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Abstract

The purpose of this article is to compare some classical positions of
convex bodies. We provide exact quantitative results which show that the
minimal surface area position and the minimal mean width position are not
necessarilyM -positions. We also construct examples of unconditional convex
bodies of minimal surface area that exhibit the worst possible behavior with
respect to their mean width or their minimal hyperplane projection.

1 Introduction

The following theorem of Milman ([15], see also [16]) establishes the existence of
“M -ellipsoids” associated to any convex body: There exists an absolute constant
C > 0 such that for every convex body K in Rn with center of mass at the origin,
there exists an origin symmetric ellipsoid EK such that |K| = |EK | and for every

convex body T in Rn one has 1
C

∣∣EK + T
∣∣1/n 6

∣∣K + T
∣∣1/n 6 C

∣∣EK + T
∣∣1/n and

1
C |E

◦
K + T |1/n 6 |K◦ + T |1/n 6 C|E◦K + T |1/n, where A◦ is the polar body of A.
Interchanging the roles of K and EK , let us assume that |K| = 1 and the

previous statement is satisfied by EK = Dn, the Euclidean ball of volume 1 in
Rn. This is always possible if we apply a linear transformation to K. Then, setting
T = Dn we get |K+Dn|1/n 6 2C. In other words, there exists an absolute constant
β > 0 such that every convex body K in Rn with center of mass at the origin has
a linear image K̃ with |K̃| = 1 which satisfies

(1.1) |K̃ +Dn|1/n 6 β.

We say that a convex body K in Rn which has volume 1, center of mass at the origin
and satisfies (1.1) is in M -position with constant β. If K1 and K2 are two such con-
vex bodies, then it is easily checked that |K1 +K2|1/n 6 C(β)

(
|K1|1/n + |K2|1/n

)
and |K◦1 +K◦2 |1/n 6 C(β)

(
|K◦1 |1/n + |K◦2 |1/n

)
, where C(β) is a constant depending

only on β. This statement is the reverse Brunn-Minkowski inequality.
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Recall the definition of the covering number N(A,B) of two convex bodies A
and B: this is the least integer N for which there exist N translates of B whose
union covers A. It is quite easy to check that |A + B| 6 N(A,B)|2B| and if B
is symmetric, |A + B/2| > N(A,B)|B/2|. Pisier (see [20, Chapter 7]) has given
a different approach to Milman’s theorem, which provides a special M -position of
any convex body K with regularity estimates on the covering numbers N(K, tBn2 ).
The precise statement is as follows: For every α ∈ (0, 2) and every convex body K
in Rn, there exists an affine image K̃ of K which satisfies |K̃| = |Bn2 | and

(1.2) max{N(K̃, tBn2 ), N(Bn2 , tK̃), N(K̃◦, tBn2 ), N(Bn2 , tK̃
◦)} 6 exp

(
c(α)n

tα

)
for every t > 1, where c(α) is a constant depending only on α, with c(α) = O

(
1

2−α )

as α→ 2. We then say that K̃ is inM -position of order α (or α-regularM -position).

The purpose of this article is to compare some classical positions of a convex
body with the M -position. A first example is the minimal surface area position.
We say that K has minimal surface area if the surface area ∂(K) of K is minimal
among those of its affine images of the same volume. Petty [19] (see also [11]) gave
a characterization of the minimal surface area position: K has minimal surface
area if and only if the surface area measure σK of K is isotropic. In [8] similar
characterizations were investigated for the extremal positions which correspond to
other quermassintegrals. For example, it was proved that K has minimal mean
width if and only if the measure νK with density hK (where hK is the support
function of K) with respect to the rotationally invariant probability measure σ on
Sn−1 is isotropic. See Section 2 for notation and background information.

The question whether minimal surface area position is an M -position was posed
in [8] and was recently answered in the negative by the third named author in [21].
We provide an alternative proof of this result in Section 4.

Theorem 1.1. There exists an absolute constant c > 0 such that, for every n ∈ N
there exists an unconditional convex body K of volume 1 in Rn which is in minimal
surface area position and

(1.3) |K +Dn|1/n > c 8
√
n.

We also show that, up to the value of the isotropic constant LK of K (see §3
for background information) the exponent 1/8 in Theorem 1.1 is optimal in the
symmetric case.

Theorem 1.2. Let K be a symmetric convex body of volume 1 in Rn which has
minimal surface area. Then,

(1.4) |K +Dn|1/n 6 C 8
√
nLK ,

where C > 0 is an absolute constant.
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We believe that the method which is presented in this article gives a natural
explanation for this situation. Our example is the minimal surface position of the
product of two convex bodies of volume 1; both of them have minimal surface area
but of different order with respect to the dimension. In Section 3 we explain the
main idea which, in the setting of the standard isotropic position, has its origin in
a work of Bourgain, Klartag and Milman [4]. Using the same method, in Section 5
we show that the minimal mean width position is not an M -position.

Theorem 1.3. There exists an absolute constant c > 0 such that, for every n ∈ N
there exists an unconditional convex body K of volume 1 in Rn which is in minimal
mean width position and

(1.5) |K +Dn|1/n > c 8
√

log n.

We discuss two more questions about the geometry of convex bodies with min-
imal surface area. The first one concerns their hyperplane projections. K. Ball [2]
has proved that every convex body K has an affine image K̃ of volume 1 such that
for every unit vector θ,

(1.6) |Pθ⊥(K̃)| > 1.

In this result, K̃ is chosen so that the ellipsoid of minimal volume containing the
polar projection body Π∗(K̃) is a Euclidean ball. It was proved in [11] that if K
has minimal surface area and volume 1 then, with probability greater than 1− 2−n

a hyperplane projection of K has volume greater than c, where c > 0 is an absolute
constant. Actually, the statement is stronger as it depends on the value of the
surface area of K; see Section 6 for details. In [11] it was asked if |Pθ⊥(K)| > c
holds true for every θ ∈ Sn−1 in the minimal surface area position. We provide an
optimal negative answer to this question.

Theorem 1.4. There exists an unconditional convex body K of volume 1 in Rn
which has minimal surface area and satisfies

(1.7) min
θ∈Sn−1

|Pθ⊥(K)| 6 C√
n
,

where C > 0 is an absolute constant.

In Section 7 we give an upper bound for the mean width of a symmetric convex
body which has minimal surface area.

Theorem 1.5. Let K be a symmetric convex body of volume 1 in Rn which has
minimal surface area. Then,

(1.8) w(K) 6 C
n3/2

∂K
,

where ∂K is the (minimal) surface area of K and C > 0 is an absolute constant.
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Since ∂K > ∂Dn > c
√
n, an immediate consequence of Theorem 1.5 is the

general upper bound w(K) 6 Cn. We don’t know what is the optimal upper
bound for w(K) in the minimal surface area position. Nevertheless, in Section 7 we
provide an example of an unconditional convex body K of volume 1 in Rn which
has minimal surface area and mean width w(K) > cn/ log n, where c > 0 is an
absolute constant. In other words, Theorem 1.5 is almost optimal.

In Section 7, we also give the upper bound |K + Dn|1/n 6 c 4
√
n in the case of

a symmetric convex body of volume 1 with minimal surface area: the exponent is
worse than the one in Theorem 1.2, but we avoid the appearance of the isotropic
constant LK .

Finally, in Section 8 we show that John’s position is also not an M -position.
More precisely, we prove that there exists an unconditional convex body K in Rn
which is in the “normalized John’s position”, such that |K +Dn|1/n > c 8

√
n, where

c > 0 is an absolute constant.

Acknowledgment. We would like to thank Apostolos Giannopoulos for many
interesting discussions. The second named author wishes to thank the US National
Science Foundation for support through the grant DMS-0906150.

2 Classical positions and isotropic measures on
the sphere

We work in Rn, which is equipped with a Euclidean structure 〈·, ·〉. We denote by
‖ · ‖2 the corresponding Euclidean norm, and write Bn2 for the Euclidean unit ball,
Dn for the Euclidean ball of volume 1 and Sn−1 for the unit sphere. Volume is
denoted by |·|. We write ωn for the volume of Bn2 and σ for the rotationally invariant
probability measure on Sn−1. The Grassmann manifold Gn,k of k-dimensional
subspaces of Rn is equipped with the Haar probability measure µn,k. Let k 6 n
and F ∈ Gn,k. We will denote by PF the orthogonal projection from Rn onto F .
We also define BF := Bn2 ∩ F and SF := Sn−1 ∩ F .

The letters c, c′, c1, c2 etc. denote absolute positive constants which may change
from line to line. Whenever we write a ' b, we mean that there exist absolute
constants c1, c2 > 0 such that c1a 6 b 6 c2a. Also, if K,L ⊆ Rn we will write
K ' L if there exist absolute constants c1, c2 > 0 such that c1K ⊆ L ⊆ c2K.

We refer to the books [6] and [22] for basic facts from the Brunn–Minkowski
theory and to the books [18] and [20] for basic facts from the local theory of normed
spaces. We also refer to [17] and [7] for more information on isotropic convex bodies.

A convex body in Rn is a compact convex subset K of Rn with non-empty
interior. We say that K is symmetric if x ∈ K implies that −x ∈ K. We say that
K is centered if it has center of mass at the origin, i.e.

∫
K
〈x, θ〉 dx = 0 for every

θ ∈ Sn−1. Fix an orthonormal basis {e1, . . . , en} in Rn. In this paper, we will say
that a symmetric convex body K in Rn is unconditional if {e1, . . . , en} of Rn is a
1-unconditional basis for the norm ‖ · ‖K induced to Rn by K: this means that
for every choice of real numbers t1, . . . , tn and every choice of signs εj = ±1 we
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have
∥∥ε1t1e1 + · · · + εntnen

∥∥
K

=
∥∥t1e1 + · · · + tnen

∥∥
K

. We will say that K is 1-
symmetric if for every choice of real numbers t1, . . . , tn, for every permutation σ of
{1, . . . , n} and every choice of signs εj = ±1 we have

∥∥ε1tσ(1)e1+· · ·+εntσ(n)en
∥∥
K

=∥∥t1e1 + · · ·+ tnen
∥∥
K

.
The support function of a convex body K is defined by

(2.1) hK(y) = max{〈x, y〉 : x ∈ K},

and the mean width of K is

(2.2) w(K) =

∫
Sn−1

hK(θ)dσ(θ).

The radius of K is the quantity R(K) = max{‖x‖2 : x ∈ K} and, if the origin is
an interior point of K, we write r(K) for the inradius of K (the largest r > 0 for
which rBn2 ⊆ K) and we define the polar body K◦ of K by

(2.3) K◦ := {y ∈ Rn : 〈x, y〉 6 1 for all x ∈ K}.

A Borel measure µ on Sn−1 is called isotropic if

(2.4)

∫
Sn−1

〈x, θ〉2dµ(x) =
µ(Sn−1)

n

for every θ ∈ Sn−1. We will make frequent use of the next standard Lemma.

Lemma 2.1. Let µ be a Borel measure on Sn−1. The following are equivalent:

(i) µ is isotropic.

(ii) For every i, j = 1, . . . , n,

(2.5)

∫
Sn−1

φiφjdµ(φ) =
µ(Sn−1)

n
δi,j .

(iii) For every linear transformation T : Rn → Rn,

(2.6)

∫
Sn−1

〈φ, Tφ〉dµ(φ) =
tr(T )

n
µ(Sn−1).

Proof. Setting θ = ei and θ =
ei+ej√

2
in (2.4) we get (2.5). On observing that if

T = (tij)
n
i,j=1 then 〈φ, Tφ〉 =

∑n
i,j=1 tijφiφj , we readily see that (2.5) implies (2.6).

Finally, note that applying (2.6) with T (φ) = 〈φ, θ〉θ we get (2.4). 2

Next, we introduce the classical positions that we are going to discuss; we set
the notation and provide some background information.

§1. Minimal surface area position. The surface measure of a convex body K
is the Borel measure σK on Sn−1 which is defined by

(2.7) σK(A) = ν({x ∈ bd(K) : uK(x) ∈ A}),
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where uK(x) is the outer unit normal vector to K at x, and ν is the (n − 1)-
dimensional Lebesgue measure on bd(K). The surface area of K is equal to ∂(K) =
σK(Sn−1). We say that a convex body K of volume 1 has minimal surface area if
∂(K) 6 ∂(TK) for every T ∈ SL(n). Petty ([19], see also [11]) gave the following
characterization of the minimal surface area position: a convex body K of volume
1 in Rn has minimal surface area if and only if σK is isotropic. Equivalently, if

(2.8) ∂(K) = n

∫
Sn−1

〈u, θ〉2σK(du)

for every θ ∈ Sn−1. Moreover, this position is uniquely determined up to orthogonal
transformations. For a convex body K of volume 1, we define the minimal surface
area parameter ∂K of K by

(2.9) ∂K = min{∂(TK) : T ∈ SL(n)}.

We also set

(2.10) ∂(n) = max
|K|=1

∂K and ∂(n) = min
|K|=1

∂K .

The isoperimetric inequality shows that ∂(n) = ∂(Dn) = nω
1/n
n '

√
n. A sharp

upper bound for ∂(n) was given by K. Ball in [1]. The extremal bodies are the cube
Cn in the symmetric case and the regular simplex Sn in the general case. Since
∂Cn = 2n and ∂Sn ' n, we see that ∂(n) ' n.

§2. Minimal mean width position. Let K be a centered convex body of volume
1 in Rn. We say that K is in minimal mean width position if w(K) 6 w(TK) for
every T ∈ SL(n). It was proved in [8] that K has minimal mean width if and only
if

(2.11) w(K) = n

∫
Sn−1

〈u, θ〉2hK(u)σ(du)

for every θ ∈ Sn−1. Equivalently, K has minimal mean width if and only if the
measure νK on Sn−1 which has density hK with respect to σ is isotropic. Moreover,
this minimal mean width position is uniquely determined up to orthogonal trans-
formations. For every centered convex body K of volume 1 we define the minimal
mean width parameter wK of K by

(2.12) wK = min{w(TK) : T ∈ SL(n)}.

We also set

(2.13) w(n) = max
|K|=1

wK and w(n) = min
|K|=1

wK .

Urysohn’s inequality states that among all convex bodies which have volume 1, the

Euclidean ballDn has the smallest mean width: it follows that w(n) = ω
−1/n
n '

√
n.
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It is also known that every centered convex body K has a linear image K̃ of volume
1 with w(K̃) 6 c2

√
n log n, where c2 > 0 is an absolute constant. This follows

from work of Lewis, Figiel-Tomczak-Jaegermann and Pisier (see [20] and [9] for
references). Since wK '

√
n log n when K = B

n

1 is the normalized `n1 -ball, we have

(2.14) c3
√
n log n 6 w(n) 6 c2

√
n log n.

3 Isotropic position and the main idea

The main idea behind the construction of our examples has its origin in the work
[4] of Bourgain, Klartag and Milman about the classical isotropic position. We first
recall some basic facts. If K is a centered convex body in Rn with center of mass
at the origin, then there exists an ellipsoid EL(K) which satisfies

(3.1)

∫
EL(K)

〈x, y〉2dx =

∫
K

〈x, y〉2dx

for all y ∈ Rn; in other words, EL(K) has the same moments of inertia as K
(EL(K) is the Legendre ellipsoid of K). We say that K is in isotropic position if
|K| = 1 and EL(K) is a multiple of Bn2 . This means that there exists a constant
LK > 0 with the property

(3.2)

∫
K

〈x, θ〉2dx = L2
K

for all θ ∈ Sn−1. Every convex body K has an isotropic position, which is uniquely
determined up to orthogonal transformations. Therefore, the isotropic constant
LK of K is uniquely determined for the class {T (K) : T ∈ GL(n)}. The isotropic
position of K is characterized as an extremal position in the following sense: K is
isotropic if and only if

(3.3)

∫
K

‖x‖22dx 6
∫
T (K)

‖x‖22dx

for every T ∈ SL(n). It is easily checked that LK > LDn > c > 0 for every convex
body K in Rn, where c > 0 is an absolute constant. The question whether there
exists an absolute constant C > 0 such that LK 6 C for every centered convex
body K is open. Bourgain [3] proved that LK 6 c 4

√
n log n for every symmetric

convex body K in Rn. The best known general estimate is currently LK 6 c 4
√
n;

this was proved by Klartag [13] – see also [14].
If we define L(n) = max

K
LK and L(n) = min

K
LK = LDn , then the question is

whether

(3.4) L(n) 6 CL(n)

for some absolute constant C > 0. An equivalent question is if the quantity

(3.5) I(n) = max
|K|=1

min
T∈SL(n)

∫
TK

‖x‖22dx
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is bounded by Cn, where C > 0 is an absolute constant. Our starting point is the
following observation about the isotropic position (see [4], also [7]).

Lemma 3.1. Let K and T be two isotropic convex bodies in Rn and Rm respectively.
Then, W := (LT /LK)

m
n+mK×(LK/LT )

n
n+mT is an isotropic convex body in Rn+m,

and

(3.6) LK×T = L
n

n+m

K L
m

n+m

T .

Using this fact one can obtain some information on the question if the isotropic
position is an M -position. The next lemma contains a useful observation which
will be used several times in the sequel.

Lemma 3.2. Let W be a convex body of volume 1 in R2n. For any n-dimensional
subspace F of R2n one has

(3.7) |W +D2n|
1
2n ≥ c|PF (W )| 1

2n ,

where c > 0 is an absolute constant.

Proof. Since N(W,D2n) 6 22n|W +D2n| and N(PF (W ), PF (D2n)) 6 N(W,D2n),
we may write

|W +D2n|
1
2n > 1

2 [N(W,D2n]
1
2n > 1

2 [N(PF (W ), PF (D2n))]
1
2n

> 1
2

(
|PF (W )|
|PF (D2n)|

) 1
2n

> c|PF (W )| 1
2n ,

because |PF (D2n)| 1
2n ' 1. 2

Proposition 3.3. Let K and T be isotropic convex bodies in Rn with LK = L(n)
and LT = L(n). Consider the isotropic convex body W = aK × bT in R2n, where

a =
√

LT
LK

and b =
√

LK
LT

. Then,

(3.8) |W +D2n|
1
2n > c

(
L(n)

L(n)

) 1
4

.

Proof. Let E be the subspace spanned by the first n standard unit vectors in R2n

and let F = E⊥. Then, PF (W ) = bT and Lemma 3.2 shows that

(3.9) |W +D2n|
1
2n > c

√
b = c

(
LK
LT

) 1
4

.

Since LK = L(n) and LT = L(n), the result follows. 2

Proposition 3.3 shows that if there exists a constant βn > 0 such that every
isotropic convex body K in Rn is in M -position with constant βn in the sense of
(1.1), then

(3.10) L(n)/L(n) 6 Cβ4
n.
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Therefore, if the ratio L(n)/L(n) is not bounded, βn cannot be bounded too (and
hence, the isotropic position is not an M -position). We will use this construction to
show that the minimal surface area position and the minimal mean width position
are not M -positions uniformly in the dimension.

4 Minimal surface area position

We know that ∂(n) = max
|K|=1

∂K ' n and ∂(n) = min
|K|=1

∂K '
√
n. In other words,

(4.1) ∂(n) > c
√
n∂(n),

where c > 0 is an absolute constant. The next lemma will allow us to describe
the minimal surface area position of the product of two convex bodies of minimal
surface area in a case which is enough for our general construction.

Lemma 4.1. Let P be a polytope of volume 1 in Rn. Let F1, . . . , FN be the facets of
P and let u1, . . . , uN be corresponding normal vectors. Let a, b > 0 with anbm = 1
and define Q := aP × bCm, where Cm =

[
− 1

2 ,
1
2

]m
is the unit cube in Rm. Then,

(i) Q has N + 2m facets, G1, . . . , GN+2m, with corresponding normals vi = ui if
1 6 i 6 N , vN+i = en+i and vN+m+i = −en+i if 1 6 i 6 m.

(ii) |Gi| = |Fi|
a if 1 6 i 6 N and |Gi| = 1

b if N + 1 6 i 6 N + 2m.

(iii) The surface area of Q is given by

(4.2) ∂(Q) =
∂(P )

a
+

2m

b
.

Proof. For each k = 1, . . . ,m we define Q(k) = aP × bCk. Note that if

(4.3) P = {x ∈ Rn : 〈x, ui〉 6 1, 1 6 i 6 N},

then we can write

(4.4) Q(1) = {(x, t) ∈ Rn+1 : 〈x, ui〉 6 1, 1 6 i 6 N and |t| 6 b/2}.

So, if vi := ui for 1 6 i 6 N and vN+1 = en+1, vN+2 = −en+1, then vj , 1 6 j 6
N + 2, are the normals of Q(1). Moreover, we can easily compute the volume of the

facets G
(1)
i corresponding to vi: If 1 6 i 6 N , we have

(4.5) |G(1)
i | = an−1b|Fi|,

and for i = N + 1, N + 2 we have that

(4.6) |G(1)
i | = an|P |.

Using induction we see that Q(k) has N facets of volume an−1bk|Fi|, 1 6 i 6 N ,
and 2k facets of volume anbk−1|P |. The volume of Q(k) is equal to anbk|P |.
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Setting k = m we see that the first N facets of Q = Q(m) have volume

(4.7) |Gi| = |G(m)
i | = an−1bm|Fi| =

|Fi|
a
,

because anbm = 1, while Q has 2m additional facets, with normals ±ei, n + 1 6
i 6 n+m and volume

(4.8) |Gi| = anbm−1|P | = 1

b
, N + 1 6 i 6 N + 2m.

Using the above, we easily check that

(4.9) ∂(Q) =
1

a

N∑
i=1

|Fi|+
2m

b
=
∂(P )

a
+

2m

b
.

This proves the Lemma. 2

Lemma 4.2. Let P and Q be as in Lemma 4.1. If P is in minimal surface area
position, then Q is in minimal surface area position if and only if

(4.10) a =

(
∂P
2n

) m
n+m

and b =

(
2n

∂P

) n
n+m

.

Moreover,

(4.11) ∂Q =
n+m

n
∂

n
n+m

P (2n)
m

n+m .

Proof. Since P is in minimal surface position, for every j, k = 1, . . . , n we have

(4.12)

N∑
i=1

〈ui, ej〉〈ui, ek〉|Fi| =
∂P
n
δj,k

from Lemma 2.1. Then, for every j, k = 1, . . . , n,

(4.13)

N+2m∑
i=1

〈vi, ej〉〈vi, ek〉|Gi| =
N∑
i=1

〈ui, ej〉〈ui, ek〉
|Fi|
a

=
∂P
an
δj,k.

If n+ 1 6 j, k 6 n+m, then

(4.14)

N+2m∑
i=1

〈vi, ej〉〈vi, ek〉|Gi| =
2

b

n+m∑
s=n+1

〈es, ej〉〈es, ek〉 =
2δj,k
b

.

Finally, if 1 6 j 6 n < k 6 n+m, we easily check that

(4.15)

N+2m∑
i=1

〈vi, ej〉〈vi, ek〉|Gi| = 0.
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From Lemma 2.1 we conclude that Q will be in minimal surface area position,
provided that

(4.16)
∂P
an

=
2

b
.

Since anbm = 1, this gives a =
(
∂P
2n

) m
n+m . Then, we can solve the equation anbm = 1

to find b and, substituting into (4.9) we complete the proof. 2

Lemma 4.3. Let C be a symmetric convex body in Rn. Then,

(4.17) ∂(C) 6 n|C|/r(C).

In particular, if K is an isotropic symmetric convex body in Rn then

(4.18) ∂K 6 ∂(K) 6 n/LK .

Proof. Using the monotonicity of mixed volumes (see [22]) we have

(4.19) ∂(C) = nV (C, . . . , C,Bn2 ) 6 nV
(
C, . . . , C, 1

r(C)C
)

=
n|C|
r(C)

.

Then, (4.18) follows from (4.17) and the fact that, in the isotropic position, h2
K(θ) >∫

K
〈x, θ〉2dx = L2

K , and hence, r(K) > LK . 2

We are now ready to give our example. We choose P = B
n

1 , the unit ball of
`n1 , normalized so that it will have volume 1; in general, we set A = |A|−1/nA for a
compact set of positive Lebesgue measure.

Theorem 4.4. Let a, b > 0 so that K = aB
n

1 × bCn is in minimal surface area
position. Then,

(4.20) |K +D2n|
1
2n > c 8

√
n

where c > 0 is an absolute constant.

Proof. Since B
n

1 is 1-symmetric, Lemma 2.1 implies that it is in minimal surface
area position. We know that Bn1 ⊇ 1√

n
Bn2 because ‖x‖1 6

√
n‖x‖2 for all x ∈ Rn.

Observe that B
n

1 ' nBn1 , and hence,

(4.21) B
n

1 ⊇ c1
√
nBn2 .

Then, Lemma 4.3 shows that

(4.22) ∂(B
n

1 ) 6 n/r(B
n

1 ) 6 c2
√
n,

where c2 = c−1
1 . From the isoperimetric inequality we see that ∂(B

n

1 ) > ∂(Dn) >
c3
√
n, and this shows that

(4.23) ∂(B
n

1 ) '
√
n.
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From Lemma 4.2 we have a =

√
∂(B

n
1 )

2n , b =
√

2n
∂(B

n
1 )

and

(4.24) ∂K = 2

√
2n∂(B

n

1 ) ' n 3
4 .

We apply the reasoning of Lemma 3.2: If E is the subspace spanned by the first n
standard unit vectors in R2n and F = E⊥ then,

(4.25) |K +D2n|
1
2n > c

√
b > c

(
2n

∂(B
n

1 )

) 1
4

' 8
√
n,

because of (4.23). 2

Our next result shows that, at least in the symmetric case, the estimate of
Theorem 4.4 is optimal up to the value of the isotropic constant of the body.

Theorem 4.5. Let K be a symmetric convex body of volume 1 in Rn which has
minimal surface area. Then,

(4.26) |K +Dn|1/n 6 C 8
√
nLK ,

where C > 0 is an absolute constant.

We need the following observation about the surface area of an isotropic convex
body.

Proposition 4.6. Let K be a symmetric convex body which has minimal surface
area and let T ∈ SL(n). Then

(4.27)
tr(T )

n
∂K 6 ∂(T−∗(K)) 6

‖T‖HS√
n

∂K ,

where ‖T‖2HS = tr(T ∗T ) is the Hilbert-Schmidt norm of T .

Proof. Using Lemma 2.1 for the isotropic measure σK , we have that

(4.28) ∂K
tr(T )

n
=

∫
Sn−1

〈θ, Tθ〉 dσK(θ) 6
∫
Sn−1

‖Tθ‖2dσK(θ).

Since ‖Tθ‖2 = hT∗(Bn2 )(θ), by the integral representation of the mixed volumes and
the fact that, for every affine transformation A of Rn and any n-tuple K1, . . . ,Kn

of convex bodies we have

(4.29) V (A(K1), . . . , A(Kn)) = |detA|V (K1, . . . ,Kn),

(see [22]) we get

∂K
tr(T )

n
6

∫
Sn−1

hT∗(Bn2 )(θ)dσK(θ) = nV (K, . . . ,K, T ∗(Bn2 ))

= nV (T ∗(T−∗(K)), . . . , T ∗(T−∗(K)), T ∗(Bn2 ))

= n |detT ∗|V (T−∗(K), . . . , T−∗(K), Bn2 )

= ∂(T−∗(K)).

12



This proves the left-hand side inequality. On the other hand, if we set S := T ∗T
then, using Lemma 2.1 and Hölder’s inequality, we get

∂K
‖T‖2HS

n
= ∂K

tr(S)

n
=

∫
Sn−1

〈θ, Sθ〉dσK(θ) =

∫
Sn−1

‖Tθ‖22dσK(θ)

>
1

∂K

(∫
Sn−1

‖Tθ‖2dσK(θ)

)2

,

which shows that

(4.30) ∂K
‖T‖2√
n

>
∫
Sn−1

‖Tθ‖2dσK(θ) = ∂(T−∗(K))

(for the last equality see [11]). This proves the right hand side inequality. 2

Remark. Note that the estimates in the previous proposition are sharp (at least up
to a universal constant) as the examples of the cube and the Euclidean ball show.

We are now able to prove Theorem 4.5.

Proof of Theorem 4.5. Since both the minimal surface area position and the
isotropic position are preserved by orthogonal transformations, we may assume that
there exists a diagonal positive definite operator T = diag(λ1, . . . , λn) in SL(n)
such that K = T (K̃) and K̃ is isotropic. We may assume that λ1, . . . , λm > 1 and
0 < λm+1, . . . , λn < 1 for some 1 6 m 6 n− 1. Observe that

(4.31) |Cn + T (Cn)| =
n∏
i=1

(1 + λi) 6 2n
m∏
i=1

λi.

Since T ∈ SL(n) and K̃ is isotropic, for every i = 1, . . . , n we have (see [17])

(4.32) LK '
∫
K̃

|〈x, ei〉| dx =
1

λi

∫
K

|〈x, ei〉| dx '
1

λi

1

|K ∩ e⊥i |
.

It follows that

(4.33)
1

λi
' LK |K ∩ e⊥i | 6 |Pe⊥i (K)|LK 6

∂KLK
2
√
n
,

for every i = 1, . . . , n. Moreover, using Proposition 4.6 we see that ∂(K̃) =

∂(T−1(K)) > tr(T )
n ∂K . From Lemma 4.3 it follows that

(4.34) 1 6
tr(T )

n
6
∂(K̃)

∂K
6

n

∂KLK
.

Claim. We have

(4.35)

(
m∏
i=1

λi

)1/n

6 8
√
n.

13



Proof of the Claim. We write ∂KLK = n
1
2 +κ for some 0 6 κ 6 1/2 and we

distinguish two cases. First, assume that 8
(

1
2 − κ

)
m ≤ n. Then,(

m∏
i=1

λi

) 1
n

6

(∑m
i=1 λi
m

)m
n

6
( n
m

)m
n

(
tr(T )

n

)m
n

6 c1

(
n

∂KLK

)m
n

= c1(n
1
2−κ)

m
n 6 c1

8
√
n.

Next, assume that 8
(

1
2 −κ

)
m > n. This implies that n−m < 3−8κ

4−8κn. Then, (4.33)
shows that

(4.36)

m∏
i=1

λi =

n∏
i=m+1

1

λi
6

(
c3∂KLK√

n

)n−m
= (c3n

κ)n−m = cn−m3 nκ(n−m),

and hence,

(4.37)

(
m∏
i=1

λi

)1/n

6 c4n
κ(n−m)

n 6 c4n
g(κ),

where g : [0, 1/2]→ R is the function defined by g(κ) = 3κ−8κ2

4−8κ . Since g attains its
maximum at κ = 1/4, the claim follows. 2

We now use the fact (see, for example, [21]) that if A,B,C are symmetric
convex bodies of volume 1 in Rn then

(4.38) |A+B|1/n 6 c5|A+ C|1/n|B + C|1/n.

Then, we can write

|K +Dn|1/n 6 c5|T (K̃) + Cn|1/n|Cn +Dn|1/n

6 c25|T (K̃) + T (Cn)|1/n|T (Cn) + Cn|1/n|Cn +Dn|1/n.

Observe that

(4.39) |T (K̃) + T (Cn)|1/n = |K̃ + Cn|1/n 6 c6LK ,

because |K̃ + Cn|1/n 6 c5[N(K̃, LKDn)]1/n|LKDn + Cn|1/n and N(K̃, LKDn) 6
exp(cn) (see e.g. [7, Theorem 1.6.4]) while |Cn+Dn|1/n 6 c7, and hence, |LKDn+
Cn|1/n 6 c8LK . It follows that

(4.40) |K +Dn|1/n 6 c9LK |T (Cn) + Cn|1/n 6 2c9LK

(
m∏
i=1

λi

)1/n

,

from (4.31). Using the Claim we conclude the proof. 2
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Remark. One can extend Theorem 4.5 to the not necessarily symmetric case, in
the following sense. Let K be a convex body of volume 1 in Rn which has minimal
surface area. Consider the Blaschke sum ∇K of K and −K: this is the convex
body whose surface area measure is σK + σ−K . Then, ∇K is a symmetric convex
body and Lemma 2.1 shows that it has minimal surface area. Moreover, one can
check that |∇K| ' 1 and |K + Dn|1/n 6 c1|∇K + Dn|1/n (we omit the details).
Applying Theorem 4.5 to ∇K, we conclude that

(4.41) |K +Dn|1/n 6 c2
8
√
nL∇K .

5 Minimal mean width position

We know that w(n) = max
|K|=1

wK > c1
√
n log n and w(n) = min

|K|=1
wK '

√
n. In other

words,

(5.1) w(n) > c
√

log nw(n),

where c > 0 is an absolute constant. The next lemma will allow us to describe the
minimal mean width position of the product of two convex bodies of minimal mean
width.

Lemma 5.1. Let K and P be two convex bodies in Rn and Rm respectively. Let
a, b > 0 and define Q := aK × bP . Then,

(5.2)
√
n+mw(Q) ' a

√
nw(K) + b

√
mw(P ).

Proof. We will use the fact that, for every convex body V in Rk,

(5.3)
√
kw(V ) = ck

∫
Rk
hV (z) dγk(z),

where ck ' 1 is a positive constant depending only on the dimension and γk is the
standard k-dimensional Gaussian measure; this is easily verified by integration in
polar coordinates. Observe that, if z = (x, y) ∈ Rn × Rm, then

hQ(z) = haK×bP (x, y) = sup{〈(au, bv), (x, y)〉 : u ∈ K, v ∈ P}
= a sup

u∈K
〈u, x〉+ b sup

v∈P
〈v, y〉 = ahK(x) + bhP (y).

Therefore,

√
n+mw(Q) = cn+m

∫
Rm

∫
Rn

(
ahK(x) + bhP (y)

)
dγn(x) dγm(y)

= cn+ma

∫
Rn
hK(x) dγn(x) + cn+mb

∫
Rm

hP (y) dγm(y)

=
cn+m

cn
a
√
nw(K) +

cn+m

cm
b
√
mw(P )

' a
√
nw(K) + b

√
mw(P ),

because cn+m ' cn ' cm ' 1. 2
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Lemma 5.2. Let K and P be two 1-symmetric convex bodies of volume 1 in Rn
and Rm respectively. Assume that K and P have minimal mean width. If a, b > 0
and anbm = 1 are chosen so that Q = aK× bP will have minimal mean width, then

(5.4) a '
( n
m

) m
2(n+m)

(
wP
wK

) m
n+m

and b '
(m
n

) n
2(n+m)

(
wK
wP

) n
n+m

.

Moreover,

(5.5) wQ '
(n+m)

1
2

m
m

2(n+m)n
n

2(n+m)
w

n
n+m

K w
m

n+m

P .

Proof. Let E be the subspace spanned by the first n standard unit vectors in
Rn+m. Since K and P are 1-symmetric, there exists a diagonal volume preserving
transformation of the form aIE × bIE⊥ which brings K × T to the minimal mean
width position. Let Q = aK × bP . Then, we must have

(5.6) cn+m

∫
Rn+m

hQ(z)〈z, ei〉2dγn+m(z) =
√
n+m

w(Q)

n+m
=

w(Q)√
n+m

for all i = 1, . . . , 2n. Working as in the proof of Lemma 4.2 we see that

(5.7)
aw(K)√

n
' bw(P )√

m
' w(Q)√

n+m
.

From the condition anbm = 1 and (5.7) we see that

(5.8) a '
( n
m

) m
2(n+m)

(
wP
wK

) m
n+m

.

Then, we can solve the equation anbm = 1 to find b and substituting into (5.2) we
complete the proof. 2

We are now able to give our example. We choose K = B
n

1 and P = Cn. Note
that

(5.9) wCn '
√
n and wBn1

'
√
n log n.

Theorem 5.3. Let a, b > 0 so that Q = aB
n

1 × bCn is in minimal mean width
position. Then,

(5.10) |K +D2n|
1
2n > c 8

√
log n,

where c > 0 is an absolute constant.

Proof. From Lemma 5.2 we have a '
√

wCn
wBn1

' 1
4
√

logn
, b '

√
wBn1
wCn

' 4
√

log n and

(5.11) wQ '
√
wBn1

wCn '
√
n 4
√

log n.
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We apply the reasoning of Lemma 3.2: If E is the subspace spanned by the first n
standard unit vectors in R2n and F = E⊥ then,

(5.12) |K +D2n|
1
2n > c

√
b ' 8

√
log n,

because b ' 4
√

log n. 2

Remark. From Urysohn’s inequality it is clear that if K is a convex body of volume
1 in Rn which has minimal mean width, then

(5.13) |K +Dn|1/n 6 c1
w(K +Dn)√

n
= c1

w(K) + w(Dn)√
n

6 c2 log n,

because w(Dn) 6 w(K) 6 w(n) 6 c
√
n log n.

6 Hyperplane projections in the minimal surface
area position

Let K be a convex body in Rn. The projection body ΠK of K is the symmetric
convex body whose support function is defined by hΠK(θ) = |Pθ⊥(K)|, θ ∈ Sn−1.
We write Π∗K for the polar projection body. It was proved in [11] that the volume
radius of ΠK and Π∗K are determined by the minimal surface area parameter ∂K :
If |K| = 1, then

(6.1) |Π∗K|1/n ' 1

∂K
and |ΠK|1/n ' ∂K

n

Actually, the upper and lower estimates given in [11] are sharp; they become equal-
ities when K is either the cube or the Euclidean unit ball.

Recall that, from Cauchy’s formula, the area of the (n − 1)–dimensional pro-
jection Pθ⊥(K) of K, θ ∈ Sn−1, can be written in the form

(6.2) |Pθ⊥(K)| = 1

2

∫
Sn−1

|〈u, θ〉|dσK(u).

Assume that K is in minimal surface area position. From the Cauchy–Schwarz
inequality we have

|Pθ⊥(K)| =
1

2

∫
Sn−1

|〈u, θ〉| dσK(u) 6
1

2

(∫
Sn−1

|〈u, θ〉|2dσK(u)

)1/2√
∂K

=
∂K

2
√
n

for all θ ∈ Sn−1. On the other hand,

(6.3) |Pθ⊥(K)| > 1

2

∫
Sn−1

〈u, θ〉2dσK(u) =
∂K
n
.
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Writing the volume of Π∗(K) in polar coordinates and using (6.1) we get

(6.4)

∫
Sn−1

1

|Pθ⊥(K)|n
σ(dθ) =

|Π∗K|
ωn

6

(
C
√
n

∂K

)n
,

and Markov’s inequality shows that

(6.5)
c∂K√
n

6 |Pθ(K)| 6 ∂K
2
√
n

for all θ in a subset of Sn−1 of measure greater than 1 − 2−n, where c > 0 is an
absolute constant. Since ∂K > c1

√
n by the isoperimetric inequality, this implies

that with high probability the projections of a convex body with minimal surface
area satisfy

(6.6) |Pθ⊥(K)| > c.

It was asked in [11] if (6.6) holds true for every θ ∈ Sn−1. We will show that the
answer to this question is negative.

Theorem 6.1. There exists an unconditional convex body K of volume 1 in Rn
which has minimal surface area and satisfies

(6.7) min
θ∈Sn−1

|Pθ⊥(K)| 6 C√
n
,

where C > 0 is an absolute constant.

Proof. Let k,m ∈ N with k+m = n and a, b > 0 and define K = aB
k

1×bCm. From
Lemma 4.2 we know that K has minimal surface area if

(6.8) a =

(
∂
B
k
1

2k

) m
k+m

and b =

(
2k

∂
B
k
1

) k
k+m

.

Moreover,

(6.9) ∂K :=
k +m

k
∂

k
k+m

B
k
1

(2k)
m
k+m .

We choose m ' k
log k . Note that k 6 n 6 2k. Then, since ∂

B
k
1
'
√
k, we check that

(6.10) a ' 1, b '
√
k '
√
n and ∂K '

√
k '
√
n.

Write z = (x, y) for a point in Rk × Rm. It is easily checked that
(6.11)∫

K

〈z, ei〉2dz =

∫
aB

k
1

∫
bCm

y2
i dy dx = ak

∫
bCm

y2
i dy = akbm+2

∫
Cm

u2
i du ' b2
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for all i = k + 1, . . . , n, and similarly,

(6.12)

∫
K

〈z, ei〉2dx ' a2

for all i = 1, . . . , k. We also know that

(6.13)

∫
K

〈z, ei〉2dz '
1

|K ∩ e⊥i |2
=

1

|Pe⊥i (K)|2
.

For the first assertion, see [17]; the second equality is clear, because K is uncondi-
tional. Combining (6.11) and (6.13) we see that

(6.14) |Pe⊥i (K)| ' 1

b
' 1√

n

for all i = k + 1, . . . , n. In other words,

(6.15) β := min{|Pθ⊥(K)| : θ ∈ Sn−1} 6 C√
n
,

for some absolute constant C > 0. 2

Remark. The estimate of Theorem 6.1 is clearly optimal. From (6.3) we know that
if K has volume 1 and minimal surface area then, for every θ ∈ Sn−1,

(6.16) |Pθ⊥(K)| > ∂K
2n

>
∂Dn
2n

=
ω

1/n
n

2
>

c√
n
.

7 Mean width in the minimal surface area position

In this Section we give an upper bound for the mean width of a symmetric convex
body K of volume 1 in Rn which has minimal surface area. Our bound is “close to
the minimal order”

√
n when the minimal surface parameter ∂K of K is “large”.

Theorem 7.1. Let K be a symmetric convex body of volume 1 in Rn which has
minimal surface area. Then,

(7.1) w(K) 6 C
n3/2

∂K
,

where C > 0 is an absolute constant.

Proof. It is proved in [11] that every surface isotropic convex body is the limit of a
sequence of surface isotropic polytopes in the Hausdorff metric. Therefore, we may
assume that K is a polytope with facets Fj and normals uj , j = 1, . . . ,m, which
has isotropic surface measure. Then, the isotropic condition for σK is equivalent to
the representation of the identity

(7.2) I =

m∑
j=1

n|Fj |
∂K

uj ⊗ uj .
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The fact that |K| = 1 can be expressed in the form

(7.3)

m∑
j=1

hK(uj)|Fj | = n.

For every θ ∈ Rn we have

(7.4) θ =
n

∂K

m∑
j=1

|Fj |〈θ, uj〉uj ,

and hence,

(7.5) hK(θ) 6
n

∂K

m∑
j=1

|Fj | |〈θ, uj〉|hK(uj).

We integrate (7.5) over the sphere. Using (7.3) and the fact that, for some constant
cn ' 1, we have

(7.6)

∫
Sn−1

|〈θ, u〉| dσ(θ) =
cn√
n

for every u ∈ Sn−1, we write

w(K) =

∫
Sn−1

hK(θ) dσ(θ) 6
n

∂K

m∑
j=1

|Fj |hK(uj)

∫
Sn−1

|〈θ, uj〉| dσ(θ)

=
cn
√
n

∂K

m∑
j=1

|Fj |hK(uj) = cn
√
n
n

∂K
.

This proves our claim. 2

Corollary 7.2. Let K be a symmetric convex body of volume 1 in Rn which has
minimal surface area. Then,

(7.7) w(K) 6 Cn,

where C > 0 is an absolute constant.

Proof. It is an immediate consequence of the isoperimetric inequality and Theorem
7.1: we know that ∂K > ∂Dn > c

√
n. 2

Remark. It is well-known that if K is a symmetric convex body of volume 1 in Rn,
then

(7.8) |K ∩ θ⊥|hK(θ) 6
n

2

for all θ ∈ Sn−1. Using the idea of the proof of Proposition 7.1, we can check that
the expectation of |Pθ⊥(K)|hK(θ) satisfies the same bound when K has minimal
surface area.
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Proposition 7.3. Let K be a symmetric convex body of volume 1 in Rn which has
minimal surface area. Then,

(7.9)

∫
Sn−1

|Pθ⊥(K)|hK(θ) dσ(θ) 6
n

2
.

Proof. We write∫
Sn−1

|Pθ⊥(K)|hK(θ) dσ(θ) =
1

2

∫
Sn−1

∫
Sn−1

hK(θ)|〈θ, x〉| dσK(x) dσ(θ)

=
1

2

∫
Sn−1

(∫
Sn−1

hK(θ)|〈θ, x〉| dσ(θ)

)
dσK(x),

and using (7.5) we get

(7.10)

∫
Sn−1

hK(θ)|〈θ, x〉| dσ(θ) 6
n

∂K

m∑
j=1

|Fj |hK(uj)

∫
Sn−1

|〈θ, x〉| |〈θ, uj〉| dσ(θ).

A simple application of the Cauchy–Schwarz inequality shows that
(7.11)∫
Sn−1

|〈θ, x〉| |〈θ, uj〉| dσ(θ) 6

(∫
Sn−1

〈θ, x〉2dσ(θ)

) 1
2
(∫

Sn−1

〈θ, uj〉2dσ(θ)

) 1
2

=
1

n
.

Therefore, using (7.3) we can write

(7.12)

∫
Sn−1

hK(θ)|〈θ, x〉| dσ(θ) 6
n

∂K

m∑
j=1

|Fj |hK(uj)

n
=

n

∂K
.

Going back, we see that

(7.13)

∫
Sn−1

|Pθ⊥(K)|hK(θ) dσ(θ) 6
n

2∂K

∫
Sn−1

dσK(x) =
n

2
,

and the result follows. 2

Using the results of Sections 4 and 5 we can give an example of a convex body
K of volume 1 in Rn which has minimal surface area and mean width as large as
n/ log n. In other words, Corollary 7.2 is almost optimal.

Theorem 7.4. There exists an unconditional convex body Q of volume 1 in Rn
which has minimal surface area and satisfies

(7.14) w(Q) >
cn

log n
,

where c > 0 is an absolute constant.
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Proof. Let k,m ∈ N with k + m = n and a, b > 0 and define Q := aB
k

1 × bCm.
Working as in Lemma 4.1 and Lemma 4.2 we check that Q has minimal surface
area if

(7.15) a =

(
∂
B
k
1

2k

) m
k+m

and b =

(
2k

∂
B
k
1

) k
k+m

.

Moreover,

(7.16) ∂Q :=
k +m

k
∂

k
k+m

B
k
1

(2k)
m
k+m .

We choose m ' k
log k . Note that k 6 n 6 2k. Then, since ∂

B
k
1
'
√
k, we get that

(7.17) a ' 1, b '
√
k '
√
n and ∂Q '

√
k '
√
n.

It is well-known (see e.g. [18]) that, for every symmetric convex body V in Rn and
every F ∈ Gn,m,

(7.18) w(V ) > c
√
m/nw(PF (V )).

So, we choose F := Rm and we conclude that

(7.19) w(Q) > c
√
m/nw(PF (Q)) >

c√
log n

w(bCm) >
c
√
n√

log n
w(Cm).

Since w(Cm) > c
√
m, we see that w(Q) > cn

logn . 2

Using Theorem 7.1 we can also complement Theorems 4.4 and 4.5 by showing
that, at least in the symmetric case, one has the upper bound |K +Dn|1/n 6 c 4

√
n

for a convex body of volume 1 in Rn which has minimal surface area (note that in
in this estimate, the parameter LK does not appear).

Proposition 7.5. Let K be a symmetric convex body of volume 1 in Rn which has
minimal surface area. Then,

(7.20) |K +Dn|1/n 6 C 4
√
n,

where C > 0 is an absolute constant.

Proof. We know that c1
√
n 6 ∂(K) = ∂K 6 c2n. We distinguish two cases.

Case 1. Assume that ∂(K) 6 n3/4. Then, using the fact that R(Dn) '
√
n, we

write

V (K +Dn,K, . . . ,K) = |K|+ V (Dn,K, . . . ,K)

= 1 +
1

n

∫
Sn−1

hDn(x) dσK(x)

6 1 +
1

n
R(Dn)∂(K) 6 1 +

c3√
n
∂(K)

6 c4
4
√
n,
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where c4 > 0 is an absolute constant.

Case 2. Assume that n3/4 6 ∂(K) 6 c2n. Urysohn’s inequality shows that

(7.21) |K +Dn|1/n 6 c1
w(K +Dn)√

n
= c1

w(K) + w(Dn)√
n

.

We know that w(Dn) 6 c2
√
n and Theorem 7.1 shows that

(7.22) w(K) 6
c3n

3/2

∂K
6 c3n

3/4,

by our assumption on ∂K . It follows that

(7.23) |K +Dn|1/n 6 c1
c3n

3/4 + c2
√
n√

n
6 c4

4
√
n

in this case as well. 2

8 John and Löwner position

We say that a symmetric convex body K is in John’s position if Bn2 is the ellipsoid
of maximal volume inscribed in K. John’s theorem [12] states that this holds true
if and only if Bn2 ⊆ K and there exist u1, . . . , uN ∈ bd(K)∩Sn−1 and positive real
numbers c1, . . . , cN such that the identity operator can be decomposed in the form

(8.1) I =

N∑
j=1

cjuj ⊗ uj ,

where (uj ⊗ uj)(y) = 〈uj , y〉uj . From this representation of the identity we get

(8.2)

N∑
j=1

cj〈uj , θ〉2 = 1

for all θ ∈ Sn−1. Therefore, if we consider the measure µ on Sn−1 which is supported
by {u1, . . . , uN} and gives mass cj to {uj}, j = 1, . . . , N , then µ is isotropic.

We will give an example of a zonoid, which is unconditional and its John’s
position fails to be an M -position. See also [23] for a comparison of John’s position
with `-position, which plays an important role in the asymptotic theory of finite
dimensional normed spaces.

Lemma 8.1. Let K be a symmetric convex body in Rm which is in John’s position.
Let Qk = [−1, 1]k be the cube in Rk which is also in John’s position. Then K ×Qk
is also in John’s position.
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Proof. We will use induction on k. Note that it is enough to show that K1 := K ×
[−1, 1] is in John’s position. To this end, first note that Bm+1

2 ⊆ Bm2 ×[−1, 1] ⊆ K1.
Moreover, for every x = (y, t) ∈ Rm+1 we have that

(8.3) x = y + tem+1 =

N∑
j=1

cj〈x, uj〉uj + 〈x, em+1〉em+1,

using the decomposition of identity (8.1) of K. Note that em+1 is also a contact
point for K1. So, the proof is complete by John’s theorem. 2

It will be convenient to say that K is in the normalized John’s position if
|K| = 1 and there exists λ > 0 such that λK is in John’s position.

Proposition 8.2. There exists an unconditional convex body K in Rn which is in
the normalized John’s position, such that

(8.4) |K +Dn|1/n > c 8
√
n,

where c > 0 is an absolute constant.

Proof. Let K := |Bm2 × Qk|−
1
n (Bm2 ×Qk), where m + k = n. Lemma 8.1 shows

that K is in normalized John’s position; it is also clear that K is an unconditional
body. Note that

(8.5) α := |Bm2 ×Qk|1/n =
(
2kωm

)1/n
.

Let F := Rk. Then,

N(K,Dn) > N (PF (K), PF (Dn)) = N
(

1
αQk, c1

√
nBk2

)
= N

(
Qk,

α
√
n√
k

(c1
√
kBk2 )

)
>

(
c2
√
k

α
√
n

)k
.

It follows that

(8.6) |K +Dn|
1
n > N(K,Dn)1/n >

(
c2
√
k

α
√
n

) k
n

> c3
(√
m
)mk
n2 > c4

8
√
n,

if we choose m = k = n/2. 2

We say that a symmetric convex body K is in Löwner’s position if Bn2 is the
ellipsoid of minimal volume which contains K. We also say that K is in the nor-
malized Löwner’s position if |K| = 1 and there exists λ > 0 such that λK is in
Löwner’s position.

Corollary 8.3. There exists an unconditional convex body W in Rn which is in
the normalized Löwner’s position and satisfies

(8.7) |W +Dn|1/n > c 8
√
n,

where c > 0 is an absolute constant.
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Proof. Let K be the unconditional body from Proposition 8.2. We choose W :=
|K◦|−1/nK◦. Then, W is in the normalized Löwner’s position. We will use the
fact that |W + Dn|1/n|W ∩ Dn|1/n ' 1, which is an immediate consequence of
[10, Proposition 3.6(2)] (applied with C1 = W , C2 = Dn, a = b = 1 and q = n).
Since K◦ = |K◦|1/nW ' 1

nW , using the Blaschke-Santaló inequality and its reverse
together with some elementary entropy estimates, we have that

|W +Dn|1/n ' 1

|W ∩Dn|1/n
' 1

|[conv(W ◦, D◦n)]◦|1/n

' n|conv(W ◦, D◦n)|1/n ' n
∣∣conv

(
1
nK,

1
nDn

)∣∣1/n
' | conv(K,Dn)|1/n ' |K +Dn|1/n

> c 8
√
n,

by (8.4). 2
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