Methods for constructing Banach spaces with prescribed properties in their operator spaces Definitions: \bullet (xi); is a 5-basis of X: $\forall x \in X$ 3! (a_i) ; $\in \mathbb{R}^{\mathsf{A}}$ $S.1.$ $X = \sum a_i X_i$. \bullet $(x_i)_i$ is S -basic if it is an S -basis of $\langle (x_i)_i \rangle$. • $(x_i)_i$ S-basic in X ℓ $(y_i)_i$ S-basic in Y are equivalent if $X_i \mapsto Y_i$ extends to a linear isomorphism between $\langle (x_i), \rangle$ l $c(y_i);$ Theorem (Croner-Marcy) \exists X $s.\tau$. \forall $\tau \in \mathcal{L}(X)$ $\exists A\in\mathbb{R}$ s.t. $S = T - AJ$ is strictly singular. S is strictly singular mean, that V S -basic $(x_i)_i$ in X is not equivalent to $(Sx_i)_i$. There μ : \exists $X = X_{HR}$ with an S-basis (e_i); 5.7. $\forall T \in \mathcal{L}(X)$ $\exists \lambda \in \mathcal{P}$ 5.1. $S = T - \lambda I$ μ the following property: \forall subsequence $(e_i)_k$ of the 5-hasis is my equivalent to $\bigl(Se_{ik}\bigr)_c$.

Notarian & Definitions C_{90} = $\frac{1}{2}$ x = $(x(i))_{i=1}^{\infty}$ $\in \mathbb{R}^{k|}$ evartually null? for i ϵ \approx $e_i = e_i^* = (0, 0, 0, ..., 0, 1, 0, ...)$ ith position $(e_i)_i$ b $(e_i^*)_i$ is the unb of Con. Definition: A norming se-1 is a WCCp0 s.t. $\forall i \in \mathbb{N}, \quad e^{i} \in W.$ \forall f = $\sum_{i=1}^{\infty} f(i) e_i^* \in W$, $\|f\|_{\infty} = \lim_{i \in \mathbb{N}} |f(i)| \leq 1$. (ii) (iii) $H = \mathcal{L}$ for $e_i^t \in V$ and $e_i^t \in V$ $g = \sum_{i=1}^{v} f(i) e^{i} \in W$. For such W define II-IIm an Go as follow: For $f: \sum_{i=1}^{\infty} f(i) e_i^*$ $\in \mathbb{L}$ \vee \vee $x = \sum_{i=1}^{\infty} x(i) e_i \in G$ $le-1$ $f(x) = \sum_{i=1}^{\infty} f(i) x(i)$ and $\|x\|_{w}$ = $\int \psi(x) dx$ + $\int \psi(x) dx$. Le- X_{h} = $(C_{00}, ||\cdot||_{L})$. This is a B-Space l $(e_i)_i$ is an S-basis for χ

Examples: (i) $W_{0} = \{ \xi e_{i}^{t} : \xi \in \{-1, 1\} , i \in N \} \cup \{0\}$. Then $X_{w_0} = C_0$. (ii) $W_{1} = \frac{1}{2} \sum_{i=1}^{n} \xi_{i} e_{i}^{*}$: $(\epsilon_{i})_{i=1}^{n} \in \{-1, 1\}^{n}$, $u \in N$ \bigcup $\{ \mathfrak{q} \}$. Then $X_{\omega_{\ell_1}} = \ell_1$. Definition of $X = X_{\mu\nu}$ Fix $2 \leqslant w_1 < w_1 < w_2 < w_2 < w_3 < w_3 < \cdots$ 3.1 \forall \in \forall : $\frac{1}{\sqrt{1+1}}$ > $(\sum_{i \le i} w_i)$. λ^{i+1} $\frac{m_j}{N_j} \cdot \frac{1}{2^{j_1}} \cdot \frac{1}{7}$, $\frac{1}{\frac{m_i}{2} + 1}$, $\frac{1}{N_i}$. Put $W_0 = \frac{1}{2} + e_i^* : i \in \mathbb{N}$. For jEN & FCN s.t. $1 \leq #F \leq M_{\lambda_1}$ b $(\epsilon_i)_{i\in F} \in \{-1,1\}^F$ we call $f = \frac{1}{w_{2j}} \sum_{i \in F} \varepsilon_i e_i^*$ type I functional of weight wife /mi a

We will define type-II functionals. Let Q = all finite sequences (f_1, f_2, \ldots, f_d) ef type ^I functionals sit $supp(F_{1})$ < $supp(F_{2})$ <...< $supp(F_{d})$ We fix a "coding function" $G: Q \rightarrow N,$ i.e., 6 is an injection and furthermore $s.\tau$, \forall $(f\gamma, ..., f\alpha) \in \omega$ $W|_{\lambda \in (f_1, \ldots, f_d)} > \|f_d\|_{\infty}$ maxsup (fd A sequence $(f_{n_1}f_1, ..., f_{el})$ of type I functionals is called a $(2j-1)$ -special sequence $if: \qquad \bullet \quad \text{supp}(\text{-}f_1) < \text{supp}(f_1) < \cdots < \text{supp}(f_d)$ $For 15 i c d$ $w(t_{ii}) = \frac{1}{\sqrt{M_{26}}(f_{11}...f_{i}})$ $ol \leq N_{\alpha j-1}$ Remark: If (f_1, \ldots, f_d) is $(\lambda_j - 1)$ -special then if $w(f_d) = \frac{1}{m_{2i}}$ then $\bar{c}^{n}(i) = (f_{1},...,f_{d-1}).$

For a $(2;-1)$ -special sequence $(f_1, ..., f_d)$ of type I Functionals we call
 $g = \frac{1}{m_{\delta j}} \sum_{i=1}^d f_i$ G type II fenctional of neight $\omega(f) = \frac{1}{\omega_{\lambda j-1}}$. Les $W_{\mathbb{I}} = \{ g$ type I functional of $u(f)$ $=$ $\frac{1}{w_{2j-1}}$, $j\in H$). $\n *P*_u - \omega = \omega_{\mu} - \omega_{\rho} \cup \omega_{\tau} \cup \omega_{\tau}$. $V = X = X_{MP} = X_{W}$ Theorem (1) Ler $\tau \in \mathcal{L}(X)$. (i) lim $ITe_i - e_i^*$ ($Te_i e_i - O$) (iii) lim $e_i^k(Te_i)$ exists in R . Corollary: If TENCXI & $\lambda = lim e^{kt}(Te_{i})$
Then $S = T - \lambda I$ has the property than ℓ in $\|Se_i\|_{\infty} = 0$. Theorem (2) If $(x_i)_i$ is a bounded regulare in X juch than $||x_i||_{\infty}$ -10 than it is ust equivalent

to a subsequence of the basis. Def: For $j \in \mathbb{N}$ \downarrow \uparrow $\subset \mathbb{N}$ \downarrow \downarrow b $(\epsilon_i)_{i\in F} \in \{-1, 1\}^F$ we call $x = \frac{M_{\lambda j}}{M_{\lambda i}} \sum_{i \in F} \epsilon_i^{\cdot} \mathcal{C}_i^{\cdot}$ ue call this a 2j-vector. Remark 1: IF $f = \frac{1}{m} \sum_{i \in F} \varepsilon_i e_i^*$ then $f(x) = 1$. Remark 2. If $f = \frac{1}{M_{a_1}} \sum_{i \in E} d_i e_i^*$ is a type I Functiqual the $f'(x) = \frac{1}{w_{\lambda_1}!} \frac{w_{\lambda_1}}{w_{\lambda_2}} \sum_{i \in E \cap F} \varepsilon_i d_i.$ Key Lemma: $j_1 < j_2 < \cdots < j_p \in \mathbb{N}$
 $j_1' < j_2' < \cdots < j_q \in \mathbb{N}$. $(27)(x_{1})_{17}^{\rho}$ $(4)_{17}^{\sigma}$ be such that X_{1} is an λj_{1} -vector 1sk $\leq p$
Fe is a type I functional of $\omega(f_{\ell}) = \frac{1}{M_{\lambda}j_{\ell}}$. Then $\sum_{k,m} |f_{\ell}(x_k)| \leq 1$.

 $j_{\mathfrak{k}}\neq j_{\ell}$ $\underbrace{M_{\lambda j_{\kappa}}}_{\text{$N_{\lambda j_{\kappa}}$}}\underbrace{\sum_{i\in E_{\kappa}}\epsilon_{i}\,e_{i}}$ $\overline{\mathscr{G}}$ Prant: Write $X_k =$ $=\frac{1}{W_{\Sigma_{1}^{'}}}\sum_{i\in F_{1}}\delta_{i}e_{i}^{*}.$ Fix 1:le 9. Compute $1055 \frac{1}{20}$ $\sum_{k} |f_{\ell}(x_{k})|$ = J_{K} \dot{J} \dot{J} M_{2n} E_i $\frac{1}{\log_{16} N_{2j_{\kappa}}}$ $\frac{L_{\kappa}}{N_{2j_{\kappa}}}$ ic E_{κ} of e $M_{2j_{k}}$ # (E_{k} $\cap F_{\ell}$) $\frac{1}{2}$ $\frac{\sum_{\substack{\mathbf{k} \vdots \\ \mathbf{k} \neq \mathbf{k} \\ \mathbf{k} \neq \mathbf{k}}}$ $\overline{M_{2j}}$ $\overline{M_{2j}}$ $\overline{\epsilon}$ $\sum_{k \in J} \frac{m_{2ik}}{n_{2ik}} \#(E_k \cap F_{\ell}) + \sum_{k \in J} \frac{m_{2ik}}{n_{2ik}} \#(E_k \cap F_{\ell})$ $\frac{1}{M}$ $\frac{1}{\sqrt{c}}$ $\frac{1}{2}$ V_2 e $\frac{1}{2}$

 \leq 1. Grollary: \cdot IF x is a 2j-vector then $||x|| = 1$. . (edi is weakly hull. Definition: (1) Let $j\in k1$ k $x=\frac{m_{2}}{n_{2j}}$ $\sum_{i\in F}E_{i}e_{i}$ be a 2 reet of and $f = \frac{1}{m_{\lambda_i}} \sum_{i \in F} d_i e_i^*$ be eype I functional η f wlf) = $\eta_{M_{2}f}$ \bullet IF F = E & ξ = \int ; for it F then we call (x,f) a $(1,2j)$ -exact pair. \bullet IF FNE = ϕ then we call (x, f) G $(9,2j)$ -exact pair. (2) Let $\theta \in \{0,1\}$ by Let $j \in \mathbb{N}$. A sequence of exact pairs $x_{1}, \{1\}$, (x_{2}, t_{2}) , ..., $(x_{n_{2}, -1} + h_{2,-1})$ i s called a $(\partial, \lambda j-1)$ -dependent sequence if \bullet \forall 1sk ϵ $(x_{L_1}f_k)$ is a (θ_12j_k) -exact pair \bullet ($f_{n_1} f_{n_2} \ldots, f_{n_{2i-1}}$) are q (2j-1) special

sequence s suppliers) \vee supplifields s suppliers \mathcal{S} is \mathcal{S} . Proposition: Let $\partial \in \{0, 1\}$ and a $(0, 2j-1)$ -dependent sequence $(X_K,f_K)_{K=1}^{m_{K-1}}$ by put $y = \frac{m_{2j-1}}{m_{2j-1}} \sum_{k=1}^{m_{2j-1}} X_{k}$ Then i ii) If θ = 1 then $||y|| \rightarrow 1$.
 i i If θ = 0 then $||y|| \le 2$ $\frac{w_{\phi^{-1}}}{w_{\phi^{-1}}}$ I ii) If ∂ = O then Pranf: 1 Because $(f_{l(c)})_{c=1}^{n_{1(c)}}$ is $(2j-1)$ -special the $g = \frac{1}{w_{\delta j-1}} \sum_{k=1}^{w_{\delta j-1}} f_k$ is a type $\overline{\mu}$ functional 9 that $\|\gamma\| \geq 9$ (y) = 1. $\lim_{n\to\infty} \frac{1}{n} \int_{\mathbb{R}} \mathcal{L} \math$ will she $|g(y)| \leq 2$ If geW_0UW_1 we animathis. Assume $g = \frac{1}{W_{2i-1}} \sum_{\ell=1}^{q} f_{\ell}^{'} \in \mathcal{L}_{\mathcal{I}}$ $\overline{\mathcal{K}}$

 $(f'_1, f'_2, \ldots, f'_9)$ is $(2j' \cdot 1)$ special. Say each $X_{k} = \frac{M_{2jk}}{M_{2jk}} \sum_{i \in E_{k}} \epsilon_{i} e_{i}$ is $a = (2j_{R})$ -vector & F_{C} is of weight $w(f_{c}) = 1/m_{\lambda bc}$. Pur $f_0 = \mu x \{ 1505q : \omega (ff_0') \in \{ \omega (f_1), ..., \omega (f_{M_{17}},) \}$ $exist).$ l if in Chase $1555 M_{2i-1}$) 1. $\omega(f'_{\ell_{0}}) = \omega(f_{\kappa_{0}})$ $w(f_0') = \frac{1}{26(f_{11}', f_{12}')}$ Ther $u(f_{k_{0}}) = \frac{1}{M_{26}(f_{\eta_{1}}-1)(f_{k_{0}-1})}$
 $G(f_{1},...,f_{k_{0}-1}') = G(f_{1},...,f_{k_{0}-1}) = \frac{G(1 - 1)}{2}$ $=1$ $(f_1',...,f_{\ell-1}')=(f_1,...,f_{\ell-1}).$ $\frac{1}{x_{16-1}}$ $\frac{1}{x_{16}}$ $\frac{1}{x_{16}}$ $\frac{1}{x_{16+1}}$ $\frac{x_1}{x_1}$ $\frac{x_2}{x_2}$ $\frac{x_3}{x_3}$ F_{k-1} F_{k-1} F_{k-1} F_{k-1} $\frac{1}{f_1}$, $\frac{1}{f_2}$, $\frac{1}{f_3}$

 $\frac{1}{m_{2j-1}}\frac{m_{2j-1}}{n_{2j-1}}\left(\sum_{k=1}^{m}f_{k}^{'}(x_{k})+f_{k}^{'}(x_{k})+1\right)$ $rac{r-1}{2}$ f_(Kr) $rac{1}{2}$ f(Kr) $\frac{1}{2}$ $= 2 \frac{1}{m_{2j-1}} \frac{m_{2j-1}}{m_{2j-1}}$ $52 \frac{M_{2j-1}}{M_{2j-1}}$ Proposition: TE L(x). Then $ln r || Tei - e^{t} (Tei)ei ||_{\infty} = 0.$ $\frac{1}{e_i}\frac{e_i^{72}Te_i}{1-e_i^{72}Te_i^{72}}$ P ranf: Assume this is false, i.e., $JCLCKI$ $\begin{array}{ccc} \mathbf{\psi} & \mathbf{\Sigma z} & \mathbf{\Sigma z} & \mathbf{\Sigma z}, & \mathbf{\Sigma z$ infinite $||\tau e_i - e_i^* (\tau e_i) e_i||_{\infty} > \epsilon$, i.e., \exists k (i) $\neq i$ $s.t.$ $|e_{t}^{*}(Te_{i})|$ 72. Wb_1 , because, $(e_i) \stackrel{\iota_v}{\rightarrow} 0$ we hay assume: (i) Te_i i i s s e (ii) $e_{\mathfrak{l}(i)}^*$ (Te_j) = \bigcup_{S} : $i \neq j$ $i=j.$ (iii) $t(i) \in L$

Tei Te_{it r} $rac{q}{k(j+1)}$.
((i) e_i e_{i+1} $j \in H$. inductively w_{e} will Onstruct Fix $f_1 = \frac{1}{w_{2j_1}} \frac{1}{i \in F_1} e^{i \pi}$ $F_1 C L$ with $#F_1 = W_{11}$. $F_z = \frac{1}{m_{\lambda_1}} \sum_{i \in F_2} e_{k(i)}^*$ F_2 CL with $#F_2=1/2$ $f_{u_{2j-1}} = \frac{1}{w_{2j_{2j-1}}} \sum_{i \in F_{u_{2j-1}}} e^{+}_{i(i)}$ $F_{\eta_{2j-1}}$ CL with $\# F_{u_2 - 1} = u_{2, i_{2n+1}}$ $1.7.$ $(f_1, f_1, \ldots, f_n, f_n)$ is c $(2j-1)$ -syerial Seprence. Observations: Define $x_1 = \frac{w_{2j_1}}{w_{2j_1}} \frac{Z}{i c f_1} e_i$ $\underbrace{m_{2j_2}}_{N_{2j_2}} \underbrace{\sum}_{i \in F_1} C_i$ x_{2} = $X_{M_{2j-1}}$ = \cdot $(x_{1},f_{1}), (x_{2},f_{2}), ..., (x_{n_{2}-1},f_{n_{2}-1})$ (i)

- dependent
xc, 1141 Sequence
C 2 M2 <u>ن</u> $X_{\mathcal{K}}$ \equiv $IC = 7$ u_{2} $\overline{14}$ ϵ . $\overline{1}$ $f_{\mathcal{C}}$ - 2 \vert $\overline{(\overline{w})}$ $\overline{w_1}$ \overline{K} $2 - \frac{M_{2j-1}}{2}$ cheve $\overline{\mathbf{i}}$ \overline{G} $\overline{2m_{2-1}}$ is absured. Thi