Methods for constructing Banach spaces with prescribed properties in their operator spaces

Pavlos Motakis

York University

7th MATH @ NTUA summer school in "Mathematical Analysis" in honor of Spiros Argyros

June 28, 2024

- Banach Spaces
- The Space $\mathcal{L}(X)$
- Fundamental Banach Spaces Concepts
- Schreier's Space
- Tsirelson's Space
- Schlumprecht's Space
- The Gowers-Maurey Space
- The Argyros-Haydon Space
- The Invariant Subspace Problem for Reflexive Spaces

Banach Spaces

A B F A B F

크

Notation: Banach Spaces

• X, Y, Z, and W denote Banach spaces.

$$\begin{split} \ell_{\infty} &= \Big\{ x = (x(i))_{i \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} : \|x\|_{\infty} = \sup_{i \in \mathbb{N}} |x(i)| < \infty \Big\}, \\ c_{0} &= \Big\{ x = (x(i))_{i \in \mathbb{N}} \in \ell_{\infty} : \lim_{i \to \infty} x(i) = 0 \Big\}, \\ \ell_{p} &= \Big\{ x = (x(i))_{i \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} : \|x\|_{p} = \Big(\sum_{i=1}^{\infty} |x(i)|^{p}\Big)^{1/p} < \infty \Big\}, \ 1 \le p < \infty. \end{split}$$

• X is separable if it contains a countable norm-dense subset.

• ℓ_{∞} is non-separable.

• ℓ_p , $1 \le p < \infty$, and c_0 are separable.

Convention: Unless stated otherwise, a Banach space is infinite-dimensional.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Notation: Banach Spaces

• X, Y, Z, and W denote Banach spaces.

$$egin{aligned} \ell_{\infty} &= \Big\{ x = (x(i))_{i \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} : \|x\|_{\infty} = \sup_{i \in \mathbb{N}} |x(i)| < \infty \Big\}, \ c_{0} &= \Big\{ x = (x(i))_{i \in \mathbb{N}} \in \ell_{\infty} : \lim_{i o \infty} x(i) = 0 \Big\}, \ \ell_{p} &= \Big\{ x = (x(i))_{i \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} : \|x\|_{p} = \Big(\sum_{i=1}^{\infty} |x(i)|^{p}\Big)^{1/p} < \infty \Big\}, \ 1 \leq p < \infty. \end{aligned}$$

• X is separable if it contains a countable norm-dense subset.

- ℓ_{∞} is non-separable.
- ℓ_{p} , $1 \leq p < \infty$, and c_{0} are separable.

Convention: Unless stated otherwise, a Banach space is infinite-dimensional.

Notation: Bounded Linear Operators

• T, S, R and $K : X \rightarrow Y$ denote bounded linear operators.

$$\mathcal{L}(X, Y) = \left\{ T : X \rightarrow Y \text{ linear & bounded} \right\}$$

is a Banach space with

$$\|T\| = \sup\{\|Tx\| : \|x\| \le 1\}.$$

Notation: $\mathcal{L}(X) = \mathcal{L}(X, X)$ and $X^* = \mathcal{L}(X, \mathbb{R})$.

• X is reflexive if $X \equiv X^{**}$ canonically, i.e., $\hat{X} = X^{**}$.

• c_0 , and ℓ_1 are non-reflexive.

• ℓ_p , 1 , is reflexive.

Notation: Bounded Linear Operators

• T, S, R and $K : X \rightarrow Y$ denote bounded linear operators.

$$\mathcal{L}(X, Y) = \left\{ T : X \rightarrow Y \text{ linear & bounded} \right\}$$

is a Banach space with

$$\|T\| = \sup\{\|Tx\| : \|x\| \le 1\}.$$

Notation: $\mathcal{L}(X) = \mathcal{L}(X, X)$ and $X^* = \mathcal{L}(X, \mathbb{R})$.

- X is reflexive if $X \equiv X^{**}$ canonically, i.e., $\hat{X} = X^{**}$.
 - c_0 , and ℓ_1 are non-reflexive.
 - ℓ_p , 1 , is reflexive.

 K : X → Y is called compact if for every bounded sequence (x_i)[∞]_{i=1} in X, (Kx_i)[∞]_{i=1} has a convergent subsequence.

Notation:

$$\mathcal{K}(X, Y) = \left\{ T \in \mathcal{L}(X, Y) \text{ compact} \right\}$$
 and $\mathcal{K}(X) = \mathcal{K}(X, X).$

The Isomorphic Structure of the Subspaces of an X

• X and Y are C-isomorphic, or $X \simeq^{C} Y$, for $C \ge 1$, means:

there exists a linear bijection $T: X \to Y$ with $||T|| ||T^{-1}|| \leq C$.

To disregard *C*, we say *X* and *Y* are isomorphic, or $X \simeq Y$.

Question: What are the subspaces of an X up to isomorphism?

Examples:

- Let $X = \ell_2$. If $Y \subset \ell_2$ then $Y \simeq^1 \ell_2$.
- Let X = ℓ_p, 1 ≤ p < ∞, or X = c₀.
 If Y ⊂ X then there exists Z ⊂ Y such that Z ≃ X.
- Let $X = L_p[0, 1], 1 \le p < \infty$.

Then, ℓ_p and ℓ_2 are isomorphic to subspaces of X.

The Isomorphic Structure of the Subspaces of an X

• X and Y are C-isomorphic, or $X \simeq^C Y$, for $C \ge 1$, means:

there exists a linear bijection $T: X \to Y$ with $||T|| ||T^{-1}|| \leq C$.

To disregard *C*, we say *X* and *Y* are isomorphic, or $X \simeq Y$.

Question: What are the subspaces of an X up to isomorphism?

Examples:

- Let $X = \ell_2$. If $Y \subset \ell_2$ then $Y \simeq^1 \ell_2$.
- Let X = ℓ_p, 1 ≤ p < ∞, or X = c₀.
 If Y ⊂ X then there exists Z ⊂ Y such that Z ≃ X.
- Let $X = L_p[0, 1], 1 \le p < \infty$.

Then, ℓ_p and ℓ_2 are isomorphic to subspaces of X.

The Isomorphic Structure of the Subspaces of an X

• X and Y are C-isomorphic, or $X \simeq^{C} Y$, for $C \ge 1$, means:

there exists a linear bijection $T: X \to Y$ with $||T|| ||T^{-1}|| \leq C$.

To disregard *C*, we say *X* and *Y* are isomorphic, or $X \simeq Y$.

Question: What are the subspaces of an X up to isomorphism?

Examples:

- Let $X = \ell_2$. If $Y \subset \ell_2$ then $Y \simeq^1 \ell_2$.
- Let $X = \ell_p$, $1 \le p < \infty$, or $X = c_0$. If $Y \subset X$ then there exists $Z \subset Y$ such that $Z \simeq X$.
- Let $X = L_p[0, 1], 1 \le p < \infty$.

Then, ℓ_p and ℓ_2 are isomorphic to subspaces of X.

Question: For arbitrary *X*, is there $Y \subset X$ that is isomorphic to c_0 or some ℓ_p , $1 \le p < \infty$?

• A counterexample was constructed by Tsirelson in 1974.

Question: For arbitrary *X*, is there $Y \subset X$ that is isomorphic to c_0 or some ℓ_p , $1 \le p < \infty$?

• A counterexample was constructed by Tsirelson in 1974.

The Space $\mathcal{L}(X)$

イロト イ団ト イヨト イヨト

크

Constructing Operators: Classical Sequence Spaces

• Let
$$X = \ell_p$$
, $1 \le p < \infty$ or $X = c_0$.

For $\varepsilon = (\varepsilon(i))_{i \in \mathbb{N}} \in \{-1, 1\}^{\mathbb{N}}$ and a permutation $\pi : \mathbb{N} \to \mathbb{N}$.

Define $T_{\varepsilon,\pi} \in \mathcal{L}(X)$ as follows: for $x = (x(i))_{i \in \mathbb{N}} \in X$,

$$T_{\varepsilon,\pi} \mathbf{x} = \left(\varepsilon(i) \mathbf{x} (\pi^{-1}(i))\right)_{i \in \mathbb{N}}$$

Thus, $\mathcal{L}(X)$ is non-separable.

Constructing Operators: Arbitrary Banach Spaces

• Let *X* be an arbitrary infinite-dimensional Banach space.

(a) For $\lambda \in \mathbb{R}$, the scalar operator $\lambda I \in \mathcal{L}(X)$ is given by

$$\lambda \mathbf{I} \mathbf{x} = \lambda \mathbf{x}.$$

(b) For $f \in X^*$, $y \in X$, the rank-one operator $f \otimes x \in \mathcal{L}(X)$ is given by $(f \otimes y)x = f(x)y$.

Then $||f \otimes x|| = ||f|| ||x||$.

• For $f_1, \ldots, f_n \in X^*$ and $y_1, \ldots, y_n \in X$, the finite-rank operator

 $\sum_{i=1}^n f_i \otimes y_i \in \mathcal{L}(X).$

• For $(f_i)_{i \in \mathbb{N}} \in X^*$ and $(y_i)_{i \in \mathbb{N}} \in X$, such that $\sum_{i=1}^{\infty} ||f_i|| ||y_i|| < \infty$, the nuclear operator

$$\sum_{i=1}^{\infty} f_i \otimes \mathbf{y}_i \in \mathcal{L}(X).$$

Constructing Operators: Arbitrary Banach Spaces

• Let *X* be an arbitrary infinite-dimensional Banach space.

(a) For $\lambda \in \mathbb{R}$, the scalar operator $\lambda I \in \mathcal{L}(X)$ is given by

$$\lambda I \mathbf{x} = \lambda \mathbf{x}.$$

(b) For $f \in X^*$, $y \in X$, the rank-one operator $f \otimes x \in \mathcal{L}(X)$ is given by $(f \otimes y)x = f(x)y$.

Then $||f \otimes x|| = ||f|| ||x||$.

• For $f_1, \ldots, f_n \in X^*$ and $y_1, \ldots, y_n \in X$, the finite-rank operator

 $\sum_{i=1}^n f_i \otimes y_i \in \mathcal{L}(X).$

• For $(f_i)_{i \in \mathbb{N}} \in X^*$ and $(y_i)_{i \in \mathbb{N}} \in X$, such that $\sum_{i=1}^{\infty} ||f_i|| ||y_i|| < \infty$, the nuclear operator

$$\sum_{i=1}^{\infty} f_i \otimes \mathbf{y}_i \in \mathcal{L}(X).$$

Constructing Operators: Arbitrary Banach Spaces

• Let *X* be an arbitrary infinite-dimensional Banach space.

(a) For $\lambda \in \mathbb{R}$, the scalar operator $\lambda I \in \mathcal{L}(X)$ is given by

$$\lambda I \mathbf{x} = \lambda \mathbf{x}.$$

(b) For $f \in X^*$, $y \in X$, the rank-one operator $f \otimes x \in \mathcal{L}(X)$ is given by $(f \otimes y)x = f(x)y$.

Then $||f \otimes x|| = ||f|| ||x||$.

• For $f_1, \ldots, f_n \in X^*$ and $y_1, \ldots, y_n \in X$, the finite-rank operator

$$\sum_{i=1}^n f_i \otimes y_i \in \mathcal{L}(X).$$

• For $(f_i)_{i \in \mathbb{N}} \in X^*$ and $(y_i)_{i \in \mathbb{N}} \in X$, such that $\sum_{i=1}^{\infty} ||f_i|| ||y_i|| < \infty$, the nuclear operator

$$\sum_{i=1}^{\infty} f_i \otimes y_i \in \mathcal{L}(X).$$

• If
$$\mathcal{N}(X) = \Big\{ T \in \mathcal{L}(X) \text{ nuclear} \Big\},$$

 $\mathbb{R}I + \mathcal{N}(X) \subset \mathcal{L}(X).$

By Hahn-Banach: dim $(\mathcal{L}(X)) = \infty$.

Remark: $\mathcal{N}(X) \subset \mathcal{K}(X)$, and under "mild" assumptions on *X*,

$$\overline{\mathcal{N}(X)}^{\|\cdot\|} = \mathcal{K}(X).$$

Question: (Lindenstrauss, 1975)

Does there exist a Banach space *X* with the scalar-plus-compact property, i.e., such that

 $\mathbb{R}I + \mathcal{K}(X) = \mathcal{L}(X)?$

• Such a space was constructed by Argyros and Haydon in 2011.

A (10) A (10)

• If
$$\mathcal{N}(X) = \Big\{ T \in \mathcal{L}(X) \text{ nuclear} \Big\},$$

 $\mathbb{R}I + \mathcal{N}(X) \subset \mathcal{L}(X).$

By Hahn-Banach: dim($\mathcal{L}(X)$) = ∞ .

Remark: $\mathcal{N}(X) \subset \mathcal{K}(X)$, and under "mild" assumptions on X,

$$\overline{\mathcal{N}(X)}^{\|\cdot\|} = \mathcal{K}(X).$$

Question: (Lindenstrauss, 1975)

Does there exist a Banach space X with the scalar-plus-compact property, i.e., such that

 $\mathbb{R}I + \mathcal{K}(X) = \mathcal{L}(X)?$

• Such a space was constructed by Argyros and Haydon in 2011.

< 回 > < 回 > < 回 > -

• If
$$\mathcal{N}(X) = \Big\{ T \in \mathcal{L}(X) \text{ nuclear} \Big\},$$

 $\mathbb{R}I + \mathcal{N}(X) \subset \mathcal{L}(X).$

By Hahn-Banach: dim($\mathcal{L}(X)$) = ∞ .

Remark: $\mathcal{N}(X) \subset \mathcal{K}(X)$, and under "mild" assumptions on *X*,

$$\overline{\mathcal{N}(X)}^{\|\cdot\|} = \mathcal{K}(X).$$

Question: (Lindenstrauss, 1975)

Does there exist a Banach space X with the scalar-plus-compact property, i.e., such that

$$\mathbb{R}I + \mathcal{K}(X) = \mathcal{L}(X)?$$

• Such a space was constructed by Argyros and Haydon in 2011.

Image: A Image: A

• If
$$\mathcal{N}(X) = \Big\{ T \in \mathcal{L}(X) \text{ nuclear} \Big\},$$

 $\mathbb{R}I + \mathcal{N}(X) \subset \mathcal{L}(X).$

By Hahn-Banach: dim($\mathcal{L}(X)$) = ∞ .

Remark: $\mathcal{N}(X) \subset \mathcal{K}(X)$, and under "mild" assumptions on *X*,

$$\overline{\mathcal{N}(X)}^{\|\cdot\|} = \mathcal{K}(X).$$

Question: (Lindenstrauss, 1975)

Does there exist a Banach space X with the scalar-plus-compact property, i.e., such that

$$\mathbb{R}I + \mathcal{K}(X) = \mathcal{L}(X)?$$

• Such a space was constructed by Argyros and Haydon in 2011.

Fundamental Banach Spaces Concepts

Schauder Bases

A Schauder basis of a Banach space is a sequence (x_i)[∞]_{i=1} in X such that for every x ∈ X,

$$x=\sum_{i=1}^{\infty}a_ix_i,$$

for a unique $(a_i)_{i=1}^{\infty} \in \mathbb{R}^{\mathbb{N}}$.

Example: For $X = \ell_p$, $1 \le p < \infty$, or $X = c_0$ let, for $i \in \mathbb{N}$,

$$e_i = (0,0,0,\ldots,0, \stackrel{1}{\underset{i \ th \ position}{\uparrow}},0,\ldots).$$

Then $(e_i)_{i=1}^{\infty}$ is a Schauder basis of X because,

$$\text{if } x = (x(i))_{i=1}^{\infty} \in X \text{ then } x = \sum_{i=1}^{\infty} x(i)e_i.$$

Schauder Bases

A Schauder basis of a Banach space is a sequence (x_i)[∞]_{i=1} in X such that for every x ∈ X,

$$x=\sum_{i=1}^{\infty}a_{i}x_{i},$$

for a unique $(a_i)_{i=1}^{\infty} \in \mathbb{R}^{\mathbb{N}}$.

Example: For $X = \ell_p$, $1 \le p < \infty$, or $X = c_0$ let, for $i \in \mathbb{N}$,

$$e_i = (0, 0, 0, \dots, 0, \underset{\stackrel{\uparrow}{\text{ith position}}}{1, 0, \dots}).$$

Then $(e_i)_{i=1}^{\infty}$ is a Schauder basis of X because,

$$\text{if } x = (x(i))_{i=1}^{\infty} \in X \text{ then } x = \sum_{i=1}^{\infty} x(i)e_i.$$

 Two Schauder bases (x_i)[∞]_{i=1} of X and (y_i)[∞]_{i=1} of Y are called C-equivalent if T : X → Y given by

$$T\Big(\sum_{i=1}^{\infty}a_ix_i\Big)=\sum_{i=1}^{\infty}a_iy_i$$

is a C-isomorphism of X and Y.

Block Sequences

Let X have a Schauder basis $(x_i)_{i=1}^{\infty}$.

• The support of an $x = \sum_{i=1}^{\infty} a_i x_i$ in X is the set

 $\operatorname{supp}(x) = \{i \in \mathbb{N} : a_i \neq 0\}.$

For $x \in X$ and $\varepsilon > 0$ there exists $y \in X$ with supp(y) finite

 $\|X-Y\|<\varepsilon.$

• A sequence $(y_i)_{i=1}^{\infty}$ in X is a block sequence if

 $\operatorname{supp}(y_1) < \operatorname{supp}(y_2) < \cdots < \operatorname{supp}(y_i) < \operatorname{supp}(y_{i+1}) < \cdots$.

For a block sequence (y_i)[∞]_{i=1} in X, Y = ({y_i : i ∈ ℕ}) is called a block subspace of X.

< □ > < □ > < □ > < □ > < □ >

Block Sequences

Let X have a Schauder basis $(x_i)_{i=1}^{\infty}$.

• The support of an $x = \sum_{i=1}^{\infty} a_i x_i$ in X is the set

 $\operatorname{supp}(x) = \{i \in \mathbb{N} : a_i \neq 0\}.$

For $x \in X$ and $\varepsilon > 0$ there exists $y \in X$ with supp(y) finite

 $\|\boldsymbol{x}-\boldsymbol{y}\|<\varepsilon.$

• A sequence $(y_i)_{i=1}^{\infty}$ in X is a block sequence if

 $\operatorname{supp}(y_1) < \operatorname{supp}(y_2) < \cdots < \operatorname{supp}(y_i) < \operatorname{supp}(y_{i+1}) < \cdots$

For a block sequence (y_i)[∞]_{i=1} in X, Y = ({y_i : i ∈ ℕ}) is called a block subspace of X.

Let X have a Schauder basis $(x_i)_{i=1}^{\infty}$.

• The support of an $x = \sum_{i=1}^{\infty} a_i x_i$ in X is the set

 $\operatorname{supp}(x) = \{i \in \mathbb{N} : a_i \neq 0\}.$

For $x \in X$ and $\varepsilon > 0$ there exists $y \in X$ with supp(y) finite

 $\|\boldsymbol{x}-\boldsymbol{y}\|<\varepsilon.$

• A sequence $(y_i)_{i=1}^{\infty}$ in X is a block sequence if

 $\operatorname{supp}(y_1) < \operatorname{supp}(y_2) < \cdots < \operatorname{supp}(y_i) < \operatorname{supp}(y_{i+1}) < \cdots$

For a block sequence (y_i)[∞]_{i=1} in X, Y = ({y_i : i ∈ ℕ}) is called a block subspace of X.

Let X have a Schauder basis $(x_i)_{i=1}^{\infty}$.

• The support of an $x = \sum_{i=1}^{\infty} a_i x_i$ in X is the set

 $\operatorname{supp}(x) = \{i \in \mathbb{N} : a_i \neq 0\}.$

For $x \in X$ and $\varepsilon > 0$ there exists $y \in X$ with supp(y) finite

$$\|\boldsymbol{x}-\boldsymbol{y}\|<\varepsilon.$$

• A sequence $(y_i)_{i=1}^{\infty}$ in X is a block sequence if

 $\operatorname{supp}(y_1) < \operatorname{supp}(y_2) < \cdots < \operatorname{supp}(y_i) < \operatorname{supp}(y_{i+1}) < \cdots$

For a block sequence (y_i)[∞]_{i=1} in X, Y = ({y_i : i ∈ ℕ}) is called a block subspace of X.

If X has a Schauder basis $(x_i)_{i=1}^{\infty}$, block subspaces saturate the infinite-dimensional subspaces Y of X.

Theorem: Let $Y \subset X$ and $\varepsilon > 0$.

Then *Y* contains an ε -perturbation of a block subspace *W*.

That is, there exists an isomorphism $T \in \mathcal{L}(X)$ with $||I - T|| < \varepsilon$ and $T(W) \subset Y$.

Schreier's Space

A B F A B F

크

• A sequence $(x_i)_{i=1}^{\infty}$ in a Banach space is weakly null if, for every $f \in X^*$, $\lim_{i\to\infty} f(x_i) = 0$.

Theorem: (Mazur) $(x_i)_{i=1}^{\infty}$ is weakly null if and only if for every infinite $L \subset \mathbb{N}$ and $\varepsilon > 0$ there exist a finite $F \subset L$ and $(\lambda_i)_{i \in F}$ in [0, 1] such that $\sum_{i \in F} \lambda_i = 1$ and $\|\sum_{i \in F} \lambda_i x_i\| < \varepsilon$.

Question: (Banach - Saks, 1930s) Assume $(x_i)_{i=1}^{\infty}$ is weakly null and let $\varepsilon > 0$. Does there exist a finite $F \subset \mathbb{N}$ such that

$$\Big\|\sum_{i\in F}\frac{1}{\#F}x_i\Big\|<\varepsilon?$$

$$\left\|\sum_{i\in F}\frac{1}{\#F}e_i\right\|\geq \frac{1}{2}.$$

• A sequence $(x_i)_{i=1}^{\infty}$ in a Banach space is weakly null if, for every $f \in X^*$, $\lim_{i\to\infty} f(x_i) = 0$.

Theorem: (Mazur) $(x_i)_{i=1}^{\infty}$ is weakly null if and only if for every infinite $L \subset \mathbb{N}$ and $\varepsilon > 0$ there exist a finite $F \subset L$ and $(\lambda_i)_{i \in F}$ in [0, 1] such that $\sum_{i \in F} \lambda_i = 1$ and $\|\sum_{i \in F} \lambda_i x_i\| < \varepsilon$.

Question: (Banach - Saks, 1930s) Assume $(x_i)_{i=1}^{\infty}$ is weakly null and let $\varepsilon > 0$. Does there exist a finite $F \subset \mathbb{N}$ such that

$$\Big\|\sum_{i\in F}\frac{1}{\#F}x_i\Big\|<\varepsilon?$$

$$\left\|\sum_{i\in F}\frac{1}{\#F}e_i\right\|\geq \frac{1}{2}.$$

• A sequence $(x_i)_{i=1}^{\infty}$ in a Banach space is weakly null if, for every $f \in X^*$, $\lim_{i\to\infty} f(x_i) = 0$.

Theorem: (Mazur) $(x_i)_{i=1}^{\infty}$ is weakly null if and only if for every infinite $L \subset \mathbb{N}$ and $\varepsilon > 0$ there exist a finite $F \subset L$ and $(\lambda_i)_{i \in F}$ in [0, 1] such that $\sum_{i \in F} \lambda_i = 1$ and $\|\sum_{i \in F} \lambda_i x_i\| < \varepsilon$.

Question: (Banach - Saks, 1930s) Assume $(x_i)_{i=1}^{\infty}$ is weakly null and let $\varepsilon > 0$. Does there exist a finite $F \subset \mathbb{N}$ such that

$$\Big|\sum_{i\in F}\frac{1}{\#F}x_i\Big\|<\varepsilon?$$

$$\left\|\sum_{i\in F}\frac{1}{\#F}e_i\right\|\geq \frac{1}{2}.$$

• A sequence $(x_i)_{i=1}^{\infty}$ in a Banach space is weakly null if, for every $f \in X^*$, $\lim_{i\to\infty} f(x_i) = 0$.

Theorem: (Mazur) $(x_i)_{i=1}^{\infty}$ is weakly null if and only if for every infinite $L \subset \mathbb{N}$ and $\varepsilon > 0$ there exist a finite $F \subset L$ and $(\lambda_i)_{i \in F}$ in [0, 1] such that $\sum_{i \in F} \lambda_i = 1$ and $\|\sum_{i \in F} \lambda_i x_i\| < \varepsilon$.

Question: (Banach - Saks, 1930s) Assume $(x_i)_{i=1}^{\infty}$ is weakly null and let $\varepsilon > 0$. Does there exist a finite $F \subset \mathbb{N}$ such that

$$\Big\|\sum_{i\in F}\frac{1}{\#F}x_i\Big\|<\varepsilon?$$

$$\left\|\sum_{i\in F}rac{1}{\#F}e_i\right\|\geq rac{1}{2}.$$

• The Schreier family:

$$\mathcal{S} = \Big\{ F \subset \mathbb{N} : \ \#F \leq \min(F) \Big\}.$$

E.g., $\{5, 6, 12\} \in S$ but $\{2, 5, 7\} \notin S$.

• $c_{00} = \left\{ x = (x(i))_{i=1}^{\infty} \in \mathbb{R}^{\mathbb{N}} : x(i) \neq 0 \text{ for only finitely many } i \right\}.$

• For $i \in \mathbb{N}$, and for $x = (x(i))_{i=1}^{\infty} \in c_{00}, F \subset \mathbb{N}$, let

$$Fx = \sum_{i \in F} x(i)e_i.$$

• Define a norm on c_{00} by letting, for $x = (x(i))_{i=1}^{\infty}$,

$$\|x\| = \sup\left\{\sum_{i\in F} |x(i)|: F\in \mathcal{S}\right\} = \sup_{F\in \mathcal{S}} \|Fx\|_{\ell_1},$$

• The Schreier family:

$$\mathcal{S} = \Big\{ F \subset \mathbb{N} : \ \#F \leq \min(F) \Big\}.$$

E.g., $\{5, 6, 12\} \in S$ but $\{2, 5, 7\} \notin S$.

• $c_{00} = \Big\{ x = (x(i))_{i=1}^{\infty} \in \mathbb{R}^{\mathbb{N}} : x(i) \neq 0 \text{ for only finitely many } i \Big\}.$

• For $i \in \mathbb{N}$, and for $x = (x(i))_{i=1}^{\infty} \in c_{00}, F \subset \mathbb{N}$, let

$$Fx = \sum_{i \in F} x(i)e_i.$$

• Define a norm on c_{00} by letting, for $x = (x(i))_{i=1}^{\infty}$,

$$\|x\| = \sup\left\{\sum_{i\in F} |x(i)|: F\in \mathcal{S}\right\} = \sup_{F\in \mathcal{S}} \|Fx\|_{\ell_1},$$

• The Schreier family:

$$\mathcal{S} = \Big\{ F \subset \mathbb{N} : \ \#F \leq \min(F) \Big\}.$$

E.g., $\{5,6,12\}\in\mathcal{S}$ but $\{2,5,7\}\notin\mathcal{S}.$

• $c_{00} = \left\{ x = (x(i))_{i=1}^{\infty} \in \mathbb{R}^{\mathbb{N}} : x(i) \neq 0 \text{ for only finitely many } i \right\}.$

• For $i \in \mathbb{N}$, and for $x = (x(i))_{i=1}^{\infty} \in c_{00}, F \subset \mathbb{N}$, let

$$Fx = \sum_{i \in F} x(i)e_i.$$

• Define a norm on c_{00} by letting, for $x = (x(i))_{i=1}^{\infty}$,

$$\|x\| = \sup\left\{\sum_{i\in F} |x(i)|: F\in \mathcal{S}\right\} = \sup_{F\in \mathcal{S}} \|Fx\|_{\ell_1},$$

• The Schreier family:

$$\mathcal{S} = \Big\{ F \subset \mathbb{N} : \ \#F \leq \min(F) \Big\}.$$

E.g., $\{5,6,12\}\in\mathcal{S}$ but $\{2,5,7\}\notin\mathcal{S}.$

• $c_{00} = \left\{ x = (x(i))_{i=1}^{\infty} \in \mathbb{R}^{\mathbb{N}} : x(i) \neq 0 \text{ for only finitely many } i \right\}.$

• For $i \in \mathbb{N}$, and for $x = (x(i))_{i=1}^{\infty} \in c_{00}$, $F \subset \mathbb{N}$, let

$$Fx = \sum_{i \in F} x(i)e_i.$$

• Define a norm on c_{00} by letting, for $x = (x(i))_{i=1}^{\infty}$,

$$\|\mathbf{x}\| = \sup\left\{\sum_{i\in F} |\mathbf{x}(i)|: F \in S\right\} = \sup_{F \in S} \|F\mathbf{x}\|_{\ell_1},$$

Proposition: For every non-empty $F \subset \mathbb{N}$,

$$\Big|\sum_{i\in F}\frac{1}{\#F}e_i\Big\|\geq \frac{1}{2}.$$

Lemma: For every finite $F \subset \mathbb{N}$ there exists $G \subset F$ with $G \in S$ and $\#G \ge \#F/2$.

Proof of lemma: Write $F = \{k_1 < k_2 < \cdots < k_n\}$ and let $G = \{k_{\lfloor n/2 \rfloor + 1} < \cdots < k_n\}.$

Proof of proposition: Let $F \subset \mathbb{N}$ finite and take *G* as in the lemma. Then,

$$\Big\|\sum_{i\in F}\frac{1}{\#F}e_i\Big\|\geq \sum_{i\in G}\frac{1}{\#F}=\frac{\#G}{\#F}\geq \frac{1}{2}.$$

Proposition: For every non-empty $F \subset \mathbb{N}$,

$$\Big|\sum_{i\in F}rac{1}{\#F}e_i\Big\|\geq rac{1}{2}.$$

Lemma: For every finite $F \subset \mathbb{N}$ there exists $G \subset F$ with $G \in S$ and $\#G \ge \#F/2$.

Proof of lemma: Write $F = \{k_1 < k_2 < \cdots < k_n\}$ and let $G = \{k_{\lfloor n/2 \rfloor + 1} < \cdots < k_n\}$.

Proof of proposition: Let $F \subset \mathbb{N}$ finite and take *G* as in the lemma. Then,

$$\left\|\sum_{i\in F}\frac{1}{\#F}e_i\right\|\geq \sum_{i\in G}\frac{1}{\#F}=\frac{\#G}{\#F}\geq \frac{1}{2}.$$

Proposition: For every non-empty $F \subset \mathbb{N}$,

$$\Big|\sum_{i\in F}rac{1}{\#F}e_i\Big\|\geq rac{1}{2}.$$

Lemma: For every finite $F \subset \mathbb{N}$ there exists $G \subset F$ with $G \in S$ and $\#G \ge \#F/2$.

Proof of lemma: Write $F = \{k_1 < k_2 < \cdots < k_n\}$ and let $G = \{k_{\lfloor n/2 \rfloor + 1} < \cdots < k_n\}$.

Proof of proposition: Let $F \subset \mathbb{N}$ finite and take *G* as in the lemma. Then,

$$\Big\|\sum_{i\in F}\frac{1}{\#F}\boldsymbol{e}_i\Big\|\geq \sum_{i\in G}\frac{1}{\#F}=\frac{\#G}{\#F}\geq \frac{1}{2}.$$

Proposition: $(e_i)_{i=1}^{\infty}$ is weakly null in X_S .

Lemma: Let $F_1 < \cdots < F_n$ be non-empty subsets of \mathbb{N} such that, for $k = 1, \dots, n-1, \#F_{k+1} \ge \max(F_k)$. Then, for every $F \in S$,

$$\sum_{k=1}^n \frac{\#(F\cap F_k)}{\#F_k} < 2.$$

Proof of proposition: For an infinite $L \subset \mathbb{N}$ and $\varepsilon > 0$ pick $n > 2/\varepsilon$ and F_1, \ldots, F_n in *L* as in the lemma. Then,

$$\left\|\frac{1}{n}\sum_{k=1}^{n}\left(\sum_{i\in F_{k}}\frac{1}{\#F_{k}}e_{i}\right)\right\| = \frac{1}{n}\sup_{F\in\mathcal{S}}\left(\sum_{k=1}^{n}\left(\sum_{i\in F\cap F_{k}}\frac{1}{\#F_{k}}\right)\right)$$
$$= \frac{1}{n}\sup_{F\in\mathcal{S}}\sum_{k=1}^{n}\frac{\#(F\cap F_{k})}{\#F_{k}} < \varepsilon.$$

Proposition: $(e_i)_{i=1}^{\infty}$ is weakly null in X_S .

Lemma: Let $F_1 < \cdots < F_n$ be non-empty subsets of \mathbb{N} such that, for $k = 1, \dots, n-1, \#F_{k+1} \ge \max(F_k)$. Then, for every $F \in S$,

 $\sum_{k=1}^n \frac{\#(F \cap F_k)}{\#F_k} < 2.$

Proof of proposition: For an infinite $L \subset \mathbb{N}$ and $\varepsilon > 0$ pick $n > 2/\varepsilon$ and F_1, \ldots, F_n in *L* as in the lemma. Then,

$$\left\|\frac{1}{n}\sum_{k=1}^{n}\left(\sum_{i\in F_{k}}\frac{1}{\#F_{k}}e_{i}\right)\right\| = \frac{1}{n}\sup_{F\in\mathcal{S}}\left(\sum_{k=1}^{n}\left(\sum_{i\in F\cap F_{k}}\frac{1}{\#F_{k}}\right)\right)$$
$$= \frac{1}{n}\sup_{F\in\mathcal{S}}\sum_{k=1}^{n}\frac{\#(F\cap F_{k})}{\#F_{k}} < \varepsilon.$$

Proposition: $(e_i)_{i=1}^{\infty}$ is weakly null in X_S .

Lemma: Let $F_1 < \cdots < F_n$ be non-empty subsets of \mathbb{N} such that, for $k = 1, \dots, n-1, \#F_{k+1} \ge \max(F_k)$.

Then, for every $F \in S$,

$$\sum_{k=1}^n \frac{\#(F\cap F_k)}{\#F_k} < 2.$$

Proof of proposition: For an infinite $L \subset \mathbb{N}$ and $\varepsilon > 0$ pick $n > 2/\varepsilon$ and F_1, \ldots, F_n in *L* as in the lemma. Then,

$$\left\|\frac{1}{n}\sum_{k=1}^{n}\left(\sum_{i\in F_{k}}\frac{1}{\#F_{k}}e_{i}\right)\right\| = \frac{1}{n}\sup_{F\in\mathcal{S}}\left(\sum_{k=1}^{n}\left(\sum_{i\in F\cap F_{k}}\frac{1}{\#F_{k}}\right)\right)$$
$$= \frac{1}{n}\sup_{F\in\mathcal{S}}\sum_{k=1}^{n}\frac{\#(F\cap F_{k})}{\#F_{k}} < \varepsilon.$$

Remarks:

For $F = \{i_1, i_2, \dots, i_n\} \in S$, $(e_k)_{k=1}^n$ in X_S is 1-equivalent to the unit vector basis of $(\mathbb{R}^n, \|\cdot\|_1)$.

Every subspace of X_S contains a further subspace isomorphic to c_0 .

Schreier's space X_S is isomorphic to a subspace of $C(\omega^{\omega})$.

Tsirelson's Space

 크

Tsirelson's Space

• Let *X* be an infinite-dimensional Banach space.

Question: Does X have a subspace isomorphic to c_0 or some ℓ_p , $1 \le p < \infty$?

Theorem: (Dvoretsky, 1961) For every $n \in \mathbb{N}$, C > 1, X has an n-dimensional subspace that is C-isomorphic to $(\mathbb{R}^n, \|\cdot\|_2)$.

Theorem: (Krivine, 1976) If *X* has a Schauder basis there exists $1 \le p \le \infty$ such that:

for all $n \in \mathbb{N}$ and C > 1 there exists a finite block sequence $(x_i)_{i=1}^n$ in X that is C-equivalent to the unit vector basis of $(\mathbb{R}^n, \|\cdot\|_p)$.

• Let *X* be an infinite-dimensional Banach space.

Question: Does X have a subspace isomorphic to c_0 or some ℓ_p , $1 \le p < \infty$?

Theorem: (Dvoretsky, 1961) For every $n \in \mathbb{N}$, C > 1, X has an n-dimensional subspace that is C-isomorphic to $(\mathbb{R}^n, \|\cdot\|_2)$.

Theorem: (Krivine, 1976) If *X* has a Schauder basis there exists $1 \le p \le \infty$ such that:

for all $n \in \mathbb{N}$ and C > 1 there exists a finite block sequence $(x_i)_{i=1}^n$ in X that is C-equivalent to the unit vector basis of $(\mathbb{R}^n, \|\cdot\|_p)$.

• Let *X* be an infinite-dimensional Banach space.

Question: Does X have a subspace isomorphic to c_0 or some ℓ_p , $1 \le p < \infty$?

Theorem: (Dvoretsky, 1961) For every $n \in \mathbb{N}$, C > 1, X has an *n*-dimensional subspace that is *C*-isomorphic to $(\mathbb{R}^n, \|\cdot\|_2)$.

Theorem: (Krivine, 1976) If *X* has a Schauder basis there exists $1 \le p \le \infty$ such that:

for all $n \in \mathbb{N}$ and C > 1 there exists a finite block sequence $(x_i)_{i=1}^n$ in X that is C-equivalent to the unit vector basis of $(\mathbb{R}^n, \|\cdot\|_p)$.

• Let *X* be an infinite-dimensional Banach space.

Question: Does X have a subspace isomorphic to c_0 or some ℓ_p , $1 \le p < \infty$?

Theorem: (Dvoretsky, 1961) For every $n \in \mathbb{N}$, C > 1, X has an *n*-dimensional subspace that is *C*-isomorphic to $(\mathbb{R}^n, \|\cdot\|_2)$.

Theorem: (Krivine, 1976) If *X* has a Schauder basis there exists $1 \le p \le \infty$ such that:

for all $n \in \mathbb{N}$ and C > 1 there exists a finite block sequence $(x_i)_{i=1}^n$ in X that is C-equivalent to the unit vector basis of $(\mathbb{R}^n, \|\cdot\|_p)$.

- We define by induction a sequence of norms on c_{00} .
- For $x = (x(i))_{i=1}^{\infty}$ let $||x||_0 = \max_{i \in \mathbb{N}} |x(i)| = ||x||_{c_0}$.
- If $\|\cdot\|_n$ is defined, for $x = (x(i))_{i=1}^{\infty}$ let

$$\|x\|_{n+1} = \max\left\{\|x\|_n, \sup\left(\frac{1}{2}\sum_{k=1}^m \|E_kx\|_n\right)\right\}.$$

The supremum is over all $m \in \mathbb{N}$ and subsets $E_1 < \cdots < E_m$ of \mathbb{N} with $\min(E_1) \ge m$, i.e., $\{\min(E_k) : 1 \le k \le m\} \in S$.

• For $x \in c_{00}$ let $||x|| = \lim_n ||x||_n$ and T be the completion of c_{00} with $|| \cdot ||$.

- We define by induction a sequence of norms on c_{00} .
- For $x = (x(i))_{i=1}^{\infty}$ let $||x||_0 = \max_{i \in \mathbb{N}} |x(i)| = ||x||_{c_0}$.
- If $\|\cdot\|_n$ is defined, for $x = (x(i))_{i=1}^{\infty}$ let

$$\|x\|_{n+1} = \max\left\{\|x\|_n, \sup\left(\frac{1}{2}\sum_{k=1}^m \|E_kx\|_n\right)\right\}.$$

The supremum is over all $m \in \mathbb{N}$ and subsets $E_1 < \cdots < E_m$ of \mathbb{N} with $\min(E_1) \ge m$, i.e., $\{\min(E_k) : 1 \le k \le m\} \in S$.

• For $x \in c_{00}$ let $||x|| = \lim_n ||x||_n$ and T be the completion of c_{00} with $|| \cdot ||$.

- We define by induction a sequence of norms on c_{00} .
- For $x = (x(i))_{i=1}^{\infty}$ let $||x||_0 = \max_{i \in \mathbb{N}} |x(i)| = ||x||_{c_0}$.
- If $\|\cdot\|_n$ is defined, for $x = (x(i))_{i=1}^{\infty}$ let

$$\|x\|_{n+1} = \max\left\{\|x\|_n, \sup\left(\frac{1}{2}\sum_{k=1}^m \|E_kx\|_n\right)\right\}.$$

The supremum is over all $m \in \mathbb{N}$ and subsets $E_1 < \cdots < E_m$ of \mathbb{N} with $\min(E_1) \ge m$, i.e., $\{\min(E_k) : 1 \le k \le m\} \in S$.

• For $x \in c_{00}$ let $||x|| = \lim_n ||x||_n$ and T be the completion of c_{00} with $|| \cdot ||$.

Remark: For $x \in c_{00}$

$$\|x\| = \max\left\{\|x\|_{c_0}, \sup\left(\frac{1}{2}\sum_{k=1}^m \|E_k x\|\right)\right\}.$$

The supremum is over all $m \in \mathbb{N}$ and subsets $E_1 < \cdots < E_m$ of \mathbb{N} with $\min(E_1) \ge m$.

Corollary: For every finite block sequence $(x_i)_{i=1}^m$ with $m \le \min \operatorname{supp}(x_1)$,

$$\frac{1}{2}\sum_{k=1}^{m}\|x_i\| \le \left\|\sum_{i=1}^{m}x_i\right\| \le \sum_{k=1}^{m}\|x_i\|.$$

That is, T is (1/2)-asymptotic ℓ_1 .

Remark: For $x \in c_{00}$

$$\|x\| = \max\left\{\|x\|_{c_0}, \sup\left(\frac{1}{2}\sum_{k=1}^m \|E_k x\|\right)\right\}.$$

The supremum is over all $m \in \mathbb{N}$ and subsets $E_1 < \cdots < E_m$ of \mathbb{N} with $\min(E_1) \ge m$.

Corollary: For every finite block sequence $(x_i)_{i=1}^m$ with $m \le \min \operatorname{supp}(x_1)$,

$$\frac{1}{2}\sum_{k=1}^{m}\|x_i\| \leq \left\|\sum_{i=1}^{m}x_i\right\| \leq \sum_{k=1}^{m}\|x_i\|.$$

That is, *T* is (1/2)-asymptotic ℓ_1 .

Proposition: No block sequence of norm-one vectors in *T* is equivalent to the unit vector basis of c_0 or ℓ_p , 1 .

Proof: Fix 1 .

Assume that $(x_i)_{i=1}^{\infty}$ is equivalent to the unit vector basis of ℓ_p . Then there exists C > 0 such that for every $i_1 < \cdots < i_n$,

$$\left\|\sum_{k=1}^{n} x_{k_{i}}\right\| \leq C \left\|\sum_{k=1}^{n} e_{i_{k}}\right\|_{\ell_{p}} = C n^{1/p}.$$

But also, if min supp $(x_{i_1}) \ge n$,

$$\left\|\sum_{k=1}^{n} x_{i_k}\right\| \geq \frac{1}{2} \sum_{k=1}^{n} \|x_{i_k}\| = \frac{n}{2}.$$

Therefore, $C \ge n^{1-1/p}/2 \to \infty$, as $n \to \infty$.

Proposition: No block sequence of norm-one vectors in *T* is equivalent to the unit vector basis of c_0 or ℓ_p , 1 .

Proof: Fix 1 .

Assume that $(x_i)_{i=1}^{\infty}$ is equivalent to the unit vector basis of ℓ_p . Then there exists C > 0 such that for every $i_1 < \cdots < i_n$,

$$\left\|\sum_{k=1}^{n} x_{k_{i}}\right\| \leq C \left\|\sum_{k=1}^{n} e_{i_{k}}\right\|_{\ell_{p}} = Cn^{1/p}.$$

But also, if min $\operatorname{supp}(x_{i_1}) \ge n$,

$$\left\|\sum_{k=1}^{n} x_{i_k}\right\| \geq \frac{1}{2} \sum_{k=1}^{n} \|x_{i_k}\| = \frac{n}{2}.$$

Therefore, $C \ge n^{1-1/p}/2 \to \infty$, as $n \to \infty$.

Proposition: No block sequence of norm-one vectors in *T* is equivalent to the unit vector basis of c_0 or ℓ_p , 1 .

Proof: Fix 1 .

Assume that $(x_i)_{i=1}^{\infty}$ is equivalent to the unit vector basis of ℓ_p . Then there exists C > 0 such that for every $i_1 < \cdots < i_n$,

$$\Big\|\sum_{k=1}^n x_{k_i}\Big\| \leq C \Big\|\sum_{k=1}^n e_{i_k}\Big\|_{\ell_p} = Cn^{1/p}.$$

But also, if min supp $(x_{i_1}) \ge n$,

$$\left\|\sum_{k=1}^{n} x_{i_k}\right\| \geq \frac{1}{2} \sum_{k=1}^{n} \|x_{i_k}\| = \frac{n}{2}.$$

Therefore, $C \ge n^{1-1/p}/2 \to \infty$, as $n \to \infty$.

Lemma: Let $\delta > 0$ and $(x_i)_{i=1}^{\infty}$ be a block sequence of norm-one vectors in T. For $N \ge \max \operatorname{supp}(x_1)/\delta$,

$$\left\|x_1+\frac{1}{N}\sum_{i=2}^{N+1}x_i\right\|\leq 1+\delta.$$

In particular,

$$\limsup_{N} \left\| x_1 + \frac{1}{N} \sum_{i=2}^{N+1} x_i \right\| \le 1.$$

29/58

Lemma: Let $\delta > 0$ and $(x_i)_{i=1}^{\infty}$ be a block sequence of norm-one vectors in *T*. For $N \ge \max \operatorname{supp}(x_1)/\delta$,

$$\left\|x_1+\frac{1}{N}\sum_{i=2}^{N+1}x_i\right\|\leq 1+\delta.$$

In particular,

$$\limsup_{N} \left\| x_1 + \frac{1}{N} \sum_{i=2}^{N+1} x_i \right\| \leq 1.$$

Proof of Proposition: Assume $(x_i)_{i=1}^{\infty}$ is a block sequence of norm-one vectors *C*-equivalent to the unit vector basis of ℓ_1 , i.e.,

$$\left\|x_1 + \frac{1}{N}\sum_{i=2}^{N+1}x_i\right\| \ge \frac{1}{C}\left\|e_1 + \frac{1}{N}\sum_{i=2}^{N+1}e_i\right\|_{\ell_1} = \frac{2}{C}$$

By the Lemma,

$$\frac{2}{C} \leq \limsup_{N} \left\| x_1 + \frac{1}{N} \sum_{i=2}^{N+1} x_i \right\| \leq 1.$$

Thus, $C \ge 2$. This contradicts James' non-distrortion of ℓ_1 .

Proof of Proposition: Assume $(x_i)_{i=1}^{\infty}$ is a block sequence of norm-one vectors *C*-equivalent to the unit vector basis of ℓ_1 , i.e.,

$$\left\|x_1 + \frac{1}{N}\sum_{i=2}^{N+1}x_i\right\| \geq \frac{1}{C}\left\|e_1 + \frac{1}{N}\sum_{i=2}^{N+1}e_i\right\|_{\ell_1} = \frac{2}{C}$$

By the Lemma,

$$\frac{2}{C} \leq \limsup_{N} \left\| x_1 + \frac{1}{N} \sum_{i=2}^{N+1} x_i \right\| \leq 1.$$

Thus, $C \ge 2$. This contradicts James' non-distrortion of ℓ_1 .

Proof of Proposition: Assume $(x_i)_{i=1}^{\infty}$ is a block sequence of norm-one vectors *C*-equivalent to the unit vector basis of ℓ_1 , i.e.,

$$\left\|x_1 + \frac{1}{N}\sum_{i=2}^{N+1}x_i\right\| \geq \frac{1}{C}\left\|e_1 + \frac{1}{N}\sum_{i=2}^{N+1}e_i\right\|_{\ell_1} = \frac{2}{C}$$

By the Lemma,

$$\frac{2}{C} \leq \limsup_{N} \left\| x_1 + \frac{1}{N} \sum_{i=2}^{N+1} x_i \right\| \leq 1.$$

Thus, $C \ge 2$. This contradicts James' non-distrortion of ℓ_1 .

Remarks:

Tsirelson's norm is the first saturated norm:

Every block sequence of norm-one vectors $(x_i)_{i=1}^{\infty}$ is weakly null, and for every $F \subset \mathbb{N}$,

$$\left\|\sum_{i\in F}\frac{1}{\#F}x_i\right\|\geq \frac{1}{4}.$$

Tsirelson's space is reflexive and asymptotic ℓ_1 .

- These are "contradictory" properties.
- T displays hereditarily homegeneous block structure.

Remarks:

Tsirelson's norm is the first saturated norm:

Every block sequence of norm-one vectors $(x_i)_{i=1}^{\infty}$ is weakly null, and for every $F \subset \mathbb{N}$,

$$\left\|\sum_{i\in F}\frac{1}{\#F}x_i\right\|\geq \frac{1}{4}.$$

Tsirelson's space is reflexive and asymptotic ℓ_1 .

- These are "contradictory" properties.
- *T* displays hereditarily homegeneous block structure.

Schlumprecht's Space

크

글 🕨 🖌 글

• In 1991 Schlumprecht constructed a Banach space $(S, \|\cdot\|)$ with hereditarily heterogeneous block structure.

• S is the completion of c_{00} with a norm such that for $x \in c_{00}$

$$\|x\| = \max\left\{\|x\|_{c_0}, \sup\left(\frac{1}{\log(m+1)}\sum_{k=1}^m \|E_k x\|\right)\right\},\$$

where the supremum is over all $m \in \mathbb{N}$ and successive subsets E_1, \ldots, E_m of \mathbb{N} .

Corollary: For every finite block sequence $(x_i)_{i=1}^n$,

$$\frac{1}{\log(n+1)}\sum_{k=1}^{n}\|x_{i}\|\leq \Big\|\sum_{i=1}^{n}x_{i}\Big\|.$$

- In 1991 Schlumprecht constructed a Banach space (S, || · ||) with hereditarily heterogeneous block structure.
- S is the completion of c_{00} with a norm such that for $x \in c_{00}$

$$\|x\| = \max\left\{\|x\|_{c_0}, \sup\left(\frac{1}{\log(m+1)}\sum_{k=1}^m \|E_kx\|\right)\right\},\$$

where the supremum is over all $m \in \mathbb{N}$ and successive subsets E_1, \ldots, E_m of \mathbb{N} .

Corollary: For every finite block sequence $(x_i)_{i=1}^n$,

$$\frac{1}{\log(n+1)}\sum_{k=1}^{n}\|x_{i}\|\leq \Big\|\sum_{i=1}^{n}x_{i}\Big\|.$$

- In 1991 Schlumprecht constructed a Banach space (S, || · ||) with hereditarily heterogeneous block structure.
- S is the completion of c_{00} with a norm such that for $x \in c_{00}$

$$\|x\| = \max\left\{\|x\|_{c_0}, \sup\left(\frac{1}{\log(m+1)}\sum_{k=1}^m \|E_kx\|\right)\right\},\$$

where the supremum is over all $m \in \mathbb{N}$ and successive subsets E_1, \ldots, E_m of \mathbb{N} .

Corollary: For every finite block sequence $(x_i)_{i=1}^n$,

$$\frac{1}{\log(n+1)}\sum_{k=1}^n \|x_i\| \leq \Big\|\sum_{i=1}^n x_i\Big\|.$$

Theorem: Let *X* be a block subspace *S*. For every $n \in \mathbb{N}$, there is a block sequence $(x_i)_{i=1}^n$ in *X* that is a 2-equivalent to the unit vector basis of $(\mathbb{R}^n, \|\cdot\|_1)$.

Proof: Krivine's theorem and

$$\frac{\log(n+1)}{n^{1-1/p}} \to 0,$$

for all p > 1.

For such a sequence, the vector

$$y = \frac{1}{n} \sum_{i=1}^{n} x_i$$

is a 2-normalized ℓ_1 average and it satisfies $1/2 \le ||y|| \le 1$.

Theorem: Let *X* be a block subspace *S*. For every $n \in \mathbb{N}$, there is a block sequence $(x_i)_{i=1}^n$ in *X* that is a 2-equivalent to the unit vector basis of $(\mathbb{R}^n, \|\cdot\|_1)$.

Proof: Krivine's theorem and

$$\frac{\log(n+1)}{n^{1-1/p}} \to 0,$$

for all p > 1.

For such a sequence, the vector

$$y=\frac{1}{n}\sum_{i=1}^n x_i$$

is a 2-normalized ℓ_1 average and it satisfies $1/2 \le ||y|| \le 1$.

• A block sequence $(y_i)_{i=1}^{\infty}$ such that, for each $i \in \mathbb{N}$, y_i is an $2 - \ell_1^{N_i}$ -average and

 $\log(\log(N_{i+1})) > 2^{i+1} \max \operatorname{supp}(y_i)$

is called a 2-rapidly increasing sequence (2-RIS).

Theorem: Let $(y_i)_{i=1}^{\infty}$ be 2-RIS in *S*. Then, for every $i_1 < \cdots < i_n \in \mathbb{N}$,

$$\frac{1}{2} \frac{n}{\log(n+1)} \le \left\| \sum_{k=1}^{n} y_{i_k} \right\| \le 4 \frac{n}{\log(n+1)}.$$

• A block sequence $(y_i)_{i=1}^{\infty}$ such that, for each $i \in \mathbb{N}$, y_i is an $2 - \ell_1^{N_i}$ -average and

$$\log(\log(N_{i+1})) > 2^{i+1} \max \operatorname{supp}(y_i)$$

is called a 2-rapidly increasing sequence (2-RIS).

Theorem: Let $(y_i)_{i=1}^{\infty}$ be 2-RIS in *S*. Then, for every $i_1 < \cdots < i_n \in \mathbb{N}$,

$$\frac{1}{2}\frac{n}{\log(n+1)} \leq \Big\|\sum_{k=1}^n y_{i_k}\Big\| \leq 4\frac{n}{\log(n+1)}.$$

Hereditary heterogeneity of Schlumprecht's space: In every block subspace of *S*, there exist

for every n ∈ N, a block sequence (x_i)ⁿ_{i=1} that is 2-equivalent to the unit vector basis of (ℝⁿ, || · ||₁), i.e., for a₁,..., a_n ∈ ℝ,

$$\frac{1}{2}\sum_{i=1}^{n}|a_{i}| \leq \Big\|\sum_{i=1}^{n}a_{i}x_{i}\Big\| \leq \sum_{i=1}^{n}|a_{i}|,$$

and

• a 2-RIS
$$(y_i)_{i=1}^{\infty}$$
, i.e., for every $i_1 < \cdots < i_n \in \mathbb{N}$,

$$\frac{1}{2}\frac{n}{\log(n+1)} \leq \Big\|\sum_{k=1}^n y_{i_k}\Big\| \leq 4\frac{n}{\log(n+1)}.$$

Comment: Other types of sequences can be found.

Remark: *S* is a reflexive Banach space.

Hereditary heterogeneity of Schlumprecht's space: In every block subspace of *S*, there exist

for every n ∈ N, a block sequence (x_i)ⁿ_{i=1} that is 2-equivalent to the unit vector basis of (ℝⁿ, || · ||₁), i.e., for a₁,..., a_n ∈ ℝ,

$$\frac{1}{2}\sum_{i=1}^{n}|a_{i}| \leq \Big\|\sum_{i=1}^{n}a_{i}x_{i}\Big\| \leq \sum_{i=1}^{n}|a_{i}|,$$

and

• a 2-RIS
$$(y_i)_{i=1}^{\infty}$$
, i.e., for every $i_1 < \cdots < i_n \in \mathbb{N}$,

$$\frac{1}{2}\frac{n}{\log(n+1)} \leq \Big\|\sum_{k=1}^n y_{i_k}\Big\| \leq 4\frac{n}{\log(n+1)}.$$

Comment: Other types of sequences can be found.

Remark: *S* is a reflexive Banach space.

The Gowers-Maurey Space

→ ∃ →

Unconditional Sequences

• A Schauder basis $(x_i)_{i=1}^{\infty}$ of a Banach space is called *C*-unconditional, for some $C \ge 1$, if for every $a_1, \ldots, a_n \in \mathbb{R}$ and $\varepsilon_1, \ldots, \varepsilon_n \in \{-1, 1\}$,

$$\Big\|\sum_{i=1}^n \varepsilon_i a_i x_i\Big\| \leq C \Big\|\sum_{i=1}^n a_i x_i\Big\|.$$

• Equivalently, for every $\varepsilon = (\varepsilon(i))_{i=1}^{\infty} \in \{-1, 1\}^{\mathbb{N}}, T_{\varepsilon} : X \to X$ with

$$T_{\varepsilon}\Big(\sum_{i=1}^{\infty}a_{i}x_{i}\Big)=\sum_{i=1}^{\infty}\varepsilon_{i}a_{i}x_{i}$$

is bounded and has norm at most C.

 A sequence (y_i)[∞]_{i=1} in a Banach space X is an unconditional sequence if it is an unconditional Schauder basis of its closed linear span.

Unconditional Sequences

• A Schauder basis $(x_i)_{i=1}^{\infty}$ of a Banach space is called *C*-unconditional, for some $C \ge 1$, if for every $a_1, \ldots, a_n \in \mathbb{R}$ and $\varepsilon_1, \ldots, \varepsilon_n \in \{-1, 1\}$,

$$\Big\|\sum_{i=1}^n \varepsilon_i a_i x_i\Big\| \leq C \Big\|\sum_{i=1}^n a_i x_i\Big\|.$$

• Equivalently, for every $\varepsilon = (\varepsilon(i))_{i=1}^{\infty} \in \{-1, 1\}^{\mathbb{N}}, T_{\varepsilon} : X \to X$ with

$$T_{\varepsilon}\Big(\sum_{i=1}^{\infty}a_{i}x_{i}\Big)=\sum_{i=1}^{\infty}\varepsilon_{i}a_{i}x_{i}$$

is bounded and has norm at most C.

 A sequence (y_i)[∞]_{i=1} in a Banach space X is an unconditional sequence if it is an unconditional Schauder basis of its closed linear span.

Unconditional Sequences

• A Schauder basis $(x_i)_{i=1}^{\infty}$ of a Banach space is called *C*-unconditional, for some $C \ge 1$, if for every $a_1, \ldots, a_n \in \mathbb{R}$ and $\varepsilon_1, \ldots, \varepsilon_n \in \{-1, 1\}$,

$$\Big\|\sum_{i=1}^n \varepsilon_i a_i x_i\Big\| \leq C \Big\|\sum_{i=1}^n a_i x_i\Big\|.$$

• Equivalently, for every $\varepsilon = (\varepsilon(i))_{i=1}^{\infty} \in \{-1, 1\}^{\mathbb{N}}, T_{\varepsilon} : X \to X$ with

$$T_{\varepsilon}\Big(\sum_{i=1}^{\infty}a_{i}x_{i}\Big)=\sum_{i=1}^{\infty}\varepsilon_{i}a_{i}x_{i}$$

is bounded and has norm at most C.

 A sequence (y_i)[∞]_{i=1} in a Banach space X is an unconditional sequence if it is an unconditional Schauder basis of its closed linear span.

- The unit vector bases of c_0 , ℓ_p , $1 \le p < \infty$, Schreier's, Tsirelson's, and Schlumprecht's spaces are unconditional.
- Every block sequence of a *C*-unconditional sequence is *C*-unconditional.
- The Schauder system of C[0, 1] and the Haar system of $L_1[0, 1]$ are non-unconditional.

- The unit vector bases of c_0 , ℓ_p , $1 \le p < \infty$, Schreier's, Tsirelson's, and Schlumprecht's spaces are unconditional.
- Every block sequence of a *C*-unconditional sequence is *C*-unconditional.
- The Schauder system of C[0, 1] and the Haar system of $L_1[0, 1]$ are non-unconditional.

- The unit vector bases of c_0 , ℓ_p , $1 \le p < \infty$, Schreier's, Tsirelson's, and Schlumprecht's spaces are unconditional.
- Every block sequence of a *C*-unconditional sequence is *C*-unconditional.
- The Schauder system of *C*[0, 1] and the Haar system of *L*₁[0, 1] are non-unconditional.

- The unit vector bases of c_0 , ℓ_p , $1 \le p < \infty$, Schreier's, Tsirelson's, and Schlumprecht's spaces are unconditional.
- Every block sequence of a *C*-unconditional sequence is *C*-unconditional.
- The Schauder system of *C*[0, 1] and the Haar system of *L*₁[0, 1] are non-unconditional.

Theorem: (Gowers - Maurey, 1993) There exists a reflexive Banach space X_{GM} without any unconditional sequences.

The Gowers-Maurey construction combines:

- The Schlumprecht construction and
- A Maurey-Rosenthal concept called a coding function.

Theorem: (Gowers - Maurey, 1993) There exists a reflexive Banach space X_{GM} without any unconditional sequences.

The Gowers-Maurey construction combines:

- The Schlumprecht construction and
- A Maurey-Rosenthal concept called a coding function.

Hereditary heterogeneity in the Gowers-Maurey space yields: In every block subspace of X_{GM} , there exist a 2-RIS $(y_i)_{i=1}^{\infty}$, i.e., for every $i_1 < \cdots < i_n \in \mathbb{N}$,

$$\frac{1}{2}\frac{n}{\log(n+1)} \leq \Big\|\sum_{k=1}^n y_{i_k}\Big\| \leq 4\frac{n}{\log(n+1)}.$$

For $(y_i)_{i=1}^{\infty}$ as above, the vector

$$z = \frac{\log(n+1)}{n} \sum_{i=1}^{n} y_i$$

is called a (2, *n*)-exact vector and it satisfies $1/2 \le ||z|| \le 4$.

Hereditary heterogeneity in the Gowers-Maurey space yields: In every block subspace of X_{GM} , there exist a 2-RIS $(y_i)_{i=1}^{\infty}$, i.e., for every $i_1 < \cdots < i_n \in \mathbb{N}$,

$$\frac{1}{2}\frac{n}{\log(n+1)} \leq \Big\|\sum_{k=1}^n y_{i_k}\Big\| \leq 4\frac{n}{\log(n+1)}.$$

For $(y_i)_{i=1}^{\infty}$ as above, the vector

$$z = \frac{\log(n+1)}{n} \sum_{i=1}^{n} y_i$$

is called a (2, *n*)-exact vector and it satisfies $1/2 \le ||z|| \le 4$.

Theorem: Let *X* be a block subspace of X_{GM} . Then, for arbitrarily large $N \in \mathbb{N}$, there exists a block sequence $(z_i)_{i=1}^N$ in *X* such that each z_i is a $(2, n_i)$ -exact vector and

$$\Big\|\sum_{i=1}^n z_i\Big\| \geq \frac{1}{2} \frac{N}{\sqrt{\log(N+1)}}$$

but

$$\left\|\sum_{i=1}^n (-1)^i z_i\right\| \le 16 \frac{N}{\log(N+1)}.$$

In particular, no block sequence in X_{GM} is unconditional.

 An X is called indecomposable if for any bounded linear projection P : X → X, either image(P) or kernel(P) is finite-dimensional.

Theorem: The space X_{GM} is hereditarily indecomposable (HI), i.e., every infinite-dimensional $Y \subset X_{GM}$ is indecomposable.

Theorem: (Gowers, 1996) Every infinite-dimensional Banach space contains an unconditional sequence or an HI subspace.

Theorem: (Argyros - Felouzis, 2000 and Argyros -Raikoftsalis, 2012)

Every separable reflexive Banach space, e.g., ℓ_2 , is isomorphic to a quotient of some reflexive HI space.

A = A = B
 A = B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 An X is called indecomposable if for any bounded linear projection P : X → X, either image(P) or kernel(P) is finite-dimensional.

Theorem: The space X_{GM} is hereditarily indecomposable (HI), i.e., every infinite-dimensional $Y \subset X_{GM}$ is indecomposable.

Theorem: (Gowers, 1996) Every infinite-dimensional Banach space contains an unconditional sequence or an HI subspace.

Theorem: (Argyros - Felouzis, 2000 and Argyros -Raikoftsalis, 2012)

Every separable reflexive Banach space, e.g., ℓ_2 , is isomorphic to a quotient of some reflexive HI space.

A = A = B
 A = B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 An X is called indecomposable if for any bounded linear projection P : X → X, either image(P) or kernel(P) is finite-dimensional.

Theorem: The space X_{GM} is hereditarily indecomposable (HI), i.e., every infinite-dimensional $Y \subset X_{GM}$ is indecomposable.

Theorem: (Gowers, 1996) Every infinite-dimensional Banach space contains an unconditional sequence or an HI subspace.

Theorem: (Argyros - Felouzis, 2000 and Argyros -Raikoftsalis, 2012)

Every separable reflexive Banach space, e.g., ℓ_2 , is isomorphic to a quotient of some reflexive HI space.

 An X is called indecomposable if for any bounded linear projection P : X → X, either image(P) or kernel(P) is finite-dimensional.

Theorem: The space X_{GM} is hereditarily indecomposable (HI), i.e., every infinite-dimensional $Y \subset X_{GM}$ is indecomposable.

Theorem: (Gowers, 1996) Every infinite-dimensional Banach space contains an unconditional sequence or an HI subspace.

Theorem: (Argyros - Felouzis, 2000 and Argyros - Raikoftsalis, 2012)

Every separable reflexive Banach space, e.g., ℓ_2 , is isomorphic to a quotient of some reflexive HI space.

• A $T: X \rightarrow X$ is called strictly singular if:

for every infinite-dimensional $Y \subset X$ there exists an infinite dimensional $Z \subset Y$ such that $T|_Z$ is compact.

Denote

$$\mathcal{SS}(X) = \Big\{ \mathcal{S} \in \mathcal{L}(X) ext{ strictly singular} \Big\}.$$

Always, $\mathcal{K}(X) \subset \mathcal{SS}(X)$.

Theorem: $\mathcal{L}(X_{GM}) = \mathbb{R}I + SS(X_{GM}).$

Theorem: (Gowers-Maurey, 1993 and Ferenczi, 1996) For every HI space X, $\mathcal{L}(X)/SS(X)$ is one, two, or four-dimensional.

• A $T: X \rightarrow X$ is called strictly singular if:

for every infinite-dimensional $Y \subset X$ there exists an infinite dimensional $Z \subset Y$ such that $T|_Z$ is compact.

Denote

$$\mathcal{SS}(X) = \Big\{ S \in \mathcal{L}(X) ext{ strictly singular} \Big\}.$$

Always, $\mathcal{K}(X) \subset \mathcal{SS}(X)$.

Theorem: $\mathcal{L}(X_{GM}) = \mathbb{R}I + SS(X_{GM}).$

Theorem: (Gowers-Maurey, 1993 and Ferenczi, 1996) For every HI space X, $\mathcal{L}(X)/SS(X)$ is one, two, or four-dimensional.

• A $T: X \rightarrow X$ is called strictly singular if:

for every infinite-dimensional $Y \subset X$ there exists an infinite dimensional $Z \subset Y$ such that $T|_Z$ is compact.

Denote

$$\mathcal{SS}(X) = \Big\{ S \in \mathcal{L}(X) ext{ strictly singular} \Big\}.$$

Always, $\mathcal{K}(X) \subset \mathcal{SS}(X)$.

Theorem: $\mathcal{L}(X_{GM}) = \mathbb{R}I + SS(X_{GM}).$

Theorem: (Gowers-Maurey, 1993 and Ferenczi, 1996) For every HI space X, $\mathcal{L}(X)/\mathcal{SS}(X)$ is one, two, or four-dimensional.

The Argyros-Haydon Space

A B F A B F

The Scalar-Plus-Compact Problem

Question: (Lindenstrauss, 1975)

Does there exist a Banach space X with the scalar-plus-compact property, i.e., such that $\mathcal{L}(X) = \mathbb{R}I + \mathcal{K}(X)$?

Comment: $\mathcal{L}(X_{GM}) = \mathbb{R}I + SS(X_{GM}).$

Theorem: (Androulakis - Schlumprecht, 2001) $\mathcal{K}(X_{\text{GM}}) \subsetneq SS(X_{\text{GM}}).$

Theorem: (Argyros - Haydon, Acta Math. 2011) There exists an HI space \mathfrak{X}_{AH} with the scalar-plus-compact property.

The Scalar-Plus-Compact Problem

Question: (Lindenstrauss, 1975)

Does there exist a Banach space X with the scalar-plus-compact property, i.e., such that $\mathcal{L}(X) = \mathbb{R}I + \mathcal{K}(X)$?

Comment: $\mathcal{L}(X_{GM}) = \mathbb{R}I + SS(X_{GM}).$

Theorem: (Androulakis - Schlumprecht, 2001) $\mathcal{K}(X_{\text{GM}}) \subsetneq \mathcal{SS}(X_{\text{GM}}).$

Theorem: (Argyros - Haydon, Acta Math. 2011) There exists an HI space \mathfrak{X}_{AH} with the scalar-plus-compact property.

The Scalar-Plus-Compact Problem

Question: (Lindenstrauss, 1975)

Does there exist a Banach space X with the scalar-plus-compact property, i.e., such that $\mathcal{L}(X) = \mathbb{R}I + \mathcal{K}(X)$?

Comment: $\mathcal{L}(X_{GM}) = \mathbb{R}I + SS(X_{GM}).$

Theorem: (Androulakis - Schlumprecht, 2001) $\mathcal{K}(X_{\text{GM}}) \subsetneq SS(X_{\text{GM}}).$

Theorem: (Argyros - Haydon, Acta Math. 2011) There exists an HI space \mathfrak{X}_{AH} with the scalar-plus-compact property.

Theorem: (Argyros-Haydon, 2011) There exists an HI space \mathfrak{X}_{AH} that has the scalar-plus-compact property.

The Argyros-Haydon construction has two main components.

- The Gowers-Maurey construction, and thus it is an HI space.
- A Bourgain-Delbaen construction of a type of non-reflexive spaces called \mathscr{L}_{∞} -spaces, and thus \mathfrak{X}_{AH} is a \mathscr{L}_{∞} -space.

• For a Banach space X a $T \in \mathcal{L}(X)$ admits an invariant subspace if there exists a closed subspace $\{0\} \subsetneq Y \subsetneq X$ with $T(Y) \subset Y$.

• An X has the invariant subspace property (ISP) if every $T \in \mathcal{L}(X)$ admits an invariant subspace.

Question: (von Neumann) Does ℓ_2 have the invariant subspace property?

Theorem: (Aronszajn-Smith, 1954) For a Banach space *X*, every $K \in \mathcal{K}(X)$ admits an invariant subspace.

• For a Banach space X a $T \in \mathcal{L}(X)$ admits an invariant subspace if there exists a closed subspace $\{0\} \subsetneq Y \subsetneq X$ with $T(Y) \subset Y$.

• An X has the invariant subspace property (ISP) if every $T \in \mathcal{L}(X)$ admits an invariant subspace.

Question: (von Neumann) Does ℓ_2 have the invariant subspace property?

Theorem: (Aronszajn-Smith, 1954) For a Banach space *X*, every $K \in \mathcal{K}(X)$ admits an invariant subspace.

• For a Banach space X a $T \in \mathcal{L}(X)$ admits an invariant subspace if there exists a closed subspace $\{0\} \subsetneq Y \subsetneq X$ with $T(Y) \subset Y$.

• An X has the invariant subspace property (ISP) if every $T \in \mathcal{L}(X)$ admits an invariant subspace.

Question: (von Neumann) Does ℓ_2 have the invariant subspace property?

Theorem: (Aronszajn-Smith, 1954) For a Banach space *X*, every $K \in \mathcal{K}(X)$ admits an invariant subspace.

• For a Banach space X a $T \in \mathcal{L}(X)$ admits an invariant subspace if there exists a closed subspace $\{0\} \subsetneq Y \subsetneq X$ with $T(Y) \subset Y$.

• An X has the invariant subspace property (ISP) if every $T \in \mathcal{L}(X)$ admits an invariant subspace.

Question: (von Neumann) Does ℓ_2 have the invariant subspace property?

Theorem: (Aronszajn-Smith, 1954) For a Banach space *X*, every $K \in \mathcal{K}(X)$ admits an invariant subspace.

• For a Banach space X a $T \in \mathcal{L}(X)$ admits an invariant subspace if there exists a closed subspace $\{0\} \subsetneq Y \subsetneq X$ with $T(Y) \subset Y$.

• An X has the invariant subspace property (ISP) if every $T \in \mathcal{L}(X)$ admits an invariant subspace.

Question: (von Neumann) Does ℓ_2 have the invariant subspace property?

Theorem: (Aronszajn-Smith, 1954) For a Banach space *X*, every $K \in \mathcal{K}(X)$ admits an invariant subspace.

Theorem: (Argyros - Freeman - Haydon - Odell - Raikoftsalis - Schlumprecht - Zisimopoulou, 2012)

Every uniformly convex separable Banach space X is isomorphic to a subspace of a separable \mathscr{L}_{∞} -space \mathfrak{X} with the scalar-plus-compact property.

In particular, X is isomorphic to a subspace of a non-reflexive separable space with the invariant subspace property.

Question: Does there exist a reflexive infinite-dimensional Banach space with the scalar-plus-compact property?

Theorem: (Argyros - Freeman - Haydon - Odell - Raikoftsalis - Schlumprecht - Zisimopoulou, 2012)

Every uniformly convex separable Banach space X is isomorphic to a subspace of a separable \mathscr{L}_{∞} -space \mathfrak{X} with the scalar-plus-compact property.

In particular, X is isomorphic to a subspace of a non-reflexive separable space with the invariant subspace property.

Question: Does there exist a reflexive infinite-dimensional Banach space with the scalar-plus-compact property?

The Argyros-Haydon Method and Calkin Algebras

• For a Banach space X, Cal(X) = L(X)/K(X) is a unital Banach algebra called the Calkin algebra of X.

Question: For what unital Banach algebras \mathcal{B} does there exist X such that $Cal(X) \simeq \mathcal{B}$ In other words, what unital Banach algebras are Calkin algebras?

• For example, $Cal(\mathfrak{X}_{AH}) \simeq \mathbb{R}$.

Theorem: (Tarbard, 2012) $\ell_1(\mathbb{N}_0)$ is a Calkin algebra.

Theorem: (M - Puglisi - Zisimopoulou, 2016 and M, 2024) Every separable C(K) space is a Calkin algebra.

Theorem: (M - Pelczar-Barwacz, 2024) The following spaces are Calking algebras:

- ℓ_p , $1 \le p < \infty$, e.g., ℓ_2 ,
- $L_p, 1$
- Schlumprecht's space and Tsirelson's space.

The Argyros-Haydon Method and Calkin Algebras

• For a Banach space X, Cal(X) = L(X)/K(X) is a unital Banach algebra called the Calkin algebra of X.

Question: For what unital Banach algebras \mathcal{B} does there exist X such that $Cal(X) \simeq \mathcal{B}$

In other words, what unital Banach algebras are Calkin algebras?

• For example, $Cal(\mathfrak{X}_{AH}) \simeq \mathbb{R}$.

Theorem: (Tarbard, 2012) $\ell_1(\mathbb{N}_0)$ is a Calkin algebra.

Theorem: (M - Puglisi - Zisimopoulou, 2016 and M, 2024) Every separable C(K) space is a Calkin algebra.

Theorem: (M - Pelczar-Barwacz, 2024) The following spaces are Calking algebras:

- $\ell_p, 1 \le p < \infty, e.g., \ell_2,$
- L_p , 1 ,
- Schlumprecht's space and Tsirelson's space.

The Argyros-Haydon Method and Calkin Algebras

• For a Banach space X, Cal(X) = L(X)/K(X) is a unital Banach algebra called the Calkin algebra of X.

Question: For what unital Banach algebras \mathcal{B} does there exist X such that $Cal(X) \simeq \mathcal{B}$

In other words, what unital Banach algebras are Calkin algebras?

• For example, $Cal(\mathfrak{X}_{AH}) \simeq \mathbb{R}$.

Theorem: (Tarbard, 2012) $\ell_1(\mathbb{N}_0)$ is a Calkin algebra.

Theorem: (M - Puglisi - Zisimopoulou, 2016 and M, 2024) Every separable C(K) space is a Calkin algebra.

Theorem: (M - Pelczar-Barwacz, 2024) The following spaces are Calking algebras:

- ℓ_{p} , $1 \leq p < \infty$, e.g., ℓ_{2} ,
- L_p , 1 ,
- Schlumprecht's space and Tsirelson's space.

Question: (von Neumann) Does ℓ_2 have the invariant subspace property?

Theorem: (Enflo, 1987 and Read, 1984) There exist non-reflexive separable Banach spaces failing the ISP.

Theorem: (Argyros-Haydon, 2011) The non-reflexive separable space \mathfrak{X}_{AH} satisfies the ISP.

Question: (Read, 1989) Does there exist a separable reflexive space with the ISP?

Question: (von Neumann) Does ℓ_2 have the invariant subspace property?

Theorem: (Enflo, 1987 and Read, 1984) There exist non-reflexive separable Banach spaces failing the ISP.

Theorem: (Argyros-Haydon, 2011) The non-reflexive separable space \mathfrak{X}_{AH} satisfies the ISP.

Question: (Read, 1989) Does there exist a separable reflexive space with the ISP?

Question: (von Neumann) Does ℓ_2 have the invariant subspace property?

Theorem: (Enflo, 1987 and Read, 1984) There exist non-reflexive separable Banach spaces failing the ISP.

Theorem: (Argyros-Haydon, 2011) The non-reflexive separable space \mathfrak{X}_{AH} satisfies the ISP.

Question: (Read, 1989) Does there exist a separable reflexive space with the ISP?

Theorem: (Argyros - M, 2014) There exists a separable reflexive HI space \mathcal{X}_{ISP} with the ISP.

This construction combines:

- The Tsirelson construction.
- An Odell-Schlumprecht concept called saturation under constraints.

Remark: Every infinite-dimensional closed subspace of \mathfrak{X}_{ISP} satisfies the ISP.

Theorem: (Argyros - M, 2014) There exists a separable reflexive HI space \mathcal{X}_{ISP} with the ISP.

This construction combines:

- The Tsirelson construction.
- An Odell-Schlumprecht concept called saturation under constraints.

Remark: Every infinite-dimensional closed subspace of \mathfrak{X}_{ISP} satisfies the ISP.

Theorem: (Argyros - M, 2014) There exists a separable reflexive HI space \mathcal{X}_{ISP} with the ISP.

This construction combines:

- The Tsirelson construction.
- An Odell-Schlumprecht concept called saturation under constraints.

Remark: Every infinite-dimensional closed subspace of \mathfrak{X}_{ISP} satisfies the ISP.

Theorem: $\mathfrak{X}_{\text{ISP}}$ satisfies these main properties: (1) $\mathcal{L}(\mathfrak{X}_{\text{ISP}}) = \mathbb{R}I + SS(\mathfrak{X}_{\text{ISP}}).$ (2) For every $S, T \in SS(\mathfrak{X}_{\text{ISP}}), ST$ is compact.

Theorem: (Lomonosov, 1973) Let $T, K \in \mathcal{L}(X)$, for some infinite-dimensional Banach space X. If

- K is compact and
- TK = KT

then T admits an invariant subspace.

Conclusion: Every $T \in \mathcal{L}(\mathfrak{X}_{ISP})$ admits an invariant subspace. **Proof:** Let $T \in \mathcal{L}(\mathfrak{X}_{ISP})$ and $\lambda \in \mathbb{R}$, $S \in SS(\mathfrak{X}_{ISP})$ such that $T = \lambda I + S$.

 S^2 is compact and T $S^2 = (\lambda I + S)S^2 = S^2(\lambda I + S) = S^2T$. By Lomonosov's theorem T admits an invariant subspace.

• • • • • • • • • • • •

Theorem: \mathfrak{X}_{ISP} satisfies these main properties:

(1) $\mathcal{L}(\mathfrak{X}_{\mathrm{ISP}}) = \mathbb{R}I + \mathcal{SS}(\mathfrak{X}_{\mathrm{ISP}}).$

(2) For every $S, T \in \mathcal{SS}(\mathfrak{X}_{ISP}), ST$ is compact.

Theorem: (Lomonosov, 1973) Let $T, K \in \mathcal{L}(X)$, for some infinite-dimensional Banach space X. If

- K is compact and
- *TK* = *KT*

then T admits an invariant subspace.

Conclusion: Every $T \in \mathcal{L}(\mathfrak{X}_{\text{ISP}})$ admits an invariant subspace. **Proof:** Let $T \in \mathcal{L}(\mathfrak{X}_{\text{ISP}})$ and $\lambda \in \mathbb{R}$, $S \in SS(\mathfrak{X}_{\text{ISP}})$ such that $T = \lambda I + S$.

 S^2 is compact and $T S^2 = (\lambda I + S)S^2 = S^2(\lambda I + S) = S^2T$. By Lomonosov's theorem T admits an invariant subspace.

Theorem: \mathfrak{X}_{ISP} satisfies these main properties:

(1) $\mathcal{L}(\mathfrak{X}_{\mathrm{ISP}}) = \mathbb{R}I + \mathcal{SS}(\mathfrak{X}_{\mathrm{ISP}}).$

(2) For every $S, T \in \mathcal{SS}(\mathfrak{X}_{ISP}), ST$ is compact.

Theorem: (Lomonosov, 1973) Let $T, K \in \mathcal{L}(X)$, for some infinite-dimensional Banach space X. If

K is compact and

then T admits an invariant subspace.

Conclusion: Every $T \in \mathcal{L}(\mathfrak{X}_{ISP})$ admits an invariant subspace.

Proof: Let $T \in \mathcal{L}(\mathfrak{X}_{\text{ISP}})$ and $\lambda \in \mathbb{R}$, $S \in SS(\mathfrak{X}_{\text{ISP}})$ such that $T = \lambda I + S$.

 S^2 is compact and T $S^2 = (\lambda I + S)S^2 = S^2(\lambda I + S) = S^2T$.

By Lomonosov's theorem T admits an invariant subspace.

Theorem: \mathfrak{X}_{ISP} satisfies these main properties:

(1) $\mathcal{L}(\mathfrak{X}_{\mathrm{ISP}}) = \mathbb{R}I + \mathcal{SS}(\mathfrak{X}_{\mathrm{ISP}}).$

(2) For every $S, T \in \mathcal{SS}(\mathfrak{X}_{ISP}), ST$ is compact.

Theorem: (Lomonosov, 1973) Let $T, K \in \mathcal{L}(X)$, for some infinite-dimensional Banach space X. If

K is compact and

then T admits an invariant subspace.

Conclusion: Every $T \in \mathcal{L}(\mathfrak{X}_{ISP})$ admits an invariant subspace. **Proof:** Let $T \in \mathcal{L}(\mathfrak{X}_{ISP})$ and $\lambda \in \mathbb{R}$, $S \in SS(\mathfrak{X}_{ISP})$ such that $T = \lambda I + S$.

 S^2 is compact and $T S^2 = (\lambda I + S)S^2 = S^2(\lambda I + S) = S^2T$.

By Lomonosov's theorem T admits an invariant subspace.

Theorem: \mathfrak{X}_{ISP} satisfies these main properties:

(1) $\mathcal{L}(\mathfrak{X}_{\mathrm{ISP}}) = \mathbb{R}I + \mathcal{SS}(\mathfrak{X}_{\mathrm{ISP}}).$

(2) For every $S, T \in \mathcal{SS}(\mathfrak{X}_{ISP}), ST$ is compact.

Theorem: (Lomonosov, 1973) Let $T, K \in \mathcal{L}(X)$, for some infinite-dimensional Banach space X. If

K is compact and

then T admits an invariant subspace.

Conclusion: Every $T \in \mathcal{L}(\mathfrak{X}_{ISP})$ admits an invariant subspace.

Proof: Let $T \in \mathcal{L}(\mathfrak{X}_{ISP})$ and $\lambda \in \mathbb{R}$, $S \in SS(\mathfrak{X}_{ISP})$ such that $T = \lambda I + S$.

 S^2 is compact and $T S^2 = (\lambda I + S)S^2 = S^2(\lambda I + S) = S^2T$.

By Lomonosov's theorem T admits an invariant subspace.

• • • • • • • • •

Theorem: \mathfrak{X}_{ISP} satisfies these main properties:

(1) $\mathcal{L}(\mathfrak{X}_{\mathrm{ISP}}) = \mathbb{R}I + \mathcal{SS}(\mathfrak{X}_{\mathrm{ISP}}).$

(2) For every $S, T \in \mathcal{SS}(\mathfrak{X}_{ISP}), ST$ is compact.

Theorem: (Lomonosov, 1973) Let $T, K \in \mathcal{L}(X)$, for some infinite-dimensional Banach space X. If

K is compact and

then T admits an invariant subspace.

Conclusion: Every $T \in \mathcal{L}(\mathfrak{X}_{ISP})$ admits an invariant subspace.

Proof: Let $T \in \mathcal{L}(\mathfrak{X}_{ISP})$ and $\lambda \in \mathbb{R}$, $S \in SS(\mathfrak{X}_{ISP})$ such that $T = \lambda I + S$.

 S^2 is compact and $T S^2 = (\lambda I + S)S^2 = S^2(\lambda I + S) = S^2T$.

By Lomonosov's theorem T admits an invariant subspace.

프 > - + 프 > - -

Spreading Models

• A sequence $(x_n)_{n=1}^{\infty}$ in a Banach space generates a *C*- ℓ_1 -spreading model if for all $n \leq i_1 < \cdots < i_n \in \mathbb{N}$ and $a_1, \ldots, a_n \in \mathbb{R}$

$$C^{-1}\sum_{k=1}^{n}|a_{k}|\leq \left\|\sum_{k=1}^{n}a_{k}x_{i_{k}}\right\|\leq \sum_{k=1}^{n}|a_{k}|.$$

We refer to such sequences as rank II sequences.

• A sequence $(x_n)_{n=1}^{\infty}$ in a Banach space generates a *C*-*c*₀-spreading model if for all $n \le i_1 < \cdots < i_n \in \mathbb{N}$ and $a_1, \ldots, a_n \in \mathbb{R}$

$$\max_{1\leq k\leq n}|a_k|\leq \Big\|\sum_{k=1}^n a_k x_{i_k}\Big\|\leq C\max_{1\leq k\leq n}|a_k|.$$

We refer to such sequences as rank I sequences.

We refer to sequences (x_i)[∞]_{i=1} such that lim_n ||x_i|| = 0 as rank 0 sequences.

Spreading Models

• A sequence $(x_n)_{n=1}^{\infty}$ in a Banach space generates a *C*- ℓ_1 -spreading model if for all $n \leq i_1 < \cdots < i_n \in \mathbb{N}$ and $a_1, \ldots, a_n \in \mathbb{R}$

$$C^{-1}\sum_{k=1}^{n}|a_{k}|\leq \left\|\sum_{k=1}^{n}a_{k}x_{i_{k}}\right\|\leq \sum_{k=1}^{n}|a_{k}|.$$

We refer to such sequences as rank II sequences.

• A sequence $(x_n)_{n=1}^{\infty}$ in a Banach space generates a *C*-*c*₀-spreading model if for all $n \le i_1 < \cdots < i_n \in \mathbb{N}$ and $a_1, \ldots, a_n \in \mathbb{R}$

$$\max_{1\leq k\leq n}|a_k|\leq \Big\|\sum_{k=1}^n a_k x_{i_k}\Big\|\leq C\max_{1\leq k\leq n}|a_k|.$$

We refer to such sequences as rank I sequences.

We refer to sequences (x_i)[∞]_{i=1} such that lim_n ||x_i|| = 0 as rank 0 sequences.

Spreading Models

• A sequence $(x_n)_{n=1}^{\infty}$ in a Banach space generates a *C*- ℓ_1 -spreading model if for all $n \leq i_1 < \cdots < i_n \in \mathbb{N}$ and $a_1, \ldots, a_n \in \mathbb{R}$

$$C^{-1}\sum_{k=1}^{n}|a_{k}|\leq \left\|\sum_{k=1}^{n}a_{k}x_{i_{k}}\right\|\leq \sum_{k=1}^{n}|a_{k}|.$$

We refer to such sequences as rank II sequences.

• A sequence $(x_n)_{n=1}^{\infty}$ in a Banach space generates a *C*-*c*₀-spreading model if for all $n \le i_1 < \cdots < i_n \in \mathbb{N}$ and $a_1, \ldots, a_n \in \mathbb{R}$

$$\max_{1\leq k\leq n}|a_k|\leq \Big\|\sum_{k=1}^n a_k x_{i_k}\Big\|\leq C\max_{1\leq k\leq n}|a_k|.$$

We refer to such sequences as rank I sequences.

We refer to sequences (x_i)[∞]_{i=1} such that lim_n ||x_i|| = 0 as rank 0 sequences.

Remark: Rank is stable under taking subsequences.

Theorem: Let $(x_i)_{i=1}^{\infty}$ be a weakly null sequence in \mathfrak{X}_{ISP} . Then, it has a rank 0, a rank I or a rank II subsequence.

Theorem: In \mathfrak{X}_{ISP} , there is a canonical way to construct a rank I sequence from a rank II sequence, and vice versa. In particular, every subspace of \mathfrak{X}_{ISP} contains weakly null sequences of rank I and II. **Remark:** Rank is stable under taking subsequences.

Theorem: Let $(x_i)_{i=1}^{\infty}$ be a weakly null sequence in \mathfrak{X}_{ISP} . Then, it has a rank 0, a rank I or a rank II subsequence.

Theorem: In \mathfrak{X}_{ISP} , there is a canonical way to construct a rank I sequence from a rank II sequence, and vice versa. In particular, every subspace of \mathfrak{X}_{ISP} contains weakly null sequences of rank I and II. **Remark:** Rank is stable under taking subsequences.

Theorem: Let $(x_i)_{i=1}^{\infty}$ be a weakly null sequence in \mathfrak{X}_{ISP} . Then, it has a rank 0, a rank I or a rank II subsequence.

Theorem: In \mathfrak{X}_{ISP} , there is a canonical way to construct a rank I sequence from a rank II sequence, and vice versa. In particular, every subspace of \mathfrak{X}_{ISP} contains weakly null sequences of rank I and II.

Strictly Singular Operators on \mathcal{X}_{ISP}

Theorem: Let $T \in \mathcal{L}(\mathfrak{X}_{ISP})$ be strictly singular. For a weakly null sequence $(x_i)_{i=1}^{\infty}$ of positive rank, $(Tx_i)_{i=1}^{\infty}$ has a subsequence of lesser rank.

Corollary: If $S, T \in SS(\mathfrak{X}_{ISP})$ then *ST* is compact.

Proof: By reflexivity, it suffices to show that for a weakly null sequence $(x_i)_{i=1}^{\infty}$, $\lim_{i \to \infty} ||STx_i|| = 0$.

Assume $(x_i)_{i=1}^{\infty}$, $(Tx_i)_{i=1}^{\infty}$ and $(STx_i)_{i=1}^{\infty}$ are of some rank.

- If $(x_i)_{i=1}^{\infty}$ is of rank 0, i.e, $\lim_{x \to 0} ||x_i|| = 0$, then $\lim_{x \to 0} ||STx_i|| = 0$.
- If (x_i)[∞]_{i=1} is of rank I, then (Tx_i)[∞]_{i=1} is of rank 0, i.e, lim_i ||Tx_i|| = 0, and thus lim_{i∈L} ||STx_i|| = 0.
- If (x_i)[∞]_{i=1} is of rank II, then (Tx_i)[∞]_{i=1} is or rank I or 0.
 In either case, (STx_i)[∞]_{i=1} is of rank 0, i.e., lim_i ||STx_i|| = 0.

Corollary: If $S, T \in SS(\mathfrak{X}_{ISP})$ then ST is compact.

Proof: By reflexivity, it suffices to show that for a weakly null sequence $(x_i)_{i=1}^{\infty}$, $\lim_{i \to \infty} ||STx_i|| = 0$.

Assume $(x_i)_{i=1}^{\infty}$, $(Tx_i)_{i=1}^{\infty}$ and $(STx_i)_{i=1}^{\infty}$ are of some rank.

• If $(x_i)_{i=1}^{\infty}$ is of rank 0, i.e, $\lim_{x \to 0} ||x_i|| = 0$, then $\lim_{x \to 0} ||STx_i|| = 0$.

- If (x_i)[∞]_{i=1} is of rank I, then (Tx_i)[∞]_{i=1} is of rank 0, i.e, lim_i ||Tx_i|| = 0, and thus lim_{i∈L} ||STx_i|| = 0.
- If (x_i)[∞]_{i=1} is of rank II, then (Tx_i)[∞]_{i=1} is or rank I or 0.
 In either case, (STx_i)[∞]_{i=1} is of rank 0, i.e., lim_i ||STx_i|| = 0.

Corollary: If $S, T \in SS(\mathfrak{X}_{ISP})$ then ST is compact.

Proof: By reflexivity, it suffices to show that for a weakly null sequence $(x_i)_{i=1}^{\infty}$, $\lim_{i \to \infty} ||STx_i|| = 0$.

Assume $(x_i)_{i=1}^{\infty}$, $(Tx_i)_{i=1}^{\infty}$ and $(STx_i)_{i=1}^{\infty}$ are of some rank.

- If $(x_i)_{i=1}^{\infty}$ is of rank 0, i.e, $\lim_{i \to \infty} ||x_i|| = 0$, then $\lim_{i \in L} ||STx_i|| = 0$.
- If $(x_i)_{i=1}^{\infty}$ is of rank I, then $(Tx_i)_{i=1}^{\infty}$ is of rank 0, i.e, $\lim_{i \to 1} ||Tx_i|| = 0$, and thus $\lim_{i \in L} ||STx_i|| = 0$.
- If (x_i)[∞]_{i=1} is of rank II, then (Tx_i)[∞]_{i=1} is or rank I or 0.
 In either case, (STx_i)[∞]_{i=1} is of rank 0, i.e., lim_i ||STx_i|| = 0.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Corollary: If $S, T \in SS(\mathfrak{X}_{ISP})$ then ST is compact.

Proof: By reflexivity, it suffices to show that for a weakly null sequence $(x_i)_{i=1}^{\infty}$, $\lim_{x \to \infty} ||STx_i|| = 0$.

Assume $(x_i)_{i=1}^{\infty}$, $(Tx_i)_{i=1}^{\infty}$ and $(STx_i)_{i=1}^{\infty}$ are of some rank.

- If $(x_i)_{i=1}^{\infty}$ is of rank 0, i.e, $\lim_{i \to \infty} ||x_i|| = 0$, then $\lim_{i \in L} ||STx_i|| = 0$.
- If $(x_i)_{i=1}^{\infty}$ is of rank I, then $(Tx_i)_{i=1}^{\infty}$ is of rank 0, i.e, $\lim_{i \to 1} ||Tx_i|| = 0$, and thus $\lim_{i \in L} ||STx_i|| = 0$.
- If (x_i)[∞]_{i=1} is of rank II, then (Tx_i)[∞]_{i=1} is or rank I or 0.
 In either case, (STx_i)[∞]_{i=1} is of rank 0, i.e., lim_i ||STx_i|| = 0.

< ロ > < 同 > < 三 > < 三 > -

Corollary: If $S, T \in SS(\mathfrak{X}_{ISP})$ then ST is compact.

Proof: By reflexivity, it suffices to show that for a weakly null sequence $(x_i)_{i=1}^{\infty}$, $\lim_{i \to \infty} ||STx_i|| = 0$.

Assume $(x_i)_{i=1}^{\infty}$, $(Tx_i)_{i=1}^{\infty}$ and $(STx_i)_{i=1}^{\infty}$ are of some rank.

- If $(x_i)_{i=1}^{\infty}$ is of rank 0, i.e, $\lim_{i \in I} ||x_i|| = 0$, then $\lim_{i \in L} ||STx_i|| = 0$.
- If $(x_i)_{i=1}^{\infty}$ is of rank I, then $(Tx_i)_{i=1}^{\infty}$ is of rank 0, i.e, $\lim_i ||Tx_i|| = 0$, and thus $\lim_{i \in L} ||STx_i|| = 0$.
- If (x_i)[∞]_{i=1} is of rank II, then (Tx_i)[∞]_{i=1} is or rank I or 0.
 In either case, (STx_i)[∞]_{i=1} is of rank 0, i.e., lim_i ||STx_i|| = 0.

Corollary: If $S, T \in SS(\mathfrak{X}_{ISP})$ then ST is compact.

Proof: By reflexivity, it suffices to show that for a weakly null sequence $(x_i)_{i=1}^{\infty}$, $\lim_{i \to \infty} ||STx_i|| = 0$.

Assume $(x_i)_{i=1}^{\infty}$, $(Tx_i)_{i=1}^{\infty}$ and $(STx_i)_{i=1}^{\infty}$ are of some rank.

- If $(x_i)_{i=1}^{\infty}$ is of rank 0, i.e, $\lim_{i \in I} ||x_i|| = 0$, then $\lim_{i \in L} ||STx_i|| = 0$.
- If $(x_i)_{i=1}^{\infty}$ is of rank I, then $(Tx_i)_{i=1}^{\infty}$ is of rank 0, i.e, $\lim_i ||Tx_i|| = 0$, and thus $\lim_{i \in L} ||STx_i|| = 0$.
- If (x_i)[∞]_{i=1} is of rank II, then (Tx_i)[∞]_{i=1} is or rank I or 0.
 In either case, (STx_i)[∞]_{i=1} is of rank 0, i.e., lim_i ||STx_i|| = 0.

Thank you!

∃ → 4 ∃

크