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Abstract

The classical Loomis-Whitney inequality and the uniform cover inequality of Bollobás and Thomason
provide upper bounds for the volume of a compact set in terms of its lower dimensional coordinate
projections. We provide further extensions of these inequalities in the setting of convex bodies. We also
establish the corresponding dual inequalities for coordinate sections; these uniform cover inequalities
for sections may be viewed as extensions of Meyer’s dual Loomis-Whitney inequality.

1 Introduction

The classical Loomis-Whitney inequality [18] compares the volume |K| of a convex body K in Rn with
the geometric mean of the volumes |Pi(K)| of its orthogonal projections onto e⊥i , where {e1, . . . , en} is an
orthonormal basis of Rn. We have

(1.1) |K|n−1 6
n∏
i=1

|Pi(K)|

and equality holds if and only if K is an orthogonal parallelepiped such that ±ei are the normal vectors of
its facets. In this inequality, |Pi(K)| denotes the (n−1)-dimensional volume of Pi(K) (more generally, when
A is a compact convex set in Rn, we write |A| for the volume of A in the appropriate affine subspace aff(A)).
In fact, (1.1) holds true for any compact subset K of Rn.

A dual inequality, in which the projections Pi(K) are replaced by the sections K ∩ e⊥, was obtained by
Meyer in [19]. For every convex body K in Rn one has

(1.2) |K|n−1 >
n!

nn

n∏
i=1

|K ∩ e⊥i |

with equality if and only if K is a linear image T (Bn1 ) of the cross-polytope Bn1 = conv{±e1, . . . ,±en} for
some diagonal (with respect to the given basis) operator T = diag(λ1, . . . , λn), λi > 0. Meyer’s proof of this
inequality is given for an unconditional convex body K, after observing that any Steiner symmetrization of
K increases the right hand side of (1.2).

Both inequalities have been generalized in the following setting: let u1, . . . , um be unit vectors in Rn and
let c1, . . . , cm be positive real numbers such that John’s condition

(1.3) In =

m∑
i=1

ciui ⊗ ui

is satisfied. Then, for every centered convex body K in Rn,

(1.4)
n!

nn

m∏
i=1

|K ∩ u⊥i |ci 6 |K|n−1 6
m∏
i=1

|Pu⊥i (K)|ci .
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The assumption that K is centered, i.e. it has its center of mass at the origin, is of course needed only for
the left hand side inequality. The equality cases are exactly the same with the ones in the Loomis-Whitney
and Meyer inequality respectively. The right hand side inequality in (1.4) was proved by Ball in [3], while
the left hand side inequality was recently proved by Li and Huang in [17]. The geometric Brascamp-Lieb
inequality and its inverse, due to Ball and Barthe (see [4] and [5]), play a crucial role in the proofs of these
more general inequalities.

A considerable extension of the Loomis-Whitney inequality was proved by Bollobás and Thomason in
[8]. In order to state their result, we introduce some notation and terminology. For every non-empty
τ ⊂ [n] := {1, . . . , n} we set Fτ = span{ej : j ∈ τ} and Eτ = F⊥τ . Given s > 1 and σ ⊆ [n] we say that the
(not necessarily distinct) sets σ1, . . . , σr ⊆ σ form an s-uniform cover of σ if every j ∈ σ belongs to exactly
s of the sets σi. The uniform cover inequality of [8] provides a lower bound for the volume of a compact set
in terms of the volumes of its coordinate projections that correspond to a uniform cover of [n].

Theorem 1.1 (Bollobás-Thomason). Let r > 1 and let (σ1, . . . , σr) be an s-uniform cover of [n]. For every
compact subset K of Rn, which is the closure of its interior, we have

(1.5) |K|s 6
r∏
i=1

|PFσi (K)|.

In the first part of this article we obtain some restricted variants of the Loomis-Whitney inequality and
of the uniform cover inequality of Theorem 1.1. Our starting point is the following inequality from [14]: If
i 6= j ∈ {1, . . . , n} and Pij(K) = PEij (K), where Eij = span{ei, ej}⊥ then

(1.6) |Pi(K)| |Pj(K)| > n

2(n− 1)
|K| |Pij(K)|.

This inequality may be viewed as a restricted (or “local”) version of the Loomis-Whitney inequality, in the
sense that it gives a lower estimate for the geometric mean of just two coordinate hyperplane projections of
a convex body. A consequence of (1.6) is the inequality

(1.7)
S(Pu⊥(K))

|Pu⊥(K)|
6

2(n− 1)

n

S(K)

|K|

for every convex body K in Rn and every u ∈ Sn−1, where S(A) is the surface area of A in the appropriate
dimension. This inequality was used in [14] for the study of a question (posed by Dembo, Cover and Thomas
[11]) about the monotonicity of an analogue of the Fisher information on the class of compact convex sets,
and it reappears in [15], where the question to compare the surface area S(K) of a convex body K in Rn to
the average, minimal or maximal surface area of its hyperplane projections is studied.

In Section 3 we revisit (1.6). We adapt the proof of [14, Lemma 4.1] and combine it with the uniform
cover inequality (1.5) of Theorem 1.1 to obtain the next generalization of (1.6).

Theorem 1.2. Let r > s > 1, let σ ⊆ [n] with cardinality |σ| = d < n and let (σ1, . . . , σr) be an s-uniform
cover of σ. For every convex body K in Rn we have

(1.8)

r∏
i=1

|PEσi (K)| > γ(n, d, s, r)|PEσ (K)|s |K|r−s,

where

(1.9) γ(n, d, s, r) =

(
n

d

)r−s(
n− sd

r

n− d

)−r
.
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Note that if the sets σ1, . . . , σr have the same cardinality k, then k = sd
r and the result takes the form

(1.10)

r∏
i=1

|PEσi (K)| >
(
n

d

)r−s(
n− k
n− d

)−r
|PEσ (K)|s |K|r−s.

Our starting point (1.6) corresponds to the special case d = r = 2, k = 1 and s = 1. The case k = 1, d = r
and s = 1 has been recently studied by Soprunov and Zvavitch in [24]; they use a similar argument, based
on [14, Lemma 4.1] and on the classical Loomis-Whitney inequality. They also present an example which
shows that the constant

(1.11) γ(n, r, 1, r) =

(
n

r

)r−1(
n− 1

n− r

)−r
=
(n
r

)r (n
r

)−1
is optimal.

In the second part of this article, starting from Meyer’s inequality (1.2) we study the natural question if
it is possible to have an inequality for sections, which is dual to (1.6). More precisely the question is if, for
every centered convex body K in Rn and every i 6= j ∈ {1, . . . , n},

(1.12) |K ∩ e⊥i | |K ∩ e⊥j | 6 c0|K ∩ Eij | |K|,

where c0 > 0 is an absolute constant. In Section 4 we exploit the main properties of the family of the Lp-
centroid bodies Zp(K) of K to show that this question has an affirmative answer. In a few words, through a
duality argument, the question about coordinate sections of K is translated to a question about coordinate
projections of some projection of a suitable centroid body of K, and then one may use the Loomis-Whitney
inequality (or some extension of it) to complete the proof. Generalizing the method and making full use
of the uniform cover inequality of Bollobás and Thomason, one can prove more general inequalities of this
form, in the spirit of Theorem 1.2.

Theorem 1.3. Let r > s > 1, let σ ⊆ [n] with cardinality |σ| = d < n and let (σ1, . . . , σr) be an s-uniform
cover of σ. Let also di = |σi|. For every centered convex body K in Rn we have

(1.13)

r∏
i=1

|K ∩ Eσi | 6
(c0d)ds

dd11 · · · d
dr
r

|K ∩ Eσ|s|K|r−s,

where c0 > 0 is an absolute constant.

Note that under the assumptions of Theorem 1.3 we have d1 + · · ·+ dr = ds, and hence

dd11 . . . ddrr >

(
ds

r

)ds
by Jensen’s inequality. Therefore, the result may be written in the simpler form

(1.14)

r∏
i=1

|K ∩ Eσi | 6
(c0r
s

)ds
|K ∩ Eσ|s|K|r−s.

This is equivalent to (1.13) if all the sets σi have the same cardinality k = ds
r . Our starting point (1.12)

corresponds to the special case d = r = 2, k = 1 and s = 1. In the more general case d = r, k = 1 and s = 1,
which corresponds to σj = {ij} for some distinct i1, . . . , ir ∈ [n], Theorem 1.3 provides the bound

(1.15)

r∏
j=1

|K ∩ e⊥ij | 6 (c0r)
r |K ∩ [span{ei1 , . . . , eir}]⊥| |K|r−1.
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The constant (c0r)
r is probably non optimal but it depends only on r and not on the dimension n.

In Section 5 we provide an alternative proof of (1.6), with the same constant, using a general inequality
about mixed volumes. Let C = (K3, . . . ,Kn) be an (n− 2)-tuple of compact convex sets in Rn. For any pair
of compact convex sets A,B in Rn we denote the mixed volume V (A,B, C) by V (A,B) (see Section 2 for
basic facts about mixed volumes). Then, for any triple A,B,C of compact convex sets in Rn we have

(1.16) V (A,A)V (B,C) 6 2V (A,B)V (A,C).

In fact, (1.16) is an immediate consequence of one of the main lemmas in [14] and [12]. We observe that
(1.16) leads to a generalization of (1.6), valid for any pair of hyperplane projections defined by two not
necessarily orthogonal unit vectors u and v.

Theorem 1.4. Let K be a convex body in Rn and u, v ∈ Sn−1. If Pu,v(K) = Pspan{u,v}⊥(K), then

(1.17) |Pu(K)| |Pv(K)| > n

2(n− 1)

√
1− 〈u, v〉2 |K| |Pu,v(K)|.

We also discuss a different question, which illustrates the usefulness of (1.16). It has been conjectured
by Hug and Schneider in [16] that for any 1 6 r 6 n and any r-tuple (K1, . . . ,Kr) of convex bodies in Rn
one has

(1.18) V (K1, . . . ,Kr, B
n
2 [n− r]) 6 (n− r)!ωn−r

n!

r∏
i=1

V1(Ki),

where V (A1, . . . , An) is the mixed volume of n compact convex sets Ai, the notation A[m] stands for an
m-tuple A, . . . , A, and

(1.19) ωn−sVs(K) =

(
n

s

)
V (K[s], Bn2 [n− s])

is the s-th intrinsic volume of K (see also [7] for the planar case). Hug and Schneider proved (1.18) under
the assumption that the bodies K1, . . . ,Kr are zonoids. In the case r = 2, Artstein-Avidan, Florentin and
Ostrover have proved in [1] that if K is any convex body and Z is a zonoid in Rn then

(1.20) |Bn2 |V (K,Z,Bn2 [n− 2]) 6
n

n− 1

ωnωn−2
ω2
n−1

V (K,Bn2 [n− 1])V (Z,Bn2 [n− 1]).

By the definition of V1(K) this inequality is the same as the conjectured one (for r = 2).
A discussion of a more general problem is given in [24], where Soprunov and Zvavitch prove that if A is

any convex body in Rn and Z1, . . . , Zr are zonoids then

(1.21) |A|r−1V (Z1, . . . , Zr, A[n− r]) 6 rr−1
r∏
i=1

V (Zi, A[n− 1]),

while for an r-tuple of (arbitrary) convex bodies K1, . . . ,Kr in Rn one has

(1.22) |A|r−1V (K1, . . . ,Kr, A[n− r]) 6 cn,r

r∏
i=1

V (Ki, A[n− 1]),

where cn,r = nrrr−1. Moreover, the constant cn,r can be replaced by c′n,r = nr/2rr−1 if K1, . . . ,Kr are origin
symmetric.

We observe that (1.16) implies a much more general inequality, which confirms the conjectured inequality
(1.18) in the case r = 2, with an absolute (almost optimal) constant and shows that the constant cn,2 in
(1.22) may be replaced by the constant 2.
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Theorem 1.5. Let A be a convex body in Rn. Then, for any pair of convex bodies K1 and K2 in Rn,

(1.23) |A|V (K1,K2, A[n− 2]) 6 2V (K1, A[n− 1])V (K2, A[n− 1]).

Choosing A = Bn2 in Theorem 1.5 we get a variant of (1.18) with constant 2. One can check that
n−1
n < ωnωn−2

ω2
n−1

< 1, and hence the conjectured constant bn,2 := n
n−1

ωnωn−2

ω2
n−1

satisfies

1 < bn,2 <
n

n− 1
.

In other words, the constant in Theorem 1.5 is worse than the conjectured one (only) by a factor 2.
Regarding the constants cn,r and c′n,r in (1.22), from Theorem 1.5 we immediately see that cn,2 6 2

and we also observe that an induction argument leads to a version of the general inequality (1.22) with a
constant cr which depends only on r. It would be interesting to determine the best possible value of this
constant; simple induction gives the very crude estimate cr 6 22

r−1−1.

2 Notation and background information

We work in Rn, which is equipped with a Euclidean structure 〈·, ·〉 and we fix an orthonormal basis
{e1, . . . , en}. We denote by Bn2 and Sn−1 the Euclidean unit ball and sphere in Rn respectively. We
write σ for the normalized rotationally invariant probability measure on Sn−1 and ν for the Haar probability
measure on the orthogonal group O(n). Let Gn,k denote the Grassmannian of all k-dimensional subspaces
of Rn. Then, O(n) equips Gn,k with a Haar probability measure νn,k. The letters c, c′, c1, c2 etc. denote
absolute positive constants which may change from line to line. Whenever we write a ' b, we mean that
there exist absolute constants c1, c2 > 0 such that c1a 6 b 6 c2a.

Let Kn denote the class of all non-empty compact convex subsets of Rn. If K ∈ Kn has non-empty
interior, we will say that K is a convex body. If A ∈ Kn, we will denote by |A| the volume of A in
the appropriate affine subspace unless otherwise stated. The volume of Bn2 is denoted by ωn. We say
that a convex body K in Rn is symmetric if x ∈ K implies that −x ∈ K, and that K is centered if
its center of mass 1

|K|
∫
K
x dx is at the origin. The support function of a convex body K is defined by

hK(y) = max{〈x, y〉 : x ∈ K}, and the mean width of K is

(2.1) w(K) =

∫
Sn−1

hK(θ) dσ(θ).

For any E ∈ Gn,k we denote by E⊥ the orthogonal subspace of E, i.e. E⊥ = {x ∈ Rn : 〈x, y〉 = 0 for all y ∈
E}. In particular, for any u ∈ Sn−1 we define u⊥ = {x ∈ Rn : 〈x, u〉 = 0}. The section of K ∈ Kn with a
subspace E of Rn is K ∩ E, and the orthogonal projection of K onto E is denoted by PE(K).

Mixed volumes are introduced by a classical theorem of Minkowski which describes the way volume
behaves with respect to the operations of addition and multiplication of compact vonvex sets by non-negative
reals: If K1, . . . ,KN ∈ Kn, N ∈ N, then the volume of t1K1 + · · ·+ tNKN is a homogeneous polynomial of
degree n in ti > 0 (see [10] and [23]):

(2.2)
∣∣t1K1 + · · ·+ tNKN

∣∣ =
∑

16i1,...,in6N

V (Ki1 , . . . ,Kin)ti1 . . . tin ,

where the coefficients V (Ki1 , . . . ,Kin) are chosen to be invariant under permutations of their arguments.
The coefficient V (Ki1 , . . . ,Kin) is called the mixed volume of the n-tuple (Ki1 , . . . ,Kin). We will often use
the fact that V is positive linear with respect to each of its arguments and that V (K, . . . ,K) = |K|n (the
n-dimensional Lebesgue measure of K) for all K ∈ Kn.

Steiner’s formula is a special case of Minkowski’s theorem. The volume of K + tBn2 , t > 0, can be
expanded as a polynomial in t:

(2.3) |K + tBn2 | =
n∑
k=0

(
n

k

)
Wk(K)tk,
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where Wk(K) := V (K[n− k], Bn2 [k]) is the k-th quermassintegral of K.
The Aleksandrov-Fenchel inequality states that if K,L,K3, . . . ,Kn ∈ Kn, then

(2.4) V (K,L,K3, . . . ,Kn)2 > V (K,K,K3, . . . ,Kn)V (L,L,K3, . . . ,Kn).

In particular, this implies that the sequence (W0(K), . . . ,Wn(K)) is log-concave. From the Aleksandrov-
Fenchel inequality one can recover the Brunn-Minkowski inequality as well as the following generalization
for the quermassintegrals:

(2.5) Wk(K + L)
1

n−k >Wk(K)
1

n−k +Wk(L)
1

n−k , k = 0, . . . , n− 1.

We write S(K) for the surface area of K. From Steiner’s formula and the definition of surface area we see
that S(K) = nW1(K). Finally, let us mention Kubota’s integral formula

(2.6) Wk(K) =
ωn
ωn−k

∫
Gn,n−k

|PE(K)| dνn,n−k(E), 1 6 k 6 n− 1.

The case k = 1 is Cauchy’s surface area formula

(2.7) S(K) =
ωn

nωn−1

∫
Sn−1

|Pu⊥(K)| dσ(u).

We refer to the books [13] and [23] for basic facts from the Brunn-Minkowski theory and to the book [2] for
basic facts from asymptotic convex geometry. We also refer to [9] for detailed information on the properties
of the family of the Lp-centroid bodies of a convex body.

3 Restricted Loomis-Whitney inequalities

For the proof of Theorem 1.2, we will use the uniform cover inequality (1.5) of Bollobás and Thomason and
the next classical inequality of Berwald [6].

Lemma 3.1. Let A be a convex body in Rm and let φ : A → R+ be a concave function. Then, for every
0 < p < q,

(3.1)

[(
m+ q

m

)
1

|A|

∫
A

|φ(x)|qdx
]1/q

6

[(
m+ p

m

)
1

|A|

∫
A

|φ(x)|pdx
]1/p

.

Proof of Theorem 1.2. Let r > s > 1, let σ ⊆ [n] with cardinality |σ| = d < n and let (σ1, . . . , σr) be an
s-uniform cover of σ. Note that if |σi| = di then

ds = d1 + · · ·+ dr.

For every y ∈ PEσ (K) we define the sets

(3.2) Ki(y) =
{
t ∈ Fσ\σi : y + t ∈ PEσi (K)

}
and

(3.3) K(y) = {t ∈ Fσ : y + t ∈ K}.

Then, Ki(y) is the orthogonal projection of K(y) onto Fσ\σi . Since (σ1, . . . , σr) is an s-uniform cover of σ,
we have that (σ \ σ1, . . . , σ \ σr) is an (r − s)-uniform cover of σ. It follows from (1.5) that

(3.4) |K(y)|r−s 6
r∏
i=1

|Ki(y)|
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for every y ∈ PEσ (K). An application of Hölder’s inequality shows that

r∏
i=1

|PEσi (K)| =
r∏
i=1

∫
PEσ (K)

|Ki(y)|dy >

(∫
PEσ (K)

(|K1(y)| · · · |Kr(y)|)1/rdy

)r
(3.5)

>

(∫
PEσ (K)

|K(y)|
r−s
r dy

)r
.

By the Brunn-Minkowski inequality, the function φ : PEσ (K) → R defined by φ(y) = |K(y)|1/d is concave,
and

|K(y)|
r−s
r = φ(y)

(r−s)d
r = φ(y)d−

d1+···+dr
r .

Note that

(3.6)

∫
PEσ (K)

φ(y)d dy =

∫
PEσ (K)

|K(y)| dy = |K|.

Applying Lemma 3.1 with A = PEσ (K), m = n− d, p = (r−s)d
r and q = d, we get[(

n− d+ (r−s)d
r

n− d

)
1

|PEσ (K)|

∫
PEσ (K)

|K(y)|
r−s
r dy

]r
=

[(
n− sd

r

n− d

)
1

|PEσ (K)|

∫
PEσ (K)

φ(y)
(r−s)d
r dy

]r
(3.7)

>

[(
n

d

)
1

|PEσ (K)|

∫
PEσ (K)

φ(y)d dy

]r−s

=

[(
n

d

)
1

|PEσ (K)|
|K|
]r−s

.

It follows that

(3.8)

(∫
PEσ (K)

|K(y)|
r−s
r dy

)r
>

(
n

d

)r−s(
n− sd

r

n− d

)−r
|PEσ (K)|s |K|r−s,

and the result follows from (3.5). 2

Remark 3.2. If the sets σ1, . . . , σr have the same cardinality k then k = sd
r and the result takes the form

(3.9)
r∏
i=1

|PEσi (K)| >
(
n

d

)r−s(
n− k
n− d

)−r
|PEσ (K)|s |K|r−s.

In order to get a feeling of the estimates, let us consider the case of two orthogonal coordinate subspaces
F1, F2 ∈ Gn,k, where k < n/2. Then, r = 2, s = 1 and d = 2k. Therefore,

(3.10) γ(n, 2k, 1, 2) =

(
n

2k

)(
n− k
k

)−2
> ck1

for some absolute constant c1 > 0. So, we get:

Corollary 3.3. Let k < n/2 and let F1, F2 ∈ Gn,k be two orthogonal coordinate subspaces. For every convex
body K in Rn we have

(3.11) |PF⊥1 ∩F⊥2 (K)| |K| 6 ck|PF⊥1 (K)||PF⊥2 (K)|,

where c > 0 is an absolute constant.
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4 Restricted dual Loomis-Whitney inequalities

Let K be a centered convex body of volume 1 in Rn. Recall that, for every p > 1, the Lp-centroid body
Zp(K) of K is the symmetric convex body with support function

(4.1) hZp(K)(y) = ‖〈·, y〉‖Lp(K) =

(∫
K

|〈x, y〉|pdx
)1/p

.

The Lp-centroid bodies of a convex body were introduced by Lutwak and Zhang. Their systematic study
from an asymptotic point of view started with the works of Paouris [20] and [21]. In particular, the inequality
(4.3) below, which is essential for our argument, comes from [21]. We will use the next basic facts about the
family {Zp(K)}p>1; see [9, Chapter 5] for the proofs.

Lemma 4.1 (Lp-centroid bodies). There exist absolute constants ci > 0 such that, for every centered convex
body K of volume 1 in Rn, for every 1 6 k 6 n− 1, q > p > 1 and F ∈ Gn,k, we have

(4.2) Zq(K) ⊆ c1q

p
Zp(K)

and

(4.3) c2 6 |K ∩ F⊥| 1k |PF (Zk(K))| 1k 6 c3.

Moreover, if p > n then we have that

(4.4) Zp(K) ⊇ c4Z∞(K),

where Z∞(K) = conv{K,−K}.

Besides (4.2) and (4.3) we will need the following: For every centered convex body K of volume 1 in Rn,
for every p > 1 and every u ∈ Sn−1.

(4.5) c5hZp(K)(u) 6
1

|K ∩ u⊥|
6 c6phZp(K)(u),

where c5, c6 > 0 are absolute constants.

We start with the proof of (1.6). This is a simple case of the general inequality of Theorem 1.3, which
illustrates the main ideas behind its proof.

Theorem 4.2. Let K be a centered convex body in Rn and let u, v be orthogonal unit vectors in Rn. If
Euv = [span{u, v}]⊥ then

(4.6) |K ∩ u⊥| |K ∩ v⊥| 6 c|K ∩ Euv| |K|,

where c > 0 is an absolute constant.

Proof. By homogeneity we may assume that |K| = 1. Using (4.3) with F = E⊥uv = span{u, v} we see that

(4.7) |K ∩ Euv| >
c7

|PF (Z2(K))|
.

From (4.4) we have

(4.8) |K ∩ u⊥| |K ∩ v⊥| 6 c8 [hZ1(K)(u)hZ1(K)(v)]−1.

From (4.2) we also have

(4.9) hZ1(K)(u) > c10hZ2(K)(u) = c10hPF (Z2(K))(u) and hZ1(K)(v) > c10hZ2(K)(v) = c10hPF (Z2(K))(v),
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where the two equalities hold because u, v ∈ F . If we consider the two-dimensional origin symmetric ellipsoid
C = PF (Z2(K)) it is clear (by the Loomis-Whitney inequality in the plane) that

(4.10) |C| 6 4hC(u)hC(v),

and this shows that

c7|K ∩ Euv|−1 6 |PF (Z2(K))| 6 4hPF (Z2(K))(u)hPF (Z2(K))(v) 6 4c−210 hZ1(K)(u)hZ1(K)(v)(4.11)

6 4c8c
−2
10

(
|K ∩ u⊥| |K ∩ v⊥|

)−1
.

This completes the proof.

Proof of Theorem 1.3. Let r > s > 1, let σ ⊆ [n] with cardinality |σ| = d < n and let (σ1, . . . , σr) be an
s-uniform cover of σ. Note that if |σi| = di then ds = d1 + · · ·+ dr.

By homogeneity we may assume that |K| = 1. Starting from (4.3) we may write

(4.12) c2 6 |K ∩ Eσi |
1
di |PFσi (Zdi(K))|

1
di 6 c3

for all i, and hence,

(4.13)

r∏
i=1

|K ∩ Eσi | 6 cd1+···+dr3

r∏
i=1

|PFσi (Zdi(K))|−1 = cds3

r∏
i=1

|PFσi (Zdi(K))|−1,

so we need a lower bound for the product

(4.14)

r∏
i=1

|PFσi (Zdi(K))|.

From (4.2) we have

(4.15) Zd(K) ⊆ c1d

di
Zdi(K)

for all i = 1, . . . , r, which gives

(4.16)

r∏
i=1

|PFσi (Zd(K))| 6
r∏
i=1

(
c1d

di

)di r∏
i=1

|PFσi (Zdi(K))| = (c1d)ds

dd11 · · · d
dr
r

r∏
i=1

|PFσi (Zdi(K))|.

Now, since (σ1, . . . , σr) is an s-uniform cover of σ, applying the uniform cover inequality of Bollobás and
Thomason to the convex body PFσ (Zd(K)) we get

(4.17) |PFσ (Zd(K))|s 6
r∏
i=1

|PFσi (Zd(K))|.

Next, using again (4.3), we see that

(4.18) |PFσ (Zd(K))|s > cds2 |K ∩ Eσ|−s.

Combining the above, we have

(4.19)

r∏
i=1

|K ∩ Eσi | 6
(c1c3d)ds

dd11 · · · d
dr
r

|PFσ (Zd(K))|−s 6 (c0d)ds

dd11 · · · d
dr
r

|K ∩ Eσ|s,

where c0 = c1c3/c2, and the result follows. 2

In order to get a feeling of the estimates, let us consider the case of two orthogonal coordinate subspaces
F1, F2 ∈ Gn,k, where k < n/2. Then, r = 2, s = 1 and d = 2k. Therefore, we get:

9



Corollary 4.3. Let k < n/2 and let F1, F2 ∈ Gn,k be two orthogonal coordinate subspaces. For every
centered convex body K in Rn we have

(4.20) |K ∩ F⊥1 | |K ∩ F⊥2 | 6 ck|K ∩ F⊥1 ∩ F⊥2 | |K|,

where c > 0 is an absolute constant.

5 Inequalities about mixed volumes

In this last section we prove Theorem 1.4 and we discuss the conjecture of Hug and Schneider in the case
r = 2; we provide an affirmative answer, up to a factor 2, in greater generality. The main source of our
results is the next lemma which is an almost immediate consequence of a lemma from [12] (a variant of it
had been earlier proved in [14]). We reproduce a sketch of its proof for completeness.

Lemma 5.1. Let C = (K3, . . . ,Kn) be an (n− 2)-tuple of Kj ∈ Kn. If A,B ∈ Kn, we denote V (A,B, C) by
V (A,B). Then, for all A,B,C ∈ Kn we have

(5.1) V (A,A)V (B,C) 6 2V (A,B)V (A,C).

Proof. By the Aleksandrov-Fenchel inequality, for all t, s > 0 we have

(5.2) V (B + tA,C + sA)2 − V (B + tA,B + tA)V (C + sA,C + sA) > 0

and

(5.3) V (sB + tC,A)2 − V (sB + tC, sB + tC)V (A,A) > 0.

Using the linearity of mixed volumes, from the first inequality we arrive at

0 6 g(t, s) + t2
(
V (C,A)2 − V (A,A)V (C,C)

)
+ s2

(
V (B,A)2 − V (A,A)V (B,B)

)
(5.4)

+ 2ts (V (B,C)V (A,A)− V (B,A)V (C,A)) ,

where g is a linear function of t and s. It follows that the quadratic term is non-negative and hence, either
V (B,C)V (A,A) > V (B,A)V (C,A) or its discriminant

(5.5) (V (B,A)V (C,A)− V (B,C)V (A,A))
2 − [V (B,A)2 − V (A,A)V (B,B)] [V (C,A)2 − V (A,A)V (C,C)]

is non-positive. Working in the same way with the second inequality, we arrive at

0 6 t2(V (C,A)2 − V (A,A)V (C,C)) + s2(V (B,A)2 − V (A,A)V (B,B))(5.6)

+ 2ts(V (B,A)V (C,A)− V (B,C)V (A,A)).

This shows that if V (B,C)V (A,A) > V (B,A)V (C,A) then the discriminant of this second quadratic form
(which is the same as before) is non-positive. It follows that, in both cases,

(V (B,A)V (C,A)− V (B,C)V (A,A))
2 6 [V (B,A)2 − V (A,A)V (B,B)] [V (C,A)2 − V (A,A)V (C,C)]

(5.7)

6 V (B,A)2V (C,A)2.

Therefore,

(5.8) |V (B,A)V (C,A)− V (B,C)V (A,A)| 6 V (B,A)V (C,A),

and the lemma immediately follows.
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We start with the proof of Theorem 1.4. For any u ∈ Sn−1 we write Lu for the line segment [0, u].
Computing the volume of K + tLu we see that

(5.9) nV (K[n− 1], Lu) = |PE(K)|

for every K ∈ Kn, where E = u⊥. Linearity of mixed volumes shows that

(5.10) nV (K1, . . . ,Kn−1, Lu) = VE(PE(K1), . . . , PE(Kn−1))

for all K1, . . . ,Kn−1 ∈ Kn, where VE denotes mixed volume in E. The next more general fact is due to
Fedotov (see [10]).

Lemma 5.2. Let E ∈ Gn,k and L1, . . . , Ln−k be compact convex subsets of E⊥. If K1, . . . ,Kk ∈ Kn, then

(5.11)

(
n

k

)
V (K1, . . . ,Kk, L1, . . . , Ln−k) = VE(PE(K1), . . . , PE(Kk))VE⊥(L1, . . . , Ln−k),

where VE , VE⊥ denote mixed volumes on E,E⊥ respectively.

Proof of Theorem 1.4. We apply Lemma 5.1 with C = (K, . . . ,K), A = K, B = Lu = [0, u] and
C = Lv = [0, v]. We have

(5.12) V (Lu, Lv)V (K,K) 6 2V (K,Lu)V (K,Lv).

Next, applying Lemma 5.2 with C = (K, . . . ,K), L1 = [0, u], L2 = [0, v] and E = span{es : s 6= i, j}, and
observing that VE⊥(Lu, Lv) = 1

2

√
1− 〈u, v〉2, we see that

(5.13) V (Lu, Lv) = V (K, . . . ,K, Lu, Lv) =
1

2

√
1− 〈u, v〉2

(
n

2

)−1
|Pu,v(K)|.

Taking into account (5.10) and the fact that V (K,K) = |K| we conclude that

(5.14)
1

n(n− 1)

√
1− 〈u, v〉2|Pu,v(K)| |K| 6 2

n2
|Pu(K)| |Pv(K)|,

and the result follows. 2

Remark 5.3. Applying Lemma 5.1 with C = (Bn2 , . . . , B
n
2 ), A = Bn2 , B = K1 and C = K2 we immediately

see that for any pair of convex bodies K1,K2 in Rn we have

(5.15) V (Bn2 , B
n
2 , C)V (K1,K2, C) 6 2V (K1, B

n
2 , C)V (K2, B

n
2 , C),

or equivalently,

(5.16) |Bn2 |V (K1,K2, B
n
2 [n− 2]) 6 2V (K,Bn2 [n− 1])V (K2, B

n
2 [n− 1]).

It was mentioned in the introduction that this confirms the case r = 2 of a conjecture of Hug and Schneider,
up to a factor 2. Recall that

(5.17) V (Ki, B
n
2 [n− 1]) = ωn

∫
Sn−1

hKi(u) dσ(u)

for i = 1, 2 and that (see e.g. [23])

(5.18) V (K1,K2, B
n
2 [n− 2]) = ωn

∫
Sn−1

hK1(u)

(
hK2(u) +

1

n− 1
∆ShK2

(u)

)
dσ(u)

where ∆S is the spherical Laplace operator on Sn−1, therefore (5.16) implies that for any pair of support
functions we have

(5.19)

∫
Sn−1

hK1
(u)

(
hK2

(u) +
1

n− 1
∆ShK2

(u)

)
dσ(u) 6 2

∫
Sn−1

hK1
(u) dσ(u)

∫
Sn−1

hK2
(u) dσ(u).
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Remark 5.4. The next result of Soprunov and Zvavitch (see [24, Theorem 5.7]) was mentioned in the
introduction. Let A be any convex body in Rn and let (K1, . . . ,Kr) be any r-tuple of convex bodies in Rn.
Then,

(5.20) |A|r−1V (K1, . . . ,Kr, A[n− r]) 6 cn,r

r∏
i=1

V (Ki, A[n− 1]),

for some constant cn,r 6 nrrr−1. Moreover, if K1, . . . ,Kr are origin symmetric one can have the same
inequality with a constant c′n,r 6 nr/2rr−1. Applying (1.16) with C = (A, . . . , A) and B = K1, C = K2 we
immediately see that if r = 2 then we get (5.20) in the form

(5.21) |A|V (K1,K2, A[n− 2]) 6 2

2∏
i=1

V (Ki, A[n− 1]).

This is exactly the statement of Theorem 1.5. A simple inductive argument shows that if r = 3 then one
can get (5.20) in the form

(5.22) |A|2 V (K1,K2,K3, A[n− 3]) 6 8

3∏
i=1

V (Ki, A[n− 1]).

More generally, for every r > 2 there exists cr > 0 (depending only on r) such that, for any n > r and any
r-tuple (K1, . . . ,Kr) of convex bodies in Rn,

(5.23) |A|r−1V (K1, . . . ,Kr, A[n− r]) 6 cr

r∏
i=1

V (Ki, A[n− 1]).

Induction shows that (5.23) holds true with cr 6 22
r−1−1.

Let us finally mention that Soprunov and Zvavitch have observed in [24] that if A = ∆ is an n-dimensional
simplex then (5.23) holds true with constant 1, and they conjecture that if a convex body A in Rn satisfies
(5.23) with constant 1 for all r and all K1, . . . ,Kr ∈ Kn then A must be an n-dimensional simplex. In [22]
this conjecture is confirmed under the additional hypothesis that A is a polytope.
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