Methods for constructing Banach spaces with prescribed properties in their operator spaces

Pavlos Motakis

York University

7th MATH @ NTUA summer school in "Mathematical Analysis" in honor of Spiros Argyros

June 28, 2024

- Banach Spaces
- The Space $\mathcal{L}(X)$
- Fundamental Banach Spaces Concepts
- Schreier's Space
- Tsirelson's Space
- Schlumprecht's Space
- The Gowers-Maurey Space
- The Argyros-Haydon Space
- The Invariant Subspace Problem for Reflexive Spaces

つへへ

Banach Spaces

 299

活

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ..

Notation: Banach Spaces

X, *Y*, *Z*, and *W* denote Banach spaces.

$$
\ell_{\infty} = \Big\{ x = (x(i))_{i \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} : ||x||_{\infty} = \sup_{i \in \mathbb{N}} |x(i)| < \infty \Big\},
$$

\n
$$
c_0 = \Big\{ x = (x(i))_{i \in \mathbb{N}} \in \ell_{\infty} : \lim_{i \to \infty} x(i) = 0 \Big\},
$$

\n
$$
\ell_p = \Big\{ x = (x(i))_{i \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} : ||x||_p = \Big(\sum_{i=1}^{\infty} |x(i)|^p \Big)^{1/p} < \infty \Big\}, 1 \le p < \infty.
$$

X is separable if it contains a countable norm-dense subset.

Convention: Unless stated otherwise, a Banach space is infinite-dimensional.

≮ロト ⊀何 ト ⊀ ヨ ト ⊀ ヨ ト .

Notation: Banach Spaces

X, *Y*, *Z*, and *W* denote Banach spaces.

$$
\ell_{\infty} = \Big\{ x = (x(i))_{i \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} : ||x||_{\infty} = \sup_{i \in \mathbb{N}} |x(i)| < \infty \Big\},
$$

\n
$$
c_0 = \Big\{ x = (x(i))_{i \in \mathbb{N}} \in \ell_{\infty} : \lim_{i \to \infty} x(i) = 0 \Big\},
$$

\n
$$
\ell_p = \Big\{ x = (x(i))_{i \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} : ||x||_p = \Big(\sum_{i=1}^{\infty} |x(i)|^p \Big)^{1/p} < \infty \Big\}, 1 \le p < \infty.
$$

• *X* is separable if it contains a countable norm-dense subset.

- ℓ_{∞} is non-separable.
- ℓ_p , $1 \leq p \leq \infty$, and c_0 are separable.

Convention: Unless stated otherwise, a Banach space is infinite-dimensional.

Notation: Bounded Linear Operators

 \bullet *T S*, *R* and *K* : *X* \rightarrow *Y* denote bounded linear operators.

$$
\mathcal{L}(X,Y) = \left\{ T : X \to Y \text{ linear } \& \text{ bounded} \right\}
$$

is a Banach space with

$$
||T|| = \sup{||Tx|| : ||x|| \le 1}.
$$

Notation: $\mathcal{L}(X) = \mathcal{L}(X, X)$ and $X^* = \mathcal{L}(X, \mathbb{R})$.

- *X* is reflexive if $X \equiv X^{**}$ canonically, i.e., $\hat{X} = X^{**}$.
	-

Notation: Bounded Linear Operators

 \bullet *T S*, *R* and *K* : *X* \rightarrow *Y* denote bounded linear operators.

$$
\mathcal{L}(X,Y) = \left\{ T : X \to Y \text{ linear } \& \text{ bounded} \right\}
$$

is a Banach space with

$$
||T|| = \sup\{||Tx|| : ||x|| \leq 1\}.
$$

Notation: $\mathcal{L}(X) = \mathcal{L}(X, X)$ and $X^* = \mathcal{L}(X, \mathbb{R})$.

- *X* is reflexive if $X \equiv X^{**}$ canonically, i.e., $\hat{X} = X^{**}$.
	- c_0 , and ℓ_1 are non-reflexive.
	- ℓ_p , $1 < p < \infty$, is reflexive.

 \bullet *K* : *X* \rightarrow *Y* is called compact if for every bounded sequence $(x_i)_{i=1}^{\infty}$ in *X*, $(Kx_i)_{i=1}^{\infty}$ has a convergent subsequence.

Notation:

$$
\mathcal{K}(X, Y) = \left\{ T \in \mathcal{L}(X, Y) \text{ compact} \right\} \text{ and}
$$

$$
\mathcal{K}(X) = \mathcal{K}(X, X).
$$

The Isomorphic Structure of the Subspaces of an *X*

X and *Y* are *C*-isomorphic, or *X* ≃*^C Y*, for *C* ≥ 1, means:

there exists a linear bijection $\, \mathcal{T} : X \rightarrow Y$ with $\, \| \, \mathcal{T} \| \, \| \, \mathcal{T}^{-1} \| \leq C.$

To disregard *C*, we say *X* and *Y* are isomorphic, or $X \simeq Y$.

Question: What are the subspaces of an *X* up to isomorphism?

Examples:

The Isomorphic Structure of the Subspaces of an *X*

 \bullet *X* and *Y* are *C*-isomorphic, or *X* \simeq ^{*C*} *Y*, for *C* > 1, means:

there exists a linear bijection $\, \mathcal{T} : X \rightarrow Y$ with $\, \| \, \mathcal{T} \| \, \| \, \mathcal{T}^{-1} \| \leq C.$

To disregard *C*, we say *X* and *Y* are isomorphic, or $X \simeq Y$.

Question: What are the subspaces of an *X* up to isomorphism?

Examples:

The Isomorphic Structure of the Subspaces of an *X*

X and *Y* are *C*-isomorphic, or *X* ≃*^C Y*, for *C* ≥ 1, means:

there exists a linear bijection $\, \mathcal{T} : X \rightarrow Y$ with $\, \| \, \mathcal{T} \| \, \| \, \mathcal{T}^{-1} \| \leq C.$

To disregard *C*, we say *X* and *Y* are isomorphic, or $X \simeq Y$.

Question: What are the subspaces of an *X* up to isomorphism?

Examples:

- Let $X = \ell_2$. If $Y \subset \ell_2$ then $Y \simeq^1 \ell_2$.
- Let $X = \ell_p$, $1 \le p \le \infty$, or $X = c_0$. If *Y* \subset *X* then there exists *Z* \subset *Y* such that *Z* \simeq *X*.
- Let $X = L_p[0, 1]$, $1 \le p \le \infty$.

Then, ℓ_p and ℓ_2 are isomorphic to subspaces of X.

Question: For arbitrary *X*, is there $Y \subset X$ that is isomorphic to *c*₀ or some ℓ_p , $1 \leq p < \infty$?

A counterexample was constructed by Tsirelson in 1974.

Question: For arbitrary *X*, is there $Y \subset X$ that is isomorphic to *c*₀ or some ℓ_p , $1 \leq p < \infty$?

• A counterexample was constructed by Tsirelson in 1974.

The Space $\mathcal{L}(X)$

 299

活

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

Constructing Operators: Classical Sequence Spaces

• Let
$$
X = \ell_p
$$
, $1 \le p < \infty$ or $X = c_0$.

For $\varepsilon = (\varepsilon(i))_{i \in \mathbb{N}} \in \{-1, 1\}^{\mathbb{N}}$ and a permutation $\pi : \mathbb{N} \to \mathbb{N}$.

Define $T_{\varepsilon,\pi} \in \mathcal{L}(X)$ as follows: for $x = (x(i))_{i \in \mathbb{N}} \in X$,

$$
T_{\varepsilon,\pi}x=\bigg(\varepsilon(i)x\big(\pi^{-1}(i)\big)\bigg)_{i\in\mathbb{N}}.
$$

Thus, $\mathcal{L}(X)$ is non-separable.

 QQ

Constructing Operators: Arbitrary Banach Spaces

Let *X* be an arbitrary infinite-dimensional Banach space.

(a) For $\lambda \in \mathbb{R}$, the scalar operator $\lambda I \in \mathcal{L}(X)$ is given by

$$
\lambda \mathbf{I} \mathbf{x} = \lambda \mathbf{x}.
$$

(**b**) For *f* ∈ *X*^{*}, *y* ∈ *X*, the rank-one operator *f* ⊗ *x* ∈ *L*(*X*) is given by $(f \otimes y) x = f(x) y$.

Then $||f \otimes x|| = ||f|| ||x||$.

For $f_1, \ldots, f_n \in X^*$ and $y_1, \ldots, y_n \in X$, the finite-rank operator

 $\sum_{i=1}^{n} f_i \otimes y_i \in \mathcal{L}(X).$

 $\mathsf{For} \ (f_i)_{i \in \mathbb{N}} \in X^*$ and $(y_i)_{i \in \mathbb{N}} \in X$, such that $\sum_{i=1}^{\infty} \|f_i\| \|y_i\| < \infty$, the nuclear operator

$$
\sum_{i=1}^{\infty} f_i \otimes y_i \in \mathcal{L}(X).
$$

Constructing Operators: Arbitrary Banach Spaces

Let *X* be an arbitrary infinite-dimensional Banach space.

(a) For $\lambda \in \mathbb{R}$, the scalar operator $\lambda I \in \mathcal{L}(X)$ is given by

$$
\lambda \mathbf{I} \mathbf{x} = \lambda \mathbf{x}.
$$

(**b**) For *f* ∈ X^* , y ∈ X , the rank-one operator $f \otimes x$ ∈ $\mathcal{L}(X)$ is given by $(f \otimes y)x = f(x)y$.

Then $||f \otimes x|| = ||f|| ||x||$.

For $f_1, \ldots, f_n \in X^*$ and $y_1, \ldots, y_n \in X$, the finite-rank operator

 $\sum_{i=1}^{n} f_i \otimes y_i \in \mathcal{L}(X).$

 $\mathsf{For} \ (f_i)_{i \in \mathbb{N}} \in X^*$ and $(y_i)_{i \in \mathbb{N}} \in X$, such that $\sum_{i=1}^{\infty} \|f_i\| \|y_i\| < \infty$, the nuclear operator

$$
\sum_{i=1}^{\infty} f_i \otimes y_i \in \mathcal{L}(X).
$$

Constructing Operators: Arbitrary Banach Spaces

Let *X* be an arbitrary infinite-dimensional Banach space.

(a) For $\lambda \in \mathbb{R}$, the scalar operator $\lambda I \in \mathcal{L}(X)$ is given by

$$
\lambda \mathbf{I} \mathbf{x} = \lambda \mathbf{x}.
$$

(**b**) For *f* ∈ X^* , y ∈ X , the rank-one operator $f \otimes x$ ∈ $\mathcal{L}(X)$ is given by $(f \otimes y)x = f(x)y$.

Then $||f \otimes x|| = ||f|| ||x||$.

For $f_1, \ldots, f_n \in X^*$ and $y_1, \ldots, y_n \in X$, the finite-rank operator

$$
\sum_{i=1}^n f_i\otimes y_i\in \mathcal{L}(X).
$$

 $\mathsf{For} \ (f_i)_{i \in \mathbb{N}} \in X^* \text{ and } (y_i)_{i \in \mathbb{N}} \in X \text{, such that } \sum_{i=1}^{\infty} \|f_i\| \|y_i\| < \infty \text{,}$ the nuclear operator

$$
\sum_{i=1}^{\infty} f_i \otimes y_i \in \mathcal{L}(X).
$$

 QQ

• If
$$
\mathcal{N}(X) = \left\{ T \in \mathcal{L}(X) \text{ nuclear} \right\},\
$$

 \mathbb{R} *I* + $\mathcal{N}(X) \subset \mathcal{L}(X)$.

By Hahn-Banach: dim $(\mathcal{L}(X)) = \infty$.

Remark: $\mathcal{N}(X) \subset \mathcal{K}(X)$, and under "mild" assumptions on X,

$$
\overline{\mathcal{N}(X)}^{\|\cdot\|} = \mathcal{K}(X).
$$

Question: (Lindenstrauss, 1975)

Does there exist a Banach space *X* with the scalar-plus-compact property, i.e., such that

 \mathbb{R} *I* + $\mathcal{K}(X) = \mathcal{L}(X)$?

• Such a space was constructed by Argyros and Haydon in 2011.

A > + = > + = >

• If
$$
\mathcal{N}(X) = \left\{ T \in \mathcal{L}(X) \text{ nuclear} \right\},\
$$

 \mathbb{R} *I* + $\mathcal{N}(X) \subset \mathcal{L}(X)$.

By Hahn-Banach: dim $(\mathcal{L}(X)) = \infty$.

Remark: $\mathcal{N}(X) \subset \mathcal{K}(X)$, and under "mild" assumptions on X,

$$
\overline{\mathcal{N}(X)}^{\|\cdot\|}=\mathcal{K}(X).
$$

Question: (Lindenstrauss, 1975)

Does there exist a Banach space *X* with the scalar-plus-compact property, i.e., such that

 \mathbb{R} *I* + $\mathcal{K}(X) = \mathcal{L}(X)$?

• Such a space was constructed by Argyros and Haydon in 2011.

母 ト イヨ ト イヨ トー

• If
$$
\mathcal{N}(X) = \left\{ T \in \mathcal{L}(X) \text{ nuclear} \right\}
$$
,

 \mathbb{R} *I* + $\mathcal{N}(X) \subset \mathcal{L}(X)$.

By Hahn-Banach: dim $(\mathcal{L}(X)) = \infty$.

Remark: $\mathcal{N}(X) \subset \mathcal{K}(X)$, and under "mild" assumptions on X,

$$
\overline{\mathcal{N}(X)}^{\|\cdot\|}=\mathcal{K}(X).
$$

Question: (Lindenstrauss, 1975)

Does there exist a Banach space *X* with the scalar-plus-compact property, i.e., such that

$$
\mathbb{R}I+\mathcal{K}(X)=\mathcal{L}(X)?
$$

• Such a space was constructed by Argyros and Haydon in 2011.

トイヨト イヨトー

• If
$$
\mathcal{N}(X) = \left\{ T \in \mathcal{L}(X) \text{ nuclear} \right\}
$$
,

 \mathbb{R} *I* + $\mathcal{N}(X) \subset \mathcal{L}(X)$.

By Hahn-Banach: dim $(\mathcal{L}(X)) = \infty$.

Remark: $\mathcal{N}(X) \subset \mathcal{K}(X)$, and under "mild" assumptions on X,

$$
\overline{\mathcal{N}(X)}^{\|\cdot\|}=\mathcal{K}(X).
$$

Question: (Lindenstrauss, 1975)

Does there exist a Banach space *X* with the scalar-plus-compact property, i.e., such that

$$
\mathbb{R}I+\mathcal{K}(X)=\mathcal{L}(X)?
$$

• Such a space was constructed by Argyros and Haydon in 2011.

 209

AD > K E > K E > K

Fundamental Banach Spaces Concepts

つへへ

Schauder Bases

A Schauder basis of a Banach space is a sequence $(x_i)_{i=1}^\infty$ in X such that for every $x \in X$,

$$
x=\sum_{i=1}^{\infty}a_ix_i,
$$

for a unique $(a_i)_{i=1}^\infty\in\mathbb{R}^{\mathbb{N}}$.

Example: For $X = \ell_p$, $1 \le p \le \infty$, or $X = c_0$ let, for $i \in \mathbb{N}$,

$$
e_i=(0,0,0,\ldots,0,\underset{\scriptscriptstyle \text{rth position}}{\underset{\scriptscriptstyle \uparrow}{\uparrow}},0,\ldots).
$$

Then $(e_i)_{i=1}^\infty$ is a Schauder basis of X because,

if
$$
x = (x(i))_{i=1}^{\infty} \in X
$$
 then $x = \sum_{i=1}^{\infty} x(i)e_i$.

Schauder Bases

A Schauder basis of a Banach space is a sequence $(x_i)_{i=1}^\infty$ in X such that for every $x \in X$,

$$
x=\sum_{i=1}^{\infty}a_ix_i,
$$

for a unique $(a_i)_{i=1}^\infty\in\mathbb{R}^{\mathbb{N}}$.

Example: For $X = \ell_p$, $1 \le p < \infty$, or $X = c_0$ let, for $i \in \mathbb{N}$,

$$
e_i=(0,0,0,\ldots,0,\underset{\text{rth position}}{1},0,\ldots).
$$

Then $(e_i)_{i=1}^\infty$ is a Schauder basis of X because,

if
$$
x = (x(i))_{i=1}^{\infty} \in X
$$
 then $x = \sum_{i=1}^{\infty} x(i)e_i$.

Two Schauder bases $(x_i)_{i=1}^{\infty}$ of *X* and $(y_i)_{i=1}^{\infty}$ of *Y* are called *C*-equivalent if $T : X \rightarrow Y$ given by

$$
T\Big(\sum_{i=1}^{\infty}a_i x_i\Big)=\sum_{i=1}^{\infty}a_i y_i
$$

is a *C*-isomorphism of *X* and *Y*.

つへへ

Block Sequences

Let *X* have a Schauder basis $(x_i)_{i=1}^{\infty}$.

The support of an $x = \sum_{i=1}^{\infty} a_i x_i$ in X is the set

 $supp(x) = \{i \in \mathbb{N} : a_i \neq 0\}.$

For $x \in X$ and $\varepsilon > 0$ there exists $y \in X$ with supp(y) finite

 $||x - y|| < ε$.

A sequence $(y_i)_{i=1}^\infty$ in X is a block sequence if

 $\supp(y_1) < \sup(y_2) < \cdots < \supp(y_i) < \sup(y_{i+1}) < \cdots$.

For a block sequence $(y_i)_{i=1}^\infty$ in X , $Y = \overline{\langle \{y_i : i \in \mathbb{N}\} \rangle}$ is called a block subspace of *X*.

イロメ イ何メ イヨメ イヨメーヨ

Block Sequences

Let *X* have a Schauder basis $(x_i)_{i=1}^{\infty}$.

The support of an $x = \sum_{i=1}^{\infty} a_i x_i$ in X is the set

 $supp(x) = \{i \in \mathbb{N} : a_i \neq 0\}.$

For $x \in X$ and $\varepsilon > 0$ there exists $y \in X$ with supp(y) finite

 $||x - y|| < \varepsilon$.

A sequence $(y_i)_{i=1}^\infty$ in X is a block sequence if

 $\supp(y_1) < \sup(y_2) < \cdots < \supp(y_i) < \sup(y_{i+1}) < \cdots$.

For a block sequence $(y_i)_{i=1}^\infty$ in X , $Y = \overline{\langle \{y_i : i \in \mathbb{N}\} \rangle}$ is called a block subspace of *X*.

イロト イ押 トイヨ トイヨ トーヨー

 QQ

Let *X* have a Schauder basis $(x_i)_{i=1}^{\infty}$.

The support of an $x = \sum_{i=1}^{\infty} a_i x_i$ in X is the set

 $supp(x) = \{i \in \mathbb{N} : a_i \neq 0\}.$

For $x \in X$ and $\varepsilon > 0$ there exists $y \in X$ with supp(y) finite

 $||x - y|| < \varepsilon$.

A sequence $(y_i)_{i=1}^\infty$ in X is a block sequence if

 $\supp(y_1) < \sup(y_2) < \cdots < \supp(y_i) < \sup(y_{i+1}) < \cdots$

For a block sequence $(y_i)_{i=1}^\infty$ in X , $Y = \overline{\langle \{y_i : i \in \mathbb{N}\} \rangle}$ is called a block subspace of *X*.

KAD → KE → KE → E → YOKA

Let *X* have a Schauder basis $(x_i)_{i=1}^{\infty}$.

The support of an $x = \sum_{i=1}^{\infty} a_i x_i$ in X is the set

 $supp(x) = \{i \in \mathbb{N} : a_i \neq 0\}.$

For $x \in X$ and $\varepsilon > 0$ there exists $y \in X$ with supp(y) finite

 $||x - y|| < \varepsilon$.

A sequence $(y_i)_{i=1}^\infty$ in X is a block sequence if

 $\supp(y_1) < \sup(y_2) < \cdots < \supp(y_i) < \sup(y_{i+1}) < \cdots$

For a block sequence $(y_i)_{i=1}^{\infty}$ in X , $Y = \overline{\langle \{y_i : i \in \mathbb{N}\} \rangle}$ is called a block subspace of *X*.

 QQ

If *X* has a Schauder basis $(x_i)_{i=1}^{\infty}$, block subspaces saturate the infinite-dimensional subspaces *Y* of *X*.

Theorem: Let $Y \subset X$ and $\varepsilon > 0$.

Then *Y* contains an ε-perturbation of a block subspace *W*.

That is, there exists an isomorphism $T \in \mathcal{L}(X)$ with $||I - T|| < \varepsilon$ and $T(W) \subset Y$.

Schreier's Space

 299

活

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ..

A sequence $(x_i)_{i=1}^{\infty}$ in a Banach space is weakly null if, for every $f \in X^*$, $\lim_{i \to \infty} f(x_i) = 0$.

Theorem: (Mazur) $(x_i)_{i=1}^{\infty}$ is weakly null if and only if for every infinite $L \subset \mathbb{N}$ and $\varepsilon > 0$ there exist a finite $F \subset L$ and $(\lambda_i)_{i \in F}$ in $[0, 1]$ such that $\sum_{i \in F} \lambda_i = 1$ and $\|\sum_{i \in F} \lambda_i x_i\| < \varepsilon$.

Question: (Banach - Saks, 1930s) Assume $(x_i)_{i=1}^\infty$ is weakly null and let $\varepsilon > 0$. Does there exist a finite $F \subset N$ such that

$$
\Big\|\sum_{i\in F}\frac{1}{\#F}x_i\Big\|<\varepsilon?
$$

Theorem: (Schreier, 1932) There exists a weakly null sequence $(e_i)_{i=1}^{\infty}$ in some Banach space $X_{\mathcal{S}}$ such that for every finite $\mathcal{F} \subset \mathbb{N}$,

$$
\Big\|\sum_{i\in F}\frac{1}{\#F}e_i\Big\|\geq \frac{1}{2}.
$$

つひひ

A sequence $(x_i)_{i=1}^{\infty}$ in a Banach space is weakly null if, for every $f \in X^*$, $\lim_{i \to \infty} f(x_i) = 0$.

Theorem: (Mazur) $(x_i)_{i=1}^{\infty}$ is weakly null if and only if for every infinite $L \subset \mathbb{N}$ and $\varepsilon > 0$ there exist a finite $F \subset L$ and $(\lambda_i)_{i \in F}$ in $[0, 1]$ such that $\sum_{i \in F} \lambda_i = 1$ and $\|\sum_{i \in F} \lambda_i x_i\| < \varepsilon$.

Question: (Banach - Saks, 1930s) Assume $(x_i)_{i=1}^\infty$ is weakly null and let $\varepsilon > 0$. Does there exist a finite $F \subset N$ such that

$$
\Big\|\sum_{i\in F}\frac{1}{\#F}x_i\Big\|<\varepsilon?
$$

Theorem: (Schreier, 1932) There exists a weakly null sequence $(e_i)_{i=1}^{\infty}$ in some Banach space $X_{\mathcal{S}}$ such that for every finite $\mathcal{F} \subset \mathbb{N}$,

$$
\Big\|\sum_{i\in F}\frac{1}{\#F}e_i\Big\|\geq \frac{1}{2}.
$$

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

A sequence $(x_i)_{i=1}^{\infty}$ in a Banach space is weakly null if, for every $f \in X^*$, $\lim_{i \to \infty} f(x_i) = 0$.

Theorem: (Mazur) $(x_i)_{i=1}^{\infty}$ is weakly null if and only if for every infinite $L \subset \mathbb{N}$ and $\varepsilon > 0$ there exist a finite $F \subset L$ and $(\lambda_i)_{i \in F}$ in $[0, 1]$ such that $\sum_{i \in F} \lambda_i = 1$ and $\|\sum_{i \in F} \lambda_i x_i\| < \varepsilon$.

Question: (Banach - Saks, 1930s) Assume $(x_i)_{i=1}^\infty$ is weakly null and let $\varepsilon > 0$. Does there exist a finite $F \subset \mathbb{N}$ such that

$$
\Big\|\sum_{i\in F}\frac{1}{\#F}x_i\Big\|<\varepsilon?
$$

Theorem: (Schreier, 1932) There exists a weakly null sequence $(e_i)_{i=1}^{\infty}$ in some Banach space $X_{\mathcal{S}}$ such that for every finite $\mathcal{F} \subset \mathbb{N}$,

$$
\Big\|\sum_{i\in F}\frac{1}{\#F}e_i\Big\|\geq \frac{1}{2}.
$$

AD > 4 B > 4 B >

A sequence $(x_i)_{i=1}^{\infty}$ in a Banach space is weakly null if, for every $f \in X^*$, $\lim_{i \to \infty} f(x_i) = 0$.

Theorem: (Mazur) $(x_i)_{i=1}^{\infty}$ is weakly null if and only if for every infinite $L \subset \mathbb{N}$ and $\varepsilon > 0$ there exist a finite $F \subset L$ and $(\lambda_i)_{i \in F}$ in $[0, 1]$ such that $\sum_{i \in F} \lambda_i = 1$ and $\|\sum_{i \in F} \lambda_i x_i\| < \varepsilon$.

Question: (Banach - Saks, 1930s) Assume $(x_i)_{i=1}^\infty$ is weakly null and let $\varepsilon > 0$. Does there exist a finite $F \subset \mathbb{N}$ such that

$$
\Big\|\sum_{i\in F}\frac{1}{\#F}x_i\Big\|<\varepsilon?
$$

Theorem: (Schreier, 1932) There exists a weakly null sequence $(\bm{e}_i)_{i=1}^\infty$ in some Banach space $X_\mathcal{S}$ such that for every finite $\mathcal{F} \subset \mathbb{N}$,

$$
\Big\|\sum_{i\in F}\frac{1}{\#F}e_i\Big\|\geq \frac{1}{2}.
$$

つへへ
• The Schreier family:

$$
\mathcal{S} = \Big\{ F \subset \mathbb{N} : \ \#F \leq \min(F) \Big\}.
$$

E.g., $\{5, 6, 12\} \in S$ but $\{2, 5, 7\} \notin S$.

 $c_{00} = \Big\{x = (x(i))_{i=1}^{\infty} \in \mathbb{R}^{\mathbb{N}}:~x(i) \neq 0 \text{ for only finitely many } i \Big\}.$

For $i \in \mathbb{N}$, and for $x = (x(i))_{i=1}^{\infty} \in c_{00}$, $F \subset \mathbb{N}$, let

$$
Fx=\sum_{i\in F}x(i)e_i.
$$

Define a norm on c_{00} by letting, for $x = (x(i))_{i=1}^{\infty}$,

$$
||x|| = \sup \Big\{ \sum_{i \in F} |x(i)| : F \in S \Big\} = \sup_{F \in S} ||Fx||_{\ell_1},
$$

and let X_s be the completion of c_{00} with $\|\cdot\|$.

• The Schreier family:

$$
\mathcal{S} = \Big\{ F \subset \mathbb{N} : \ \#F \leq \min(F) \Big\}.
$$

E.g., $\{5, 6, 12\} \in S$ but $\{2, 5, 7\} \notin S$.

 $c_{00} = \Big\{x = (x(i))_{i=1}^\infty \in \mathbb{R}^\mathbb{N}:\ x(i) \neq 0 \text{ for only finitely many } i\Big\}.$

For $i \in \mathbb{N}$, and for $x = (x(i))_{i=1}^{\infty} \in c_{00}$, $F \subset \mathbb{N}$, let

$$
Fx=\sum_{i\in F}x(i)e_i.
$$

Define a norm on c_{00} by letting, for $x = (x(i))_{i=1}^{\infty}$,

$$
||x|| = \sup \Big\{ \sum_{i \in F} |x(i)| : F \in S \Big\} = \sup_{F \in S} ||Fx||_{\ell_1},
$$

and let X_s be the completion of c_{00} with $\|\cdot\|$.

• The Schreier family:

$$
\mathcal{S} = \Big\{ F \subset \mathbb{N} : \#F \leq \min(F) \Big\}.
$$

E.g., $\{5, 6, 12\} \in S$ but $\{2, 5, 7\} \notin S$.

 $c_{00} = \Big\{x = (x(i))_{i=1}^\infty \in \mathbb{R}^\mathbb{N}:\ x(i) \neq 0 \text{ for only finitely many } i\Big\}.$

For $i \in \mathbb{N}$, and for $x = (x(i))_{i=1}^{\infty} \in c_{00}$, $F \subset \mathbb{N}$, let

$$
Fx=\sum_{i\in F}x(i)e_i.
$$

Define a norm on c_{00} by letting, for $x = (x(i))_{i=1}^{\infty}$,

$$
||x|| = \sup \Big\{ \sum_{i \in F} |x(i)| : F \in S \Big\} = \sup_{F \in S} ||Fx||_{\ell_1},
$$

and let X_s be the completion of c_{00} with $\|\cdot\|$.

• The Schreier family:

$$
\mathcal{S} = \Big\{ F \subset \mathbb{N} : \#F \leq \min(F) \Big\}.
$$

E.g., $\{5, 6, 12\} \in S$ but $\{2, 5, 7\} \notin S$.

 $c_{00} = \Big\{x = (x(i))_{i=1}^\infty \in \mathbb{R}^\mathbb{N}:\ x(i) \neq 0 \text{ for only finitely many } i\Big\}.$

For $i \in \mathbb{N}$, and for $x = (x(i))_{i=1}^{\infty} \in c_{00}$, $F \subset \mathbb{N}$, let

$$
\mathsf{F} x = \sum_{i \in \mathsf{F}} x(i) e_i.
$$

Define a norm on c_{00} by letting, for $x = (x(i))_{i=1}^{\infty}$,

$$
||x|| = \sup \left\{ \sum_{i \in F} |x(i)| : F \in \mathcal{S} \right\} = \sup_{F \in \mathcal{S}} ||Fx||_{\ell_1},
$$

and let X_S be the completion of c_{00} with $\|\cdot\|$.

Proposition: For every non-empty *F* ⊂ N,

$$
\Big\|\sum_{i\in\mathcal{F}}\frac{1}{\# \mathcal{F}}\mathbf{e}_i\Big\|\geq \frac{1}{2}.
$$

Lemma: For every finite $F \subset N$ there exists $G \subset F$ with $G \in S$ and $#G \geq #F/2$.

Proof of lemma: Write $F = \{k_1 < k_2 < \cdots < k_n\}$ and let $G = \{k_{n/2|+1} < \cdots < k_n\}.$

Proof of proposition: Let *F* ⊂ N finite and take *G* as in the lemma. Then,

$$
\Big\|\sum_{i\in\mathcal{F}}\frac{1}{\# \mathcal{F}}\mathbf{e}_i\Big\|\geq \sum_{i\in\mathcal{G}}\frac{1}{\# \mathcal{F}}=\frac{\# \mathcal{G}}{\# \mathcal{F}}\geq \frac{1}{2}.
$$

Proposition: For every non-empty *F* ⊂ N,

$$
\Big\|\sum_{i\in\mathcal{F}}\frac{1}{\# \mathcal{F}}\mathbf{e}_i\Big\|\geq \frac{1}{2}.
$$

Lemma: For every finite $F \subset \mathbb{N}$ there exists $G \subset F$ with $G \in \mathcal{S}$ and $#G \geq #F/2$.

Proof of lemma: Write $F = \{k_1 < k_2 < \cdots < k_n\}$ and let $G = \{k_{n/2+1} < \cdots < k_n\}.$

Proof of proposition: Let *F* ⊂ N finite and take *G* as in the lemma. Then,

$$
\Big\|\sum_{i\in\mathcal{F}}\frac{1}{\# \mathcal{F}}\mathbf{e}_i\Big\|\geq \sum_{i\in\mathcal{G}}\frac{1}{\# \mathcal{F}}=\frac{\# \mathcal{G}}{\# \mathcal{F}}\geq \frac{1}{2}.
$$

Proposition: For every non-empty $F \subset \mathbb{N}$,

$$
\Big\|\sum_{i\in\mathcal{F}}\frac{1}{\# \mathcal{F}}\mathbf{e}_i\Big\|\geq \frac{1}{2}.
$$

Lemma: For every finite $F \subset \mathbb{N}$ there exists $G \subset F$ with $G \in \mathcal{S}$ and $#G \geq #F/2$.

Proof of lemma: Write $F = \{k_1 < k_2 < \cdots < k_n\}$ and let $G = \{k_{n/2|+1} < \cdots < k_n\}.$

Proof of proposition: Let *F* ⊂ N finite and take *G* as in the lemma. Then,

$$
\Big\|\sum_{i\in\mathcal{F}}\frac{1}{\# \mathcal{F}}\bm{e}_i\Big\|\geq \sum_{i\in G}\frac{1}{\# \mathcal{F}}=\frac{\# G}{\# \mathcal{F}}\geq \frac{1}{2}.
$$

Proposition: $(e_i)_{i=1}^{\infty}$ is weakly null in $X_{\mathcal{S}}$.

Lemma: Let $F_1 < \cdots < F_n$ be non-empty subsets of N such that, for $k = 1, ..., n - 1$, $#F_{k+1} > max(F_k)$. Then, for every $F \in \mathcal{S}$,

$$
\sum_{k=1}^n \frac{\#(F \cap F_k)}{\#F_k} < 2.
$$

Proof of proposition: For an infinite *L* ⊂ N and ε > 0 pick *n* > 2/ε and F_1, \ldots, F_n in L as in the lemma. Then,

$$
\left\| \frac{1}{n} \sum_{k=1}^{n} \left(\sum_{i \in F_k} \frac{1}{\#F_k} e_i \right) \right\| = \frac{1}{n} \sup_{F \in \mathcal{S}} \left(\sum_{k=1}^{n} \left(\sum_{i \in F \cap F_k} \frac{1}{\#F_k} \right) \right)
$$

$$
= \frac{1}{n} \sup_{F \in \mathcal{S}} \sum_{k=1}^{n} \frac{\#(F \cap F_k)}{\#F_k} < \varepsilon.
$$

Proposition: $(e_i)_{i=1}^{\infty}$ is weakly null in $X_{\mathcal{S}}$.

Lemma: Let $F_1 < \cdots < F_n$ be non-empty subsets of N such that, for $k = 1, ..., n - 1$, $#F_{k+1} > max(F_k)$. Then, for every $F \in \mathcal{S}$,

$$
\sum_{k=1}^n \frac{\#(F \cap F_k)}{\#F_k} < 2.
$$

Proof of proposition: For an infinite *L* ⊂ N and ε > 0 pick *n* > 2/ε and F_1, \ldots, F_n in *L* as in the lemma. Then,

$$
\left\| \frac{1}{n} \sum_{k=1}^{n} \left(\sum_{i \in F_k} \frac{1}{\#F_k} e_i \right) \right\| = \frac{1}{n} \sup_{F \in \mathcal{S}} \left(\sum_{k=1}^{n} \left(\sum_{i \in F \cap F_k} \frac{1}{\#F_k} \right) \right)
$$

$$
= \frac{1}{n} \sup_{F \in \mathcal{S}} \sum_{k=1}^{n} \frac{\#(F \cap F_k)}{\#F_k} < \varepsilon.
$$

Proposition: $(e_i)_{i=1}^{\infty}$ is weakly null in $X_{\mathcal{S}}$.

Lemma: Let $F_1 < \cdots < F_n$ be non-empty subsets of N such that, for $k = 1, ..., n - 1$, $#F_{k+1} > max(F_k)$. Then, for every $F \in \mathcal{S}$,

$$
\sum_{k=1}^n \frac{\#(F \cap F_k)}{\#F_k} < 2.
$$

Proof of proposition: For an infinite $L \subset \mathbb{N}$ and $\varepsilon > 0$ pick $n > 2/\varepsilon$ and F_1, \ldots, F_n in L as in the lemma. Then,

$$
\left\| \frac{1}{n} \sum_{k=1}^{n} \Big(\sum_{i \in F_k} \frac{1}{\#F_k} \mathbf{e}_i \Big) \right\| = \frac{1}{n} \sup_{F \in \mathcal{S}} \Big(\sum_{k=1}^{n} \Big(\sum_{i \in F \cap F_k} \frac{1}{\#F_k} \Big) \Big)
$$

$$
= \frac{1}{n} \sup_{F \in \mathcal{S}} \sum_{k=1}^{n} \frac{\#(F \cap F_k)}{\#F_k} < \varepsilon.
$$

Remarks:

For $F = \{i_1, i_2, \ldots, i_n\} \in S$, $(e_{i_k})_{k=1}^n$ in X_S is 1-equivalent to the unit vector basis of $(\mathbb{R}^n, \|\cdot\|_1)$.

Every subspace of $X_{\rm S}$ contains a further subspace isomorphic to *c*0.

Schreier's space $X_{\mathcal{S}}$ is isomorphic to a subspace of $C(\omega^\omega)$.

Tsirelson's Space

 299

活

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ..

Tsirelson's Space

● Let *X* be an infinite-dimensional Banach space.

Question: Does X have a subspace isomorphic to c_0 or some $\ell_p, 1 \leq p < \infty$?

Theorem: (Dvoretsky, 1961) For every $n \in \mathbb{N}$, $C > 1$, X has an *n*-dimensional subspace that is *C*-isomorphic to $(\mathbb{R}^n, \| \cdot \|_2)$.

Theorem: (Krivine, 1976) If *X* has a Schauder basis there exists $1 \leq p \leq \infty$ such that:

for all $n \in \mathbb{N}$ and $C > 1$ there exists a finite block sequence $(x_i)_{i=1}^n$ in X that is C-equivalent to the unit vector basis of $(\mathbb{R}^n, \|\cdot\|_p)$.

Theorem: (Tsirelson, 1974) There exists a Banach space *T* with no subspace isomorphic to c_0 or ℓ_p , $1 \leq p \leq \infty$.

つひひ

● Let *X* be an infinite-dimensional Banach space.

Question: Does X have a subspace isomorphic to c_0 or some $\ell_p, 1 \leq p < \infty$?

Theorem: (Dvoretsky, 1961) For every $n \in \mathbb{N}$, $C > 1$, X has an *n*-dimensional subspace that is *C*-isomorphic to $(\mathbb{R}^n, \| \cdot \|_2)$.

Theorem: (Krivine, 1976) If *X* has a Schauder basis there exists $1 \leq p \leq \infty$ such that: for all $n \in \mathbb{N}$ and $C > 1$ there exists a finite block sequence $(x_i)_{i=1}^n$

in X that is C-equivalent to the unit vector basis of $(\mathbb{R}^n, \|\cdot\|_p)$.

Theorem: (Tsirelson, 1974) There exists a Banach space *T* with no subspace isomorphic to c_0 or ℓ_p , $1 \leq p \leq \infty$.

つひひ

Let *X* be an infinite-dimensional Banach space.

Question: Does X have a subspace isomorphic to c_0 or some $\ell_p, 1 \leq p < \infty$?

Theorem: (Dvoretsky, 1961) For every $n \in \mathbb{N}$, $C > 1$, X has an *n*-dimensional subspace that is *C*-isomorphic to $(\mathbb{R}^n, \| \cdot \|_2)$.

Theorem: (Krivine, 1976) If *X* has a Schauder basis there exists $1 \leq p \leq \infty$ such that:

for all $n \in \mathbb{N}$ and $C > 1$ there exists a finite block sequence $(x_i)_{i=1}^n$ in *X* that is *C*-equivalent to the unit vector basis of $(\mathbb{R}^n, \|\cdot\|_p)$.

Theorem: (Tsirelson, 1974) There exists a Banach space *T* with no subspace isomorphic to c_0 or ℓ_p , $1 \leq p \leq \infty$.

● Let *X* be an infinite-dimensional Banach space.

Question: Does X have a subspace isomorphic to c_0 or some $\ell_p, 1 \leq p < \infty$?

Theorem: (Dvoretsky, 1961) For every $n \in \mathbb{N}$, $C > 1$, X has an *n*-dimensional subspace that is *C*-isomorphic to $(\mathbb{R}^n, \| \cdot \|_2)$.

Theorem: (Krivine, 1976) If *X* has a Schauder basis there exists $1 \leq p \leq \infty$ such that:

for all $n \in \mathbb{N}$ and $C > 1$ there exists a finite block sequence $(x_i)_{i=1}^n$ in *X* that is *C*-equivalent to the unit vector basis of $(\mathbb{R}^n, \|\cdot\|_p)$.

Theorem: (Tsirelson, 1974) There exists a Banach space *T* with no subspace isomorphic to c_0 or ℓ_p , $1 \leq p < \infty$.

- \bullet We define by induction a sequence of norms on c_{00} .
- For $x = (x(i))_{i=1}^{\infty}$ let $||x||_0 = \max_{i \in \mathbb{N}} |x(i)| = ||x||_{c_0}$.
- If $|| \cdot ||_n$ is defined, for $x = (x(i))_{i=1}^\infty$ let

$$
||x||_{n+1} = \max \Big\{ ||x||_n, \sup \Big(\frac{1}{2} \sum_{k=1}^m ||E_k x||_n \Big) \Big\}.
$$

The supremum is over all $m \in \mathbb{N}$ and subsets $E_1 < \cdots < E_m$ of \mathbb{N} with $\min(E_1) \geq m$, i.e., $\{\min(E_k) : 1 \leq k \leq m\} \in S$.

• For $x \in c_{00}$ let $||x|| = \lim_{n} ||x||_{n}$ and T be the completion of c_{00} with ∥ · ∥.

- \bullet We define by induction a sequence of norms on c_{00} .
- For $x = (x(i))_{i=1}^{\infty}$ let $||x||_0 = \max_{i \in \mathbb{N}} |x(i)| = ||x||_{c_0}$.
- If $\|\cdot\|_n$ is defined, for $x = (x(i))_{i=1}^{\infty}$ let

$$
||x||_{n+1} = \max \left\{ ||x||_n, \sup \left(\frac{1}{2} \sum_{k=1}^m ||E_k x||_n \right) \right\}.
$$

The supremum is over all $m \in \mathbb{N}$ and subsets $E_1 < \cdots < E_m$ of \mathbb{N} with $\min(E_1) \geq m$, i.e., $\{\min(E_k) : 1 \leq k \leq m\} \in S$.

• For $x \in c_{00}$ let $||x|| = \lim_{n} ||x||_{n}$ and T be the completion of c_{00} with ∥ · ∥.

- \bullet We define by induction a sequence of norms on c_{00} .
- For $x = (x(i))_{i=1}^{\infty}$ let $||x||_0 = \max_{i \in \mathbb{N}} |x(i)| = ||x||_{c_0}$.
- If $\|\cdot\|_n$ is defined, for $x = (x(i))_{i=1}^{\infty}$ let

$$
||x||_{n+1} = \max \left\{ ||x||_n, \sup \left(\frac{1}{2} \sum_{k=1}^m ||E_k x||_n \right) \right\}.
$$

The supremum is over all $m \in \mathbb{N}$ and subsets $E_1 < \cdots < E_m$ of \mathbb{N} with $\min(E_1) \geq m$, i.e., $\{\min(E_k) : 1 \leq k \leq m\} \in S$.

• For $x \in c_{00}$ let $||x|| = \lim_{n} ||x||_n$ and T be the completion of c_{00} with ∥ · ∥.

Remark: For $x \in C_{00}$

$$
||x|| = max \{ ||x||_{c_0}, sup \left(\frac{1}{2} \sum_{k=1}^{m} ||E_k x|| \right) \}.
$$

The supremum is over all $m \in \mathbb{N}$ and subsets $E_1 < \cdots < E_m$ of $\mathbb N$ with $\min(E_1) \geq m$.

Corollary: For every finite block sequence (*xi*) *m ⁱ*=¹ with m < min supp (x_1) ,

$$
\frac{1}{2}\sum_{k=1}^m||x_j||\leq \Big\|\sum_{i=1}^m x_i\Big\|\leq \sum_{k=1}^m||x_i||.
$$

That is, T is (1/2)-asymptotic ℓ_1 .

Remark: For $x \in C_{00}$

$$
||x|| = max \{ ||x||_{c_0}, sup \left(\frac{1}{2} \sum_{k=1}^{m} ||E_k x|| \right) \}.
$$

The supremum is over all $m \in \mathbb{N}$ and subsets $E_1 < \cdots < E_m$ of $\mathbb N$ with $\min(E_1) \geq m$.

Corollary: For every finite block sequence $(x_i)_{i=1}^m$ with $m \leq$ min supp (x_1) ,

$$
\frac{1}{2}\sum_{k=1}^m||x_i||\leq \Big\|\sum_{i=1}^m x_i\Big\|\leq \sum_{k=1}^m||x_i||.
$$

That is, *T* is $(1/2)$ -asymptotic ℓ_1 .

Proposition: No block sequence of norm-one vectors in *T* is equivalent to the unit vector basis of c_0 or ℓ_p , $1 < p < \infty$.

Proof: Fix $1 < p < \infty$.

Assume that $(x_i)_{i=1}^\infty$ is equivalent to the unit vector basis of ℓ_p . Then there exists $C > 0$ such that for every $i_1 < \cdots < i_n$,

$$
\Big\|\sum_{k=1}^n x_{k_i}\Big\| \leq C \Big\|\sum_{k=1}^n e_{i_k}\Big\|_{\ell_p} = C n^{1/p}.
$$

But also, if min supp $(x_{i_1}) \geq n$,

$$
\Big\|\sum_{k=1}^n x_{i_k}\Big\| \geq \frac{1}{2}\sum_{k=1}^n \|x_{i_k}\| = \frac{n}{2}.
$$

Therefore, $C \ge n^{1-1/p}/2 \to \infty$, as $n \to \infty$.

Proposition: No block sequence of norm-one vectors in *T* is equivalent to the unit vector basis of c_0 or ℓ_p , $1 < p < \infty$.

Proof: Fix $1 < p < \infty$.

Assume that $(x_i)_{i=1}^\infty$ is equivalent to the unit vector basis of ℓ_p . Then there exists $C > 0$ such that for every $i_1 < \cdots < i_n$,

$$
\Big\|\sum_{k=1}^n x_{k_i}\Big\| \leq C \Big\|\sum_{k=1}^n e_{i_k}\Big\|_{\ell_p} = C n^{1/p}.
$$

But also, if min supp $(x_{i_1}) \geq n$,

$$
\Big\|\sum_{k=1}^n x_{i_k}\Big\| \geq \frac{1}{2}\sum_{k=1}^n \|x_{i_k}\| = \frac{n}{2}.
$$

Therefore, $C \ge n^{1-1/p}/2 \to \infty$, as $n \to \infty$.

Proposition: No block sequence of norm-one vectors in *T* is equivalent to the unit vector basis of c_0 or ℓ_p , $1 < p < \infty$.

Proof: Fix $1 < p < \infty$.

Assume that $(x_i)_{i=1}^\infty$ is equivalent to the unit vector basis of ℓ_p . Then there exists $C > 0$ such that for every $i_1 < \cdots < i_n$,

$$
\Big\|\sum_{k=1}^n x_{k_i}\Big\|\leq C\Big\|\sum_{k=1}^n e_{i_k}\Big\|_{\ell_p}=Cn^{1/p}.
$$

But also, if min supp $(x_{i_1}) \geq n$,

$$
\Big\|\sum_{k=1}^n x_{i_k}\Big\| \geq \frac{1}{2}\sum_{k=1}^n \|x_{i_k}\| = \frac{n}{2}.
$$

Therefore, $C \ge n^{1-1/p}/2 \to \infty$, as $n \to \infty$.

Lemma: Let $\delta > 0$ and $(x_i)_{i=1}^{\infty}$ be a block sequence of norm-one vectors in *T*. For $N \ge \max{\rm supp}(x_1)/\delta$,

$$
\left\|x_1+\frac{1}{N}\sum_{i=2}^{N+1}x_i\right\|\leq 1+\delta.
$$

In particular,

$$
\limsup_{N} \|x_1 + \frac{1}{N} \sum_{i=2}^{N+1} x_i \| \le 1.
$$

Lemma: Let $\delta > 0$ and $(x_i)_{i=1}^{\infty}$ be a block sequence of norm-one vectors in *T*. For $N \ge \max{\rm supp}(x_1)/\delta$,

$$
\left\|x_1+\frac{1}{N}\sum_{i=2}^{N+1}x_i\right\|\leq 1+\delta.
$$

In particular,

$$
\limsup_N \left\|x_1 + \frac{1}{N}\sum_{i=2}^{N+1}x_i\right\| \leq 1.
$$

Proof of Proposition: Assume $(x_i)_{i=1}^{\infty}$ is a block sequence of norm-one vectors C -equivalent to the unit vector basis of ℓ_1 , i.e.,

$$
\left\|x_1+\frac{1}{N}\sum_{i=2}^{N+1}x_i\right\|\geq \frac{1}{C}\left\|e_1+\frac{1}{N}\sum_{i=2}^{N+1}e_i\right\|_{\ell_1}=\frac{2}{C}.
$$

By the Lemma,

$$
\frac{2}{C}\leq \limsup_N\left\|x_1+\frac{1}{N}\sum_{i=2}^{N+1}x_i\right\|\leq 1.
$$

Thus, $C \geq 2$. This contradicts James' non-distrortion of ℓ_1 .

Proof of Proposition: Assume $(x_i)_{i=1}^{\infty}$ is a block sequence of norm-one vectors *C*-equivalent to the unit vector basis of ℓ_1 , i.e.,

$$
\left\|x_1+\frac{1}{N}\sum_{i=2}^{N+1}x_i\right\|\geq \frac{1}{C}\left\|e_1+\frac{1}{N}\sum_{i=2}^{N+1}e_i\right\|_{\ell_1}=\frac{2}{C}.
$$

By the Lemma,

$$
\frac{2}{C}\leq \limsup_N\left\|x_1+\frac{1}{N}\sum_{i=2}^{N+1}x_i\right\|\leq 1.
$$

Thus, $C \geq 2$ **.** This contradicts James' non-distrortion of ℓ_1 .

Proof of Proposition: Assume $(x_i)_{i=1}^{\infty}$ is a block sequence of norm-one vectors *C*-equivalent to the unit vector basis of ℓ_1 , i.e.,

$$
\left\|x_1+\frac{1}{N}\sum_{i=2}^{N+1}x_i\right\|\geq \frac{1}{C}\left\|e_1+\frac{1}{N}\sum_{i=2}^{N+1}e_i\right\|_{\ell_1}=\frac{2}{C}.
$$

By the Lemma,

$$
\frac{2}{C}\leq \limsup_N\left\|x_1+\frac{1}{N}\sum_{i=2}^{N+1}x_i\right\|\leq 1.
$$

Thus, $C \geq 2$. This contradicts James' non-distrortion of ℓ_1 .

つひひ

Remarks:

Tsirelson's norm is the first saturated norm:

Every block sequence of norm-one vectors $(x_i)_{i=1}^{\infty}$ is weakly null, and for every $F \subset \mathbb{N}$,

$$
\Big\|\sum_{i\in F}\frac{1}{\#F}x_i\Big\|\geq \frac{1}{4}.
$$

Tsirelson's space is reflexive and asymptotic ℓ_1 .

-
-

Remarks:

Tsirelson's norm is the first saturated norm:

Every block sequence of norm-one vectors $(x_i)_{i=1}^{\infty}$ is weakly null, and for every $F \subset \mathbb{N}$,

$$
\Big\|\sum_{i\in F}\frac{1}{\#F}x_i\Big\|\geq \frac{1}{4}.
$$

Tsirelson's space is reflexive and asymptotic ℓ_1 .

- These are "contradictory" properties.
- *T* displays hereditarily homegeneous block structure.

Schlumprecht's Space

 \leftarrow

× D. 299

目

医毛囊 医牙骨下的

In 1991 Schlumprecht constructed a Banach space (*S*, ∥ · ∥) with hereditarily heterogeneous block structure.

■ S is the completion of c_{00} with a norm such that for $x \in c_{00}$

$$
||x|| = max \{ ||x||_{c_0}, sup \left(\frac{1}{log(m+1)} \sum_{k=1}^{m} ||E_k x|| \right) \},
$$

where the supremum is over all $m \in \mathbb{N}$ and successive subsets *E*1, . . . , *E^m* of N.

Corollary: For every finite block sequence $(x_i)_{i=1}^n$,

$$
\frac{1}{\log(n+1)}\sum_{k=1}^n \|x_i\| \le \Big\|\sum_{i=1}^n x_i\Big\|.
$$

- In 1991 Schlumprecht constructed a Banach space (*S*, ∥ · ∥) with hereditarily heterogeneous block structure.
- **S** is the completion of c_{00} with a norm such that for $x \in c_{00}$

$$
||x|| = max \{ ||x||_{c_0}, sup \left(\frac{1}{log(m+1)} \sum_{k=1}^{m} ||E_k x|| \right) \},
$$

where the supremum is over all $m \in \mathbb{N}$ and successive subsets *E*1, . . . , *E^m* of N.

Corollary: For every finite block sequence $(x_i)_{i=1}^n$,

$$
\frac{1}{\log(n+1)}\sum_{k=1}^n \|x_i\| \le \Big\|\sum_{i=1}^n x_i\Big\|.
$$

- In 1991 Schlumprecht constructed a Banach space (*S*, ∥ · ∥) with hereditarily heterogeneous block structure.
- **S** is the completion of c_{00} with a norm such that for $x \in c_{00}$

$$
||x|| = max \{ ||x||_{c_0}, sup \left(\frac{1}{log(m+1)} \sum_{k=1}^{m} ||E_k x|| \right) \},
$$

where the supremum is over all $m \in \mathbb{N}$ and successive subsets *E*1, . . . , *E^m* of N.

Corollary: For every finite block sequence $(x_i)_{i=1}^n$,

$$
\frac{1}{\log(n+1)}\sum_{k=1}^n||x_i|| \leq \Big\|\sum_{i=1}^n x_i\Big\|.
$$

Theorem: Let *X* be a block subspace *S*. For every $n \in \mathbb{N}$, there is a block sequence $(x_i)_{i=1}^n$ in X that is a 2-equivalent to the unit vector basis of $(\mathbb{R}^n, \|\cdot\|_1)$.

Proof: Krivine's theorem and

$$
\frac{\log(n+1)}{n^{1-1/p}}\to 0,
$$

for all $p > 1$.

• For such a sequence, the vector

$$
y=\frac{1}{n}\sum_{i=1}^n x_i
$$

is a 2-normalized ℓ_1 average and it satisfies $1/2 \le ||y|| \le 1$.
Theorem: Let *X* be a block subspace *S*. For every $n \in \mathbb{N}$, there is a block sequence $(x_i)_{i=1}^n$ in X that is a 2-equivalent to the unit vector basis of $(\mathbb{R}^n, \|\cdot\|_1)$.

Proof: Krivine's theorem and

$$
\frac{\log(n+1)}{n^{1-1/p}}\to 0,
$$

for all $p > 1$.

• For such a sequence, the vector

$$
y=\frac{1}{n}\sum_{i=1}^n x_i
$$

is a 2-normalized ℓ_1 average and it satisfies $1/2 \le ||y|| \le 1$.

A block sequence $(y_i)_{i=1}^\infty$ such that, for each $i \in \mathbb{N}$, y_i is an 2-ℓ *Ni* 1 -average and

 $\log(\log(N_{i+1})) > 2^{i+1}$ max $\mathrm{supp}(y_i)$

is called a 2-rapidly increasing sequence (2-RIS).

Theorem: Let $(y_i)_{i=1}^{\infty}$ be 2-RIS in *S*. Then, for every $i_1 < \cdots < i_n \in \mathbb{N}$.

$$
\frac{1}{2}\frac{n}{\log(n+1)}\leq \Big\|\sum_{k=1}^n y_{i_k}\Big\|\leq 4\frac{n}{\log(n+1)}.
$$

A block sequence $(y_i)_{i=1}^\infty$ such that, for each $i \in \mathbb{N}$, y_i is an 2-ℓ *Ni* 1 -average and

$$
\log(\log(N_{i+1})) > 2^{i+1} \max \text{supp}(y_i)
$$

is called a 2-rapidly increasing sequence (2-RIS).

Theorem: Let $(y_i)_{i=1}^{\infty}$ be 2-RIS in *S*. Then, for every $i_1 < \cdots < i_n \in \mathbb{N}$.

$$
\frac{1}{2}\frac{n}{\log(n+1)}\leq \Big\|\sum_{k=1}^n y_{i_k}\Big\|\leq 4\frac{n}{\log(n+1)}.
$$

Hereditary heterogeneity of Schlumprecht's space: In every block subspace of *S*, there exist

for every $n \in \mathbb{N}$, a block sequence $(x_i)_{i=1}^n$ that is 2-equivalent to the unit vector basis of $(\mathbb{R}^n, \|\cdot\|_1)$, i.e., for $a_1, \ldots, a_n \in \mathbb{R}$,

$$
\frac{1}{2}\sum_{i=1}^n |a_i| \leq \Big\|\sum_{i=1}^n a_i x_i\Big\| \leq \sum_{i=1}^n |a_i|,
$$

and

• a 2-RIS
$$
(y_i)_{i=1}^{\infty}
$$
, i.e., for every $i_1 < \cdots < i_n \in \mathbb{N}$,

$$
\frac{1}{2}\frac{n}{\log(n+1)}\leq \Big\|\sum_{k=1}^n y_{i_k}\Big\|\leq 4\frac{n}{\log(n+1)}.
$$

Comment: Other types of sequences can be found.

Remark: *S* is a reflexive Banach space.

Hereditary heterogeneity of Schlumprecht's space: In every block subspace of *S*, there exist

for every $n \in \mathbb{N}$, a block sequence $(x_i)_{i=1}^n$ that is 2-equivalent to the unit vector basis of $(\mathbb{R}^n, \|\cdot\|_1)$, i.e., for $a_1, \ldots, a_n \in \mathbb{R}$,

$$
\frac{1}{2}\sum_{i=1}^n |a_i| \leq \Big\|\sum_{i=1}^n a_i x_i\Big\| \leq \sum_{i=1}^n |a_i|,
$$

and

• a 2-RIS
$$
(y_i)_{i=1}^{\infty}
$$
, i.e., for every $i_1 < \cdots < i_n \in \mathbb{N}$,

$$
\frac{1}{2}\frac{n}{\log(n+1)}\leq \Big\|\sum_{k=1}^n y_{i_k}\Big\|\leq 4\frac{n}{\log(n+1)}.
$$

Comment: Other types of sequences can be found.

Remark: *S* is a reflexive Banach space.

The Gowers-Maurey Space

 \leftarrow

医毛囊 医牙骨下的

 \sim

目

 298

Unconditional Sequences

A Schauder basis $(x_i)_{i=1}^{\infty}$ of a Banach space is called *C*-unconditional, for some *C* > 1, if for every $a_1, \ldots, a_n \in \mathbb{R}$ and $\varepsilon_1, \ldots, \varepsilon_n \in \{-1, 1\},\$

$$
\Big\|\sum_{i=1}^n \varepsilon_i a_i x_i\Big\|\leq C \Big\|\sum_{i=1}^n a_i x_i\Big\|.
$$

Equivalently, for every $\varepsilon = (\varepsilon(i))_{i=1}^{\infty} \in \{-1,1\}^{\mathbb{N}}, T_{\varepsilon}: X \to X$ with

$$
T_{\varepsilon}\bigg(\sum_{i=1}^{\infty}a_i x_i\bigg)=\sum_{i=1}^{\infty} \varepsilon_i a_i x_i
$$

is bounded and has norm at most *C*.

A sequence $(y_i)_{i=1}^\infty$ in a Banach space X is an unconditional sequence if it is an unconditional Schauder basis of its closed linear span.

Unconditional Sequences

A Schauder basis $(x_i)_{i=1}^{\infty}$ of a Banach space is called *C*-unconditional, for some *C* > 1, if for every $a_1, \ldots, a_n \in \mathbb{R}$ and $\varepsilon_1, \ldots, \varepsilon_n \in \{-1, 1\},\$

$$
\Big\|\sum_{i=1}^n \varepsilon_i a_i x_i\Big\|\leq C \Big\|\sum_{i=1}^n a_i x_i\Big\|.
$$

Equivalently, for every $\varepsilon = (\varepsilon(i))_{i=1}^{\infty} \in \{-1,1\}^{\mathbb{N}}, \ T_{\varepsilon}: X \to X$ with

$$
T_{\varepsilon}\bigg(\sum_{i=1}^{\infty}a_{i}x_{i}\bigg)=\sum_{i=1}^{\infty}\varepsilon_{i}a_{i}x_{i}
$$

is bounded and has norm at most *C*.

A sequence $(y_i)_{i=1}^\infty$ in a Banach space X is an unconditional sequence if it is an unconditional Schauder basis of its closed linear span.

 209

Unconditional Sequences

A Schauder basis $(x_i)_{i=1}^{\infty}$ of a Banach space is called *C*-unconditional, for some *C* > 1, if for every $a_1, \ldots, a_n \in \mathbb{R}$ and $\varepsilon_1, \ldots, \varepsilon_n \in \{-1, 1\},\$

$$
\Big\|\sum_{i=1}^n \varepsilon_i a_i x_i\Big\|\leq C \Big\|\sum_{i=1}^n a_i x_i\Big\|.
$$

Equivalently, for every $\varepsilon = (\varepsilon(i))_{i=1}^{\infty} \in \{-1,1\}^{\mathbb{N}}, \ T_{\varepsilon}: X \to X$ with

$$
T_{\varepsilon}\bigg(\sum_{i=1}^{\infty}a_{i}x_{i}\bigg)=\sum_{i=1}^{\infty}\varepsilon_{i}a_{i}x_{i}
$$

is bounded and has norm at most *C*.

A sequence $(y_i)_{i=1}^{\infty}$ in a Banach space X is an unconditional sequence if it is an unconditional Schauder basis of its closed linear span.

 209

- The unit vector bases of c_0 , ℓ_p , $1 \leq p < \infty$, Schreier's, Tsirelson's, and Schlumprecht's spaces are unconditional.
- Every block sequence of a *C*-unconditional sequence is *C*-unconditional.
- The Schauder system of *C*[0, 1] and the Haar system of *L*1[0, 1] are non-unconditional.

Question: Does every infinite-dimensional Banach space contain an unconditional sequence?

つひい

- The unit vector bases of c_0 , ℓ_p , $1 \leq p < \infty$, Schreier's, Tsirelson's, and Schlumprecht's spaces are unconditional.
- Every block sequence of a *C*-unconditional sequence is *C*-unconditional.
- The Schauder system of *C*[0, 1] and the Haar system of *L*1[0, 1] are non-unconditional.

Question: Does every infinite-dimensional Banach space contain an unconditional sequence?

つひい

- The unit vector bases of c_0 , ℓ_p , $1 \leq p < \infty$, Schreier's, Tsirelson's, and Schlumprecht's spaces are unconditional.
- Every block sequence of a *C*-unconditional sequence is *C*-unconditional.
- The Schauder system of *C*[0, 1] and the Haar system of *L*₁[0, 1] are non-unconditional.

Question: Does every infinite-dimensional Banach space contain an unconditional sequence?

- The unit vector bases of c_0 , ℓ_p , $1 \leq p < \infty$, Schreier's, Tsirelson's, and Schlumprecht's spaces are unconditional.
- Every block sequence of a *C*-unconditional sequence is *C*-unconditional.
- The Schauder system of *C*[0, 1] and the Haar system of *L*1[0, 1] are non-unconditional.

Question: Does every infinite-dimensional Banach space contain an unconditional sequence?

Theorem: (Gowers - Maurey, 1993) There exists a reflexive Banach space X_{GM} without any unconditional sequences.

The Gowers-Maurey construction combines:

-
-

Theorem: (Gowers - Maurey, 1993) There exists a reflexive Banach space X_{GM} without any unconditional sequences.

The Gowers-Maurey construction combines:

- The Schlumprecht construction and
- A Maurey-Rosenthal concept called a coding function.

Hereditary heterogeneity in the Gowers-Maurey space yields: In every block subspace of X_{GM} , there exist a 2-RIS $(y_i)_{i=1}^{\infty}$, i.e., for every $i_1 < \cdots < i_n \in \mathbb{N}$,

$$
\frac{1}{2}\frac{n}{\log(n+1)}\leq \Big\|\sum_{k=1}^n y_{i_k}\Big\|\leq 4\frac{n}{\log(n+1)}.
$$

For $(y_i)_{i=1}^\infty$ as above, the vector

$$
z=\frac{\log(n+1)}{n}\sum_{i=1}^n y_i
$$

is called a $(2, n)$ -exact vector and it satisfies $1/2 < ||z|| < 4$.

 209

Hereditary heterogeneity in the Gowers-Maurey space yields: In every block subspace of X_{GM} , there exist a 2-RIS $(y_i)_{i=1}^{\infty}$, i.e., for every $i_1 < \cdots < i_n \in \mathbb{N}$,

$$
\frac{1}{2}\frac{n}{\log(n+1)}\leq \Big\|\sum_{k=1}^n y_{i_k}\Big\|\leq 4\frac{n}{\log(n+1)}.
$$

For $(y_i)_{i=1}^\infty$ as above, the vector

$$
z=\frac{\log(n+1)}{n}\sum_{i=1}^n y_i
$$

is called a $(2, n)$ -exact vector and it satisfies $1/2 < ||z|| < 4$.

 209

Theorem: Let X be a block subspace of X_{GM} . Then, for arbitrarily large $N \in \mathbb{N}$, there exists a block sequence $(z_i)_{i=1}^N$ in X such that each *zⁱ* is a (2, *ni*)-exact vector and

$$
\Big\|\sum_{i=1}^n z_i\Big\| \geq \frac{1}{2} \frac{N}{\sqrt{\log(N+1)}}
$$

but

$$
\Big\|\sum_{i=1}^n(-1)^iz_i\Big\|\leq 16\frac{N}{\log(N+1)}.
$$

In particular, no block sequence in X_{GM} is unconditional.

An *X* is called indecomposable if for any bounded linear projection $P: X \to X$, either image(*P*) or kernel(*P*) is finite-dimensional.

Theorem: The space X_{GM} is hereditarily indecomposable (HI), i.e., every infinite-dimensional $Y \subset X_{\text{GM}}$ is indecomposable.

Theorem: (Gowers, 1996) Every infinite-dimensional Banach space contains an unconditional sequence or an HI subspace.

Theorem: (Argyros - Felouzis, 2000 and Argyros - Raikoftsalis, 2012)

Every separable reflexive Banach space, e.g., ℓ_2 , is isomorphic to a quotient of some reflexive HI space.

An *X* is called indecomposable if for any bounded linear projection $P: X \to X$, either image(*P*) or kernel(*P*) is finite-dimensional.

Theorem: The space X_{GM} is hereditarily indecomposable (HI), i.e., every infinite-dimensional $Y \subset X_{\text{GM}}$ is indecomposable.

Theorem: (Gowers, 1996) Every infinite-dimensional Banach space contains an unconditional sequence or an HI subspace.

Theorem: (Argyros - Felouzis, 2000 and Argyros - Raikoftsalis, 2012)

Every separable reflexive Banach space, e.g., ℓ_2 , is isomorphic to a quotient of some reflexive HI space.

An *X* is called indecomposable if for any bounded linear projection $P: X \to X$, either image(*P*) or kernel(*P*) is finite-dimensional.

Theorem: The space X_{GM} is hereditarily indecomposable (HI), i.e., every infinite-dimensional $Y \subset X_{\text{GM}}$ is indecomposable.

Theorem: (Gowers, 1996) Every infinite-dimensional Banach space contains an unconditional sequence or an HI subspace.

Theorem: (Argyros - Felouzis, 2000 and Argyros - Raikoftsalis, 2012)

Every separable reflexive Banach space, e.g., ℓ_2 , is isomorphic to a quotient of some reflexive HI space.

An *X* is called indecomposable if for any bounded linear projection $P: X \to X$, either image(*P*) or kernel(*P*) is finite-dimensional.

Theorem: The space X_{GM} is hereditarily indecomposable (HI), i.e., every infinite-dimensional $Y \subset X_{\text{GM}}$ is indecomposable.

Theorem: (Gowers, 1996) Every infinite-dimensional Banach space contains an unconditional sequence or an HI subspace.

Theorem: (Argyros - Felouzis, 2000 and Argyros - Raikoftsalis, 2012)

Every separable reflexive Banach space, e.g., ℓ_2 , is isomorphic to a quotient of some reflexive HI space.

• A $T: X \rightarrow X$ is called strictly singular if:

for every infinite-dimensional $Y \subset X$ there exists an infinite dimensional $Z \subset Y$ such that $T|_Z$ is compact.

Denote

$$
\mathcal{SS}(X) = \Big\{S \in \mathcal{L}(X) \text{ strictly singular} \Big\}.
$$

Always, $\mathcal{K}(X) \subset \mathcal{SS}(X)$.

Theorem: $\mathcal{L}(X_{\text{GM}}) = \mathbb{R}I + SS(X_{\text{GM}}).$

Theorem: (Gowers-Maurey, 1993 and Ferenczi, 1996) For every HI space $X, \mathcal{L}(X)/\mathcal{SS}(X)$ is one, two, or four-dimensional.

• A $T: X \rightarrow X$ is called strictly singular if:

for every infinite-dimensional $Y \subset X$ there exists an infinite dimensional $Z \subset Y$ such that $T|_Z$ is compact.

Denote

$$
\mathcal{SS}(X) = \Big\{S \in \mathcal{L}(X) \text{ strictly singular}\Big\}.
$$

Always, $\mathcal{K}(X) \subset \mathcal{SS}(X)$.

Theorem: $\mathcal{L}(X_{\text{GM}}) = \mathbb{R}I + \mathcal{SS}(X_{\text{GM}}).$

Theorem: (Gowers-Maurey, 1993 and Ferenczi, 1996) For every HI space $X, \mathcal{L}(X)/\mathcal{SS}(X)$ is one, two, or four-dimensional.

• A $T: X \rightarrow X$ is called strictly singular if:

for every infinite-dimensional $Y \subset X$ there exists an infinite dimensional $Z \subset Y$ such that $T|_Z$ is compact.

Denote

$$
\mathcal{SS}(X) = \Big\{S \in \mathcal{L}(X) \text{ strictly singular}\Big\}.
$$

Always, $\mathcal{K}(X) \subset \mathcal{SS}(X)$.

Theorem: $\mathcal{L}(X_{\text{GM}}) = \mathbb{R}I + \mathcal{SS}(X_{\text{GM}}).$

Theorem: (Gowers-Maurey, 1993 and Ferenczi, 1996) For every HI space X , $\mathcal{L}(X)/\mathcal{SS}(X)$ is one, two, or four-dimensional.

The Argyros-Haydon Space

4 **D** F ×.

御 ▶ す唐 ▶ す唐 ▶ ..

活

 298

The Scalar-Plus-Compact Problem

Question: (Lindenstrauss, 1975)

Does there exist a Banach space *X* with the scalar-plus-compact property, i.e., such that $\mathcal{L}(X) = \mathbb{R}I + \mathcal{K}(X)$?

Comment: $\mathcal{L}(X_{\text{GM}}) = \mathbb{R}I + \mathcal{S}\mathcal{S}(X_{\text{GM}})$.

Theorem: (Androulakis - Schlumprecht, 2001) $\mathcal{K}(X_{\text{GM}})$ ⊆ $SS(X_{\text{GM}})$.

Theorem: (Argyros - Haydon, Acta Math. 2011) There exists an HI space \mathfrak{X}_{AH} with the scalar-plus-compact property.

The Scalar-Plus-Compact Problem

Question: (Lindenstrauss, 1975)

Does there exist a Banach space *X* with the scalar-plus-compact property, i.e., such that $\mathcal{L}(X) = \mathbb{R}I + \mathcal{K}(X)$?

Comment: $\mathcal{L}(X_{\text{GM}}) = \mathbb{R}I + \mathcal{SS}(X_{\text{GM}})$.

Theorem: (Androulakis - Schlumprecht, 2001) $\mathcal{K}(X_{\text{GM}}) \subseteq \mathcal{SS}(X_{\text{GM}}).$

Theorem: (Argyros - Haydon, Acta Math. 2011) There exists an HI space \mathfrak{X}_{AH} with the scalar-plus-compact property.

The Scalar-Plus-Compact Problem

Question: (Lindenstrauss, 1975)

Does there exist a Banach space *X* with the scalar-plus-compact property, i.e., such that $\mathcal{L}(X) = \mathbb{R}I + \mathcal{K}(X)$?

Comment: $\mathcal{L}(X_{\text{GM}}) = \mathbb{R}I + \mathcal{SS}(X_{\text{GM}})$.

Theorem: (Androulakis - Schlumprecht, 2001) $\mathcal{K}(X_{\text{GM}}) \subseteq \mathcal{SS}(X_{\text{GM}}).$

Theorem: (Argyros - Haydon, Acta Math. 2011) There exists an HI space \mathfrak{X}_{AH} with the scalar-plus-compact property.

Theorem: (Argyros-Haydon, 2011) There exists an HI space \mathfrak{X}_{AH} that has the scalar-plus-compact property.

The Argyros-Haydon construction has two main components.

- The Gowers-Maurey construction, and thus it is an HI space.
- A Bourgain-Delbaen construction of a type of non-reflexive spaces called \mathscr{L}_{∞} -spaces, and thus $\mathfrak{X}_{\mathrm{AH}}$ is a \mathscr{L}_{∞} -space.

• For a Banach space *X* a $T \in \mathcal{L}(X)$ admits an invariant subspace if there exists a closed subspace $\{0\} \subsetneq Y \subsetneq X$ with $T(Y) \subset Y$.

An *X* has the invariant subspace property (ISP) if every $T \in \mathcal{L}(X)$ admits an invariant subspace.

Question: (von Neumann) Does ℓ_2 have the invariant subspace property?

Theorem: (Aronszajn-Smith, 1954) For a Banach space *X*, every $K \in \mathcal{K}(X)$ admits an invariant subspace.

Conclusion: $\mathfrak{X}_{\mathrm{AH}}$ has the invariant subspace property, and it is the first known space with this property.

 \sqrt{m} \rightarrow \sqrt{m} \rightarrow \sqrt{m}

• For a Banach space *X* a $T \in \mathcal{L}(X)$ admits an invariant subspace if there exists a closed subspace $\{0\} \subset Y \subset X$ with $T(Y) \subset Y$.

• An *X* has the invariant subspace property (ISP) if every $T \in \mathcal{L}(X)$ admits an invariant subspace.

Question: (von Neumann) Does ℓ_2 have the invariant subspace property?

Theorem: (Aronszajn-Smith, 1954) For a Banach space *X*, every $K \in \mathcal{K}(X)$ admits an invariant subspace.

Conclusion: \mathfrak{X}_{AH} has the invariant subspace property, and it is the first known space with this property.

• For a Banach space *X* a $T \in \mathcal{L}(X)$ admits an invariant subspace if there exists a closed subspace $\{0\} \subset Y \subset X$ with $T(Y) \subset Y$.

• An *X* has the invariant subspace property (ISP) if every $T \in \mathcal{L}(X)$ admits an invariant subspace.

Question: (von Neumann) Does ℓ_2 have the invariant subspace property?

Theorem: (Aronszajn-Smith, 1954) For a Banach space *X*, every $K \in \mathcal{K}(X)$ admits an invariant subspace.

Conclusion: \mathfrak{X}_{AH} has the invariant subspace property, and it is the first known space with this property.

• For a Banach space *X* a $T \in \mathcal{L}(X)$ admits an invariant subspace if there exists a closed subspace $\{0\} \subset Y \subset X$ with $T(Y) \subset Y$.

• An *X* has the invariant subspace property (ISP) if every $T \in \mathcal{L}(X)$ admits an invariant subspace.

Question: (von Neumann) Does ℓ_2 have the invariant subspace property?

Theorem: (Aronszajn-Smith, 1954) For a Banach space *X*, every $K \in \mathcal{K}(X)$ admits an invariant subspace.

Conclusion: \mathfrak{X}_{AH} has the invariant subspace property, and it is the first known space with this property.

• For a Banach space *X* a $T \in \mathcal{L}(X)$ admits an invariant subspace if there exists a closed subspace $\{0\} \subset Y \subset X$ with $T(Y) \subset Y$.

• An *X* has the invariant subspace property (ISP) if every $T \in \mathcal{L}(X)$ admits an invariant subspace.

Question: (von Neumann) Does ℓ_2 have the invariant subspace property?

Theorem: (Aronszajn-Smith, 1954) For a Banach space *X*, every $K \in \mathcal{K}(X)$ admits an invariant subspace.

Conclusion: \mathfrak{X}_{AH} has the invariant subspace property, and it is the first known space with this property.

Theorem: (Argyros - Freeman - Haydon - Odell - Raikoftsalis - Schlumprecht - Zisimopoulou, 2012)

Every uniformly convex separable Banach space *X* is isomorphic to a subspace of a separable \mathscr{L}_{∞} -space $\mathfrak X$ with the scalar-plus-compact property.

In particular, *X* is isomorphic to a subspace of a non-reflexive separable space with the invariant subspace property.

Question: Does there exist a reflexive infinite-dimensional Banach space with the scalar-plus-compact property?
Theorem: (Argyros - Freeman - Haydon - Odell - Raikoftsalis - Schlumprecht - Zisimopoulou, 2012)

Every uniformly convex separable Banach space *X* is isomorphic to a subspace of a separable \mathscr{L}_{∞} -space $\mathfrak X$ with the scalar-plus-compact property.

In particular, *X* is isomorphic to a subspace of a non-reflexive separable space with the invariant subspace property.

Question: Does there exist a reflexive infinite-dimensional Banach space with the scalar-plus-compact property?

The Argyros-Haydon Method and Calkin Algebras

• For a Banach space *X*, $\text{Cal}(X) = \mathcal{L}(X)/\mathcal{K}(X)$ is a unital Banach algebra called the Calkin algebra of *X*.

Question: For what unital Banach algebras B does there exist *X* such that $\text{Ca}(X) \simeq \mathcal{B}$ In other words, what unital Banach algebras are Calkin algebras?

• For example, $Cal(\mathfrak{X}_{AH}) \simeq \mathbb{R}$.

Theorem: (Tarbard, 2012) $\ell_1(N_0)$ is a Calkin algebra.

Theorem: (M - Puglisi - Zisimopoulou, 2016 and M, 2024) Every separable *C*(*K*) space is a Calkin algebra.

Theorem: (M - Pelczar-Barwacz, 2024) The following spaces are Calking algebras:

-
-
-

The Argyros-Haydon Method and Calkin Algebras

• For a Banach space *X*, $\text{Cal}(X) = \mathcal{L}(X)/\mathcal{K}(X)$ is a unital Banach algebra called the Calkin algebra of *X*.

Question: For what unital Banach algebras B does there exist *X* such that $\text{Ca}(X) \simeq \mathcal{B}$

In other words, what unital Banach algebras are Calkin algebras?

• For example, $Cal(\mathfrak{X}_{AH}) \simeq \mathbb{R}$.

Theorem: (Tarbard, 2012) $\ell_1(\mathbb{N}_0)$ is a Calkin algebra.

Theorem: (M - Puglisi - Zisimopoulou, 2016 and M, 2024) Every separable *C*(*K*) space is a Calkin algebra.

Theorem: (M - Pelczar-Barwacz, 2024) The following spaces are Calking algebras:

-
-
-

The Argyros-Haydon Method and Calkin Algebras

• For a Banach space *X*, $\text{Cal}(X) = \mathcal{L}(X)/\mathcal{K}(X)$ is a unital Banach algebra called the Calkin algebra of *X*.

Question: For what unital Banach algebras B does there exist *X* such that $\text{Ca}(X) \simeq \mathcal{B}$

In other words, what unital Banach algebras are Calkin algebras?

• For example, $Cal(\mathfrak{X}_{AH}) \simeq \mathbb{R}$.

Theorem: (Tarbard, 2012) $\ell_1(\mathbb{N}_0)$ is a Calkin algebra.

Theorem: (M - Puglisi - Zisimopoulou, 2016 and M, 2024) Every separable *C*(*K*) space is a Calkin algebra.

Theorem: (M - Pelczar-Barwacz, 2024) The following spaces are Calking algebras:

- $\bullet \ell_p, 1 \leq p \leq \infty$, e.g., ℓ_2 ,
- \bullet *L*_p, 1 < *p* < ∞ ,
- Schlumprecht's sp[ace](#page-110-0) and Tsirelson's space.

Question: (von Neumann) Does ℓ_2 have the invariant subspace property?

Theorem: (Enflo, 1987 and Read, 1984) There exist non-reflexive separable Banach spaces failing the ISP.

Theorem: (Argyros-Haydon, 2011) The non-reflexive separable space $\mathfrak{X}_{\mathrm{AH}}$ satisfies the ISP.

Question: (Read, 1989) Does there exist a separable reflexive space with the ISP?

Question: (von Neumann) Does ℓ_2 have the invariant subspace property?

Theorem: (Enflo, 1987 and Read, 1984) There exist non-reflexive separable Banach spaces failing the ISP.

Theorem: (Argyros-Haydon, 2011) The non-reflexive separable space \mathfrak{X}_{AH} satisfies the ISP.

Question: (Read, 1989) Does there exist a separable reflexive space with the ISP?

Question: (von Neumann) Does ℓ_2 have the invariant subspace property?

Theorem: (Enflo, 1987 and Read, 1984) There exist non-reflexive separable Banach spaces failing the ISP.

Theorem: (Argyros-Haydon, 2011) The non-reflexive separable space \mathfrak{X}_{AH} satisfies the ISP.

Question: (Read, 1989) Does there exist a separable reflexive space with the ISP?

Theorem: (Argyros - M, 2014) There exists a separable reflexive HI space $\mathfrak{X}_{\text{ISP}}$ with the ISP.

This construction combines:

-
-

Remark: Every infinite-dimensional closed subspace of $\mathfrak{X}_{\text{ISP}}$ satisfies the ISP.

Theorem: (Argyros - M, 2014) There exists a separable reflexive HI space $\mathfrak{X}_{\text{ISP}}$ with the ISP.

This construction combines:

- **The Tsirelson construction.**
- An Odell-Schlumprecht concept called saturation under constraints.

Remark: Every infinite-dimensional closed subspace of $\mathfrak{X}_{\text{ISP}}$ satisfies the ISP.

Theorem: (Argyros - M, 2014) There exists a separable reflexive HI space $\mathfrak{X}_{\text{ISP}}$ with the ISP.

This construction combines:

- **The Tsirelson construction.**
- An Odell-Schlumprecht concept called saturation under constraints.

Remark: Every infinite-dimensional closed subspace of $\mathfrak{X}_{\text{ISP}}$ satisfies the ISP.

Theorem: $\mathfrak{X}_{\text{ISP}}$ satisfies these main properties: (1) $\mathcal{L}(\mathfrak{X}_{\text{ISP}}) = \mathbb{R}I + \mathcal{SS}(\mathfrak{X}_{\text{ISP}}).$ (2) For every $S, T \in \mathcal{SS}(\mathfrak{X}_{\text{ISP}})$, ST is compact.

Theorem: (Lomonosov, 1973) Let $T, K \in \mathcal{L}(X)$, for some infinite-dimensional Banach space *X*. If

-
-

then *T* admits an invariant subspace.

Conclusion: Every $T \in \mathcal{L}(\mathfrak{X}_{\text{ISP}})$ admits an invariant subspace. Proof: Let $T \in \mathcal{L}(\mathfrak{X}_{\text{ISP}})$ and $\lambda \in \mathbb{R}$, $S \in \mathcal{SS}(\mathfrak{X}_{\text{ISP}})$ such that $T = \lambda I + S$.

K ロ ▶ K 何 ▶ K ヨ ▶ K

Theorem: $\mathfrak{X}_{\text{ISP}}$ satisfies these main properties:

 $(1) \mathcal{L}(\mathfrak{X}_{\text{ISP}}) = \mathbb{R}I + \mathcal{SS}(\mathfrak{X}_{\text{ISP}}).$

(2) For every $S, T \in \mathcal{SS}(\mathfrak{X}_{\text{ISP}})$, ST is compact.

Theorem: (Lomonosov, 1973) Let $T, K \in \mathcal{L}(X)$, for some infinite-dimensional Banach space *X*. If

- *K* is compact and
- \bullet *TK* = *KT*

then *T* admits an invariant subspace.

Conclusion: Every $T \in \mathcal{L}(\mathfrak{X}_{\text{ISP}})$ admits an invariant subspace. Proof: Let $T \in \mathcal{L}(\mathfrak{X}_{\text{ISP}})$ and $\lambda \in \mathbb{R}$, $S \in \mathcal{SS}(\mathfrak{X}_{\text{ISP}})$ such that $T = \lambda I + S$.

Theorem: $\mathfrak{X}_{\text{ISP}}$ satisfies these main properties:

 $(1) \mathcal{L}(\mathfrak{X}_{\text{ISP}}) = \mathbb{R}I + \mathcal{SS}(\mathfrak{X}_{\text{ISP}}).$

(2) For every $S, T \in \mathcal{SS}(\mathfrak{X}_{\text{ISP}})$, ST is compact.

Theorem: (Lomonosov, 1973) Let $T, K \in \mathcal{L}(X)$, for some infinite-dimensional Banach space *X*. If

K is compact and

$$
\bullet \;\; TK=KT
$$

then *T* admits an invariant subspace.

Conclusion: Every $T \in \mathcal{L}(\mathfrak{X}_{\text{ISP}})$ admits an invariant subspace.

Proof: Let $T \in \mathcal{L}(\mathfrak{X}_{\text{ISP}})$ and $\lambda \in \mathbb{R}$, $S \in \mathcal{SS}(\mathfrak{X}_{\text{ISP}})$ such that $T = \lambda I + S$.

Theorem: $\mathfrak{X}_{\text{ISP}}$ satisfies these main properties:

 $(1) \mathcal{L}(\mathfrak{X}_{\text{ISP}}) = \mathbb{R}I + \mathcal{SS}(\mathfrak{X}_{\text{ISP}}).$

(2) For every $S, T \in \mathcal{SS}(\mathfrak{X}_{\text{ISP}})$, ST is compact.

Theorem: (Lomonosov, 1973) Let $T, K \in \mathcal{L}(X)$, for some infinite-dimensional Banach space *X*. If

K is compact and

$$
\bullet \;\; TK=KT
$$

then *T* admits an invariant subspace.

Conclusion: Every $T \in \mathcal{L}(\mathfrak{X}_{\text{ISP}})$ admits an invariant subspace. Proof: Let $T \in \mathcal{L}(\mathfrak{X}_{ISP})$ and $\lambda \in \mathbb{R}$, $S \in \mathcal{SS}(\mathfrak{X}_{ISP})$ such that $T = \lambda I + S$.

*S*² is compact and *T* $S^2 = (\lambda I + S)S^2 = S^2(\lambda I + S) = S^2T$.

By Lomonosov's theorem *T* admits an invariant subspace.

トイヨト イヨトー

Theorem: $\mathfrak{X}_{\text{ISP}}$ satisfies these main properties:

 $(1) \mathcal{L}(\mathfrak{X}_{\text{ISP}}) = \mathbb{R}I + \mathcal{SS}(\mathfrak{X}_{\text{ISP}}).$

(2) For every $S, T \in \mathcal{SS}(\mathfrak{X}_{\text{ISP}})$, ST is compact.

Theorem: (Lomonosov, 1973) Let $T, K \in \mathcal{L}(X)$, for some infinite-dimensional Banach space *X*. If

K is compact and

$$
\bullet \;\; TK=KT
$$

then *T* admits an invariant subspace.

Conclusion: Every $T \in \mathcal{L}(\mathfrak{X}_{\text{ISP}})$ admits an invariant subspace.

Proof: Let $T \in \mathcal{L}(\mathfrak{X}_{ISP})$ and $\lambda \in \mathbb{R}$, $S \in \mathcal{SS}(\mathfrak{X}_{ISP})$ such that $T = \lambda I + S$.

*S*² is compact and *T* $S^2 = (\lambda I + S)S^2 = S^2(\lambda I + S) = S^2T$.

By Lomonosov's theorem *T* admits an invariant subspace.

ドメラドメラドー

Theorem: $\mathfrak{X}_{\text{ISP}}$ satisfies these main properties:

 $(1) \mathcal{L}(\mathfrak{X}_{\text{ISP}}) = \mathbb{R}I + \mathcal{SS}(\mathfrak{X}_{\text{ISP}}).$

(2) For every $S, T \in \mathcal{SS}(\mathfrak{X}_{\text{ISP}})$, ST is compact.

Theorem: (Lomonosov, 1973) Let $T, K \in \mathcal{L}(X)$, for some infinite-dimensional Banach space *X*. If

K is compact and

$$
\bullet \;\; TK=KT
$$

then *T* admits an invariant subspace.

Conclusion: Every $T \in \mathcal{L}(\mathfrak{X}_{\text{ISP}})$ admits an invariant subspace.

Proof: Let $T \in \mathcal{L}(\mathfrak{X}_{ISP})$ and $\lambda \in \mathbb{R}$, $S \in \mathcal{SS}(\mathfrak{X}_{ISP})$ such that $T = \lambda I + S$.

*S*² is compact and *T* $S^2 = (\lambda I + S)S^2 = S^2(\lambda I + S) = S^2T$.

By Lomonosov's theorem *T* admits an invariant subspace.

化重新化重新

Spreading Models

A sequence $(x_n)_{n=1}^{\infty}$ in a Banach space generates a *C*- ℓ_1 -spreading model if for all $n \leq i_1 < \cdots < i_n \in \mathbb{N}$ and $a_1, \ldots, a_n \in \mathbb{R}$

$$
C^{-1}\sum_{k=1}^n |a_k| \leq \Big\|\sum_{k=1}^n a_k x_{i_k}\Big\| \leq \sum_{k=1}^n |a_k|.
$$

We refer to such sequences as rank II sequences.

A sequence $(x_n)_{n=1}^\infty$ in a Banach space generates a *C*-*c*₀-spreading model if for all $n \le i_1 < \cdots < i_n \in \mathbb{N}$ and $a_1, \ldots, a_n \in \mathbb{R}$

$$
\max_{1\leq k\leq n}|a_k|\leq \Big\|\sum_{k=1}^n a_kx_{i_k}\Big\|\leq C\max_{1\leq k\leq n}|a_k|.
$$

We refer to such sequences as rank I sequences.

We refer to sequences $(x_i)_{i=1}^\infty$ such that $\lim_n \|x_i\| = 0$ as rank 0

Spreading Models

A sequence $(x_n)_{n=1}^{\infty}$ in a Banach space generates a *C*- ℓ_1 -spreading model if for all $n \leq i_1 < \cdots < i_n \in \mathbb{N}$ and $a_1, \ldots, a_n \in \mathbb{R}$

$$
C^{-1}\sum_{k=1}^n |a_k| \leq \Big\|\sum_{k=1}^n a_k x_{i_k}\Big\| \leq \sum_{k=1}^n |a_k|.
$$

We refer to such sequences as rank II sequences.

A sequence $(x_n)_{n=1}^{\infty}$ in a Banach space generates a *C*-*c*₀-spreading model if for all $n \leq i_1 < \cdots < i_n \in \mathbb{N}$ and $a_1, \ldots, a_n \in \mathbb{R}$

$$
\max_{1\leq k\leq n}|a_k|\leq \Big\|\sum_{k=1}^n a_kx_{i_k}\Big\|\leq C\max_{1\leq k\leq n}|a_k|.
$$

We refer to such sequences as rank I sequences.

We refer to sequences $(x_i)_{i=1}^\infty$ such that $\lim_n \|x_i\| = 0$ as rank 0

Spreading Models

A sequence $(x_n)_{n=1}^{\infty}$ in a Banach space generates a *C*- ℓ_1 -spreading model if for all $n \leq i_1 < \cdots < i_n \in \mathbb{N}$ and $a_1, \ldots, a_n \in \mathbb{R}$

$$
C^{-1}\sum_{k=1}^n |a_k| \leq \Big\|\sum_{k=1}^n a_k x_{i_k}\Big\| \leq \sum_{k=1}^n |a_k|.
$$

We refer to such sequences as rank II sequences.

A sequence $(x_n)_{n=1}^{\infty}$ in a Banach space generates a *C*-*c*₀-spreading model if for all $n \leq i_1 < \cdots < i_n \in \mathbb{N}$ and $a_1, \ldots, a_n \in \mathbb{R}$

$$
\max_{1\leq k\leq n}|a_k|\leq \Big\|\sum_{k=1}^n a_kx_{i_k}\Big\|\leq C\max_{1\leq k\leq n}|a_k|.
$$

We refer to such sequences as rank I sequences.

We refer to sequences $(x_i)_{i=1}^{\infty}$ such that lim $_n$ $\|x_i\|=0$ as rank 0 sequences.

Remark: Rank is stable under taking subsequences.

Theorem: Let $(x_i)_{i=1}^{\infty}$ be a weakly null sequence in $\mathfrak{X}_{\text{ISP}}$. Then, it has a rank 0, a rank I or a rank II subsequence.

Theorem: In $\mathfrak{X}_{\text{ISP}}$, there is a canonical way to construct a rank I sequence from a rank II sequence, and vice versa. In particular, every subspace of $\mathfrak{X}_{\text{ISP}}$ contains weakly null sequences of rank I and II.

Remark: Rank is stable under taking subsequences.

Theorem: Let $(x_i)_{i=1}^{\infty}$ be a weakly null sequence in $\mathfrak{X}_{\text{ISP}}$. Then, it has a rank 0, a rank I or a rank II subsequence.

Theorem: In $\mathfrak{X}_{\text{ISP}}$, there is a canonical way to construct a rank I sequence from a rank II sequence, and vice versa. In particular, every subspace of $\mathfrak{X}_{\text{ISP}}$ contains weakly null sequences of rank I and II.

Remark: Rank is stable under taking subsequences.

Theorem: Let $(x_i)_{i=1}^{\infty}$ be a weakly null sequence in $\mathfrak{X}_{\text{ISP}}$. Then, it has a rank 0, a rank I or a rank II subsequence.

Theorem: In $\mathfrak{X}_{\text{ISP}}$, there is a canonical way to construct a rank I sequence from a rank II sequence, and vice versa. In particular, every subspace of $\mathfrak{X}_{\text{ISP}}$ contains weakly null sequences of rank I and II.

Strictly Singular Operators on $\mathfrak{X}_{\text{ISP}}$

Theorem: Let $T \in \mathcal{L}(\mathfrak{X}_{\text{ISP}})$ be strictly singular. For a weakly null sequence $(x_i)_{i=1}^\infty$ of positive rank, $(\mathcal{T} x_i)_{i=1}^\infty$ has a subsequence of lesser rank.

Corollary: If *S*, $T \in SS(\mathfrak{X}_{\text{ISP}})$ then *ST* is compact.

Proof: By reflexivity, it suffices to show that for a weakly null $\mathsf{sequence}\;(x_i)_{i=1}^\infty,\, \mathsf{lim}_i\,\| \mathcal{S}\mathcal{T} x_i\|=0.$

Assume $(x_i)_{i=1}^\infty$, $(Tx_i)_{i=1}^\infty$ and $(STx_i)_{i=1}^\infty$ are of some rank.

-
-
-

K ロ ⊁ K 倒 ≯ K 君 ⊁ K 君 ⊁

Corollary: If $S, T \in \mathcal{SS}(\mathfrak{X}_{\text{ISP}})$ then *ST* is compact.

Proof: By reflexivity, it suffices to show that for a weakly null $\mathsf{sequence}\;(x_i)_{i=1}^\infty,\, \mathsf{lim}_i\,\| \mathcal{S}\mathcal{T} x_i\|=0.$ Assume $(x_i)_{i=1}^\infty$, $(Tx_i)_{i=1}^\infty$ and $(STx_i)_{i=1}^\infty$ are of some rank.

-
-

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

Corollary: If *S*, $T \in SS(\mathfrak{X}_{\text{ISP}})$ then *ST* is compact.

Proof: By reflexivity, it suffices to show that for a weakly null $\mathsf{sequence}\;(x_i)_{i=1}^\infty,\, \mathsf{lim}_i\,\| \mathcal{S}\mathcal{T} x_i\|=0.$

Assume $(x_i)_{i=1}^{\infty}$, $(Tx_i)_{i=1}^{\infty}$ and $(STx_i)_{i=1}^{\infty}$ are of some rank.

- If $(x_i)_{i=1}^{\infty}$ is of rank 0, i.e, lim_{*i*} $||x_i|| = 0$, then lim_{*i*∈*L*} $||STx_i|| = 0$.
- If $(x_i)_{i=1}^{\infty}$ is of rank I, then $(Tx_i)_{i=1}^{\infty}$ is of rank 0, i.e, $\lim_i ||Tx_i|| = 0$, and thus $\lim_{i \in L} ||STx_i|| = 0$.
- If $(x_i)_{i=1}^\infty$ is of rank II, then $(Tx_i)_{i=1}^\infty$ is or rank I or 0. In either case, $(STx_i)_{i=1}^{\infty}$ is of rank 0, i.e., $\lim_i ||STx_i|| = 0$.

イロト イ何 トイヨ トイヨ トー

Corollary: If *S*, $T \in SS(\mathfrak{X}_{\text{ISP}})$ then *ST* is compact.

Proof: By reflexivity, it suffices to show that for a weakly null $\mathsf{sequence}\;(x_i)_{i=1}^\infty,\, \mathsf{lim}_i\,\| \mathcal{S}\mathcal{T} x_i\|=0.$

Assume $(x_i)_{i=1}^{\infty}$, $(Tx_i)_{i=1}^{\infty}$ and $(STx_i)_{i=1}^{\infty}$ are of some rank.

- If $(x_i)_{i=1}^{\infty}$ is of rank 0, i.e, lim_{*i*} $||x_i|| = 0$, then lim_{*i*∈*L*} $||STx_i|| = 0$.
- If $(x_i)_{i=1}^{\infty}$ is of rank I, then $(Tx_i)_{i=1}^{\infty}$ is of rank 0, i.e, $\lim_i ||Tx_i|| = 0$, and thus $\lim_{i \in L} ||STx_i|| = 0$.
- If $(x_i)_{i=1}^\infty$ is of rank II, then $(Tx_i)_{i=1}^\infty$ is or rank I or 0. In either case, $(STx_i)_{i=1}^{\infty}$ is of rank 0, i.e., $\lim_i ||STx_i|| = 0$.

K ロ ⊁ K 御 ⊁ K 君 ⊁ K 君 ⊁ …

Corollary: If *S*, $T \in SS(\mathfrak{X}_{\text{ISP}})$ then *ST* is compact.

Proof: By reflexivity, it suffices to show that for a weakly null $\mathsf{sequence}\;(x_i)_{i=1}^\infty,\, \mathsf{lim}_i\,\| \mathcal{S}\mathcal{T} x_i\|=0.$

Assume $(x_i)_{i=1}^{\infty}$, $(Tx_i)_{i=1}^{\infty}$ and $(STx_i)_{i=1}^{\infty}$ are of some rank.

- If $(x_i)_{i=1}^{\infty}$ is of rank 0, i.e, lim_{*i*} $||x_i|| = 0$, then lim_{*i*∈*L*} $||STx_i|| = 0$.
- If $(x_i)_{i=1}^{\infty}$ is of rank I, then $(Tx_i)_{i=1}^{\infty}$ is of rank 0, i.e, $\lim_i ||Tx_i|| = 0$, and thus $\lim_{i \in L} ||STx_i|| = 0$.
- If $(x_i)_{i=1}^\infty$ is of rank II, then $(Tx_i)_{i=1}^\infty$ is or rank I or 0. In either case, $(STx_i)_{i=1}^{\infty}$ is of rank 0, i.e., $\lim_i ||STx_i|| = 0$.

K ロ ⊁ K 御 ⊁ K 君 ⊁ K 君 ⊁ …

Corollary: If *S*, $T \in SS(\mathfrak{X}_{\text{ISP}})$ then *ST* is compact.

Proof: By reflexivity, it suffices to show that for a weakly null $\mathsf{sequence}\;(x_i)_{i=1}^\infty,\, \mathsf{lim}_i\,\| \mathcal{S}\mathcal{T} x_i\|=0.$

Assume $(x_i)_{i=1}^{\infty}$, $(Tx_i)_{i=1}^{\infty}$ and $(STx_i)_{i=1}^{\infty}$ are of some rank.

- If $(x_i)_{i=1}^{\infty}$ is of rank 0, i.e, lim_{*i*} $||x_i|| = 0$, then lim_{*i*∈*L*} $||STx_i|| = 0$.
- If $(x_i)_{i=1}^{\infty}$ is of rank I, then $(Tx_i)_{i=1}^{\infty}$ is of rank 0, i.e, $\lim_i ||Tx_i|| = 0$, and thus $\lim_{i \in L} ||STx_i|| = 0$.
- If $(x_i)_{i=1}^\infty$ is of rank II, then $(Tx_i)_{i=1}^\infty$ is or rank I or 0. In either case, $(STx_i)_{i=1}^{\infty}$ is of rank 0, i.e., lim_{*i*} $\|STx_i\|=0$.

←ロト ←何ト ←ヨト ←ヨト 。

Thank you!

4 0 8

K 御 ⊁ K 君 ⊁ K 君 ⊁

 299

活