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Notation: Banach Spaces

X , Y , Z , and W denote Banach spaces.

ℓ∞ =
{

x = (x(i))i∈N ∈ RN : ∥x∥∞ = sup
i∈N

|x(i)| < ∞
}
,

c0 =
{

x = (x(i))i∈N ∈ ℓ∞ : lim
i→∞

x(i) = 0
}
,

ℓp =
{

x = (x(i))i∈N ∈ RN : ∥x∥p =
( ∞∑

i=1

|x(i)|p
)1/p

< ∞
}
, 1 ≤ p < ∞.

X is separable if it contains a countable norm-dense subset.

ℓ∞ is non-separable.

ℓp, 1 ≤ p < ∞, and c0 are separable.

Convention: Unless stated otherwise, a Banach space is
infinite-dimensional.

4 / 58 Pavlos Motakis Methods for constructing Banach spaces



Notation: Banach Spaces

X , Y , Z , and W denote Banach spaces.

ℓ∞ =
{

x = (x(i))i∈N ∈ RN : ∥x∥∞ = sup
i∈N

|x(i)| < ∞
}
,

c0 =
{

x = (x(i))i∈N ∈ ℓ∞ : lim
i→∞

x(i) = 0
}
,

ℓp =
{

x = (x(i))i∈N ∈ RN : ∥x∥p =
( ∞∑

i=1

|x(i)|p
)1/p

< ∞
}
, 1 ≤ p < ∞.

X is separable if it contains a countable norm-dense subset.

ℓ∞ is non-separable.

ℓp, 1 ≤ p < ∞, and c0 are separable.

Convention: Unless stated otherwise, a Banach space is
infinite-dimensional.

4 / 58 Pavlos Motakis Methods for constructing Banach spaces



Notation: Bounded Linear Operators

T ,S, R and K : X → Y denote bounded linear operators.

L(X ,Y ) =
{

T : X → Y linear & bounded
}

is a Banach space with

∥T∥ = sup{∥Tx∥ : ∥x∥ ≤ 1}.

Notation: L(X ) = L(X ,X ) and X ∗ = L(X ,R).

X is reflexive if X ≡ X ∗∗ canonically, i.e., X̂ = X ∗∗.

c0, and ℓ1 are non-reflexive.

ℓp, 1 < p < ∞, is reflexive.
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Notation: Compact Operators

K : X → Y is called compact if for every bounded sequence
(xi)

∞
i=1 in X , (Kxi)

∞
i=1 has a convergent subsequence.

Notation:

K(X ,Y ) =
{

T ∈ L(X ,Y ) compact
}

and

K(X ) = K(X ,X ).
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The Isomorphic Structure of the Subspaces of an X

X and Y are C-isomorphic, or X ≃C Y , for C ≥ 1, means:

there exists a linear bijection T : X → Y with ∥T∥∥T−1∥ ≤ C.

To disregard C, we say X and Y are isomorphic, or X ≃ Y .

Question: What are the subspaces of an X up to isomorphism?

Examples:

Let X = ℓ2. If Y ⊂ ℓ2 then Y ≃1 ℓ2.

Let X = ℓp, 1 ≤ p < ∞, or X = c0.

If Y ⊂ X then there exists Z ⊂ Y such that Z ≃ X .

Let X = Lp[0, 1], 1 ≤ p < ∞.

Then, ℓp and ℓ2 are isomorphic to subspaces of X .
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Isomorphic structure of subspaces

Question: For arbitrary X , is there Y ⊂ X that is isomorphic to
c0 or some ℓp, 1 ≤ p < ∞?

A counterexample was constructed by Tsirelson in 1974.
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The Space L(X )
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Constructing Operators: Classical Sequence Spaces

Let X = ℓp, 1 ≤ p < ∞ or X = c0.

For ε = (ε(i))i∈N ∈ {−1,1}N and a permutation π : N → N.

Define Tε,π ∈ L(X ) as follows: for x = (x(i))i∈N ∈ X ,

Tε,πx =
(
ε(i)x

(
π−1(i)

))
i∈N

.

Thus, L(X ) is non-separable.
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Constructing Operators: Arbitrary Banach Spaces
Let X be an arbitrary infinite-dimensional Banach space.

(a) For λ ∈ R, the scalar operator λI ∈ L(X ) is given by

λIx = λx .

(b) For f ∈ X ∗, y ∈ X , the rank-one operator f ⊗ x ∈ L(X ) is given by(
f ⊗ y

)
x = f (x)y .

Then ∥f ⊗ x∥ = ∥f∥∥x∥.

For f1, . . . , fn ∈ X ∗ and y1, . . . , yn ∈ X , the finite-rank operator
n∑

i=1

fi ⊗ yi ∈ L(X ).

For (fi)i∈N ∈ X ∗ and (yi)i∈N ∈ X , such that
∑∞

i=1 ∥fi∥∥yi∥ < ∞,
the nuclear operator

∞∑
i=1

fi ⊗ yi ∈ L(X ).
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Operators on an Arbitrary Banach Space

If N (X ) =
{

T ∈ L(X ) nuclear
}

,

RI +N (X ) ⊂ L(X ).

By Hahn-Banach: dim(L(X )) = ∞.

Remark: N (X ) ⊂ K(X ), and under “mild” assumptions on X ,

N (X )
∥·∥

= K(X ).

Question: (Lindenstrauss, 1975)
Does there exist a Banach space X with the scalar-plus-compact
property, i.e., such that

RI +K(X ) = L(X )?

Such a space was constructed by Argyros and Haydon in 2011.
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Fundamental Banach Spaces Concepts
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Schauder Bases

A Schauder basis of a Banach space is a sequence (xi)
∞
i=1 in X

such that for every x ∈ X ,

x =
∞∑
i=1

aixi ,

for a unique (ai)
∞
i=1 ∈ RN.

Example: For X = ℓp, 1 ≤ p < ∞, or X = c0 let, for i ∈ N,

ei = (0,0,0, . . . ,0, 1
↑

i ’th position

,0, . . .).

Then (ei)
∞
i=1 is a Schauder basis of X because,

if x = (x(i))∞i=1 ∈ X then x =
∞∑
i=1

x(i)ei .
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Schauder Bases

Two Schauder bases (xi)
∞
i=1 of X and (yi)

∞
i=1 of Y are called

C-equivalent if T : X → Y given by

T
( ∞∑

i=1

aixi

)
=

∞∑
i=1

aiyi

is a C-isomorphism of X and Y .
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Block Sequences

Let X have a Schauder basis (xi)
∞
i=1.

The support of an x =
∑∞

i=1 aixi in X is the set

supp(x) = {i ∈ N : ai ̸= 0}.

For x ∈ X and ε > 0 there exists y ∈ X with supp(y) finite

∥x − y∥ < ε.

A sequence (yi)
∞
i=1 in X is a block sequence if

supp(y1) < supp(y2) < · · · < supp(yi) < supp(yi+1) < · · · .

For a block sequence (yi)
∞
i=1 in X , Y = ⟨{yi : i ∈ N}⟩ is called a

block subspace of X .
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Block Sequences

If X has a Schauder basis (xi)
∞
i=1, block subspaces saturate the

infinite-dimensional subspaces Y of X .

Theorem: Let Y ⊂ X and ε > 0.
Then Y contains an ε-perturbation of a block subspace W .

That is, there exists an isomorphism T ∈ L(X ) with ∥I − T∥ < ε
and T (W ) ⊂ Y .
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Schreier’s Space
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Convex Combinations of Weakly Null Sequences
A sequence (xi)

∞
i=1 in a Banach space is weakly null if, for every

f ∈ X ∗, limi→∞ f (xi) = 0.

Theorem: (Mazur) (xi)
∞
i=1 is weakly null if and only if for every

infinite L ⊂ N and ε > 0 there exist a finite F ⊂ L and (λi)i∈F in
[0,1] such that

∑
i∈F λi = 1 and ∥

∑
i∈F λixi∥ < ε.

Question: (Banach - Saks, 1930s) Assume (xi)
∞
i=1 is weakly

null and let ε > 0. Does there exist a finite F ⊂ N such that∥∥∥∑
i∈F

1
#F

xi

∥∥∥ < ε?

Theorem: (Schreier, 1932) There exists a weakly null sequence
(ei)

∞
i=1 in some Banach space XS such that for every finite F ⊂ N,∥∥∥∑

i∈F

1
#F

ei

∥∥∥ ≥ 1
2
.
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Schreier’s Construction
The Schreier family:

S =
{

F ⊂ N : #F ≤ min(F )
}
.

E.g., {5,6,12} ∈ S but {2,5,7} /∈ S.

c00 =
{

x = (x(i))∞i=1 ∈ RN : x(i) ̸= 0 for only finitely many i
}
.

For i ∈ N, and for x = (x(i))∞i=1 ∈ c00, F ⊂ N, let

Fx =
∑
i∈F

x(i)ei .

Define a norm on c00 by letting, for x = (x(i))∞i=1,

∥x∥ = sup
{∑

i∈F

∣∣x(i)∣∣ : F ∈ S
}
= sup

F∈S
∥Fx∥ℓ1 ,

and let XS be the completion of c00 with ∥ · ∥.
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Schreier’s Construction

Proposition: For every non-empty F ⊂ N,∥∥∥∑
i∈F

1
#F

ei

∥∥∥ ≥ 1
2
.

Lemma: For every finite F ⊂ N there exists G ⊂ F with G ∈ S
and #G ≥ #F/2.

Proof of lemma: Write F = {k1 < k2 < · · · < kn} and let
G = {k⌊n/2⌋+1 < · · · < kn}.

Proof of proposition: Let F ⊂ N finite and take G as in the
lemma. Then, ∥∥∥∑

i∈F

1
#F

ei

∥∥∥ ≥
∑
i∈G

1
#F

=
#G
#F

≥ 1
2
.
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Schreier’s Construction
Proposition: (ei)

∞
i=1 is weakly null in XS .

Lemma: Let F1 < · · · < Fn be non-empty subsets of N such that,
for k = 1, . . . ,n − 1, #Fk+1 ≥ max(Fk ).

Then, for every F ∈ S,

n∑
k=1

#(F ∩ Fk )

#Fk
< 2.

Proof of proposition: For an infinite L ⊂ N and ε > 0 pick n > 2/ε
and F1, . . . ,Fn in L as in the lemma. Then,

∥∥∥1
n

n∑
k=1

(∑
i∈Fk

1
#Fk

ei

)∥∥∥ =
1
n
sup
F∈S

( n∑
k=1

( ∑
i∈F∩Fk

1
#Fk

))
=

1
n
sup
F∈S

n∑
k=1

#(F ∩ Fk )

#Fk
< ε.
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Schreier’s Construction

Remarks:

For F = {i1, i2, . . . , in} ∈ S, (eik )
n
k=1 in XS is 1-equivalent to the

unit vector basis of (Rn, ∥ · ∥1).

Every subspace of XS contains a further subspace isomorphic to
c0.

Schreier’s space XS is isomorphic to a subspace of C(ωω).
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Tsirelson’s Space
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Tsirelson’s Space

Let X be an infinite-dimensional Banach space.

Question: Does X have a subspace isomorphic to c0 or some
ℓp, 1 ≤ p < ∞?

Theorem: (Dvoretsky, 1961) For every n ∈ N, C > 1, X has an
n-dimensional subspace that is C-isomorphic to (Rn, ∥ · ∥2).

Theorem: (Krivine, 1976) If X has a Schauder basis there
exists 1 ≤ p ≤ ∞ such that:
for all n ∈ N and C > 1 there exists a finite block sequence (xi)

n
i=1

in X that is C-equivalent to the unit vector basis of (Rn, ∥ · ∥p).

Theorem: (Tsirelson, 1974) There exists a Banach space T
with no subspace isomorphic to c0 or ℓp, 1 ≤ p < ∞.
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Tsirelson’s Construction

We define by induction a sequence of norms on c00.

For x = (x(i))∞i=1 let ∥x∥0 = maxi∈N |x(i)| = ∥x∥c0 .

If ∥ · ∥n is defined, for x = (x(i))∞i=1 let

∥x∥n+1 = max
{
∥x∥n, sup

(1
2

m∑
k=1

∥Ek x∥n

)}
.

The supremum is over all m ∈ N and subsets E1 < · · · < Em of N
with min(E1) ≥ m, i.e., {min(Ek ) : 1 ≤ k ≤ m} ∈ S.

For x ∈ c00 let ∥x∥ = limn ∥x∥n and T be the completion of c00
with ∥ · ∥.
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Tsirelson’s Construction

Remark: For x ∈ c00

∥x∥ = max
{
∥x∥c0 , sup

(1
2

m∑
k=1

∥Ek x∥
)}

.

The supremum is over all m ∈ N and subsets E1 < · · · < Em of N
with min(E1) ≥ m.

Corollary: For every finite block sequence (xi)
m
i=1 with

m ≤ min supp(x1),

1
2

m∑
k=1

∥xi∥ ≤
∥∥∥ m∑

i=1

xi

∥∥∥ ≤
m∑

k=1

∥xi∥.

That is, T is (1/2)-asymptotic ℓ1.
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Tsirelson’s Construction

Proposition: No block sequence of norm-one vectors in T is
equivalent to the unit vector basis of c0 or ℓp, 1 < p < ∞.

Proof: Fix 1 < p < ∞.
Assume that (xi)

∞
i=1 is equivalent to the unit vector basis of ℓp.

Then there exists C > 0 such that for every i1 < · · · < in,

∥∥∥ n∑
k=1

xki

∥∥∥ ≤ C
∥∥∥ n∑

k=1

eik

∥∥∥
ℓp

= Cn1/p.

But also, if min supp(xi1) ≥ n,

∥∥∥ n∑
k=1

xik

∥∥∥ ≥ 1
2

n∑
k=1

∥xik ∥ =
n
2
.

Therefore, C ≥ n1−1/p/2 → ∞, as n → ∞.
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Tsirelson’s Construction

Proposition: No block sequence of norm-one vectors in T is
equivalent to the unit vector basis of ℓ1.

Lemma: Let δ > 0 and (xi)
∞
i=1 be a block sequence of norm-one

vectors in T . For N ≥ max supp(x1)/δ,

∥∥∥x1 +
1
N

N+1∑
i=2

xi

∥∥∥ ≤ 1 + δ.

In particular,

lim sup
N

∥∥∥x1 +
1
N

N+1∑
i=2

xi

∥∥∥ ≤ 1.
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Tsirelson’s Construction

Proposition: No block sequence of norm-one vectors in T is
equivalent to the unit vector basis of ℓ1.

Proof of Proposition: Assume (xi)
∞
i=1 is a block sequence of

norm-one vectors C-equivalent to the unit vector basis of ℓ1, i.e.,

∥∥∥x1 +
1
N

N+1∑
i=2

xi

∥∥∥ ≥ 1
C

∥∥∥e1 +
1
N

N+1∑
i=2

ei

∥∥∥
ℓ1

=
2
C
.

By the Lemma,

2
C

≤ lim sup
N

∥∥∥x1 +
1
N

N+1∑
i=2

xi

∥∥∥ ≤ 1.

Thus, C ≥ 2. This contradicts James’ non-distrortion of ℓ1.
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Tsirelson’s Construction

Remarks:

Tsirelson’s norm is the first saturated norm:
Every block sequence of norm-one vectors (xi)

∞
i=1 is weakly null,

and for every F ⊂ N, ∥∥∥∑
i∈F

1
#F

xi

∥∥∥ ≥ 1
4
.

Tsirelson’s space is reflexive and asymptotic ℓ1.

These are “contradictory” properties.

T displays hereditarily homegeneous block structure.
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Schlumprecht’s Space
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Schlumprecht’s Construction

In 1991 Schlumprecht constructed a Banach space (S, ∥ · ∥) with
hereditarily heterogeneous block structure.

S is the completion of c00 with a norm such that for x ∈ c00

∥x∥ = max
{
∥x∥c0 , sup

( 1
log(m + 1)

m∑
k=1

∥Ek x∥
)}

,

where the supremum is over all m ∈ N and successive subsets
E1, . . . ,Em of N.

Corollary: For every finite block sequence (xi)
n
i=1,

1
log(n + 1)

n∑
k=1

∥xi∥ ≤
∥∥∥ n∑

i=1

xi

∥∥∥.
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Schlumprecht’s Construction

Theorem: Let X be a block subspace S. For every n ∈ N, there
is a block sequence (xi)

n
i=1 in X that is a 2-equivalent to the unit

vector basis of (Rn, ∥ · ∥1).

Proof: Krivine’s theorem and

log(n + 1)
n1−1/p → 0,

for all p > 1.

For such a sequence, the vector

y =
1
n

n∑
i=1

xi

is a 2-normalized ℓ1 average and it satisfies 1/2 ≤ ∥y∥ ≤ 1.
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Schlumprecht’s Construction

A block sequence (yi)
∞
i=1 such that, for each i ∈ N, yi is an

2-ℓNi
1 -average and

log(log(Ni+1)) > 2i+1 max supp(yi)

is called a 2-rapidly increasing sequence (2-RIS).

Theorem: Let (yi)
∞
i=1 be 2-RIS in S. Then, for every

i1 < · · · < in ∈ N,

1
2

n
log(n + 1)

≤
∥∥∥ n∑

k=1

yik

∥∥∥ ≤ 4
n

log(n + 1)
.
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Schlumprecht’s Construction

Hereditary heterogeneity of Schlumprecht’s space:
In every block subspace of S, there exist

for every n ∈ N, a block sequence (xi)
n
i=1 that is 2-equivalent to the

unit vector basis of (Rn, ∥ · ∥1), i.e., for a1, . . . , an ∈ R,

1
2

n∑
i=1

|ai | ≤
∥∥∥ n∑

i=1

aixi

∥∥∥ ≤
n∑

i=1

|ai |,

and

a 2-RIS (yi)
∞
i=1, i.e., for every i1 < · · · < in ∈ N,

1
2

n
log(n + 1)

≤
∥∥∥ n∑

k=1

yik

∥∥∥ ≤ 4
n

log(n + 1)
.

Comment: Other types of sequences can be found.

Remark: S is a reflexive Banach space.
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The Gowers-Maurey Space

37 / 58 Pavlos Motakis Methods for constructing Banach spaces



Unconditional Sequences

A Schauder basis (xi)
∞
i=1 of a Banach space is called

C-unconditional, for some C ≥ 1, if for every a1, . . . ,an ∈ R and
ε1, . . . , εn ∈ {−1,1},

∥∥∥ n∑
i=1

εiaixi

∥∥∥ ≤ C
∥∥∥ n∑

i=1

aixi

∥∥∥.
Equivalently, for every ε = (ε(i))∞i=1 ∈ {−1,1}N, Tε : X → X with

Tε

( ∞∑
i=1

aixi

)
=

∞∑
i=1

εiaixi

is bounded and has norm at most C.

A sequence (yi)
∞
i=1 in a Banach space X is an unconditional

sequence if it is an unconditional Schauder basis of its closed
linear span.
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The Unconditional Basic Sequence Problem

The unit vector bases of c0, ℓp, 1 ≤ p < ∞, Schreier’s,
Tsirelson’s, and Schlumprecht’s spaces are unconditional.

Every block sequence of a C-unconditional sequence is
C-unconditional.

The Schauder system of C[0,1] and the Haar system of L1[0,1]
are non-unconditional.

Question: Does every infinite-dimensional Banach space
contain an unconditional sequence?
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The Gowers-Maurey Space

Theorem: (Gowers - Maurey, 1993) There exists a reflexive
Banach space XGM without any unconditional sequences.

The Gowers-Maurey construction combines:

The Schlumprecht construction and

A Maurey-Rosenthal concept called a coding function.
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The Gowers-Maurey Construction

Hereditary heterogeneity in the Gowers-Maurey space yields:
In every block subspace of XGM , there exist a 2-RIS (yi)

∞
i=1, i.e.,

for every i1 < · · · < in ∈ N,

1
2

n
log(n + 1)

≤
∥∥∥ n∑

k=1

yik

∥∥∥ ≤ 4
n

log(n + 1)
.

For (yi)
∞
i=1 as above, the vector

z =
log(n + 1)

n

n∑
i=1

yi

is called a (2,n)-exact vector and it satisfies 1/2 ≤ ∥z∥ ≤ 4.
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The Gowers-Maurey Construction

Theorem: Let X be a block subspace of XGM. Then, for
arbitrarily large N ∈ N, there exists a block sequence (zi)

N
i=1 in X

such that each zi is a (2,ni)-exact vector and

∥∥∥ n∑
i=1

zi

∥∥∥ ≥ 1
2

N√
log(N + 1)

but ∥∥∥ n∑
i=1

(−1)izi

∥∥∥ ≤ 16
N

log(N + 1)
.

In particular, no block sequence in XGM is unconditional.
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The Gowers-Maurey Construction

An X is called indecomposable if for any bounded linear
projection P : X → X , either image(P) or kernel(P) is
finite-dimensional.

Theorem: The space XGM is hereditarily indecomposable (HI),
i.e., every infinite-dimensional Y ⊂ XGM is indecomposable.

Theorem: (Gowers, 1996) Every infinite-dimensional Banach
space contains an unconditional sequence or an HI subspace.

Theorem: (Argyros - Felouzis, 2000 and Argyros -
Raikoftsalis, 2012)
Every separable reflexive Banach space, e.g., ℓ2, is isomorphic
to a quotient of some reflexive HI space.
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The Gowers-Maurey Construction

A T : X → X is called strictly singular if:
for every infinite-dimensional Y ⊂ X there exists an infinite
dimensional Z ⊂ Y such that T |Z is compact.

Denote
SS(X ) =

{
S ∈ L(X ) strictly singular

}
.

Always, K(X ) ⊂ SS(X ).

Theorem: L(XGM) = RI + SS(XGM).

Theorem: (Gowers-Maurey, 1993 and Ferenczi, 1996)
For every HI space X , L(X )/SS(X ) is one, two, or
four-dimensional.
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The Argyros-Haydon Space
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The Scalar-Plus-Compact Problem

Question: (Lindenstrauss, 1975)
Does there exist a Banach space X with the scalar-plus-compact
property, i.e., such that L(X ) = RI +K(X )?

Comment: L(XGM) = RI + SS(XGM).

Theorem: (Androulakis - Schlumprecht, 2001)
K(XGM) ⊊ SS(XGM).

Theorem: (Argyros - Haydon, Acta Math. 2011) There exists
an HI space XAH with the scalar-plus-compact property.
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The Argyros-Haydon Space

Theorem: (Argyros-Haydon, 2011) There exists an HI space
XAH that has the scalar-plus-compact property.

The Argyros-Haydon construction has two main components.

The Gowers-Maurey construction, and thus it is an HI space.

A Bourgain-Delbaen construction of a type of non-reflexive spaces
called L∞-spaces, and thus XAH is a L∞-space.
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XAH and the Invariant Subspace Problem

For a Banach space X a T ∈ L(X ) admits an invariant subspace
if there exists a closed subspace {0} ⊊ Y ⊊ X with T (Y ) ⊂ Y .

An X has the invariant subspace property (ISP) if every
T ∈ L(X ) admits an invariant subspace.

Question: (von Neumann) Does ℓ2 have the invariant subspace
property?

Theorem: (Aronszajn-Smith, 1954) For a Banach space X ,
every K ∈ K(X ) admits an invariant subspace.

Conclusion: XAH has the invariant subspace property, and it is
the first known space with this property.
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Spaces X with L(X ) = RI +K(X )

Theorem: (Argyros - Freeman - Haydon - Odell - Raikoftsalis
- Schlumprecht - Zisimopoulou, 2012)
Every uniformly convex separable Banach space X is isomorphic
to a subspace of a separable L∞-space X with the
scalar-plus-compact property.
In particular, X is isomorphic to a subspace of a non-reflexive
separable space with the invariant subspace property.

Question: Does there exist a reflexive infinite-dimensional
Banach space with the scalar-plus-compact property?
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The Argyros-Haydon Method and Calkin Algebras
For a Banach space X , Cal (X ) = L(X )/K(X ) is a unital Banach
algebra called the Calkin algebra of X .

Question: For what unital Banach algebras B does there exist X
such that Cal (X ) ≃ B
In other words, what unital Banach algebras are Calkin algebras?

For example, Cal (XAH) ≃ R.

Theorem: (Tarbard, 2012) ℓ1(N0) is a Calkin algebra.

Theorem: (M - Puglisi - Zisimopoulou, 2016 and M, 2024)
Every separable C(K ) space is a Calkin algebra.

Theorem: (M - Pelczar-Barwacz, 2024) The following spaces
are Calking algebras:

ℓp, 1 ≤ p < ∞, e.g., ℓ2,

Lp, 1 < p < ∞,

Schlumprecht’s space and Tsirelson’s space.
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The Invariant Subspace Problem for
Reflexive Spaces
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The Invariant Subspace Problem for Reflexive Spaces

Question: (von Neumann) Does ℓ2 have the invariant subspace
property?

Theorem: (Enflo, 1987 and Read, 1984) There exist
non-reflexive separable Banach spaces failing the ISP.

Theorem: (Argyros-Haydon, 2011) The non-reflexive separable
space XAH satisfies the ISP.

Question: (Read, 1989) Does there exist a separable reflexive
space with the ISP?
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The Invariant Subspace Problem for Reflexive Spaces

Theorem: (Argyros - M, 2014) There exists a separable
reflexive HI space XISP with the ISP.

This construction combines:

The Tsirelson construction.

An Odell-Schlumprecht concept called saturation under constraints.

Remark: Every infinite-dimensional closed subspace of XISP
satisfies the ISP.
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The Invariant Subspace Problem for Reflexive Spaces

Theorem: XISP satisfies these main properties:
(1) L(XISP) = RI + SS(XISP).

(2) For every S,T ∈ SS(XISP), ST is compact.

Theorem: (Lomonosov, 1973) Let T ,K ∈ L(X ), for some
infinite-dimensional Banach space X . If

K is compact and

TK = KT

then T admits an invariant subspace.

Conclusion: Every T ∈ L(XISP) admits an invariant subspace.

Proof: Let T ∈ L(XISP) and λ ∈ R, S ∈ SS(XISP) such that
T = λI + S.

S2 is compact and T S2 = (λI + S)S2 = S2(λI + S) = S2T .

By Lomonosov’s theorem T admits an invariant subspace.
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T = λI + S.

S2 is compact and T S2 = (λI + S)S2 = S2(λI + S) = S2T .

By Lomonosov’s theorem T admits an invariant subspace.
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Spreading Models
A sequence (xn)

∞
n=1 in a Banach space generates a

C-ℓ1-spreading model if for all n ≤ i1 < · · · < in ∈ N and
a1, . . . ,an ∈ R

C−1
n∑

k=1

|ak | ≤
∥∥∥ n∑

k=1

ak xik

∥∥∥ ≤
n∑

k=1

|ak |.

We refer to such sequences as rank II sequences.

A sequence (xn)
∞
n=1 in a Banach space generates a

C-c0-spreading model if for all n ≤ i1 < · · · < in ∈ N and
a1, . . . ,an ∈ R

max
1≤k≤n

|ak | ≤
∥∥∥ n∑

k=1

ak xik

∥∥∥ ≤ C max
1≤k≤n

|ak |.

We refer to such sequences as rank I sequences.

We refer to sequences (xi)
∞
i=1 such that limn ∥xi∥ = 0 as rank 0

sequences.
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Hereditary Heterogeneity of XISP

Remark: Rank is stable under taking subsequences.

Theorem: Let (xi)
∞
i=1 be a weakly null sequence in XISP.

Then, it has a rank 0, a rank I or a rank II subsequence.

Theorem: In XISP, there is a canonical way to construct a rank I
sequence from a rank II sequence, and vice versa.
In particular, every subspace of XISP contains weakly null
sequences of rank I and II.

56 / 58 Pavlos Motakis Methods for constructing Banach spaces



Hereditary Heterogeneity of XISP

Remark: Rank is stable under taking subsequences.

Theorem: Let (xi)
∞
i=1 be a weakly null sequence in XISP.

Then, it has a rank 0, a rank I or a rank II subsequence.

Theorem: In XISP, there is a canonical way to construct a rank I
sequence from a rank II sequence, and vice versa.
In particular, every subspace of XISP contains weakly null
sequences of rank I and II.

56 / 58 Pavlos Motakis Methods for constructing Banach spaces



Hereditary Heterogeneity of XISP

Remark: Rank is stable under taking subsequences.

Theorem: Let (xi)
∞
i=1 be a weakly null sequence in XISP.

Then, it has a rank 0, a rank I or a rank II subsequence.

Theorem: In XISP, there is a canonical way to construct a rank I
sequence from a rank II sequence, and vice versa.
In particular, every subspace of XISP contains weakly null
sequences of rank I and II.

56 / 58 Pavlos Motakis Methods for constructing Banach spaces



Strictly Singular Operators on XISP

Theorem: Let T ∈ L(XISP) be strictly singular. For a weakly null
sequence (xi)

∞
i=1 of positive rank, (Txi)

∞
i=1 has a subsequence of

lesser rank.

Corollary: If S,T ∈ SS(XISP) then ST is compact.

Proof: By reflexivity, it suffices to show that for a weakly null
sequence (xi)

∞
i=1, limi ∥STxi∥ = 0.

Assume (xi)
∞
i=1, (Txi)

∞
i=1 and (STxi)

∞
i=1 are of some rank.

If (xi)
∞
i=1 is of rank 0, i.e, limi ∥xi∥ = 0, then limi∈L ∥STxi∥ = 0.

If (xi)
∞
i=1 is of rank I, then (Txi)

∞
i=1 is of rank 0, i.e, limi ∥Txi∥ = 0,

and thus limi∈L ∥STxi∥ = 0.

If (xi)
∞
i=1 is of rank II, then (Txi)

∞
i=1 is or rank I or 0.

In either case, (STxi)
∞
i=1 is of rank 0, i.e., limi ∥STxi∥ = 0.
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Thank you!
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