b + ε), b + ε] ⊂ J◦,
and that ψ′ is bounded on [−b, b].

3 Weakly Sandwiching KN

For ~x = (x1, . . . , xn) ∈ (−x∗, x∗)n set

Λ(~x) =
1

n

n
∑

i=1

λ(xi).(3.1)

Let r∗ = sup {λ(x) : x ∈ I◦}. For 0 6 r < r∗, define Λr by

Λr = {~x ∈ (−x∗, x∗)n : Λ(~x) 6 r} .(3.2)

Since λ is an even convex function on I◦, Λr is an origin symmetric convex body
contained in (−x∗, x∗)n.

We will show that there exists a constant γ = γ(µ) > 0 with the following
property: for any fixed N > n, one can find r = r(N,n) and ε = ε(n) such that
KN ∩ γBn

∞ is “weakly sandwiched” between Λr−ε ∩ γBn
∞ and Λr, in the following

sense:

(i) Λr−ε ∩ γBn
∞ ⊆ KN for the typical KN ;

(ii) most of the surface area of Λr ∩ γBn
∞ is missed by the typical KN .
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The key quantity for the proof of these two facts is introduced in the next definition.

Definition 3.1. For every ~x ∈ (−x∗, x∗)n, set

q(~x) := inf
{

Pn
(

~X ∈ H
)

: ~x ∈ H, H a closed half-space
}

.

Clearly,

q(~x) = inf
{

Pn
(

~X ∈ H
)

: ~x ∈ ∂H, H a closed half-space
}

(3.3)

for any ~x.
The function q(~x) was introduced in [4], and Fact 1.1, which we restate in the

following Proposition, is a generalization of [4, Lemma 2.1 (b)] (see also [2, Lemma
4.2] and [8, Lemma 4.1]).

Proposition 3.2. Let γ > 0 and 0 < r < r∗ be such that λ(γ) > r. Then

1 − Prob
(

KN ⊇ Λr ∩ γBn
∞

)

6

(

N

n

)

pN−n + 2

(

N

n

)

(

1 − inf q(~x)
)N−n

,

where the inf is over all ~x ∈ ∂(Λr) ∩ γBn
∞, and p is given by (1.5).

Proof. Fix r and γ as in the statement of the Proposition and write q∗ for the
infimum of q(~x) over ~x ∈ ∂(Λr) ∩ γBn

∞. Let also E denote the event that KN has
non-empty interior.

For every subset J = {j1, . . . , jn} of {1, . . . , N}, of cardinality n, define the

event EJ as follows: ~Xj1 , . . . , ~Xjn
are affinely independent, and for one of the two

closed half-spaces H1,H2 they determine, say Hi, we have simultaneously KN ⊂ Hi

and Pn
(

~X /∈ Hi

)

> q∗.
Consider now the event E where KN has non-empty interior. If (Λr ∩ γBn

∞) *
KN , then there exists ~x ∈ ∂(Λr) ∩ γBn

∞ \ KN . This is a consequence of the next
claim, whose proof we postpone until the end of this proof:

Claim 3.3. The convex hull conv
(

∂(Λr) ∩ γBn
∞

)

of ∂(Λr) ∩ γBn
∞ is Λr ∩ γBn

∞.

Since ~x /∈ KN , there exists a facet F of KN with the following property: one
of the two closed half-spaces H1 and H2 determined by F contains KN but does
not contain ~x. Thus, if Hi is this half-space, we have simultaneously KN ⊂ Hi

and Pn
(

~X /∈ Hi

)

> q(~x), and since ~x ∈ ∂(Λr) ∩ γBn
∞, we actually have that

Pn
(

~X /∈ Hi

)

> q∗. Since the hyperplane bounding Hi is determined by some

affinely independent vertices ~Xj1 , . . . , ~Xjn
of KN (which lie in F ), this shows that

E ∩ {(Λr ∩ γBn
∞) * KN} ⊆

⋃

J

EJ .(3.4)

By (3.4) we have that

{Λr ∩ γBn
∞ * KN} ⊆ Ec ∪

⋃

J

EJ .(3.5)
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It follows that

Prob
(

Λr ∩ γBn
∞ * KN

)

6 Prob(Ec) +
∑

J

Prob(EJ )

= Prob(Ec) +

(

N

n

)

Prob(E′),(3.6)

where E′ := E{1,... ,n}.
It is not hard to see that

Prob(E′) 6 2(1 − q∗)
N−n.(3.7)

Indeed, let E′′ denote the event that ~X1, . . . , ~Xn are affinely independent. On E′′,
~X1, . . . , ~Xn determine two closed half-spaces Hi = Hi( ~X1, . . . , ~Xn), i = 1, 2. Let

Ei be the event that ~X1, . . . , ~Xn are affinely independent and Pn
(

~X /∈ Hi

)

> q∗.
Then, with Exp denoting expectation with respect to the measure Prob,

Prob(E′) 6

2
∑

i=1

Prob
({

~Xn+1, . . . , ~XN ∈ Hi

}

∩ Ei
)

=

2
∑

i=1

Exp
(

Prob
({

~Xn+1, . . . , ~XN ∈ Hi

}

| ~X1, . . . , ~Xn

)

1Ei

)

6 (1 − q∗)
N−n

2
∑

i=1

Prob(Ei).

To obtain a bound on Prob(Ec) we argue as follows. If KN has empty interior,

there exists J = {j1, . . . , jn} ⊂ {1, . . . , N} such that the set
{

~Xj : j /∈ J
}

is

contained in the affine hull of
{

~Xj : j ∈ J
}

. We now claim the following:

Claim 3.4. If S has affine dimension smaller than n, then Pn
(

~X ∈ S
)

6 p.

It follows that

Prob(Ec) 6

(

N

n

)

pN−n.(3.8)

This proves the Proposition, modulo the proofs of the two claims.

Proof of Claim 3.3. Since obviously conv
(

∂(Λr) ∩ γBn
∞

)

⊆ Λr ∩ γBn
∞, we only

have to show the reverse inclusion. Let ~x ∈ Λr ∩ γBn
∞, and assume that Λ(~x) < r

(otherwise there is nothing to prove). Since ~x ∈ γBn
∞, there exist λ1, . . . , λ2n > 0

with
∑

i λi = 1 and

~x =
∑

i

λi~vi,(3.9)
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where ~v1, . . . , ~v2n denote the vertices of γBn
∞. The condition λ(γ) > r that we

have assumed that r and γ satisfy implies that Λ(~vi) > r for all i; since we are
assuming that Λ(~x) < r, there exist ti ∈ (0, 1], such that Λ(ti~vi + (1 − ti)~x) = r.
Write ~yi := ti~vi + (1 − ti)~x; then ~yi ∈ ∂(Λr) and ~vi = t−1

i ~yi − t−1
i (1 − ti)~x for all i.

By (3.9) we then get that

~x =

(

1 +
∑

i

λi
1 − ti

ti

)−1
∑

i

λi

ti
~yi,

and this is a convex combination of the points ~yi ∈ ∂(Λr) ∩ γBn
∞.

Proof of Claim 3.4. Suppose that S is a Borel set contained in some hyperplane
H. Then H = {~y ∈ Rn : 〈~u, ~y − ~x〉 = 0} for some ~u = (u1, . . . , un) 6= ~0 and ~x =
(x1, . . . , xn). Suppose that ui 6= 0. Then

Pn
(

~X ∈ S
)

6 Pn
(

~X ∈ H
)

= Pn

(

Xi = xi − u−1
i

∑

j 6=i

uj(Xj − xj)

)

.

Since P (Xi = x) 6 p for any x ∈ R, the Claim follows.

We next prove Fact 1.2 stated in the Introduction:

Proposition 3.5. Let γ > 0 and 0 < r < r∗ be such that λ(γ) > r. Then

E
(

|∂(Λr) ∩ γBn
∞ ∩ KN |

)

6 N · sup q(~x) · |∂(Λr) ∩ γBn
∞| ,

where the sup is over all ~x ∈ ∂(Λr) ∩ γBn
∞.

Proof. Let ~x ∈ ∂(Λr) ∩ γBn
∞. If H is a closed half-space containing ~x, and if

~x ∈ KN = conv
{

~X1, . . . , ~XN

}

, then there exists i 6 N such that ~Xi ∈ H (otherwise
we would have ~x ∈ KN ⊆ Hc, where Hc is the complementary half-space). It follows
that

Prob
(

~x ∈ KN

)

6 N · Pn
(

~X ∈ H
)

6 N · q(~x).

Hence

E
(

|∂(Λr) ∩ γBn
∞ ∩ KN |

)

6

∫

∂(Λr)∩γBn
∞

Prob
(

~x ∈ KN

)

d~x

6 N · sup q(~x) · |∂(Λr) ∩ γBn
∞| ,

as asserted.

Proposition 3.5 and an application of Markov’s inequality show that, for every
η > 0, we have

Prob
(

|∂(Λr) ∩ γBn
∞ ∩ KN | > η |∂(Λr) ∩ γBn

∞|
)

6 η−1 · N · sup q(~x).(3.10)
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The estimates in Propositions 3.2 and 3.5 will become useful if we can give sharp
estimates for the quantities

q∗(r, γ) := inf {q(~x) : x ∈ ∂(Λr) ∩ γBn
∞}(3.11)

and

q∗(r, γ) := sup {q(~x) : x ∈ ∂(Λr) ∩ γBn
∞} .(3.12)

In fact, we will see that q is “almost constant” on ∂(Λr)∩ γBn
∞, provided γ = γ(µ)

is small enough. This main technical step is described in the next Section.

4 Large Deviations Estimates for q(~x)

Given x1, . . . , xn in I◦, set

ti := h(xi) = λ′(xi) (i 6 n).(4.1)

In what follows, we will always assume that ti and xi are in this relation. Observe
that xi = ψ′(ti). We define the probability measure Px1,... ,xn

on (Ωn,F⊗n), by

Px1,... ,xn
(A) := En

[

1A · exp

(

n
∑

i=1

[tiXi − ψ(ti)]

)]

(4.2)

for A ∈ F⊗n (En denotes expectation with respect to the product measure Pn on
F⊗n). Direct computation shows the following.

Lemma 4.1. Under Px1,... ,xn
, the random variables t1X1, . . . , tnXn are indepen-

dent, with mean, variance and absolute central third moment given by

Ex1,... ,xn
(tiXi) = tiψ

′(ti) = tixi,

Ex1,... ,xn

(

|ti(Xi − xi)|2
)

= t2i ψ
′′(ti),

Ex1,... ,xn

(

|ti(Xi − xi)|3
)

= |ti|3 Eti

(

|X − ψ′(ti)|3
)

,

respectively. 2

Using Corollary 2.15, one immediately obtains the following bound on the ra-
tio Ex1,... ,xn

(

|ti(Xi − xi)|3
)

/Ex1,... ,xn

(

|ti(Xi − xi)|2
)

when the xi stay in a closed
interval contained in I◦:

Lemma 4.2. Assume that [−a, a] ⊂ I◦. Then there exists a constant C = C(a, µ)
in (0,∞), depending only on a and µ, with the following property : if |xi| 6 a, then

Ex1,... ,xn

(

|ti(Xi − xi)|3
)

Ex1,... ,xn

(

|ti(Xi − xi)|2
) 6 C |ti| ,

for all i = 1, . . . , n and all n ∈ N. 2
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Notation 4.3. From now on, and until the end of this Section, we fix an a with
[−a, a] ⊂ I◦, and denote by C the corresponding constant C(a, µ) of Lemma 4.2.
We also fix

c := 6C.(4.3)

Set

σ2
n :=

n
∑

i=1

Ex1,... ,xn

(

|ti(Xi − xi)|2
)

=

n
∑

i=1

t2i ψ
′′(ti)(4.4)

and

Sn :=
1

σn

n
∑

i=1

ti(Xi − xi),(4.5)

and let Fn : R → R be the cumulative distribution function of the random variable
Sn under the probability law Px1,... ,xn

:

Fn(x) := Px1,... ,xn
(Sn 6 x) (x ∈ R).(4.6)

Write also µn for the probability measure on R defined by

µn(−∞, x] := Fn(x) (x ∈ R).(4.7)

Finally, set

ρ(3)
n :=

n
∑

i=1

Ex1,... ,xn

(

|ti(Xi − xi)|3
)

.(4.8)

Lemma 4.2 shows that

ρ
(3)
n

σ2
n

6 C max
16i6n

|ti|(4.9)

for all n ∈ N, provided x1, . . . , xn ∈ [−a, a]. Notice also that

Ex1,... ,xn
(Sn) = 0 and Varx1,... ,xn

(Sn) = 1,(4.10)

for any x1, . . . , xn.

Lemma 4.4. For any x1, . . . , xn,

Pn

(

n
∑

i=1

ti(Xi − xi) > 0

)

=

[

∫

[0,∞)

e−σnu dµn(u)

]

exp

(

−
n

∑

i=1

λ(xi)

)

.(4.11)
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Proof. We may write

Pn

(

n
∑

i=1

ti(Xi − xi) > 0

)

= Ex1,... ,xn

[

1[0,∞)

(

n
∑

i=1

ti(Xi − xi)

)

· exp

(

−
n

∑

i=1

tiXi

)]

n
∏

i=1

ϕ(ti).

It follows that

Pn

(

n
∑

i=1

ti(Xi − xi) > 0

)

=

∫

[0,∞)

e−σnu dµn(u) exp

(

n
∑

i=1

[ψ(ti) − tixi]

)

,

and the result follows from Proposition 2.12.

Write

φ(x) :=
1√
2π

e−x2/2 (x ∈ R)(4.12)

for the standard gaussian density,

Φ(x) :=

∫ x

−∞
φ(y) dy (x ∈ R)(4.13)

for the standard gaussian c.d.f., and ν for the standard gaussian probability mea-
sure: ν(−∞, x] := Φ(x), x ∈ R. By the Berry–Esseen theorem [6, Theorem
XVI.5.2] one has that

|Fn(x) − Φ(x)| 6 6
ρ
(3)
n

σ3
n

for all x ∈ R, whence, by (4.9) and (4.3),

|Fn(x) − Φ(x)| 6
c

σn
max

16i6n
|ti|(4.14)

for all x ∈ R and n ∈ N, provided x1, . . . , xn ∈ [−a, a].

Lemma 4.5. The following inequality holds for any x1, . . . , xn ∈ [−a, a], n ∈ N :
∣

∣

∣

∣

∣

∫

(0,∞)

e−σnu dµn(u) −
∫

(0,∞)

e−σnu dν(u)

∣

∣

∣

∣

∣

6
2c

σn
max

16i6n
|ti| .

Proof. Since
∫

(0,∞)

e−σnu dµn(u) =

∫ ∞

0

µn

(

{u : e−σnu1(0,∞)(u) > r}
)

dr

=

∫ 1

0

µn

(

0,−σ−1
n log r

]

dr

=

∫ 1

0

[

Fn

(

−σ−1
n log r

)

− Fn(0)
]

dr,
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and similarly

∫ ∞

0

e−σnu dν(u) =

∫ 1

0

[

Φ
(

−σ−1
n log r

)

− Φ(0)
]

dr,

the result follows from (4.14).

We will use the estimates

1

x
m1(x) e−x2/2

6

∫ ∞

x

φ(u) du 6
1

x
m2(x) e−x2/2 (x > 0),(4.15)

where

m1(x) =
1√
2π

2x

x +
√

x2 + 4
and m2(x) =

1√
2π

4x

3x +
√

x2 + 8
(4.16)

(see [11, p. 17] and, for the upper estimate, [19]). Since

∫ ∞

0

e−σnu dν(u) =
eσ2

n/2

√
2π

∫ ∞

0

e−(σn+u)2/2 du = eσ2

n/2

∫ ∞

σn

φ(u) du,(4.17)

it follows that

m1(σn)

σn
6

∫ ∞

0

e−σnu dν(u) 6
m2(σn)

σn
.(4.18)

Combining (4.18) with Lemma 4.5, we obtain the estimates

m1(σn)

σn
− 2c

σn
max

16i6n
|ti| 6

∫

(0,∞)

e−σnu dµn(u) 6
m2(σn)

σn
+

2c

σn
max

16i6n
|ti|(4.19)

for x1, . . . , xn ∈ [−a, a]. Lemma 4.4 then yields the following estimates:

Theorem 4.6. Let x1, . . . , xn ∈ [−a, a] and ti = h(xi), i = 1, . . . , n. Then,

Pn

(

n
∑

i=1

ti(Xi − xi) > 0

)

>
1

σn
e−nΛ(~x)

(

m1(σn) − 2c max
16i6n

|ti|
)

(4.20)

and

Pn

(

n
∑

i=1

ti(Xi − xi) > 0

)

6
1

σn
e−nΛ(~x)

(

m2(σn) + 4c max
16i6n

|ti|
)

.(4.21)

Proof. Observe that the first factor on the right hand-side of (4.11) is

∫

[0,∞)

e−σnu dµn(u) >

∫

(0,∞)

e−σnu dµn(u).(4.22)
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Hence, we obtain the first inequality (4.20) by combining (4.11) with (4.19). For
the second inequality, first observe that

∫

[0,∞)

e−σnu dµn(u) =

∫

(0,∞)

e−σnu dµn(u) + Px1,... ,xn
(Sn = 0),

and then use (4.14) to obtain,

Px1,... ,xn
(Sn = 0) 6 Fn(ε) − Fn(−ε) 6 Φ(ε) − Φ(−ε) +

2c

σn
max

16i6n
|ti|

for all ε > 0. Thus

Px1,... ,xn
(Sn = 0) 6

2c

σn
max

16i6n
|ti| ,(4.23)

and the second inequality (4.21) follows now as well, using (4.11), (4.19) and (4.23)
this time.

Corollary 4.7. There exists δ > 0, and constants c1(δ), . . . , c4(δ) ∈ (0,∞), de-
pending only on δ and µ, with the following property : if x1, . . . , xn ∈ (−δ, δ), and
ti = h(xi), i = 1, . . . , n, then

Pn

(

n
∑

i=1

ti(Xi − xi) > 0

)

>
c1(δ)

√

nΛ(~x)
e−nΛ(~x)

[

m1

(

√

c2(δ)nΛ(~x)
)

− 2c max
16i6n

|ti|
]

and

Pn

(

n
∑

i=1

ti(Xi − xi) > 0

)

6
c3(δ)

√

nΛ(~x)
e−nΛ(~x)

[

m2

(

√

c4(δ)nΛ(~x)
)

+ 4c max
16i6n

|ti|
]

for all n ∈ N, where nΛ(~x) =
∑n

i=1 λ(xi).

Proof. By Proposition 2.13, we can choose δ ∈ (0, a] such that

1
4x2

6 λ(x) 6 x2 and 1
2 |x| 6 |h(x)| 6 2 |x|(4.24)

for all x ∈ (−δ, δ). Let x1, . . . , xn ∈ (−δ, δ). Theorem 4.6 shows that

Pn

(

n
∑

i=1

ti(Xi − xi) > 0

)

>
1

σn
e−nΛ(~x)

(

m1(σn) − 2c max
16i6n

|ti|
)

.(4.25)

By (4.4), Proposition 2.13 and (4.24), we get

σ2
n =

n
∑

i=1

t2i ψ
′′(ti) 6 4c2

n
∑

i=1

x2
i 6 16c2

n
∑

i=1

λ(xi)(4.26)
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and, similarly,

σ2
n =

n
∑

i=1

t2i ψ
′′(ti) >

1
4c1

n
∑

i=1

x2
i >

1
4c1

n
∑

i=1

λ(xi),(4.27)

where c1 and c2 come from Proposition 2.13 (i), and depend only on δ and µ. Insert-
ing these estimates into (4.25) yields the first inequality asserted in the Corollary.
For the upper estimate we work in the same way, starting from (4.21) this time.

Corollary 4.8. There exist γ > 0, k = k(γ) ∈ N and c(γ) > 0, depending only on
γ and µ, with the following property : for every n ∈ N, if x1, . . . , xn ∈ (−γ, γ) are
such that

∑n
i=1 λ(xi) > k(γ), and if ti = h(xi), i = 1, . . . , n, then

Pn

(

n
∑

i=1

ti(Xi − xi) > 0

)

>
c(γ)

√

nΛ(~x)
e−nΛ(~x).

Proof. First fix a δ for which Corollary 4.7 holds true, and then choose γ ∈ (0, δ]
so that 2ch(γ) 6 (2

√
2π)−1; this is possible because lims→0 h(s) = 0.

We know that m1(x) increases to (2π)−1/2 as x → ∞; therefore, there exists
k = k(γ) ∈ N such that

m1

(

c2(δ)k(γ)
)

>
5

6
√

2π
.

From the first assertion of Corollary 4.7 we then easily conclude the result for
x1 . . . , xn ∈ (−γ, γ) with nΛ(~x) =

∑n
i=1 λ(xi) > k(γ).

Definition 4.9. Given a Borel probability measure µ on the real line satisfying
our assumptions (1.1)–(1.3), fix a constant δ for which the assertion of Corollary
4.7 and also (4.24) hold true, a constant γ < δ for which the assertion of Corollary
4.8 holds true, and set γµ := min

{

γ, ψ′( 1
4 )

}

.

We can now estimate q(~x) for ~x ∈ ∂(Λr) ∩ γBn
∞. We start with Theorem 1.3:

Theorem 4.10. For γ ∈ (0, γµ], there exists n0 = n0(γ) ∈ N with the following
property : if n > n0 and r 6 λ(γ), then

q(~x) 6 exp
(

−rn − 1
2 ln(rn) + c(γ)

)

for every ~x ∈ ∂(Λr) ∩ γBn
∞, where c(γ) is a constant depending only on γ and µ.

Proof. Let ~x ∈ ∂(Λr) ∩ γBn
∞. By the definition of q(~x) we have that

q(~x) 6 Pn

(

n
∑

i=1

ti(Xi − xi) > 0

)

,

where ti = h(xi), i = 1, . . . , n, and by Corollary 4.7 that

Pn

(

n
∑

i=1

ti(Xi − xi) > 0

)

6
c(γ)

√

nΛ(~x)
e−nΛ(~x).

Since Λ(~x) = r, the result follows.
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The upper estimate of Theorem 4.10 is complemented by the following lower
estimate (this is the result stated as Theorem 1.4 in the introduction):

Theorem 4.11. For γ ∈ (0, γµ], there exists n0 = n0(γ) ∈ N with the following
property : for n > n0, and ε > 3 ln n/n,

q(~x) > exp(−(r + ε)n)

for every ~x ∈ Λr ∩ γBn
∞ and r ∈ (0, λ(γ)].

The proof of this will be based on Corollary 4.8 and on two additional facts.
The first one generalizes a result of Montgomery-Smith from [16] (its proof appears
in [14]):

Lemma 4.12. For all n ∈ N and any ~s = (s1, . . . , sn) ∈ Rn, the inequality

Pn

(

n
∑

i=1

siXi >
1
2θ ‖~s‖2

)

> e−C(µ)θ2

holds for all θ > 0 with θ 6 ‖~s‖2 / ‖~s‖∞ , with C(µ) = 2 ln(27/π) + 4 ln E
(

|X|3
)

.

Proof. This is Lemma 4.3 of [14] (with the constants replaced by the ones that
actually appear in the proof), plus the additional fact that hL(~s) = 1

2θ ‖~s‖2 for
0 < θ 6 ‖~s‖2 / ‖~s‖∞, where hL(~s) = sup

{

〈~s,~v〉 : ~v ∈ 1
2 (Bn

∞ ∩ θBn
2 )

}

.

The second one combines [2, Lemma 8.2] with a theorem of Bahadur and Ranga
Rao [1]. Recall (2.6), defining I◦.

Lemma 4.13. Assume that γ ∈ I◦. There exists m0 = m0(γ) such that, for all
m > m0, and any s1, . . . , sm ∈ R with

∑m
i=1 si > 0,

Pm

(

m
∑

i=1

si(Xi − γ) > 0

)

> c(γ)m−3/2 e−mλ(γ),

where the constant c(γ) > 0 depends only on γ and µ.

Proof. The first part of the argument in [2, Lemma 8.2] shows that

Pm

(

m
∑

i=1

si(Xi − γ) > 0

)

>
1

m
Pm

(

m
∑

i=1

(Xi − γ) > 0

)

.(4.28)

Indeed, for i = 1, . . . ,m define ~si := (si, . . . , sm, s1, . . . , si−1), set ~1 := (1, . . . , 1),
and notice that

Pm

(

m
∑

i=1

si(Xi − γ) > 0

)

= Pm
(

〈~si, ~X − γ~1〉 > 0
)

for all i = 1, . . . ,m
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(since (X1, . . . ,Xn) and (Xi, . . . ,Xm,X1, . . . ,Xi−1) have the same distribution,
namely µ × · · · × µ). It follows that

Pm

(

m
∑

i=1

si(Xi − γ) > 0

)

=
1

m

m
∑

i=1

Pm
(

〈

~si, ~X − γ~1
〉

> 0
)

>
1

m
Pm

(

m
⋃

i=1

{

〈

~si, ~X − γ~1
〉

> 0
}

)

>
1

m
Pm

(

(s1 + · · · + sn)

m
∑

i=1

(Xi − γ) > 0

)

=
1

m
Pm

(

m
∑

i=1

(Xi − γ) > 0

)

.

By [1, Theorem 1] on the other hand, there exists a sequence bm of positive
numbers, such that

√
2πm

bm
emλ(γ) Pm

(

m
∑

i=1

(Xi − γ) > 0

)

→ 1 as m → ∞,

with ln bm bounded, and hence bm bounded away from 0.

Proof of Theorem 4.11. Fix γ ∈ (0, γµ], and let ε and r be as in the statement of
the Theorem. We first assert the following:

Claim 4.14. It suffices to show that

Pn
(

~X ∈ H
)

> e−(r+ε)n(4.29)

for any closed half-space H whose bounding hyperplane supports Λr ∩ γBn
∞ and

for which (Λr ∩ γBn
∞) ∩ H◦ = ∅ (i.e., H just “touches” Λr ∩ γBn

∞),

We postpone the proof of the claim until the end of this Section.

Next fix a closed half-space H of the form described in Claim 4.14. We will
show (4.29) for this half-space.

Claim 4.15. There exists ~x ∈ H ∩ (∂(Λr) ∩ γBn
∞).

The proof of this claim is also postponed until the end of the Section.

Now fix ~x ∈ H ∩ (∂(Λr) ∩ γBn
∞). By symmetry we may assume that ~x =

(x1, . . . , xn) with 0 6 x1 6 · · · 6 xn. There exists n1 ∈ {1, . . . , n} such that
xn1

< γ and xn1+1 = γ. Set ~t = (t1, . . . , tn) = n∇Λ(~x) and write ~s = (s1, . . . , sn)
for the normal to the bounding hyperplane of H, so that

H =

{

~y ∈ Rn :
n

∑

i=1

si(yi − xi) > 0

}

.
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By the form we have assumed of H, ~s lies in the normal cone to Λr ∩ γBn
∞ at ~x;

i.e., in the notation of [17],

~s ∈ N(~x, Λr ∩ γBn
∞) = {~v ∈ Rn : 〈~v, ~y − ~x〉 6 0 ∀ ~y ∈ Λr ∩ γBn

∞} .

According to [17, Theorem 2.2.1],

N(~x, Λr ∩ γBn
∞) = N(~x, Λr) + N(~x, γBn

∞).

Now

N(~x, Λr) = {t∇Λ(~x) : t > 0}

and

N(~x, γBn
∞) = {~v ∈ Rn : 〈~v, ~y − ~x〉 6 0 ∀ ~y ∈ γBn

∞}
= {~v ∈ Rn : v1 = . . . = vn1

= 0, vn1+1, . . . , vn > 0} .

It follows that we may assume that

si = ti = λ′(xi) = h(xi) if i 6 n1 and si > ti = λ′(γ) = h(γ) if i > n1.

Now write

Pn
(

~X ∈ H
)

= Pn

(

n
∑

i=1

si(Xi − xi) > 0

)

= Pn

(

n1
∑

i=1

ti(Xi − xi) +

n
∑

i=n1+1

si(Xi − γ) > 0

)

> Pn

(

n1
∑

i=1

ti(Xi − xi) > 0

)

· Pn

(

n
∑

i=n1+1

si(Xi − γ) > 0

)

.(4.30)

We estimate the second probability in the last product using Lemma 4.13:

Pn

(

n
∑

i=n1+1

si(Xi − γ) > 0

)

> exp
(

−(n − n1)λ(γ) − 3
2 ln(n − n1) − c1(γ)

)

.

(4.31)

To estimate the first probability we distinguish two cases:

Case 1:
∑n1

i=1 λ(xi) > k(γ). We may then use Corollary 4.8 to estimate the first
probability:

Pn

(

n1
∑

i=1

ti(Xi − xi) > 0

)

> exp

(

−
n1
∑

i=1

λ(xi) − 1
2 ln

n1
∑

i=1

λ(xi) − c2(γ)

)

(4.32)
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Combining (4.30) with (4.31) and (4.32), we obtain

Pn
(

~X ∈ H
)

> exp

(

−
n1
∑

i=1

λ(xi) − 1
2 ln

n1
∑

i=1

λ(xi) − c2(γ)

)

× exp
(

−(n − n1)λ(γ) − 3
2 ln(n − n1) − c1(γ)

)

> exp

(

−
n

∑

i=1

λ(xi) − 2 ln n − c(γ)

)

= exp
(

−rn − 2 ln n − c(γ)
)

> exp(−(r + ε)n),

provided n is sufficiently large (ln n > c(γ)).

Case 2:
∑n1

i=1 λ(xi) < k(γ). In this case we use Lemma 4.12 to estimate the first
probability. We have that

Pn

(

n1
∑

i=1

ti(Xi − xi) > 0

)

= Pn





n1
∑

i=1

tiXi >
1
2θ

√

√

√

√

n1
∑

i=1

t2i



 ,(4.33)

with

θ = 2

∑n1

i=1 tixi
√

∑n1

i=1 t2i
.(4.34)

To use Lemma 4.12 we need to check that

θ 6

√
∑n1

i=1 t2i
max16i6n1

ti
.(4.35)

Recall that, by the choice of γµ (cf. Definition 4.9), we have that |x| 6 2 |h(x)|
for all x ∈ (−γ, γ) (cf. (4.24)). Hence

∑n1

i=1 tixi 6 2
∑n1

i=1 t2i , and therefore,

θ 6 4

√

√

√

√

n1
∑

i=1

t2i 6 4h(γ)

√
∑n1

i=1 t2i
max

16i6n1

ti
,(4.36)

since also ti = h(xi) 6 h(γ) for all i, by the monotonicity of h. Since γ 6 ψ′( 1
4 ) is

small enough, we have that h(γ) 6
1
4 and θ satisfies (4.35).

By (4.33) and Lemma 4.12 we get the bound

Pn

(

n1
∑

i=1

ti(Xi − xi) > 0

)

> e−C(µ)θ2

,

which upon using the Cauchy–Schwartz inequality and (4.24) yields the bound

Pn

(

n1
∑

i=1

ti(Xi − xi) > 0

)

> exp

(

−4C(µ)

n1
∑

i=1

x2
i

)

> exp

(

−16C(µ)

n1
∑

i=1

λ(xi)

)

.
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Combining this with (4.30) and (4.31) again, we see that

Pn
(

~X ∈ H
)

> exp

(

−(n − n1)λ(γ) − 3
2 ln(n − n1) − c1(γ) − c3(γ)

n1
∑

i=1

λ(xi)

)

> exp

(

−
n

∑

i=1

λ(xi) − 3
2 ln(n − n1) − c1(γ) − |1 − c3(γ)|k(γ)

)

= exp
(

−rn − 3
2 ln(n − n1) − c′(γ)

)

> exp(−(r + ε)n)

in this case as well, provided again that n is large enough to have lnn >
2
3c′(γ).

The proof of the Theorem is now complete, modulo the proofs of the two claims.

Proof of Claim 4.14. Let ~x ∈ Λr ∩ γBn
∞ and let H be any closed half-space with

~x ∈ ∂H. We can then write H = {~y ∈ Rn :
∑n

i=1 si(yi − xi) > 0} for some ~s =

(s1, . . . , sn) 6= ~0. For z > 0, define Hz := {~y ∈ Rn :
∑n

i=1 si(yi − xi) > z}, and
observe that the half-spaces Hz decrease as z increases. Notice also that H0 = H.
Let

z∗ := sup {z > 0: Hz ∩ (Λr ∩ γBn
∞) 6= ∅} ;

by compactness z∗ < ∞, and we may set H∗ = Hz∗
. Since a decreasing intersection

of nonempty compact sets is nonempty,

H∗ ∩ (Λr ∩ γBn
∞) =

⋂

06z<z∗

Hz ∩ (Λr ∩ γBn
∞) 6= ∅,

while

H◦
∗ ∩ (Λr ∩ γBn

∞) =
⋃

z>z∗

H◦
z ∩ (Λr ∩ γBn

∞) = ∅.

Thus H∗ is of the form described in the statement of the Claim. Furthermore,
H ⊇ H∗, and hence Pn

(

~X ∈ H
)

> Pn
(

~X ∈ H∗
)

. By (3.3), this proves the
Claim.

Proof of Claim 4.15. By the form we have assumed of H (i.e., that it “touches”
Λr ∩ γBn

∞), there exists ~y ∈ H ∩ (Λr ∩ γBn
∞). If Λ(~y) = r, then ~x = ~y is the sought

for point. Assume next that Λ(~y) < r. Then ~y ∈ ∂(γBn
∞) and ~y belongs to some

face F (~y) of γBn
∞ of minimal dimension. Notice that F (~y) must be contained in the

hyperplane bounding H, and hence also be contained in H. By joining ~y with any
vertex ~v of γBn

∞ belonging to F (~y), we see that there exists ~x ∈ F (~y) with Λ(~x) = r,
by the intermediate value theorem, and since Λ(~y) 6 r and Λ(~v) = λ(γ) > r. Since
F (~y) ⊆ ∂H, it follows that ~x ∈ H ∩ ∂(Λr) ∩ γBn

∞.
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5 Geometry of KN

In this Section we prove Theorems 1.5, 1.6 and 1.7. Throughout the Section γ will
always be in the interval (0, γµ] (cf. Definition 4.9). Recall that γµ only depends on

the underlying distribution µ of the coordinates of the random vertex ~X. We also
fix the following notation:

Notation 5.1.

ρ :=
lnN

n
.

We begin with Theorem 1.5:

Theorem 5.2. For γ ∈ (0, γµ] and N in the range n6 < N 6 enλ(γ),

Prob
(

KN ⊇ Λρ−2ε ∩ γBn
∞

)

> 1 − 2−n+1

for all ε > 3 ln n/n, and all sufficiently large n.

Proof. By the choice of γ, we may apply Theorem 4.11; let n0 = n0(γ) be the
integer whose existence is asserted there, and let n > n0. Fix also ε = 3 ln n/n. By
Theorem 4.11,

inf q(~x) > exp(−(ρ − ε)n),(5.1)

where the inf is over ~x ∈ ∂(Λρ−2ε) ∩ γBn
∞; notice that the condition λ(γ) + 2ε >

ρ > 2ε, required to apply Theorem 4.11, is satisfied here, by our choice of N .
Combining this with Proposition 3.2, we obtain that

1 − Prob
(

KN ⊇ Λρ−2ε ∩ γBn
∞

)

6

(

N

n

)

pN−n + 2

(

N

n

)

(

1 − exp(−(ρ − ε)n)
)N−n

.

(5.2)

Claim 5.3. For n sufficiently large and N > n6,
(

N

n

)

pN−n < 2−n.

Proof of Claim 5.3. Since
(

N
n

)

6 (eN/n)n, it suffices to check that

1 + ln

(

N

n

)

+
N − n

n
ln p < − ln 2.(5.3)

Set x := N/n. Then, (5.3) is equivalent to

−(x − 1) ln p − lnx > 1 + ln p.

The claim follows from the facts that the function on the left-hand side increases
to infinity as x → ∞, and x = N/n > n5.
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Claim 5.4. If n is large enough and N > 2n, then

2

(

N

n

)

(

1 − exp(−(ρ − ε)n)
)N−n

< 2−n.

Proof of Claim 5.4. Since 1 − x 6 e−x, it suffices to check that

(

4eN

n

)n

exp
(

−(N − n)e−(ρ−ε)n
)

< 1.

Observe that e−(ρ−ε)n = eεn/N . Since n ln(4eN/n) 6 n2λ(γ) (assume that n > 4e)
and (N − n)/N >

1
2 , we want

2n2λ(γ) < eεn.

This is satisfied when ε = 3 ln n/n and n is sufficiently large.

Combining (5.2) with the two Claims above, we obtain that

Prob
(

KN ⊇ Λρ−2ε ∩ γBn
∞

)

> 1 − 2−n − 2−n

for n sufficiently large.

We next complement Theorem 5.2 by showing that, for some sufficiently small
δ ∈ (0, 1), a fixed proportion of the surface area of Λρ−δ lying in γBn

∞ is missed
by the typical KN , with high probability. This, in conjunction with Theorem 5.2,
shows that, with high probability, KN ∩ γBn

∞ is “weakly sandwiched” between
Λρ−2ε ∩ γBn

∞ and Λρ−δ. The following is Theorem 1.6 of the Introduction.

Theorem 5.5. Fix γ ∈ (0, γµ]. For n large enough and n < N 6 enλ(γ),

Prob
(

|∂(Λρ−δ) ∩ γBn
∞ ∩ KN | > α |∂(Λρ−δ) ∩ γBn

∞|
)

6
1

α

c(γ)

(lnN)1/6
,

for all δ 6
1
3 (ln lnN)/n (δ > 0) and any 0 < α < 1, where c(γ) is a constant

depending only on γ and µ.

Proof. Fix δ = δn 6
1
3 (ln lnN)/n, δ > 0. Proposition 3.5 shows that

E
(

|∂(Λρ−δ) ∩ γBn
∞ ∩ KN |

)

6 N · sup q(~x) · |∂(Λρ−δ) ∩ γBn
∞|(5.4)

where the sup is over all ~x ∈ ∂(Λρ−δ) ∩ γBn
∞. Theorem 4.10 shows that

q(~x) 6 exp
(

−(ρ − δ)n − 1
2 ln((ρ − δ)n) + c(γ)

)

(5.5)

for every ~x ∈ ∂(Λρ−δ) ∩ γBn
∞, provided n is large enough. Since lnx 6 x − 1 for

x > 0, the inequality

x − 1
3 lnx >

2
3x(5.6)
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holds for all x > 0. By (5.5) we then have that

N · sup q(~x) 6 exp
(

δn − 1
2 ln(lnN − δn) + c(γ)

)

6 exp
(

1
3 ln lnN − 1

2 ln(lnN − 1
3 ln lnN) + c(γ)

)

6 exp
(

− 1
6 ln lnN + c′(γ)

)

,

the last inequality following from (5.6) for x = lnN . Inserting this into (5.4) yields
then that

E
(

|∂(Λρ−δ) ∩ γBn
∞ ∩ KN |

)

6 c′′(γ)(ln N)−1/6 |∂(Λρ−δ) ∩ γBn
∞| ,

whence for any 0 < α < 1,

Prob
(

|∂(Λρ−δ) ∩ γBn
∞ ∩ KN | > α |∂(Λρ−δ) ∩ γBn

∞|
)

6
1

α

c′′(γ)

(lnN)1/6
,

by Markov’s inequality.

Remark 5.6. An examination of the proof of Theorem 5.5 reveals that it remains
valid whenever δ and N satisfy (lnN)/n − λ(γ) < δ 6

1
3 (ln lnN)/n (whence 0 <

ρ − δ < λ(γ)). This may include negative values of δ.

Weaker inclusion, improved probability estimates

As already observed, Theorems 5.2 and 5.5 show that KN ∩ γBn
∞ is “weakly sand-

wiched” between Λρ−2ε∩γBn
∞ and Λρ−δ, with high probability. A result in the spirit

of Theorem 5.2 also appears in [14], under different conditions on the underlying

distribution µ of the coordinates of the random vertex ~X:

Theorem 5.7 ([14], Theorem 4.2). Let ξij, 1 6 i 6 N, 1 6 j 6 n, be independent
symmetric random variables satisfying

1 6 E(ξ2
ij) and E

(

|ξij |3
)

6 b for all i, j,

and

P
(

‖Γ‖ > a1

√
N

)

6 e−a2N ,(5.7)

for some b > 1 and a1, a2 > 0, where Γ is the random N × n matrix Γ =
(ξij)16i6N, 16j6n, and let K ′

N := Γ ∗B1
n be the absolute convex hull of the rows

of Γ . Let β ∈ (0, 1). Then there exists a constant cβ such that for all N in the
range 2n > N > ncβ ,

Prob
(

K ′
N ⊇ 0.125(Bn

∞ ∩ ̺Bn
2 )

)

> 1 − e−a2N − e−0.2nβN1−β

,

with ̺ =
√

β ln(N/n)/(12 ln(eb)).
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In comparison, using the method of proof of Theorem 5.2 one obtains the fol-
lowing result (stated as Theorem 1.7 in the Introduction):

Theorem 5.8. Let γ ∈ (0, γµ]. For any β ∈ (0, 1) and α ∈ (0,− ln p) the following
holds: for all n sufficiently large, and n1+4/β < N 6 n1+4/βenβλ(γ),

Prob
(

KN ⊇ Λ̺ ∩ γBn
∞

)

> 1 − e−αN − e−nβN1−β

with ̺ := βn−1 ln(N/n) − 4n−1 lnn.

Remark. As already observed in the Introduction,

Λ̺ ∩ γBn
∞ ≃

(
√

2n̺Bn
2

)

∩ γBn
∞ =

(
√

2β ln(N/n) − 8 ln n Bn
2

)

∩ γBn
∞

for γ small enough, and of course

√

2β ln(N/n) − 8 ln nBn
2 ⊃ 0.125

√

β ln(N/n)/(12 ln(eb)) Bn
2

for N in a range na < N 6 naeβnλ(γ) with a sufficiently large. On the other hand,
Theorem 5.8 gives no information whatsoever for small values of N/n, e.g. when
N is linear in n, as opposed to Theorem 5.7. Notice however, that in order to
apply Theorem 5.7 one needs to verify condition (5.7), and it is at present unclear
precisely when this condition is satisfied; in [14] it is verified for the case where the
random variables ξij are ψ2 [14, Fact 2.4].

Proof of Theorem 5.8. We repeat the proof of Theorem 5.2. The argument in the
proof of Claim 5.3 shows that, for any 0 < α < − ln p, there exists a constant
cα ∈ (0,∞) such that

(

N

n

)

pN−n < e−αN(5.8)

whenever N > ncα. Since, for n sufficiently large,

1 − Prob
(

KN ⊇ Λ̺ ∩ γBn
∞

)

6

(

N

n

)

pN−n + 2

(

N

n

)

(

1 − exp(−(̺ + ε)n)
)N−n

whenever 0 < ̺ 6 λ(γ), by Proposition 3.2 and Theorem 4.11, and where ε =
3 ln n/n, it suffices to prove the following Claim.

Claim 5.9. Let β ∈ (0, 1). There exists cβ ∈ (0,∞) such that, for N > ncβ , one
has that

2

(

N

n

)

(

1 − e−rn
)N−n

< e−nβN1−β

(5.9)

for r = βn−1 ln(N/n) − n−1 ln 2.
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Proof of Claim 5.9. Since 1−x 6 e−x and
(

N
n

)

6 (eN/n)n, it suffices to verify that

2

(

eN

n

)n

exp
(

−e−rn(N − n)
)

< e−nβN1−β

.(5.10)

Setting x := N/n we need to check that r satisfies

ern <
x − 1

2 + log x + x1−β
.(5.11)

Observe that

x − 1

2 + log x + x1−β
∼ xβ(5.12)

as x → ∞ (∼ meaning that the ratio of the two sides tends to one as x → ∞), so
that

x − 1

2 + log x + x1−β
> 1

2xβ(5.13)

when x > cβ for an appropriate cβ ∈ (0,∞). This shows that (5.11) is satisfied for

r =
β

n
ln

(

N

n

)

− ln 2

n
(5.14)

when N > ncβ .

The proof of Theorem 5.8 is now complete.

6 Surface area of Λr

In this Section we prove the following Proposition:

Proposition 6.1. There exists R > 0 with the following property : for any γ ∈
I◦ ∩ J◦, and all r < c(γ)/R and n > 4, one has that

|∂(Λr) ∩ γBn
∞| > [c(γ)rn](n−1)/2

∣

∣Sn−1
∣

∣ ,(6.1)

where c(γ) ∈ (0,∞) is a constant depending only on γ (and µ).

For the proof we first estimate the product curvature κ(~x) of the surface Λ(~x) =
r at a point ~x ∈ γBn

∞.

Lemma 6.2. Let 0 < r < r∗, and for ~x ∈ ∂(Λr) let κ(~x) denote the product
curvature of the surface ∂(Λr) at ~x. Then, for every γ ∈ I◦, there exists a constant
c1(γ) ∈ (0,∞) (depending only on γ and µ) such that

κ(~x) 6 [c1(γ) rn]−(n−1)/2(6.2)

for all ~x ∈ ∂(Λr) ∩ γBn
∞.
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Proof. Let ν(~x) = ∇Λ(~x)/ ‖∇Λ(~x)‖2 be the outward unit normal vector of Λr at
~x. Following [17, Section 2.5], we write T~xΛr for the tangent space of Λr at ~x, and
consider the Weingarten map W~x : T~xΛr → T~xΛr. This is the restriction to T~xΛr

of the differential D~x of the map ~x 7→ ν(~x). Then W~x is symmetric and positive
definite, therefore

κ(~x) = detW~x 6

(

trace(W~x)

n − 1

)n−1

(6.3)

by the arithmetic-geometric means inequality. Let (aij)
n
i,j=1 denote the matrix of

D~x with respect to the standard basis of Rn. It is easily checked that ν(~x) is an
eigenvector of the adjoint of D~x, with corresponding eigenvalue 0; it follows from
this and the fact that the eigenvalues of W~x are also eigenvalues of D~x and none of
them is zero, that trace(W~x) = trace(D~x). A simple calculation also shows that

aii =
λ′′(xi)

(

‖n∇Λ(~x)‖2
2 − [λ′(xi)]

2
)

‖n∇Λ(~x)‖3
2

=
h′(xi)

(∥

∥ ~t
∥

∥

2

2
− [h(xi)]

2
)

∥

∥ ~t
∥

∥

3

2

.(6.4)

Set

h∗(γ) := sup
x∈[−γ,γ]

h′(x).(6.5)

It then follows from (6.4) that, if ~x ∈ ∂(Λr) ∩ γBn
∞, then

trace(W~x)

n − 1
=

trace(D~x)

n − 1
=

n
∑

i=1

h′(xi)
(∥

∥ ~t
∥

∥

2

2
− [h(xi)]

2
)

(n − 1)
∥

∥ ~t
∥

∥

3

2

6 h∗(γ)
n

∥

∥ ~t
∥

∥

2

2
− ∑n

i=1 t2i

(n − 1)
∥

∥ ~t
∥

∥

3

2

=
h∗(γ)
∥

∥ ~t
∥

∥

2

,

and (6.3) shows that

κ(~x) 6
∥

∥ ~t
∥

∥

−(n−1)

2
[h∗(γ)]n−1.(6.6)

Since also λ(xi) 6 c6(γ)t2i , by Proposition 2.13 (iv), we finally conclude (6.2) with
c1(γ) = [c6(γ)h∗(γ)2]−1.

Notation 6.3. For r > 0 set

Mr =
{

~u ∈ Sn−1 :
√

n/r ~u ∈ Bn
∞

}

.(6.7)

We shall need the following Lemma, which generalizes Lemmata 6.2 and 6.3 of [2].
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Lemma 6.4. (i) Let ~u = (u1, . . . , un) ∈ Sn−1, set u∗
i := t∗ui ‖~u‖−1

∞ , i =
1 . . . , n, with the convention 0 · ∞ = 0 when t∗ = ∞ and ui = 0, and
assume that

0 < r <
1

n

n
∑

i=1

λ(ψ′(u∗
i )).(6.8)

Then there exists a unique point ~x(~u, r) ∈ ∂(Λr) such that

∇Λ(~x(~u, r)) = α(~u, r) ~u (α(~u, r) > 0)(6.9)

is a positive multiple of ~u.

(ii) Given γ ∈ I◦ ∩ J◦, there exists a constant c2(γ) ∈ (0,∞) (depending only
on γ and µ) such that ~x(~u, r) is well defined and in the interior of γBn

∞
whenever 0 < r < c2(γ)/R and ~u ∈ MR (where R > 0 is arbitrary).

Proof. Fix ~u = (u1, . . . , un) ∈ Sn−1. For s ∈
(

0, t∗ ‖~u‖−1
∞

)

, set

~y(~u, s) := (ψ′(su1), . . . , ψ′(sun)) .(6.10)

Since λ′ = h and h = (ψ′)−1 (recall Proposition 2.12 and Definition 2.9), we have
that

∇Λ(~y(~u, s)) =
s

n
~u.(6.11)

Since the function

s 7→ Λ(~y(~u, s)) =
1

n

n
∑

i=1

λ(ψ′(sui))(6.12)

is continuous on the interval
(

0, t∗ ‖~u‖−1
∞

)

, takes on the value 0 at s = 0, and has

limit n−1
∑n

i=1 λ(ψ′(u∗
i )) as s → t∗ ‖~u‖−1

∞ , for each r satisfying (6.8), there exists a
value s(r) of s for which Λ(~y(~u, s(r))) = r; for such r we define ~x(~u, r) := ~y(~u, s(r)).
Notice that

d

ds
Λ(~y(~u, s)) =

1

n

n
∑

i=1

λ′(ψ′(sui))ψ′′(sui)ui > 0,(6.13)

and hence the function defined by (6.12) is strictly increasing; thus s(r) is unique.
Notice further that the monotonicity of the function in (6.12) also implies that the
constant α(~u, r) in (6.9), which by (6.11) is s(r)/n, is strictly increasing in r. This
proves assertion (i)

For the proof of assertion (ii) fix R > 0, ~u ∈ MR, and let γ > 0 belong to
I◦ ∩J◦. Define ~x = (x1, . . . , xn) by xi := ψ′(γ

√

n/R ui), i = 1, . . . , n; notice that,
by our assumptions that γ ∈ J◦ and ~u ∈ MR, xi is well defined for each i. Let also
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c5 = c5(γ) be as in Proposition 2.13 (iv) with a = ψ′(γ). Then λ(xi) > c5γ
2(n/R)u2

i

for each i and therefore

Λ(~x) >
c5γ

2

R
.(6.14)

Next let Λ̃ denote the function defined by (6.12). Then Λ(~x) = Λ̃
(

γ
√

n/R
)

and

therefore, if r < c5γ
2/R 6 Λ̃

(

γ
√

n/R
)

, then ~x(~u, r) is well defined because s(r) is

well defined. Furthermore, s(r) < γ
√

n/R, and hence the i-th coordinate xi(~u, r)
of ~x(~u, r) satisfies

|xi(~u, r)| = s(r) |ui| 6 γ

√

n

R
|ui| 6 γ.(6.15)

In fact this inequality is strict unless ui = 0, which shows that ~x(~u, r) belongs to
the interior of γBn

∞.

Lemma 6.5. There exists R > 0 such that

|MR| > e−(n−1)/2
∣

∣Sn−1
∣

∣(6.16)

for all n > 4.

Write γn for the standard Gaussian measure on Rn and σn for the rotation-
invariant Borel probability measure on Sn−1. For the proof of Lemma 6.5 we shall
use the following fact:

Fact 6.6. If K is a symmetric convex body in Rn, then

1
2 σn

(

Sn−1 ∩ 1
2K

)

6 γn(
√

nK) 6 σn(Sn−1 ∩ eK) + e−n/2.(6.17)

Proof of Fact 6.6. A proof appears in [12]. We sketch the proof of the right hand
side inequality (which is the one we need). Observe that

√
n K ⊆

(

√

n/e2Bn
2

)

∪ C
(

√

n/e2Sn−1 ∩
√

nK
)

(6.18)

where, for A ⊆
√

n/e2Sn−1, we write C(A) for the positive cone generated by A.
It follows that

γn(
√

nK) 6 γn

(

√

n/e2Bn
2

)

+ σ
(

√

n/e2Sn−1 ∩
√

nK
)

,(6.19)

where σ denotes the rotation-invariant probability measure on
√

n/e2Sn−1. Now

σ
(

√

n/e2Sn−1 ∩
√

nK
)

= σn(Sn−1 ∩ eK),(6.20)

and a direct computation shows that

γn

(

r
√

nBn
2

)

6 (r
√

e)ne−r2n/2(6.21)
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for all 0 < r 6 1. It follows that

γn

(

√

n/e2Bn
2

)

6 exp(−n/2).(6.22)

(6.19), (6.20) and (6.22) together show the right hand side inequality in (6.17).

Proof of Lemma 6.5. Observe that

Mr = Sn−1 ∩ e
(

√

r/(e2n) C
)

.(6.23)

Hence, by the previous Fact,

|Mr|
|Sn−1| = σn(Mr)

> γn

(

(
√

r/e)C
)

− e−n/2

= D
(√

r/e
)n − e−n/2,

where

D(r) := Φ(r) − Φ(−r) =
1√
2π

∫ r

−r

e−u2/2du.(6.24)

Observe that
(√

e + 1
)

e−n/2 < e−n/4 for n > 4. Choose R > 0 so that

D
(√

R/e
)

> e−1/4;(6.25)

this is possible, since limr→+∞ D(r) = 1. Then,

D
(√

R/e
)n

>
(√

e + 1
)

e−n/2(6.26)

for n > 4, which completes the proof.

We are now ready to finish the proof of Proposition 6.1.

Proof of Proposition 6.1. Let R be as in Lemma 6.5. For γ ∈ I◦ ∩ J◦, let c1(γ)
and c2(γ) be as in Lemma 6.2 and Lemma 6.4, respectively. Let also r > 0 satisfy
r < c2(γ)/R. Writing ~x for ~x(~u, r) and expressing surface area in terms of product
curvature (cf. [17, Theorem 4.2.4]), we can write

|∂(Λr) ∩ γBn
∞| >

∫

MR

1

κ(~x)
d~u > e−(n−1)/2[c1(γ) rn](n−1)/2

∣

∣Sn−1
∣

∣ ,(6.27)

and the result follows.
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7 Facets of KN

In this Section we prove Theorem 1.8. For a polytope P in Rn with non-empty inte-
rior, we shall write fn−1(P ) for the number of its facets, i.e., its (n−1)-dimensional
faces. We then have the following:

Theorem 7.1. There exist two positive constants a and b such that, for all suffi-
ciently large n, and all N satisfying n6 < N 6 exp(bn), one has that

E[fn−1(KN )] >

(

lnN

a lnn

)n/2

.(7.1)

For the proof of Theorem 7.1 we shall need the following auxiliary geometric
lemma.

Lemma 7.2. Let γ > 0 be in I◦ and assume that r, ε > 0 satisfy r + ε < r∗. If H
is a half-space whose interior is disjoint from Λr ∩ γBn

∞, then

|∂(Λr+ε) ∩ γBn
∞ ∩ H| 6 [c(γ) εn](n−1)/2

∣

∣Sn−1
∣

∣ ,

where c(γ) is a constant depending only on γ (and µ).

Proof. Let H be a closed half-space whose interior is disjoint from Λr ∩ γBn
∞. We

may without loss assume that ∂H is a supporting hyperplane for Λr ∩ γBn
∞ and

then we may write

H = {~y ∈ Rn : 〈~u, ~y − ~x〉 > 0}

for some ~u 6= ~0 and ~x ∈ ∂(Λr ∩ γBn
∞). In fact we may assume that ~x ∈ ∂(Λr),

whence Λ(~x) = r.
By symmetry we may assume that 0 6 x1 6 . . . 6 xn. If xi < γ for all i then

we may take ~u = ∇Λ(~x). If 0 6 x1 6 . . . 6 xk < γ = xk+1 = . . . = xn, ~u must
belong to the normal cone to Λr ∩ γBn

∞ at ~x; we then may assume (see the proof
of Theorem 4.11) that

ui = λ′(xi) for 1 6 i 6 k and uj > λ′(xj) for k < j 6 n.

Let ~y ∈ H ∩ γBn
∞; then, as yi − xi 6 0 for k < i 6 n, we have that

n
∑

i=1

λ′(xi)(yi − xi) >

n
∑

i=1

ui(yi − xi) > 0.(7.2)

Suppose now that ~y ∈ Λr+ε ∩ γBn
∞ ∩ H. By Taylor’s theorem, there exist

ζi ∈ [xi ∧ yi, xi ∨ yi] (a ∧ b := min {a, b} , a ∨ b := max {a, b}) such that

λ(yi) = λ(xi) + λ′(xi)(yi − xi) + 1
2λ′′(ζi)(yi − xi)

2

= λ(xi) + h(xi)(yi − xi) + 1
2h′(ζi)(yi − xi)

2

= λ(xi) + h(xi)(yi − xi) + 1
2

(yi − xi)
2

ψ′′(h(ζi))
.
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Since ~x, ~y ∈ γBn
∞, we must have that |ζi| 6 γ, and then ψ′′(h(ζi)) 6 c2, where

c2 = c2(γ) is the constant in Proposition 2.13 (i) corresponding to a = γ. Thus

λ(yi) > λ(xi) + h(xi)(yi − xi) +
(yi − xi)

2

2c2
.

It follows that

Λ(~y) > Λ(~x) + 〈∇Λ(~x), ~y − ~x〉 +
1

2c2n

n
∑

i=1

(yi − xi)
2

= r + 〈∇Λ(~x), ~y − ~x〉 +
‖~y − ~x‖2

2

2c2n

> r +
‖~y − ~x‖2

2

2c2n
,

the last inequality by (7.2). On the other hand, since ~y ∈ Λr+ε, we also have that

Λ(~y) 6 r + ε,

implying that

‖~y − ~x‖2 6
√

2c2nε.

This shows that Λr+ε ∩ γBn
∞ ∩H is contained in a ball of radius

√
2c2nε around ~x,

and, by convexity, its surface area is at most (2c2nε)(n−1)/2
∣

∣Sn−1
∣

∣.

Proof of Theorem 7.1. Fix γ ∈ (0, γµ]. Let c1(γ) be the constant from Proposition
6.1 that corresponds to this γ, and set b := min {c1(γ), λ(γ)/R}.

Given N with n6 < N 6 ebn, recall the notation ρ = (lnN)/n. From Theorem
5.2, and with εn = 6 ln n/n, we have that

KN ⊇ Λρ−ε ∩ γBn
∞(7.3)

holds with probability at least 1 − 2−n+1, for all sufficiently large n, and from
Theorem 5.5 we also have that

|(∂(Λρ) ∩ γBn
∞) \ KN | >

1
2 |∂(Λρ) ∩ γBn

∞|(7.4)

with probability 1−on(1). Thus the event, En say, where both (7.3) and (7.4) hold
has probability at least 1

2 when n is sufficiently large.
Now apply Lemma 7.2 with r = ρ − εn and ε = εn: if F is a facet of KN and

HF is the corresponding half-space which has interior disjoint from KN , then

|∂(Λρ) ∩ γBn
∞ ∩ HF | 6 [c2(γ)εnn](n−1)/2

∣

∣Sn−1
∣

∣ .(7.5)

It follows that

fn−1(KN ) [c2(γ)εnn](n−1)/2
∣

∣Sn−1
∣

∣ >
∑

F

|∂(Λρ) ∩ γBn
∞ ∩ HF |

>
∣

∣

(

∂(Λρ) ∩ γBn
∞

)

\ KN

∣

∣

>
1
2 |∂(Λρ) ∩ γBn

∞|(7.6)
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on En. Since ρ 6 b = c1(γ)/R, Proposition 6.1 gives that

|∂(Λρ) ∩ γBn
∞| > [c1(γ) ρn](n−1)/2

∣

∣Sn−1
∣

∣ ,(7.7)

and (7.6) and (7.7) yield the inequality

fn−1(KN ) [c2(γ)εnn](n−1)/2
>

1
2 [c1(γ) ρn](n−1)/2(7.8)

on En, for sufficiently large n. Since ρn = lnN and εnn = 6 ln n, this shows that

fn−1(KN ) >

(

c(γ) ln N

lnn

)n/2

(7.9)

with probability greater than 1
2 , for all sufficiently large n.

Call a polytope P in Rn a ±1-polytope if its vertices are a subset of the vertices
of the cube Bn

∞. Using Theorem 7.1 for the special case where the distribution µ
is the distribution µ({−1}) = µ({1}) = 1

2 , we recover the result from [9] that there

exist ±1-polytopes with as many as (cn/ ln n)n/2 facets, where c > 0 is a universal
constant.

8 Threshold for the volume

In this final Section, which is only descriptive, we restrict ourselves to the case
where µ is compactly supported; that is we assume that x∗ < ∞ (recall (1.4)).
Notice that (1.2) is then automatically satisfied. Furthermore, we cease to assume
the normalization (1.3a) for µ (but assume that (1.6) holds).

In [7], and for a large class of distributions µ, we establish the following thresh-
old for the expected volume of KN using the “large deviations approach”: for every
ε > 0,

lim
n→∞

sup{(2x∗)−nE(|KN |) : N 6 exp((κ − ε)n)} = 0(8.1)

and

lim
n→∞

inf{(2x∗)−nE(|KN |) : N > exp((κ + ε)n)} = 1.(8.2)

In [4], Dyer, Füredi and McDiarmid studied the following two cases:

[DFM 1] If µ({1}) = µ({−1}) = 1
2 then ψ(t) = ln(cosh t). Then, λ : (−1, 1) → R

is given by

λ(x) = 1
2 (1 + x) ln(1 + x) + 1

2 (1 − x) ln(1 − x),

and (8.1)–(8.2) hold with κ = ln 2 − 1
2 . This is the case of ±1-polytopes.
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[DFM 2] If µ is the uniform distribution on [−1, 1], then ψ(t) = ln(sinh t/t), and
(8.1)–(8.2) hold with

κ =

∫ ∞

0

(

1

u
− 1

eu − 1

)2

du.

Our result in [7] reads precisely as follows:

Theorem 8.1. Let µ be an even, compactly supported, Borel probability measure
on the real line and assume that 0 < κ(µ) < ∞. Then (8.1) holds for every ε > 0.
Furthermore, (8.2) holds for every ε > 0, whenever the distribution µ satisfies

lim
x↑α

− ln P (X > x)

λ(x)
= 1.(8.3)

In [7] we provide an example which shows that (8.3) does not hold for every
distribution µ. It can be verified for a large class of compactly supported dis-
tributions, however. We first recall the following definition (cf. [6, p. 276]). A
measurable function L : (0,∞) → (0,∞) is slowly varying at zero if, for any a > 0,
L(ax)/L(x) → 1 as x ↓ 0. Let us also agree that, for functions f, g : J → (0,∞),
where J is an interval in R, and u0 ∈ J̄ , f(u) ∼ g(u) as u → u0 shall mean that
limu→u0

f(u)/g(u) = 1. Finally, recall that, by writing f(u) ≃ g(u) as u → u0, we
mean that there exist a neighborhood U of u0, and constants c1 > 0 and c2 < ∞,
such that c1g(u) 6 f(u) 6 c2g(u) for u ∈ U . Theorem 8.1 is then complemented
by the following result:

Theorem 8.2. Condition (8.3) is satisfied in the following cases:

(i) When P (X = x∗) > 0.

(ii) When P (X > x) ≃ (x∗ − x)aL(x∗ − x) as x ↑ x∗, with a > 0 and L slowly
varying at zero.

(iii) When − lnP (X > x) ∼ b(x∗ − x)−a as x ↑ x∗, with a, b > 0.

Notice that, in the presence of (8.3),

κ(µ) < ∞ ⇐⇒
∫ x∗

−x∗

− lnP (X > x) dx < ∞.

This gives a criterion for the existence of a threshold for the volume, directly in
terms of the distribution function of µ.

Notice that case (i) is subsumed by (ii) in Theorem 8.2 (take a = 0 and L(x) =
P (X > x∗ − x) for all x > 0). Note also that [DFM 1] is covered by Theorem
8.2 (i), while [DFM 2] is covered by (ii) (take a = 1 and L(x) = 1

2 for all x > 0).
It is perhaps also worth mentioning that case (ii) also covers, for example, the
case where P (X > x∗ − x) behaves like the Cantor function near the origin; in
this case a = log3 2, L ≡ 1. Finally, we note that case (iii) covers the case where
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P (X > x∗ − x) behaves like the distribution function of a positive stable random
variable with index α in (0, 1), near the origin.

Final Remark. After this work was completed, R. Latala [13] showed us an argument
which establishes the following sharp version of Theorem 1.4: if γ > 0 is sufficiently
small, and if n > n0(γ), then

q(~x) > exp(−rn − 1
2 ln(rn) − c(γ))

for every ~x ∈ Λr ∩ γBn
∞ and r in the range 0 < r 6 λ(γ). In view of Theorem 1.3,

this shows that q(~x) is “constant” on ∂(Λr) ∩ γBn
∞.
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