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Notation: Banach Spaces

@ X, Y, Z, and W denote Banach spaces.

loo = {x = (x(i))ien € R : ||x]|o = sup [x(7)| < oo},
ieN

Co = {x = (X(I))ien € oo : lim X(i) = o},
o= {x = (x(iien € B < xlp = (L x()P) © < o0} 1< p<oc,
i=1
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Notation: Banach Spaces

@ X, Y, Z, and W denote Banach spaces.

loo = {x = (x(i))ien € RY: x|l oc = sup |x(i)| < o0},
ieN

Co = {x = (X(1))ien € boo : lim x(i) = o},

I—00
. N\ /P

ty={x = (x()ien € R - Ixllp = (3 IX(DP) 7 < o0}, 1< p< oo

i=1

@ X is separable if it contains a countable norm-dense subset.

@ /. is non-separable.

e /p, 1 < p< oo, and ¢ are separable.

Convention: Unless stated otherwise, a Banach space is
infinite-dimensional.

4/58 Pavlos Motakis Methods for constructing Banach spaces



Notation: Bounded Linear Operators

@ 7,5 Rand K: X — Y denote bounded linear operators.

L(X,Y) = {T . X = Y linear & bounded}
is a Banach space with

1T = sup{[ITx[| - [Ix]| < 1}.

Notation: £(X) = £(X, X) and X* = L(X,R).
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Notation: Bounded Linear Operators

@ 7,5 Rand K: X — Y denote bounded linear operators.

L(X,Y) = {T . X = Y linear & bounded}
is a Banach space with

1T = sup{[ITx[| - [Ix]| < 1}.

Notation: £(X) = £(X, X) and X* = L(X,R).
e X is reflexive if X = X** canonically, i.e., X = X**.

@ Cp, and ¢4 are non-reflexive.

® lp, 1 < p< o0,is reflexive.
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Notation: Compact Operators

@ K: X — Yis called compact if for every bounded sequence
(x1)24 in X, (Kx;)i24 has a convergent subsequence.

Notation:

K(X,Y)= {T e L(X,Y) compact} and
K(X) = K(X, X).
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The Isomorphic Structure of the Subspaces of an X

@ X and Y are C-isomorphic, or X ~C Y, for C > 1, means:
there exists a linear bijection 7 : X — Y with ||T||||T~'|| < C.

To disregard C, we say X and Y are isomorphic, or X ~ Y.

7/58 Pavlos Motakis Methods for constructing Banach spaces



The Isomorphic Structure of the Subspaces of an X

@ X and Y are C-isomorphic, or X ~€ Y, for C > 1, means:
there exists a linear bijection T : X — Y with | T||||T~"|| < C.
To disregard C, we say X and Y are isomorphic, or X ~ Y.

Question: What are the subspaces of an X up to isomorphism?
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The Isomorphic Structure of the Subspaces of an X

@ X and Y are C-isomorphic, or X ~C Y, for C > 1, means:
there exists a linear bijection T : X — Y with | T||||T~"|| < C.
To disregard C, we say X and Y are isomorphic, or X ~ Y.
Question: What are the subspaces of an X up to isomorphism?
Examples:
o Let X =1/o. If Y Clythen Y ~' /5.

o Let X =1/, 1 <p<oo,orX=c.
If Y C X then there exists Z C Y such that Z ~ X.

o Let X = Lp[0,1], 1 < p < .
Then, ¢, and ¢, are isomorphic to subspaces of X.
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Isomorphic structure of subspaces

Question: For arbitrary X, is there Y C X that is isomorphic to
Co orsome lp, 1 < p < 00?
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Isomorphic structure of subspaces

Question: For arbitrary X, is there Y C X that is isomorphic to
Co orsome lp, 1 < p < 00?

@ A counterexample was constructed by Tsirelson in 1974.
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The Space L(X)
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Constructing Operators: Classical Sequence Spaces

10/58

o letX=/p,1 <p<ooorX=cp.
For ¢ = (e(/))ien € {—1,1}" and a permutation 7 : N — N.

Define T. . € £(X) as follows: for x = (x(i))ien € X,

Tox = (e(x(x"(1)))

ieN’

Thus, £(X) is non-separable.
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Constructing Operators: Arbitrary Banach Spaces

@ Let X be an arbitrary infinite-dimensional Banach space.

(a) For X\ € R, the scalar operator A\l € L(X) is given by
Ax = Ax.
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Constructing Operators: Arbitrary Banach Spaces

11/58

@ Let X be an arbitrary infinite-dimensional Banach space.
(a) For X\ € R, the scalar operator A\l € L(X) is given by
Ax = Ax.
(b) For f € X*, y € X, the rank-one operator f ® x € L(X) is given by

(foy)x=f(x)y.
Then [|f @ x[| = [|f]|lx]|-
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Constructing Operators: Arbitrary Banach Spaces

@ Let X be an arbitrary infinite-dimensional Banach space.

(a) For X\ € R, the scalar operator A\l € L(X) is given by
Alx = Ax.
(b) For f € X*, y € X, the rank-one operator f ® x € L(X) is given by
(foy)x=f(x)y.
Then [|f @ x|| = | £]]|x]|

@ Forfi,....,fe X*and y1,...,y, € X, the finite-rank operator

n
> fi@yie £(X).

i=1

@ For (fi)ien € X* and (yi)ien € X, such that >, ||fill||yill < oo,
the nuclear operator

Y @y e L(X).

i=1
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Operators on an Arbitrary Banach Space

o If NV(X) = {T € L(X) nuclear},
RI+ N(X) C L(X).
By Hahn-Banach: dim(£(X)) = .
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Operators on an Arbitrary Banach Space
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e If N(X) = {T € L(X) nuclear},
RI+ N(X) C L(X).
By Hahn-Banach: dim(£(X)) = .
Remark: NV (X) C K(X), and under “mild” assumptions on X,

N = k(x).

Pavlos Motakis Methods for constructing Banach spaces



Operators on an Arbitrary Banach Space

e If N(X) = {T € L(X) nuclear},
RI+ N(X) C L(X).
By Hahn-Banach: dim(£(X)) = .
Remark: NV (X) C K(X), and under “mild” assumptions on X,
N = k(x).
Question: (Lindenstrauss, 1975)
Does there exist a Banach space X with the scalar-plus-compact
property, i.e., such that

RI+ K(X) = £(X)?
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Operators on an Arbitrary Banach Space

e If N(X) = {T € L(X) nuclear},
RI+ N(X) C L(X).
By Hahn-Banach: dim(£(X)) = .
Remark: NV (X) C K(X), and under “mild” assumptions on X,
N = k().
Question: (Lindenstrauss, 1975)
Does there exist a Banach space X with the scalar-plus-compact
property, i.e., such that
RI+ K(X) = L(X)?

@ Such a space was constructed by Argyros and Haydon in 2011.
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Fundamental Banach Spaces Concepts
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Schauder Bases

@ A Schauder basis of a Banach space is a sequence (x;)?2, in X
such that for every x € X,

oo
X = Z a;Xi,
i=1

for a unique (&), € RM.
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Schauder Bases

@ A Schauder basis of a Banach space is a sequence (x;)?2, in X
such that for every x € X,

oo
X = Z a;Xi,
i=1

for a unique (&), € RM.
Example: For X = {p, 1 < p < oo, 0r X = ¢ let, for i € N,

&=(0.0.0.....0.1.0,...).

i'th position
Then (e;)¢°, is a Schauder basis of X because,

if x = (x(1))%, € X then x = ix(i)e,-.

i=1
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Schauder Bases

15/58

@ Two Schauder bases (x;)i°, of X and (y;)2, of Y are called
C-equivalentif T : X — Y given by

T( i a,x,-) = i aiyi
i=1 i=1

is a C-isomorphism of X and Y.
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Block Sequences

16/58

Let X have a Schauder basis (x;)7,.

@ The support of an x = "7, aix; in X is the set

supp(x) = {i € N : g@; # 0}.
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Block Sequences

Let X have a Schauder basis (x;)7,.

@ The support of an x = Y7, a;x; in X is the set
supp(x) = {i € N: g; # 0}.
For x € X and ¢ > 0 there exists y € X with supp(y) finite

Ix =yl <e.
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Block Sequences

Let X have a Schauder basis (x;)7,.

@ The support of an x = Y7, a;x; in X is the set
supp(x) = {i € N: g; # 0}.
For x € X and ¢ > 0 there exists y € X with supp(y) finite

Ix =yl <e.

@ A sequence (y;)7°, in X is a block sequence if

supp(y1) < supp(yz) < --- < supp(¥;) < supp(¥iz1) <--- .
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Block Sequences

Let X have a Schauder basis (x;)7,.

@ The support of an x = Y7, a;x; in X is the set
supp(x) = {i € N: g; # 0}.
For x € X and ¢ > 0 there exists y € X with supp(y) finite

Ix =yl <e.

@ A sequence (y;)7°, in X is a block sequence if

supp(y1) < supp(yz) < --- < supp(¥;) < supp(¥iz1) <--- .

@ For a block sequence (y;)7°, in X, Y = ({y; : i € N}) is called a
block subspace of X.
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Block Sequences

17/58

If X has a Schauder basis (x;)%°,, block subspaces saturate the
infinite-dimensional subspaces Y of X.

Theorem: Let Y C X and ¢ > 0.
Then Y contains an e-perturbation of a block subspace W.

That is, there exists an isomorphism T € £(X) with ||/ - T| <e
and T(W) C Y.
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Schreier’s Space

18/58 Pavlos Motakis Methods for constructing Banach spaces



Convex Combinations of Weakly Null Sequences

@ A sequence (x;)7°, in a Banach space is weakly null if, for every
feX* lim_s f(X,') =0.
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Convex Combinations of Weakly Null Sequences

@ A sequence (x;)7°, in a Banach space is weakly null if, for every
feX* lim_s f(X,') =0.

Theorem: (Mazur) (x;)32, is weakly null if and only if for every
infinite L ¢ N and ¢ > 0 there exist a finite F C L and ()\))jer in
[0,1] suchthat > ;. Aj =1 and || ;. Aixil| < e.
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Convex Combinations of Weakly Null Sequences

@ A sequence (x;)7°, in a Banach space is weakly null if, for every
fe X* limi_ f(x;) =0.

Theorem: (Mazur) (x;)32, is weakly null if and only if for every
infinite L ¢ N and ¢ > 0 there exist a finite F C L and ()\))jer in
[0,1] suchthat > ;. Aj =1 and || ;. Aixil| < e.

Question: (Banach - Saks, 1930s) Assume (x;)7°, is weakly
null and let € > 0. Does there exist a finite F C N such that

s
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Convex Combinations of Weakly Null Sequences

@ A sequence (x;)7°, in a Banach space is weakly null if, for every
fe X* limi_ f(x;) =0.

Theorem: (Mazur) (x;)32, is weakly null if and only if for every
infinite L ¢ N and ¢ > 0 there exist a finite F C L and ()\))jer in
[0,1] suchthat > ;. Aj =1 and || ;. Aixil| < e.

Question: (Banach - Saks, 1930s) Assume (x;)7°, is weakly
null and let € > 0. Does there exist a finite F C N such that

s

Theorem: (Schreier, 1932) There exists a weakly null sequence
(&), in some Banach space Xs such that for every finite F C N,

I3 e

>,
-2
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Schreier’s Construction

@ The Schreier family:
S = {F CN: #F < min(F)}.

E.g. {5,6,12} € Sbut {2,5,7} ¢ S.
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Schreier’s Construction

@ The Schreier family:
S = {F CN: #F < min(F)}.
E.g., {5,6,12} € Sbut {2,5,7} ¢ S.

@ Cyo = {x = (x()=y € RN x(i) # 0 for only finitely many i}.
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Schreier’s Construction

@ The Schreier family:
S= {F CN: #F < min(F)}.
E.g., {5.6,12} € Sbut {2,5,7} ¢ S.
@ Cyo = {x = (x()=y € RN x(i) # 0 for only finitely many i}.
@ Forie N, and for x = (x(/))7°, € Coo, F C N, let

Fx = Z x(i)ej.

ieF
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Schreier’s Construction

@ The Schreier family:
S= {F CN: #F < min(F)}.
E.g., {5.6,12} € Sbut {2,5,7} ¢ S.
@ Cyo = {x = (x()=y € RN x(i) # 0 for only finitely many i}.
@ Forie N, and for x = (x(/))7°, € Coo, F C N, let

Fx = Z x(i)ej.

ieF

@ Define a norm on ¢y by letting, for x = (x(/))7,

= ) : Fest=sup|Fxe,
Il = sup { 3 [x(0)| - F € 5} = sup [IFx]l,

ieF
and let Xs be the completion of ¢y with || - ||.
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Schreier’s Construction

21/58

Proposition: For every non-empty F C N,

| Lz

1
>~
-2
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Schreier’s Construction

21/58

Proposition: For every non-empty F C N,
H Z L
— #F

Lemma: For every finite F C N there exists G C FwithGe S
and #G > #F/2.

1
>~
-2

Proof of lemma: Write F = {ky < ko < --- < kp} and let
G= {k[,—,/gj_ﬂ <0< kn}
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Schreier’s Construction

21/58

Proposition: For every non-empty F C N,
H Z L
— #F

Lemma: For every finite F C N there exists G C FwithGe S
and #G > #F/2.

1
>~
-2

Proof of lemma: Write F = {ky < ko < --- < kp} and let
G= {k[,—,/gj_ﬂ <0< kn}

Proof of proposition: Let F C N finite and take G as in the
lemma. Then,

1 _#G 1
22 GFT4F 72

3T
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Schreier’s Construction

Proposition: ()7, is weakly null in Xs.
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Schreier’s Construction

22/58

Proposition: ()7, is weakly null in Xs.

Lemma: Let F; < --- < F, be non-empty subsets of N such that,
fork=1,....n—1, #Fc1 > max(Fk).
Then, for every F € S,

#FﬁFk
Z #Fi
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Schreier’s Construction

Proposition: ()7, is weakly null in Xs.

Lemma: Let F; < --- < F, be non-empty subsets of N such that,
fork=1,....n—1, #Fc1 > max(Fk).

Then, for every F € S,

#FﬁFk
Z #Fi

Proof of proposition: For an infinite L C Nand ¢ > 0 pick n > 2/¢
and F4,...,F,in Las inthe lemma. Then,

—rem (2 (S 7))

N Fes

(3 )

k=1 ieFy k=1 ie FNFy
1 Z # F n Fk
" n FES #Fxk
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Schreier’s Construction

23/58

Remarks:
For F = {i1,ho,...,In} €S, (& )i_s in Xs is 1-equivalent to the
unit vector basis of (R”, || - ||1)-

Every subspace of Xs contains a further subspace isomorphic to
Co.

Schreier’s space Xs is isomorphic to a subspace of C(w").
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Tsirelson’s Space
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Tsirelson’s Space

@ Let X be an infinite-dimensional Banach space.

Question: Does X have a subspace isomorphic to ¢, or some
lp, 1 < p<o0?

25/58 Pavlos Motakis Methods for constructing Banach spaces



Tsirelson’s Space

@ Let X be an infinite-dimensional Banach space.

Question: Does X have a subspace isomorphic to ¢, or some
lp, 1 < p<o0?

Theorem: (Dvoretsky, 1961) Forevery n€ N, C > 1, X has an
n-dimensional subspace that is C-isomorphic to (R”, || - ||2).
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Tsirelson’s Space

@ Let X be an infinite-dimensional Banach space.

Question: Does X have a subspace isomorphic to ¢, or some
lp, 1 < p<o0?

Theorem: (Dvoretsky, 1961) Forevery ne N, C > 1, X has an
n-dimensional subspace that is C-isomorphic to (R”, || - ||2).

Theorem: (Krivine, 1976) If X has a Schauder basis there
exists 1 < p < oo such that:

forall n € Nand C > 1 there exists a finite block sequence (x;)[,
in X that is C-equivalent to the unit vector basis of (R”, || - ||p)-
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Tsirelson’s Space

@ Let X be an infinite-dimensional Banach space.

Question: Does X have a subspace isomorphic to ¢, or some
lp, 1 < p<o0?

Theorem: (Dvoretsky, 1961) Forevery ne N, C > 1, X has an
n-dimensional subspace that is C-isomorphic to (R”, || - ||2).

Theorem: (Krivine, 1976) If X has a Schauder basis there
exists 1 < p < oo such that:

forall n € Nand C > 1 there exists a finite block sequence (x;)[,
in X that is C-equivalent to the unit vector basis of (R”, || - ||p)-

Theorem: (Tsirelson, 1974) There exists a Banach space T
with no subspace isomorphic to ¢y or £, 1 < p < oc.
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Tsirelson’s Construction

@ We define by induction a sequence of norms on cy.

o For x = (x(1)), let [|x]lo = maxicu [X(7)| = [X]l;
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Tsirelson’s Construction

@ We define by induction a sequence of norms on cy.
@ Forx = (x())7zy let [|x[lo = maxjen [X (/)] = || X]|c,-
@ If || - || is defined, for x = (x(i))32, let

Ixlois = max x5 (53 1Eexlo) )
k=1

The supremum is over all m € N and subsets E; < --- < E of N
with min(E{) > m, i.e., {min(Ex) : 1 <k <m} e S.
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Tsirelson’s Construction

26/58

@ We define by induction a sequence of norms on cy.
@ Forx = (x())7zy let [|x[lo = maxjen [X (/)] = || X]|c,-
@ If || - || is defined, for x = (x(i))32, let

Ixlois = max x5 (53 1Eexlo) )
k=1

The supremum is over all m € N and subsets E; < --- < E of N
with min(E{) > m, i.e., {min(Ex) : 1 <k <m} e S.

@ For x € cyo let || x|| = limy ||x|[, and T be the completion of cyo
with | - |.
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Tsirelson’s Construction

Remark: For x € ¢y

I = max { x50 (3 3 1Eeel) ).
k=1

The supremum is over all m € N and subsets £y < --- < E;; of N
with min(Ey) > m.
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Tsirelson’s Construction

27/58

Remark: For x € ¢y

I = max { x50 (3 3 1Eeel) ).
k=1

The supremum is over all m € N and subsets £y < --- < E;; of N
with min(Ey) > m.

Corollary: For every finite block sequence (x;)7”; with
m < min supp(x1),

1 m m
52l < [ X
k=1 i=1

Thatis, T is (1/2)-asymptotic ¢1.

m
<> Il
k=1
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Tsirelson’s Construction

28/58

Proposition: No block sequence of norm-one vectors in T is
equivalent to the unit vector basis of ¢y or £p, 1 < p < 0.

Proof: Fix 1 < p < c0.
Assume that (x;)7°, is equivalent to the unit vector basis of /.
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Tsirelson’s Construction

28/58

Proposition: No block sequence of norm-one vectors in T is
equivalent to the unit vector basis of ¢y or £p, 1 < p < 0.

Proof: Fix 1 < p < c0.
Assume that (x;)7°, is equivalent to the unit vector basis of /.
Then there exists C > 0 such that for every iy < --- < iy,

n n
30 =el3e
k=1 k=1

= Cn'/P.
£p
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Tsirelson’s Construction

28/58

Proposition: No block sequence of norm-one vectors in T is
equivalent to the unit vector basis of ¢y or £p, 1 < p < 0.

Proof: Fix 1 < p < c0.
Assume that (x;)7°, is equivalent to the unit vector basis of /.
Then there exists C > 0 such that for every iy < --- < iy,

n n

1
H ZXk,H < CH Ze,-k . =Cn /,0.
k=1 k=1
But also, if minsupp(x;,) > n,

DRSS SR
k|| = A ikll = A~-
k=1 2 k=1 2

Therefore, C > n'=1/P/2 — 00, as n — .
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Tsirelson’s Construction

Proposition: No block sequence of norm-one vectors in T is
equivalent to the unit vector basis of /.
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Tsirelson’s Construction

29/58

Proposition: No block sequence of norm-one vectors in T is
equivalent to the unit vector basis of /.

Lemma: Let § > 0 and (x;)22, be a block sequence of norm-one
vectors in T. For N > maxsupp(x1)/d,

N-+1

HX1 +1NZXI'

i=2

<146

In particular,

1 N
|'ml\7UPHX1 tN ;Xi <1
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Tsirelson’s Construction

30/58

Proposition: No block sequence of norm-one vectors in T is
equivalent to the unit vector basis of /.

Proof of Proposition: Assume (x;)?°, is a block sequence of
norm-one vectors C-equivalent to the unit vector basis of ¢4, i.e.,

N+1 1 1 N+1
> _ .
= cHe‘ N ;e’

X+ x
P>

2

131:C'
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Tsirelson’s Construction

30/58

Proposition: No block sequence of norm-one vectors in T is
equivalent to the unit vector basis of /.

Proof of Proposition: Assume (x;)?°, is a block sequence of
norm-one vectors C-equivalent to the unit vector basis of ¢4, i.e.,

N+1 1 1 N+1
> _ .
= cHe‘ N ;e’

X+ x
P>

2

131:C'

By the Lemma,

N+1
2

]
<<y Hx 2N x| <.
G < limsup ‘+N§’ <

Thus, C > 2.
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Tsirelson’s Construction

30/58

Proposition: No block sequence of norm-one vectors in T is
equivalent to the unit vector basis of /.

Proof of Proposition: Assume (x;)?°, is a block sequence of
norm-one vectors C-equivalent to the unit vector basis of ¢4, i.e.,

N+1 1 1 N+1
> _ .
= cHe‘ N ;e’

oo 182,
N

2

131:C'

By the Lemma,

N+1
2

]
<<y Hx 2N x| <.
G < limsup ‘+N§’ <

Thus, C > 2. This contradicts James’ non-distrortion of /4.
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Tsirelson’s Construction

31/58

Remarks:

Tsirelson’s norm is the first saturated norm:

Every block sequence of norm-one vectors (x;)7°, is weakly null,
and for every F C N,

1
> —.
— 4

|37
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Tsirelson’s Construction

Remarks:

Tsirelson’s norm is the first saturated norm:

Every block sequence of norm-one vectors (x;)7°, is weakly null,
and for every F C N,

1
> —.
— 4

|37

Tsirelson’s space is reflexive and asymptotic /4.

e These are “contradictory” properties.
e T displays hereditarily homegeneous block structure.
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Schlumprecht’'s Space

Pavlos Motakis Methods for constructing Banach spaces



Schlumprecht’s Construction

@ In 1991 Schlumprecht constructed a Banach space (S, || - ||) with
hereditarily heterogeneous block structure.
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Schlumprecht’s Construction

@ In 1991 Schlumprecht constructed a Banach space (S, || - ||) with
hereditarily heterogeneous block structure.

@ S is the completion of ¢y with a norm such that for x € ¢y

m

I = i { e sep (oo D 1Be])
k

=1

where the supremum is over all m € N and successive subsets
Eq,...,Enhof N.
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Schlumprecht’s Construction

33/58

@ In 1991 Schlumprecht constructed a Banach space (S, || - ||) with
hereditarily heterogeneous block structure.

@ S is the completion of ¢y with a norm such that for x € ¢y

m

I = i { e sep (oo D 1Be])
k

=1

where the supremum is over all m € N and successive subsets
Eq,...,Enhof N.

Corollary: For every finite block sequence (x;)7,

1 n n
log(n+1) ; [[xill < H ;Xi’
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Schlumprecht’s Construction

34/58

Theorem: Let X be a block subspace S. For every n € N, there
is a block sequence (x;)7_, in X that is a 2-equivalent to the unit
vector basis of (R”, || - [|1).

Proof: Krivine’s theorem and

log(n+1)

=T/ — 0,

forall p > 1.

Pavlos Motakis Methods for constructing Banach spaces



Schlumprecht’s Construction

34/58

Theorem: Let X be a block subspace S. For every n € N, there
is a block sequence (x;)7_, in X that is a 2-equivalent to the unit
vector basis of (R”, || - [|1).

Proof: Krivine’s theorem and

log(n+1)

ey — 0,

forall p > 1.

@ For such a sequence, the vector

1 n
yzggxi

is a 2-normalized ¢4 average and it satisfies 1/2 < [|y| < 1.
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Schlumprecht’s Construction

35/58

@ A block sequence (y;)¢°, such that, for each i € N, y; is an
2-(Yi-average and

log(log(Nit1)) > 2""" max supp(y;)

is called a 2-rapidly increasing sequence (2-RIS).
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Schlumprecht’s Construction

35/58

@ A block sequence (y;)¢°, such that, for each i € N, y; is an
2-(Yi-average and

log(log(Nit1)) > 2""" max supp(y;)

is called a 2-rapidly increasing sequence (2-RIS).

Theorem: Let (y;)7°, be 2-RIS in S. Then, for every
h <. <lip€eN,

<4

1 n ! n
____ < : B
2log(n+1) = sz_;y’k log(n + 1)
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Schlumprecht’s Construction

Hereditary heterogeneity of Schlumprecht’s space:
In every block subspace of S, there exist

e for every n € N, a block sequence (x)/_; that is 2-equivalent to the
unit vector basis of (R", || - ||1), i.e., for ai,...,an € R,

1 n n n
5 lal <[> ax|| <X al,
i=1 i=1 i=1
and

o a2-RIS (y)=,ie,forevery iy <--- <ip €N,

n
<4
- 4|og(n+1)

1 n 4
2log(n+1) = szz;yik
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Schlumprecht’s Construction

Hereditary heterogeneity of Schlumprecht’s space:
In every block subspace of S, there exist

e for every n € N, a block sequence (x)/_; that is 2-equivalent to the
unit vector basis of (R", || - ||1), i.e., for ai,...,an € R,

1 n n n
5 lal <[> ax|| <X al,
i=1 i=1 i=1
and

o a2-RIS (y)=,ie,forevery iy <--- <ip €N,

n
<4
- 4|og(n+1)

1 n 4
2log(n+1) = szz;yik

Comment: Other types of sequences can be found.

Remark: S is a reflexive Banach space.
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The Gowers-Maurey Space
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Unconditional Sequences

38/58

@ A Schauder basis (x;)2°, of a Banach space is called
C-unconditional, for some C > 1, if for every ay,...,a, € Rand
E1,...,€En € {—1,1},

n
H Z giajXi
i=1

n
< CH Z aiXj
i=1
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Unconditional Sequences

@ A Schauder basis (x;)2°, of a Banach space is called
C-unconditional, for some C > 1, if for every ay,...,a, € Rand
€1,...,En € {_1’1}’

n n
HZS,’&,’X,’ < CHZ&,’X/ .
i=1 i=1

@ Equivalently, for every e = (e(i))%, € {—1,1}, T. : X — X with

o0 o0
T. ( > a/Xi> => eiax;
i i

is bounded and has norm at most C.
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Unconditional Sequences

@ A Schauder basis (x;)2°, of a Banach space is called
C-unconditional, for some C > 1, if for every ay,...,a, € Rand
€1,...,En € {_1’1}’

n n
HZS,’&,’X,’ < CHZ&,’X/ .
i=1 i=1

@ Equivalently, for every e = (e(i))%, € {—1,1}, T. : X — X with

o0 o0
T. ( > a/Xi> => eiax;
i i

is bounded and has norm at most C.

@ A sequence (y;)7°, in a Banach space X is an unconditional
sequence if it is an unconditional Schauder basis of its closed
linear span.
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The Unconditional Basic Sequence Problem

@ The unit vector bases of ¢y, £, 1 < p < oo, Schreier’s,
Tsirelson’s, and Schlumprecht’s spaces are unconditional.
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The Unconditional Basic Sequence Problem

@ The unit vector bases of ¢y, £, 1 < p < oo, Schreier’s,
Tsirelson’s, and Schlumprecht’s spaces are unconditional.

@ Every block sequence of a C-unconditional sequence is
C-unconditional.
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The Unconditional Basic Sequence Problem

@ The unit vector bases of ¢y, £, 1 < p < oo, Schreier’s,
Tsirelson’s, and Schlumprecht’s spaces are unconditional.

@ Every block sequence of a C-unconditional sequence is
C-unconditional.

@ The Schauder system of C[0, 1] and the Haar system of L;[0, 1]
are non-unconditional.
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The Unconditional Basic Sequence Problem

39/58

@ The unit vector bases of ¢y, £, 1 < p < oo, Schreier’s,
Tsirelson’s, and Schlumprecht’s spaces are unconditional.

@ Every block sequence of a C-unconditional sequence is
C-unconditional.

@ The Schauder system of C[0, 1] and the Haar system of L;[0, 1]
are non-unconditional.

Question: Does every infinite-dimensional Banach space
contain an unconditional sequence?
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The Gowers-Maurey Space

Theorem: (Gowers - Maurey, 1993) There exists a reflexive
Banach space Xgm without any unconditional sequences.
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The Gowers-Maurey Space

Theorem: (Gowers - Maurey, 1993) There exists a reflexive
Banach space Xgm without any unconditional sequences.

The Gowers-Maurey construction combines:

@ The Schlumprecht construction and

@ A Maurey-Rosenthal concept called a coding function.
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The Gowers-Maurey Construction

Hereditary heterogeneity in the Gowers-Maurey space yields:

In every block subspace of Xgu, there exist a 2-RIS (y;)22,, i.e.,
forevery iy < - - <ip € N,

<4

1 n 4 n
___ < : I
2log(n+1) = sz_;y’k log(n + 1)

41/58 Pavlos Motakis Methods for constructing Banach spaces



The Gowers-Maurey Construction

Hereditary heterogeneity in the Gowers-Maurey space yields:

In every block subspace of Xgu, there exist a 2-RIS (y;)22,, i.e.,
forevery iy < - - <ip € N,

<4

1 n ! n

- < , I

2|og(n—|—1)sz_:1y"‘ log(n + 1)
For (y;)72, as above, the vector

log(n+ 1) &

. og( n+ ) ny

i=1

is called a (2, n)-exact vector and it satisfies 1/2 < ||z|| < 4.
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The Gowers-Maurey Construction

Theorem: Let X be a block subspace of Xgm. Then, for
arbitrarily large N € N, there exists a block sequence (z;)Y, in X
such that each z; is a (2, n;)-exact vector and

4 1 N
H;Z,-’ = 2 log(N + 1)
but . N
H;(—U'z, S CE

In particular, no block sequence in Xy is unconditional.
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The Gowers-Maurey Construction

@ An X is called indecomposabile if for any bounded linear
projection P : X — X, either image(P) or kernel(P) is
finite-dimensional.
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The Gowers-Maurey Construction

@ An X is called indecomposabile if for any bounded linear
projection P : X — X, either image(P) or kernel(P) is
finite-dimensional.

Theorem: The space Xgy is hereditarily indecomposable (HI),
i.e., every infinite-dimensional Y C Xgum is indecomposable.
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The Gowers-Maurey Construction

@ An X is called indecomposabile if for any bounded linear
projection P : X — X, either image(P) or kernel(P) is
finite-dimensional.

Theorem: The space Xgy is hereditarily indecomposable (HI),
i.e., every infinite-dimensional Y C Xgum is indecomposable.

Theorem: (Gowers, 1996) Every infinite-dimensional Banach
space contains an unconditional sequence or an HI subspace.
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The Gowers-Maurey Construction

@ An X is called indecomposabile if for any bounded linear
projection P : X — X, either image(P) or kernel(P) is
finite-dimensional.

Theorem: The space Xgy is hereditarily indecomposable (HI),
i.e., every infinite-dimensional Y C Xgum is indecomposable.

Theorem: (Gowers, 1996) Every infinite-dimensional Banach
space contains an unconditional sequence or an HI subspace.

Theorem: (Argyros - Felouzis, 2000 and Argyros -
Raikoftsalis, 2012)

Every separable reflexive Banach space, e.g., {2, is isomorphic
to a quotient of some reflexive HI space.

43/58 Pavlos Motakis Methods for constructing Banach spaces



The Gowers-Maurey Construction

@ AT : X — Xis called strictly singular if:

for every infinite-dimensional Y C X there exists an infinite
dimensional Z C Y such that T|7 is compact.

Denote
SS(X) = {S e £(X) strictly singular}.

Always, K(X) c SS(X).

44/58 Pavlos Motakis Methods for constructing Banach spaces



The Gowers-Maurey Construction

@ AT : X — Xis called strictly singular if:

for every infinite-dimensional Y C X there exists an infinite
dimensional Z C Y such that T|7 is compact.

Denote
SS(X) = {S e £(X) strictly singular}.

Always, K(X) c SS(X).

Theorem: £(Xgm) = RI + SS(Xom)-
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The Gowers-Maurey Construction

@ AT : X — Xis called strictly singular if:

for every infinite-dimensional Y C X there exists an infinite
dimensional Z C Y such that T|7 is compact.

Denote
SS(X) = {S e £(X) strictly singular}.

Always, K(X) c SS(X).
Theorem: £(Xgm) = RI + SS(Xom)-
Theorem: (Gowers-Maurey, 1993 and Ferenczi, 1996)

For every HI space X, £(X)/SS(X) is one, two, or
four-dimensional.
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The Argyros-Haydon Space
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The Scalar-Plus-Compact Problem

Question: (Lindenstrauss, 1975)
Does there exist a Banach space X with the scalar-plus-compact
property, i.e., such that £(X) = R/ + K(X)?
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The Scalar-Plus-Compact Problem

Question: (Lindenstrauss, 1975)
Does there exist a Banach space X with the scalar-plus-compact
property, i.e., such that £(X) = R/ + K(X)?

Comment: L£(Xom) = R/ + SS(Xom)-

Theorem: (Androulakis - Schlumprecht, 2001)
K(Xom) S SS(Xom)-
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The Scalar-Plus-Compact Problem

Question: (Lindenstrauss, 1975)
Does there exist a Banach space X with the scalar-plus-compact
property, i.e., such that £(X) = R/ + K(X)?

Comment: L£(Xom) = R/ + SS(Xom)-

Theorem: (Androulakis - Schlumprecht, 2001)
K(Xom) S SS(Xom)-

Theorem: (Argyros - Haydon, Acta Math. 2011) There exists
an HI space Xy with the scalar-plus-compact property.
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The Argyros-Haydon Space

Theorem: (Argyros-Haydon, 2011) There exists an HI space
Xag that has the scalar-plus-compact property.

The Argyros-Haydon construction has two main components.

e The Gowers-Maurey construction, and thus it is an HI space.

e A Bourgain-Delbaen construction of a type of non-reflexive spaces
called Z..-spaces, and thus Xau is a £ -space.

47/58 Pavlos Motakis Methods for constructing Banach spaces



Xan and the Invariant Subspace Problem

@ For a Banach space X a T € £(X) admits an invariant subspace
if there exists a closed subspace {0} C Y C X with T(Y) C Y.
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Xan and the Invariant Subspace Problem

@ For a Banach space X a T € £(X) admits an invariant subspace
if there exists a closed subspace {0} C Y C X with T(Y) C Y.

@ An X has the invariant subspace property (ISP) if every
T € £(X) admits an invariant subspace.
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Xan and the Invariant Subspace Problem

@ For a Banach space X a T € £(X) admits an invariant subspace
if there exists a closed subspace {0} C Y C X with T(Y) C Y.

@ An X has the invariant subspace property (ISP) if every
T € £(X) admits an invariant subspace.

Question: (von Neumann) Does /> have the invariant subspace
property?
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Xan and the Invariant Subspace Problem

@ For a Banach space X a T € £(X) admits an invariant subspace
if there exists a closed subspace {0} C Y C X with T(Y) C Y.

@ An X has the invariant subspace property (ISP) if every
T € £(X) admits an invariant subspace.

Question: (von Neumann) Does /> have the invariant subspace
property?

Theorem: (Aronszajn-Smith, 1954) For a Banach space X,
every K € K(X) admits an invariant subspace.
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Xan and the Invariant Subspace Problem

@ For a Banach space X a T € £(X) admits an invariant subspace
if there exists a closed subspace {0} C Y C X with T(Y) C Y.

@ An X has the invariant subspace property (ISP) if every
T € £(X) admits an invariant subspace.

Question: (von Neumann) Does /> have the invariant subspace
property?

Theorem: (Aronszajn-Smith, 1954) For a Banach space X,
every K € K(X) admits an invariant subspace.

Conclusion: X,y has the invariant subspace property, and it is
the first known space with this property.
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Spaces X with £(X) = R/ + K(X)

49/58

Theorem: (Argyros - Freeman - Haydon - Odell - Raikoftsalis
- Schlumprecht - Zisimopoulou, 2012)

Every uniformly convex separable Banach space X is isomorphic
to a subspace of a separable .Z..-space X with the
scalar-plus-compact property.

In particular, X is isomorphic to a subspace of a non-reflexive
separable space with the invariant subspace property.
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Spaces X with £(X) = R/ + K(X)

49/58

Theorem: (Argyros - Freeman - Haydon - Odell - Raikoftsalis
- Schlumprecht - Zisimopoulou, 2012)

Every uniformly convex separable Banach space X is isomorphic
to a subspace of a separable .Z..-space X with the
scalar-plus-compact property.

In particular, X is isomorphic to a subspace of a non-reflexive
separable space with the invariant subspace property.

Question: Does there exist a reflexive infinite-dimensional
Banach space with the scalar-plus-compact property?
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The Argyros-Haydon Method and Calkin Algebras

@ For a Banach space X, Cal(X) = L(X)/K(X) is a unital Banach
algebra called the Calkin algebra of X.

50/58 Pavlos Motakis Methods for constructing Banach spaces



The Argyros-Haydon Method and Calkin Algebras

@ For a Banach space X, Cal(X) = L(X)/K(X) is a unital Banach
algebra called the Calkin algebra of X.

Question: For what unital Banach algebras B does there exist X
such that Cal(X) ~ B

In other words, what unital Banach algebras are Calkin algebras?

@ For example, Cal (Xan) = R.
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The Argyros-Haydon Method and Calkin Algebras

@ For a Banach space X, Cal(X) = L(X)/K(X) is a unital Banach
algebra called the Calkin algebra of X.

Question: For what unital Banach algebras B does there exist X
such that Cal(X) ~ B

In other words, what unital Banach algebras are Calkin algebras?
@ For example, Cal (Xan) = R.
Theorem: (Tarbard, 2012) ¢1(Np) is a Calkin algebra.

Theorem: (M - Puglisi - Zisimopoulou, 2016 and M, 2024)
Every separable C(K) space is a Calkin algebra.

Theorem: (M - Pelczar-Barwacz, 2024) The following spaces
are Calking algebras:
@ /p,1 < p< oo, e.g.,ls,

o Ly, 1< p<oo,
e Schlumprecht’s space and Tsirelson’s space.
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The Invariant Subspace Problem for
Reflexive Spaces
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The Invariant Subspace Problem for Reflexive Spaces

Question: (von Neumann) Does /> have the invariant subspace
property?
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The Invariant Subspace Problem for Reflexive Spaces

Question: (von Neumann) Does /> have the invariant subspace
property?

Theorem: (Enflo, 1987 and Read, 1984) There exist
non-reflexive separable Banach spaces failing the ISP.

Theorem: (Argyros-Haydon, 2011) The non-reflexive separable
space Xy satisfies the ISP.
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The Invariant Subspace Problem for Reflexive Spaces

Question: (von Neumann) Does /> have the invariant subspace
property?

Theorem: (Enflo, 1987 and Read, 1984) There exist
non-reflexive separable Banach spaces failing the ISP.

Theorem: (Argyros-Haydon, 2011) The non-reflexive separable
space Xy satisfies the ISP.

Question: (Read, 1989) Does there exist a separable reflexive
space with the ISP?
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The Invariant Subspace Problem for Reflexive Spaces

Theorem: (Argyros - M, 2014) There exists a separable
reflexive HI space Xsp with the ISP.
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The Invariant Subspace Problem for Reflexive Spaces

Theorem: (Argyros - M, 2014) There exists a separable
reflexive HI space Xsp with the ISP.

This construction combines:

@ The Tsirelson construction.

@ An Odell-Schlumprecht concept called saturation under constraints.
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The Invariant Subspace Problem for Reflexive Spaces

Theorem: (Argyros - M, 2014) There exists a separable
reflexive HI space Xsp with the ISP.

This construction combines:

@ The Tsirelson construction.

@ An Odell-Schlumprecht concept called saturation under constraints.

Remark: Every infinite-dimensional closed subspace of Xsp
satisfies the ISP.
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The Invariant Subspace Problem for Reflexive Spaces

Theorem: Xsp satisfies these main properties:
(1) ﬁ(%[sp) =R/+ SS(%[SP).

(2) Forevery S, T € SS§(Xisp), ST is compact.
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The Invariant Subspace Problem for Reflexive Spaces

Theorem: Xsp satisfies these main properties:
(1) ﬁ(%[sp) =R/+ SS(%[SP).

(2) Forevery S, T € SS§(Xisp), ST is compact.

Theorem: (Lomonosov, 1973) Let T, K € L(X), for some
infinite-dimensional Banach space X. If

@ K is compact and
o TK =KT

then T admits an invariant subspace.

54/58 Pavlos Motakis Methods for constructing Banach spaces



The Invariant Subspace Problem for Reflexive Spaces

Theorem: Xsp satisfies these main properties:
(1) ﬁ(%[sp) =R/+ SS(%[SP).
(2) Forevery S, T € SS§(Xisp), ST is compact.

Theorem: (Lomonosov, 1973) Let T, K € L(X), for some
infinite-dimensional Banach space X. If

@ K is compact and
o TK =KT

then T admits an invariant subspace.

Conclusion: Every T € L(X;sp) admits an invariant subspace.
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The Invariant Subspace Problem for Reflexive Spaces

Theorem: Xsp satisfies these main properties:
(1) ﬁ(%[sp) =R/+ SS(%[SP).

(2) Forevery S, T € SS§(Xisp), ST is compact.

Theorem: (Lomonosov, 1973) Let T, K € L(X), for some
infinite-dimensional Banach space X. If

@ K is compact and
o TK =KT

then T admits an invariant subspace.

Conclusion: Every T € L(X;sp) admits an invariant subspace.

Proof: Let T € L(Xisp) and X € R, S € SS(X;sp) such that
T=M+S.

54/58 Pavlos Motakis Methods for constructing Banach spaces



The Invariant Subspace Problem for Reflexive Spaces

Theorem: Xsp satisfies these main properties:
(1) ﬁ(%[sp) =R/+ SS(%[SP).

(2) Forevery S, T € SS§(Xisp), ST is compact.

Theorem: (Lomonosov, 1973) Let T, K € L(X), for some
infinite-dimensional Banach space X. If

@ K is compact and
o TK =KT

then T admits an invariant subspace.

Conclusion: Every T € L(X;sp) admits an invariant subspace.

Proof: Let T € L(Xisp) and X € R, S € SS(X;sp) such that
T=M+S.

S?is compactand T S? = (A + §)S2 = S?(\/+ S) = S2T.
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The Invariant Subspace Problem for Reflexive Spaces

Theorem: Xsp satisfies these main properties:
(1) ﬁ(%[sp) =R/+ SS(%[SP).

(2) Forevery S, T € SS§(Xisp), ST is compact.

Theorem: (Lomonosov, 1973) Let T, K € L(X), for some
infinite-dimensional Banach space X. If

@ K is compact and
o TK =KT

then T admits an invariant subspace.

Conclusion: Every T € L(X;sp) admits an invariant subspace.

Proof: Let T € L(Xisp) and X € R, S € SS(X;sp) such that
T=M+S.

S?iscompactand T 82 = (A + S)S? = S?(\/+ S) = S2T.

By Lomonosov’s theorem T admits an invariant subspace.
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Spreading Models

@ A sequence (x,)2 in a Banach space generates a
C-/q-spreading model ifforalln< iy < --- < i, e Nand
ay,...,an€R

n n n
C‘1Z|ak| < HZakx,-k SZ‘&H.
k=1 k=1 k=1

We refer to such sequences as rank |l sequences.
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Spreading Models

@ A sequence (x,)2 in a Banach space generates a
C-/q-spreading model ifforalln< iy < --- < i, e Nand
ay,...,an€R

n n n
C‘1Z|ak| < HZakx,-k SZ‘&H.
k=1 k=1 k=1

We refer to such sequences as rank |l sequences.

@ A sequence (x,)°, in a Banach space generates a
C-co-spreading model if foralln < iy < --- < i, € Nand
ai,...,an€R

< C max |ag|.
1<k<n

n
max |ax| < H E aX;,
1<k<n P

We refer to such sequences as rank | sequences.
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Spreading Models

@ A sequence (x,)2 in a Banach space generates a
C-/q-spreading model ifforalln< iy < --- < i, e Nand
ay,...,an€R

n n n
C‘1Z|ak| < HZakx,-k SZ‘&H.
k=1 k=1 k=1

We refer to such sequences as rank |l sequences.

@ A sequence (x,)°, in a Banach space generates a
C-co-spreading model if foralln < iy < --- < i, € Nand
ai,...,an€R

< C max |ag|.
1<k<n

n
max |ax| < H E aX;,
1<k<n P

We refer to such sequences as rank | sequences.

@ We refer to sequences (x;)7°; such that lim,||x;|| = 0 as rank 0
sequences.
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Hereditary Heterogeneity of X;sp

Remark: Rank is stable under taking subsequences.
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Hereditary Heterogeneity of X;sp

Remark: Rank is stable under taking subsequences.

Theorem: Let (x;)7°, be a weakly null sequence in Xisp.
Then, it has a rank 0, a rank | or a rank Il subsequence.
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Hereditary Heterogeneity of X;sp

Remark: Rank is stable under taking subsequences.

Theorem: Let (x;)7°, be a weakly null sequence in Xisp.
Then, it has a rank 0, a rank | or a rank Il subsequence.

Theorem: In Xsp, there is a canonical way to construct a rank |
sequence from a rank Il sequence, and vice versa.

In particular, every subspace of X;sp contains weakly null
sequences of rank | and .
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Strictly Singular Operators on Xisp

Theorem: Let T € L(Xsp) be strictly singular. For a weakly null
sequence (x;)2°, of positive rank, (Tx;)7°, has a subsequence of
lesser rank.
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Strictly Singular Operators on Xisp

Theorem: Let T € L(Xsp) be strictly singular. For a weakly null
sequence (x;)2°, of positive rank, (Tx;)7°, has a subsequence of
lesser rank.

Corollary: If S, T € SS(Xsp) then ST is compact.
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Strictly Singular Operators on Xisp

Theorem: Let T € L(Xsp) be strictly singular. For a weakly null
sequence (x;)2°, of positive rank, (Tx;)7°, has a subsequence of
lesser rank.

Corollary: If S, T € SS(Xsp) then ST is compact.

Proof: By reflexivity, it suffices to show that for a weakly null
sequence (x;)%,, lim; ||STx;|| = 0.
Assume (x;)7°4, (Tx;)22, and (STx;)7°, are of some rank.
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Strictly Singular Operators on Xisp

Theorem: Let T € L(Xsp) be strictly singular. For a weakly null
sequence (x;)2°, of positive rank, (Tx;)7°, has a subsequence of
lesser rank.

Corollary: If S, T € SS(Xsp) then ST is compact.

Proof: By reflexivity, it suffices to show that for a weakly null
sequence (x;)%,, lim; ||STx;|| = 0.
Assume (x;)7°4, (Tx;)22, and (STx;)7°, are of some rank.

o If (x;))=y is of rank 0, i.e, lim; ||x;|| = 0, then lim;c. || STxi|| = 0.
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Strictly Singular Operators on Xisp

Theorem: Let T € L(Xsp) be strictly singular. For a weakly null
sequence (x;)2°, of positive rank, (Tx;)7°, has a subsequence of
lesser rank.

Corollary: If S, T € SS(Xsp) then ST is compact.

Proof: By reflexivity, it suffices to show that for a weakly null
sequence (x;)%,, lim; ||STx;|| = 0.
Assume (x;)7°4, (Tx;)22, and (STx;)7°, are of some rank.

o If (x;))=y is of rank 0, i.e, lim; ||x;|| = 0, then lim;c. || STxi|| = 0.

o If (%)= is of rank |, then (Tx;)=; is of rank 0, i.e, lim; || Tx;|| = O,
and thus lim;e, ||STx;|| = 0.
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Strictly Singular Operators on Xisp

Theorem: Let T € L(Xsp) be strictly singular. For a weakly null
sequence (x;)2°, of positive rank, (Tx;)7°, has a subsequence of
lesser rank.

Corollary: If S, T € SS(Xsp) then ST is compact.

Proof: By reflexivity, it suffices to show that for a weakly null
sequence (x;)%,, lim; ||STx;|| = 0.
Assume (x;)7°4, (Tx;)22, and (STx;)7°, are of some rank.

o If (x;)= is of rank 0, i.e, lim; ||X;|| = 0O, then lim;e. || STx;|| = 0.

o If (xi)72; is of rank |, then (Tx;)3%; is of rank 0, i.e, lim; || Tx;|| = O,
and thus lim;e, ||STx;|| = 0.

o If (x;)=y is of rank Il, then (Tx;)Zy is or rank | or 0.
In either case, (STx;)=; is of rank 0, i.e., lim; || STx;|| = 0.
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Thank you!
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