Varopoulos extensions and Applications to Boundary Value Problems in rough domains

Mihalis Mourgoglou

Ikerbasque & Universidad del País Vasco (UPV/EHU) Departamento de Matemáticas

7th MATH@NTUA summer school "Mathematical Analysis" In honor of Spiros Argyros School of Applied Mathematical and Physical Sciences National Technical University of Athens 27 June – 3 July, 2024

Based on joint works with a) Xavier Tolsa, b) Bruno Poggi and Xavier Tolsa, and c) Thanasis Zacharopoulos

Mihalis Mourgoglou [Varopoulos extensions and Applications to BVPs in rough domains](#page-59-0)

Fix *g* ∈ *Cc*(*∂*Ω). The (continuous) Dirichlet problem for the Laplacian on Ω with boundary data g is to find $u\in C^2(\Omega)\cap C(\overline{\Omega})$ such that

$$
\begin{cases}\n-\Delta u = 0, & \text{in } \Omega, \\
u = g, & \text{on } \partial\Omega.\n\end{cases}
$$

If Ω and its boundary are sufficiently nice, then this problem is always solvable for any $g \in C_c(\partial\Omega)$ (exact characterization by [Wiener 1924]).

Classical and contemporary considerations

Classical: Smooth data *g* and boundary *∂*Ω

Contemporary: Singular, rough data *g* and boundary *∂*Ω

3

Kind offer of Bruno Poggi.

Generalizing Dirichlet problem to singular data

Let $\Omega \subset \mathbb{R}^{n+1}$, $g \in L^p(\sigma)$, $\sigma = \mathcal{H}^n|_{\partial\Omega}$ the surface measure.

How do we understand $u = q$ on $\partial\Omega$ when q is singular?

Non-tangential convergence. We say

$$
u \longrightarrow g
$$
 non-tangentially,

if

$$
\lim_{\gamma(\xi)\ni x\to \xi}u(x)=g(\xi), \qquad \text{for $\sigma-$a.e. $\xi\in \partial \Omega$},
$$

where

$$
\gamma(\xi) := \{ x \in \Omega \; : \; |x - \xi| < 2 \operatorname{dist}(x, \partial \Omega) \}.
$$

A singular analogue of the maximum principle

Let $\Omega \subset \mathbb{R}^{n+1}$, $g \in L^p(\sigma)$, σ the surface measure.

$$
\gamma(\xi) := \{ x \in \Omega \; : \; |x - \xi| < 2 \operatorname{dist}(x, \partial \Omega) \}.
$$

The non-tangential maximal function.

 $(\mathcal{N}u)(\xi) := \sup$ *x*∈*γ*(*ξ*) |*u*(*x*)|*, ξ* ∈ *∂*Ω*,*

 $||\mathcal{N}u||_{L^p(\partial\Omega,\sigma)} \leq C||g||_{L^p(\partial\Omega,\sigma)},$

$$
L = -\operatorname{div} A \nabla
$$

A satisfies ellipticity assumptions

$$
\lambda |\xi|^2 \leq \sum_{i,j=1}^n A_{ij}(x)\xi_i\xi_j, \qquad \|A\|_{L^\infty(\Omega)} \leq \frac{1}{\lambda}, \quad x \in \Omega, \quad \xi \in \mathbb{R}^n.
$$

We say that $({\rm D}_{p'}^L)$ is solvable if there exists $C>0$ such that for each $q \in C_c(\partial\Omega)$, there exists a solution to the problem

$$
\begin{cases} Lu = 0, & \text{in } \Omega, \\ u = g, & \text{on } \partial\Omega, \end{cases}
$$

with

$$
\|\mathcal{N}(u)\|_{L^{p'}(\partial\Omega,\sigma)} \leq C \|g\|_{L^{p'}(\partial\Omega,\sigma)}.
$$

L^p -Regularity problem, i.e., the Dirichlet problem with data in the Sobolev space $\dot{W}^{1,p}$

For $x \in \Omega$, define

$$
m_q(F)(x):=\left(\int_{B_x}|F(y)|^q\,dy\right)^{1/q},\quad\text{where }B_x:=B(x,\delta(x)/4).
$$

The Kenig-Pipher modified non-tangential maximal function is defined

$$
\widetilde{\mathcal{N}}_q(u)(\xi) := \mathcal{N}(m_q(u))(\xi), \qquad \xi \in \partial \Omega.
$$

Let $p > 1$, $L = -\text{div } A\nabla$, A a strongly elliptic, bounded matrix. We say that $({\mathrm{R}}_p^L)$ is solvable if there exists $C>0$ such that for each $f\in \operatorname{Lip}_c(\partial\Omega)$, there exists a solution to the problem

$$
\begin{cases} Lu = 0, & \text{in } \Omega, \\ u = f, & \text{on } \partial\Omega, \end{cases}
$$

with

$$
\|\widetilde{\mathcal{N}}_2(\nabla u)\|_{L^p(\partial\Omega)} \leq C \|f\|_{\dot{W}^{1,p}(\partial\Omega)}.
$$

1978 *C* ¹ domains: Fabes, Jodeit, and Rivière showed that the regularity problem is solvable in L^p for all $p \in (1,\infty)$.

- 1981 Lipschitz domains: Jerison and Kenig proved *L* 2 solvability of the Regularity problem using the so-called "Rellich inequality"
- 1984 Lipschitz domains: Verchota showed L^p-solvability of the regularity problem for $1 < p < 2$ by showing invertibility of the single layer potentials.
- 1987 Lipschitz domains: Dahlberg and Kenig showed L^p-solvability of the regularity problem for $1 < p < 2 + \varepsilon$. Invertibility of layer potentials at the endpoint spaces as well (Hardy and BMO).
- 2010 *ε*-regular SKT domains: Hofmann, Mitrea, and Taylor showed for each fixed p, there exists ε such that the regularity problem in L^p is

- 1978 *C* ¹ domains: Fabes, Jodeit, and Rivière showed that the regularity problem is solvable in L^p for all $p \in (1,\infty)$.
- 1981 Lipschitz domains: Jerison and Kenig proved *L* 2 solvability of the Regularity problem using the so-called "Rellich inequality" $\|\partial_\nu u\|_{L^2(\partial\Omega)} \approx \|\nabla_t u\|_{L^2(\partial\Omega)}$.
- 1984 Lipschitz domains: Verchota showed L^p-solvability of the regularity problem for $1 < p < 2$ by showing invertibility of the single layer potentials.
- 1987 Lipschitz domains: Dahlberg and Kenig showed L^p-solvability of the regularity problem for $1 < p < 2 + \varepsilon$. Invertibility of layer potentials at the endpoint spaces as well (Hardy and BMO).
- 2010 *ε*-regular SKT domains: Hofmann, Mitrea, and Taylor showed for each fixed p, there exists ε such that the regularity problem in L^p is

- 1978 *C* ¹ domains: Fabes, Jodeit, and Rivière showed that the regularity problem is solvable in L^p for all $p \in (1,\infty)$.
- 1981 Lipschitz domains: Jerison and Kenig proved *L* 2 solvability of the Regularity problem using the so-called "Rellich inequality" $\|\partial_\nu u\|_{L^2(\partial\Omega)} \approx \|\nabla_t u\|_{L^2(\partial\Omega)}$.
- 1984 Lipschitz domains: Verchota showed L^p -solvability of the regularity problem for $1 < p < 2$ by showing invertibility of the single layer potentials.
- 1987 Lipschitz domains: Dahlberg and Kenig showed L^p-solvability of the regularity problem for $1 < p < 2 + \varepsilon$. Invertibility of layer potentials at the endpoint spaces as well (Hardy and BMO).
- 2010 *ε*-regular SKT domains: Hofmann, Mitrea, and Taylor showed for each fixed p, there exists ε such that the regularity problem in L^p is

- 1978 *C* ¹ domains: Fabes, Jodeit, and Rivière showed that the regularity problem is solvable in L^p for all $p \in (1,\infty)$.
- 1981 Lipschitz domains: Jerison and Kenig proved *L* 2 solvability of the Regularity problem using the so-called "Rellich inequality" $\|\partial_\nu u\|_{L^2(\partial\Omega)} \approx \|\nabla_t u\|_{L^2(\partial\Omega)}$.
- 1984 Lipschitz domains: Verchota showed L^p -solvability of the regularity problem for $1 < p < 2$ by showing invertibility of the single layer potentials.
- 1987 Lipschitz domains: Dahlberg and Kenig showed L^p-solvability of the regularity problem for $1 < p < 2 + \varepsilon$. Invertibility of layer potentials at the endpoint spaces as well (Hardy and BMO).
- 2010 *ε*-regular SKT domains: Hofmann, Mitrea, and Taylor showed for each fixed p, there exists ε such that the regularity problem in L^p is

- 1978 *C* ¹ domains: Fabes, Jodeit, and Rivière showed that the regularity problem is solvable in L^p for all $p \in (1,\infty)$.
- 1981 Lipschitz domains: Jerison and Kenig proved *L* 2 solvability of the Regularity problem using the so-called "Rellich inequality" $\|\partial_\nu u\|_{L^2(\partial\Omega)} \approx \|\nabla_t u\|_{L^2(\partial\Omega)}$.
- 1984 Lipschitz domains: Verchota showed L^p -solvability of the regularity problem for $1 < p < 2$ by showing invertibility of the single layer potentials.
- 1987 Lipschitz domains: Dahlberg and Kenig showed L^p-solvability of the regularity problem for $1 < p < 2 + \varepsilon$. Invertibility of layer potentials at the endpoint spaces as well (Hardy and BMO).
- 2010 *ε*-regular SKT domains: Hofmann, Mitrea, and Taylor showed for each fixed p, there exists ε such that the regularity problem in L^p is solvable.

Question 1

If $\Omega \subset \mathbb{R}^{n+1}$ is a chord-arc domain with connected boundary, is there $p > 1$ such that the regularity problem is solvable for the Laplacian?

Chord-arc domains:

- $-$ ∂Ω is *n*-Ahlfors regular, i.e., $\sigma(B(\xi,r)) \approx r^n$, for every $\xi \in \partial \Omega$ and $r \in (0, 2 \text{ diam } \partial \Omega)$.
- Ω and $\mathbb{R}^{n+1}\setminus\overline{\Omega}$ have the corkscrew condition (quantitative, scale-invariant openness condition).
- Ω has the Harnack-chain condition (quantitative, scale-invariant connectivity condition).

Question of C. E. Kenig was solved in greater generality.

Theorem 2 (M.-Tolsa (2021))

Let $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 2$, be a bounded corkscrew domain with *n*-Ahlfors regular boundary. Then

Solvability of $(\mathrm{D}^\Delta_{p'})$ on Ω

implies

Solvability of $({\rm R}_p^\Delta)$ on Ω ,

where $\frac{1}{p} + \frac{1}{p'} = 1$, $p > 1$. We use uniform rectifiability. Theorem 3 (M.-Tolsa (2021)) Let $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 2$, be a corkscrew domain with *n*-Ahlfors regular boundary. Then, for every uniformly elliptic operator $L = - \text{div } A \nabla$.

Solvability of $({\rm R}_p^L)$ on Ω

implies

Solvability of $(\mathrm{D}^L_{p'})$.

Let (Σ, σ) be a doubling metric space. For $f : \Sigma \to \mathbb{R}$, say $0 \leq q : \Sigma \to \mathbb{R}$ is a Hajłasz upper gradient of $f (q \in D(f))$ if

$$
|f(x) - f(y)| \le |x - y|(g(x) + g(y)), \quad \text{for } \sigma - \text{a.e. } x, y \in \Sigma.
$$

 $\dot M^{1,p}(\Sigma) := \{ f: f \text{ has a Hajłasz upper gradient in } L^p(\Sigma) \}.$

$$
||f||_{\dot{M}^{1,p}(\Sigma)} := \inf_{g \in D(f)} ||g||_{L^p(\Sigma)}.
$$

Denote $\nabla_{H,p}f$ the function *g* that attains the infimum.

If Σ := *∂*Ω satisfies the weak-(1*, p*)-Poincaré inequality, then $||f||_{\dot{W}^{1,p}(\partial\Omega)} \approx ||\nabla_t f||_{L^p(\partial\Omega)},$ for each $f \in \text{Lip}(\partial\Omega).$

$$
\|\mathscr{C}(\nu)\|_{L^\infty(\partial\Omega)}\leq C.
$$

We let $||v||_{\mathscr{C}}$ be the best possible constant *C* in the inequality above. Carleson's Theorem [Carleson, 1958]: If $\Omega = \mathbb{R}^{n+1}_+$, then for all $w \in L^{\infty}_{\text{loc}}(\Omega)$, $\int_{\Omega} |w| \, d\nu \lesssim \| \nu \|_{\mathscr{C}} \| \mathcal{N}(w) \|_{L^1(\partial \Omega)}.$

So there is some $L^1 - L^\infty$ duality between ${\mathcal N}$ and ${\mathscr C}.$

Question 4

What would be the correct duality if we need to control $\|\widetilde{\mathcal{N}}_q(w)\|_{L^p(\partial\Omega)}$,

$$
\|\mathscr{C}(\nu)\|_{L^\infty(\partial\Omega)}\leq C.
$$

We let $||v||_{\mathscr{C}}$ be the best possible constant *C* in the inequality above. Carleson's Theorem [Carleson, 1958]: If $\Omega = \mathbb{R}^{n+1}_+$, then for all $w \in L^{\infty}_{loc}(\Omega)$, ϵ

$$
\int_{\Omega} |w| d\nu \lesssim \|\nu\|_{\mathscr{C}} \|\mathcal{N}(w)\|_{L^{1}(\partial\Omega)}.
$$

So there is some $L^1 - L^\infty$ duality between ${\mathcal N}$ and ${\mathscr C}.$

Question 4

What would be the correct duality if we need to control $\|\widetilde{\mathcal{N}}_q(w)\|_{L^p(\partial\Omega)}$,

$$
\|\mathscr{C}(\nu)\|_{L^\infty(\partial\Omega)}\leq C.
$$

We let $||v||_{\mathscr{C}}$ be the best possible constant *C* in the inequality above. Carleson's Theorem [Carleson, 1958]: If $\Omega = \mathbb{R}^{n+1}_+$, then for all $w \in L^{\infty}_{loc}(\Omega)$, $\int_{\Omega}|w|\,d\nu \lesssim \|\nu\|_{\mathscr{C}}\|\mathcal{N}(w)\|_{L^{1}(\partial\Omega)}.$

So there is some $L^1 - L^\infty$ duality between ${\mathcal N}$ and ${\mathscr C}.$

Question 4

What would be the correct duality if we need to control $\|\widetilde{\mathcal{N}}_q(w)\|_{L^p(\partial\Omega)}$,

$$
\|\mathscr{C}(\nu)\|_{L^\infty(\partial\Omega)}\leq C.
$$

We let $||v||_{\mathscr{C}}$ be the best possible constant *C* in the inequality above. Carleson's Theorem [Carleson, 1958]: If $\Omega = \mathbb{R}^{n+1}_+$, then for all $w \in L^{\infty}_{loc}(\Omega)$, $\int_{\Omega}|w|\,d\nu \lesssim \|\nu\|_{\mathscr{C}}\|\mathcal{N}(w)\|_{L^{1}(\partial\Omega)}.$

So there is some $L^1 - L^\infty$ duality between ${\mathcal N}$ and ${\mathscr C}.$

Question 4

What would be the correct duality if we need to control $\|\widetilde{\mathcal{N}}_q(w)\|_{L^p(\partial\Omega)}$, $q, p > 1$?

If $d\mu = H dm$, $0 \le H \in L^1_{loc}(\Omega)$, *m* the Lebesgue measure on Ω , then we define

$$
\mathscr{C}(H)(\xi) := \sup_{r>0} \frac{1}{r^n} \int_{B(\xi,r)\cap\Omega} H \, dm.
$$

The $\mathcal{N}\text{-}\mathscr{C}$ duality for $p>1$ has been studied in \mathbb{R}^{n+1}_+ in [Coifman-Meyer-Stein, 1985], [Álvarez-Milman, 1987], and [Hytönen-Rosén, 2013].

Let $q \geq 1$ and q' its Hölder conjugate. Define the q' −Carleson function of $H:\Omega\rightarrow \mathbb{R}^n, H\in L^{q'}_{\mathrm{loc}}(\Omega)$ by

$$
\mathscr{C}_{q'}(H)(\xi) := \sup_{r>0} \frac{1}{r^n} \int_{B(\xi,r)\cap\Omega} \left(\int_{B(x,\delta(x)/4)} |H(y)|^{q'} dy \right)^{\frac{1}{q'}} dx, \qquad \xi \in \partial\Omega.
$$

If $d\mu = H dm$, $0 \le H \in L^1_{loc}(\Omega)$, *m* the Lebesgue measure on Ω , then we define

$$
\mathscr{C}(H)(\xi) := \sup_{r>0} \frac{1}{r^n} \int_{B(\xi,r)\cap\Omega} H \, dm.
$$

The $\mathcal{N}\text{-}\mathscr{C}$ duality for $p>1$ has been studied in \mathbb{R}^{n+1}_+ in [Coifman-Meyer-Stein, 1985], [Álvarez-Milman, 1987], and [Hytönen-Rosén, 2013].

Let $q \geq 1$ and q' its Hölder conjugate. Define the q' −Carleson function of $H:\Omega\rightarrow \mathbb{R}^n, H\in L^{q'}_{\mathrm{loc}}(\Omega)$ by

$$
\mathscr{C}_{q'}(H)(\xi) := \sup_{r>0} \frac{1}{r^n} \int_{B(\xi,r)\cap\Omega} \left(\int_{B(x,\delta(x)/4)} |H(y)|^{q'} dy \right)^{\frac{1}{q'}} dx, \qquad \xi \in \partial\Omega.
$$

If $d\mu = H dm$, $0 \le H \in L^1_{loc}(\Omega)$, *m* the Lebesgue measure on Ω , then we define

$$
\mathscr{C}(H)(\xi) := \sup_{r>0} \frac{1}{r^n} \int_{B(\xi,r)\cap\Omega} H \, dm.
$$

The $\mathcal{N}\text{-}\mathscr{C}$ duality for $p>1$ has been studied in \mathbb{R}^{n+1}_+ in [Coifman-Meyer-Stein, 1985], [Álvarez-Milman, 1987], and [Hytönen-Rosén, 2013].

Let $q \geq 1$ and q' its Hölder conjugate. Define the q' −Carleson function of $H: \Omega \to \mathbb{R}^n, H \in L^{q'}_{\mathrm{loc}}(\Omega)$ by

$$
\mathscr{C}_{q'}(H)(\xi) := \sup_{r>0} \frac{1}{r^n} \int_{B(\xi,r)\cap\Omega} \left(\int_{B(x,\delta(x)/4)} |H(y)|^{q'} dy \right)^{\frac{1}{q'}} dx, \qquad \xi \in \partial\Omega.
$$

Duality between $\mathcal N$ and $\mathscr C$

$$
\widetilde{\mathcal{N}}_q(w)(\xi) := \sup_{x \in \gamma(\xi)} \left(\int_{B(x,\delta(x)/4)} |w(y)|^q \, dy \right)^{1/q}, \qquad \xi \in \partial \Omega.
$$

$$
\mathscr{C}_{q'}(H)(\xi) := \sup_{r>0} \frac{1}{r^n} \int_{B(\xi,r)\cap\Omega} \left(\int_{B(x,\delta(x)/4)} |H(y)|^{q'} dy \right)^{\frac{1}{q'}} dx, \qquad \xi \in \partial\Omega.
$$

Theorem 5 (Hytönen-Rosén (R *n*+1 ⁺), M.-Poggi-Tolsa) Let $n \geq 1$, $\Omega \subset \mathbb{R}^{n+1}$ is a corkscrew domain with *n*-Ahlfors regular boundary. Suppose that either Ω is bounded, or that *∂*Ω is unbounded. Let $p, q \in (1, \infty)$ and p' , q' their Hölder conjugates. Then

$$
\int_{\Omega} |wH| dm \lesssim ||\mathscr{C}_{q'}(H)||_{L^{p'}(\partial\Omega)} ||\widetilde{\mathcal{N}}_q(w)||_{L^p(\partial\Omega)}, \quad w \in L^q_{\text{loc}}(\Omega), H \in L^{q'}_{\text{loc}}(\Omega),
$$

$$
\|\widetilde{\mathcal N}_q(w)\|_{L^p(\partial\Omega)}\lesssim \sup_{H:\|\mathscr C_{q'}(H)\|_{L^{p'}(\partial\Omega)}=1}\Big|\int_\Omega Hw\,dm\Big|,\quad w\in L^q_{\rm loc}(\Omega),
$$

Let $p > 1$, $L = -\text{div } A\nabla$, A a strongly elliptic, bounded matrix. We say that $({\mathrm{R}}_p^L)$ is solvable if there exists $C>0$ such that for each *f* ∈ Lip(*∂*Ω), there exists a solution to the problem

$$
\begin{cases} Lu = 0, & \text{in } \Omega, \\ u = f, & \text{on } \partial\Omega, \end{cases}
$$

with

$$
\|\widetilde{\mathcal{N}}_2(\nabla u)\|_{L^p(\partial\Omega)} \leq C \|f\|_{\dot{M}^{1,p}(\partial\Omega)}.
$$

Recall $\delta = \text{dist}(\cdot, \partial \Omega)$. *A* is a DKP matrix if

sup *y*∈*B*(*x,δ*(*x*)*/*2) $(|\nabla A(y)|^2 \delta(y)) dx$ is a Carleson measure.

 $(D_{p'})$ studied for DKP operators in [Kenig-Pipher, 2001].

The connections between $({\rm D}_{p'})$ and $({\rm R}_p)$ for $L = - \text{div } A \nabla$ on rough domains

 $[D$ indoš-Pipher-Rule, 2017]: $(\mathrm{D}_{p'}^{L^*}) \implies (\mathrm{R}_p^L)$ if $\delta |\nabla A|^2$ is Carleson measure with small norm, and Ω is a bounded Lipschitz domain with small Lipschitz constant.

$(D_{p'}^{L^*})$ $\begin{array}{c} L^* \ \! p' \end{array} \Longrightarrow \; \left({\rm R}_{p}^{L} \right)$ for DKP matrices on domains with unif. rect. boundaries

Recall $\delta = \text{dist}(\cdot, \partial \Omega)$. *A* is a DKP matrix if

sup *y*∈*B*(*x,δ*(*x*)*/*2) $(|\nabla A(y)|^2 \delta(y)) dx$ is a Carleson measure.

Theorem 6 (M.-Poggi-Tolsa, 2022)

Let $\Omega \subset \mathbb{R}^{n+1}$, $n \geq 2$, be a bounded Corkscrew domain with uniformly *n*-rectifiable boundary. Let $L = -\text{div } A\nabla$, where *A* is strongly elliptic, bounded, DKP matrix. Then

Solvability of $({\rm D}^{L^*}_{p'})$ on Ω

implies

Solvability of (R^L_p) on Ω ,

where $\frac{1}{p} + \frac{1}{p'} = 1$, $p > 1$, and $L^* = - \text{div } A^* \nabla$.

The problem was open even in the

Simultaneously and independently, M. Dindos, S. Hofmann, and J. Pipher showed the same result in Lipschitz graph domains using a different method (which cannot be generalized to more general domains).

J. Feneuil recently gave an alternative (and simpler) proof of [DHP] slightly improving the assumption on the matrix (weak-DKP condition).

To solve (R_p^L) with data $f\in \mathrm{Lip}_c(\partial\Omega)$, we first let u be the solution of the continuous Dirichlet problem for *L* with data *f*. Recall that

$$
\|\widetilde{\mathcal{N}}_2(\nabla u)\|_{L^p(\partial\Omega)} \lesssim \sup_{F:\|\mathscr{C}_2(F)\|_{L^{p'}(\partial\Omega)}=1} \Big|\int_{\Omega} \nabla u \cdot F dm \Big|, \quad \nabla u \in L^2_{\text{loc}}(\Omega),
$$

If there exists a function $v \in W_0^{1,2}(\Omega)$ such that $L^*v = -\operatorname{div} F$ (weakly) then

$$
\int_{\Omega} \nabla u \cdot F = \int_{\Omega} \nabla u \, A^* \nabla v - \langle \partial_{\nu_{A^*}} v, f \rangle = - \langle \partial_{\nu_{A^*}} v, f \rangle.
$$

For the moment, consider $\partial_{\nu_A} u = \nu \cdot A \nabla u$ (eventually it will be the variational co-normal).

To solve (R_p^L) with data $f\in \mathrm{Lip}_c(\partial\Omega)$, we first let u be the solution of the continuous Dirichlet problem for *L* with data *f*. Recall that

$$
\|\widetilde{\mathcal{N}}_2(\nabla u)\|_{L^p(\partial\Omega)} \lesssim \sup_{F:\|\mathscr{C}_2(F)\|_{L^{p'}(\partial\Omega)}=1} \Big|\int_{\Omega} \nabla u \cdot F \, dm\Big|, \quad \nabla u \in L^2_{\text{loc}}(\Omega),
$$

If there exists a function $v \in W_0^{1,2}(\Omega)$ such that $L^*v = -\operatorname{div} F$ (weakly) then

$$
\int_{\Omega} \nabla u \cdot F = \int_{\Omega} \nabla u \, A^* \nabla v - \langle \partial_{\nu_{A^*}} v, f \rangle = - \langle \partial_{\nu_{A^*}} v, f \rangle.
$$

For the moment, consider $\partial_{\nu_A} u = \nu \cdot A \nabla u$ (eventually it will be the variational co-normal).

To solve (R_p^L) with data $f\in \mathrm{Lip}_c(\partial\Omega)$, we first let u be the solution of the continuous Dirichlet problem for *L* with data *f*. Recall that

$$
\|\widetilde{\mathcal{N}}_2(\nabla u)\|_{L^p(\partial\Omega)} \lesssim \sup_{F:\|\mathscr{C}_2(F)\|_{L^{p'}(\partial\Omega)}=1} \Big|\int_{\Omega} \nabla u \cdot F \, dm\Big|, \quad \nabla u \in L^2_{\text{loc}}(\Omega),
$$

If there exists a function $v \in W_0^{1,2}(\Omega)$ such that $L^*v = -\operatorname{div} F$ (weakly) then

$$
\int_{\Omega} \nabla u \cdot F = \int_{\Omega} \nabla u \, A^* \nabla v - \langle \partial_{\nu_{A^*}} v, f \rangle = - \langle \partial_{\nu_{A^*}} v, f \rangle.
$$

For the moment, consider $\partial_{\nu_A} u = \nu \cdot A \nabla u$ (eventually it will be the variational co-normal).

$L^{p^{\prime}}$ -solvability of the Poisson problem

Let $n\geq 2,~\Omega\subset\mathbb{R}^{n+1}$ be a Corkscrew domain with n -Ahlfors regular boundary. Let $p>1,~p'$ its Hölder conjugate, and $L=-\mathop{\rm div} A\nabla,~A$ elliptic, bounded. Write $2^* := \frac{2(n+1)}{n-1}$ $\frac{(n+1)}{n-1}$, 2_{*} = $(2^*)' = \frac{2(n+1)}{n+3}$. Recall $δ = dist(·, ∂Ω)$.

Theorem 7 (M.-Poggi-Tolsa)

Assume that $({\rm D}_{p'}^L)$ holds in $\Omega.$ Then for any $H,F\in L^\infty_c(\Omega)$, the weak solution $w \in Y^{1,2}_0(\Omega)$ to the problem

$$
\begin{cases}\n-\operatorname{div} A \nabla w = H - \operatorname{div} F, & \text{in } \Omega, \\
w = 0, & \text{on } \partial \Omega.\n\end{cases}
$$

satisfies the estimate

 $\|\widetilde{\mathcal{N}}_{2^*}(w)\|_{L^{p'}(\partial\Omega)} \lesssim \|\mathscr{C}_{2_*}(\delta H)\|_{L^{p'}(\partial\Omega)} + \|\mathscr{C}_{2}(F)\|_{L^{p'}(\partial\Omega)}.$

Moreover, if A is a DKP matrix, Ω is bounded and $H = 0$, then for any $\varphi \in M^{1,p}(\partial \Omega)$.

$\langle \partial_{\nu_A} w, \varphi \rangle \lesssim \| \mathscr{C}_2(F) \|_{L^{p'}(\partial \Omega)} \| \varphi \|_{\dot{M}^{1,p}(\partial \Omega)}$.

$L^{p^{\prime}}$ -solvability of the Poisson problem

Let $n\geq 2,~\Omega\subset\mathbb{R}^{n+1}$ be a Corkscrew domain with n -Ahlfors regular boundary. Let $p>1,~p'$ its Hölder conjugate, and $L=-\mathop{\rm div} A\nabla,~A$ elliptic, bounded. Write $2^* := \frac{2(n+1)}{n-1}$ $\frac{(n+1)}{n-1}$, 2_{*} = $(2^*)' = \frac{2(n+1)}{n+3}$. Recall $\delta = \text{dist}(\cdot, \partial \Omega)$.

Theorem 7 (M.-Poggi-Tolsa)

Assume that $({\rm D}_{p'}^L)$ holds in $\Omega.$ Then for any $H,F\in L^\infty_c(\Omega)$, the weak solution $w \in Y^{1,2}_0(\Omega)$ to the problem

$$
\begin{cases}\n-\operatorname{div} A \nabla w = H - \operatorname{div} F, & \text{in } \Omega, \\
w = 0, & \text{on } \partial \Omega.\n\end{cases}
$$

satisfies the estimate

 $\|\widetilde{\mathcal{N}}_{2^*}(w)\|_{L^{p'}(\partial\Omega)} \lesssim \|\mathscr{C}_{2_*}(\delta H)\|_{L^{p'}(\partial\Omega)} + \|\mathscr{C}_{2}(F)\|_{L^{p'}(\partial\Omega)}.$

Moreover, if *A* is a DKP matrix, Ω is bounded and $H = 0$, then for any $\varphi \in M^{1,p}(\partial \Omega)$.

$$
\langle \partial_{\nu_A} w, \varphi \rangle \lesssim \|\mathscr{C}_2(F)\|_{L^{p'}(\partial \Omega)} \|\varphi\|_{\dot{M}^{1,p}(\partial \Omega)}.
$$

The "Poisson-Dirichlet" and "Poisson-regularity" problems

We say that $({\rm PD}_{p'}^L)$ is solvable if there exists $C>0$ so that for each $F,H\in L^{\infty}_c(\Omega),$ the unique weak solution $w\in Y^{1,2}_0(\Omega)$ to

$$
\begin{cases}\n-\operatorname{div} A \nabla w = -\operatorname{div} F + H, & \text{in } \Omega, \\
w = 0, & \text{on } \partial \Omega.\n\end{cases}
$$

satisfies the estimate

$$
\|\widetilde{\mathcal{N}}_{2^*}(w)\|_{L^{p'}(\partial\Omega)} \leq C \|\mathscr{C}_2(F)\|_{L^{p'}(\partial\Omega)} + \|\mathscr{C}_{2_*}(\delta H)\|_{L^p(\partial\Omega)}.
$$

We say that (PR_p^L) is solvable if there exists $C>0$ so that for each $F,H\in L^{\infty}_{c}(\Omega),$ the unique weak solution $v\in Y^{1,2}_{0}(\Omega)$ to

$$
\begin{cases}\n-\text{div}\,A\nabla v = -\,\text{div}\,F + H, & \text{in } \Omega, \\
v = 0, & \text{on } \partial\Omega.\n\end{cases}
$$

satisfies the estimate

 $||\mathcal{N}_2(\nabla v)||_{L^p(\partial\Omega)} \leq C||\mathscr{C}_2(F/\delta)||_{L^{p'}(\partial\Omega)} + ||\mathscr{C}_{2*}(H)||_{L^p(\partial\Omega)}$.

The "Poisson-Dirichlet" and "Poisson-regularity" problems

We say that $({\rm PD}_{p'}^L)$ is solvable if there exists $C>0$ so that for each $F,H\in L^{\infty}_c(\Omega),$ the unique weak solution $w\in Y^{1,2}_0(\Omega)$ to

$$
\begin{cases}\n-\operatorname{div} A \nabla w = -\operatorname{div} F + H, & \text{in } \Omega, \\
w = 0, & \text{on } \partial \Omega.\n\end{cases}
$$

satisfies the estimate

$$
\|\widetilde{\mathcal{N}}_{2^*}(w)\|_{L^{p'}(\partial\Omega)} \leq C \|\mathscr{C}_2(F)\|_{L^{p'}(\partial\Omega)} + \|\mathscr{C}_{2_*}(\delta H)\|_{L^p(\partial\Omega)}.
$$

We say that (PR_p^L) is solvable if there exists $C>0$ so that for each $F,H\in L^\infty_c(\Omega)$, the unique weak solution $v\in Y^{1,2}_0(\Omega)$ to

$$
\begin{cases}\n-\operatorname{div} A \nabla v = -\operatorname{div} F + H, & \text{in } \Omega, \\
v = 0, & \text{on } \partial \Omega.\n\end{cases}
$$

satisfies the estimate

 $\|\mathcal{N}_2(\nabla v)\|_{L^p(\partial\Omega)} \leq C \|\mathscr{C}_2(F/\delta)\|_{L^{p'}(\partial\Omega)} + \|\mathscr{C}_{2*}(H)\|_{L^p(\partial\Omega)}$.

Theorem 8 (M., Poggi, Tolsa)

Let $\Omega \subsetneq \mathbb{R}^{n+1}$, $n \geq 2$ be a domain satisfying the corkscrew condition and with *n*-Ahlfors regular boundary, such that either Ω is bounded, or *∂*Ω is unbounded. Let $p \in (1, \infty)$, p' its Hölder conjugate, and $L = -\operatorname{div} A \nabla$. The following are equivalent.

- (a) $(D_{p'}^L)$ is solvable in Ω .
- (b) $({\rm PD}_{p'}^L)$ is solvable in Ω .
- (c) $(PD_{p'}^L)$ is solvable in Ω for $H \equiv 0$.
- (d) $(\text{PR}_p^{L^*})$ $_p^L$) is solvable in $\Omega.$
- (e) (PR $_{n}^{L^*}$ $p^L \choose p$ is solvable in Ω for $F\equiv 0.1$

When $L = -\Delta$ we proved the 1-sided Rellich inequality for the solution of the continuous Dirichlet problem u_f with boundary data $f \in \text{Lip}_c(\partial \Omega)$:

 $||\partial_{\nu}u||_{L^p(\partial\Omega)} \leq ||f||_{\dot{M}^{1,p}(\partial\Omega)}$

and then used the representation of *u* via the difference of single and the double layer potentials

 $u_f(x) = \mathcal{D}(u|_{\partial\Omega})(x) - \mathcal{S}(\partial_\nu u|_{\partial\Omega})(x)$ for all $x \in \Omega$ *.*

and use the boundedness of the layer potentials.

When $L = -\operatorname{div} A \nabla$ and *A* is DKP matrix, we do NOT have layer potential bounds. We still need a 1-sided Rellich-type inequality but this time it is for the Poisson Dirichlet problem.

 $\langle \partial_{\nu_A} w, \varphi \rangle \lesssim \| \mathscr{C}_2(F) \|_{L^{p'}(\partial \Omega)} \| \varphi \|_{\dot{M}^{1,p}(\partial \Omega)}$.

In both case the important tools are the following:

- a) A Corona decomposition of the domain in bounded Lipschitz domains (with small Lip constant), used in the construction of
- b) A suitable version of Varopoulos extension of *M*¹*,p*(*∂*Ω) functions.

When $L = -\Delta$ we proved the 1-sided Rellich inequality for the solution of the continuous Dirichlet problem u_f with boundary data $f \in \text{Lip}_c(\partial \Omega)$:

 $||\partial_{\nu}u||_{L^p(\partial\Omega)} \leq ||f||_{\dot{M}^{1,p}(\partial\Omega)}$

and then used the representation of *u* via the difference of single and the double layer potentials

 $u_f(x) = \mathcal{D}(u|_{\partial\Omega})(x) - \mathcal{S}(\partial_\nu u|_{\partial\Omega})(x)$ for all $x \in \Omega$ *.*

and use the boundedness of the layer potentials.

When $L = -\operatorname{div} A \nabla$ and A is DKP matrix, we do NOT have layer **potential bounds.** We still need a 1-sided Rellich-type inequality but this time it is for the Poisson Dirichlet problem.

 $\langle \partial_{\nu_A} w, \varphi \rangle \lesssim \| \mathscr{C}_2(F) \|_{L^{p'}(\partial \Omega)} \| \varphi \|_{\dot{M}^{1,p}(\partial \Omega)}$.

In both case the important tools are the following:

- a) A Corona decomposition of the domain in bounded Lipschitz domains (with small Lip constant), used in the construction of
- b) A suitable version of Varopoulos extension of *M*¹*,p*(*∂*Ω) functions.

When $L = -\Delta$ we proved the 1-sided Rellich inequality for the solution of the continuous Dirichlet problem u_f with boundary data $f \in \text{Lip}_c(\partial \Omega)$:

 $||\partial_{\nu}u||_{L^p(\partial\Omega)} \leq ||f||_{\dot{M}^{1,p}(\partial\Omega)}$

and then used the representation of *u* via the difference of single and the double layer potentials

 $u_f(x) = \mathcal{D}(u|_{\partial\Omega})(x) - \mathcal{S}(\partial_\nu u|_{\partial\Omega})(x)$ for all $x \in \Omega$ *.*

and use the boundedness of the layer potentials.

When $L = -\operatorname{div} A \nabla$ and A is DKP matrix, we do NOT have layer potential bounds. We still need a 1-sided Rellich-type inequality but this time it is for the Poisson Dirichlet problem.

 $\langle \partial_{\nu_A} w, \varphi \rangle \lesssim \| \mathscr{C}_2(F) \|_{L^{p'}(\partial \Omega)} \| \varphi \|_{\dot{M}^{1,p}(\partial \Omega)}$.

In both case the important tools are the following:

- a) A Corona decomposition of the domain in bounded Lipschitz domains (with small Lip constant), used in the construction of
- b) A suitable version of Varopoulos extension of *M*¹*,p*(*∂*Ω) functions.

When $L = -\Delta$ we proved the 1-sided Rellich inequality for the solution of the continuous Dirichlet problem u_f with boundary data $f \in \text{Lip}_c(\partial \Omega)$:

 $||\partial_{\nu}u||_{L^p(\partial\Omega)} \leq ||f||_{\dot{M}^{1,p}(\partial\Omega)}$

and then used the representation of *u* via the difference of single and the double layer potentials

 $u_f(x) = \mathcal{D}(u|_{\partial\Omega})(x) - \mathcal{S}(\partial_\nu u|_{\partial\Omega})(x)$ for all $x \in \Omega$ *.*

and use the boundedness of the layer potentials.

When $L = -\operatorname{div} A \nabla$ and A is DKP matrix, we do NOT have layer potential bounds. We still need a 1-sided Rellich-type inequality but this time it is for the Poisson Dirichlet problem.

 $\langle \partial_{\nu_A} w, \varphi \rangle \lesssim \| \mathscr{C}_2(F) \|_{L^{p'}(\partial \Omega)} \| \varphi \|_{\dot{M}^{1,p}(\partial \Omega)}$.

In both case the important tools are the following:

- a) A Corona decomposition of the domain in bounded Lipschitz domains (with small Lip constant), used in the construction of
- b) A suitable version of Varopoulos extension of *M*¹*,p*(*∂*Ω) functions.

Define the bilinear form associated to the equation $L_A w = - \operatorname{div} F$ by

$$
B_A(w, \Phi) = \int_{\Omega} A \nabla w \cdot \nabla \Phi + \int_{\Omega} F \cdot \nabla \Phi,
$$

where $\varphi \in \text{Lip}(\partial \Omega)$ and $\Phi \in \text{Lip}(\overline{\Omega})$ with $\Phi|_{\partial \Omega} = \varphi$. The variational co-normal of *w* is defined by

$$
\langle \partial_{\nu_A} w, \varphi \rangle := \ell_w(\varphi) = B_A(w, \Phi).
$$

Construct an extension *v^ϕ* such that (v) $v_{\phi} \in W^{1,2}(\Omega) \cap C(\overline{\Omega})$ such that $v_{\varphi}|_{\partial \Omega} = \varphi$. $\|\mathcal{N}_2(\nabla v_\varphi)\|_{L^p(\partial\Omega)} \lesssim \|\varphi\|_{W^{1,p}(\partial\Omega)}$ and notice that $\varphi-\Phi\in W^{1,2}_0(\Omega)$ (test function) and so

 $B(w, \Phi) = B(w, \varphi - \Phi) + B(w, v_{\phi}) = B(w, v_{\phi}).$

Define the bilinear form associated to the equation $L_A w = - \operatorname{div} F$ by

$$
B_A(w, \Phi) = \int_{\Omega} A \nabla w \cdot \nabla \Phi + \int_{\Omega} F \cdot \nabla \Phi,
$$

where $\varphi \in \text{Lip}(\partial \Omega)$ and $\Phi \in \text{Lip}(\overline{\Omega})$ with $\Phi|_{\partial \Omega} = \varphi$. The variational co-normal of *w* is defined by

$$
\langle \partial_{\nu_A} w, \varphi \rangle := \ell_w(\varphi) = B_A(w,\Phi).
$$

Construct an extension v_{ϕ} such that (v) $v_{\phi} \in W^{1,2}(\Omega) \cap C(\overline{\Omega})$ such that $v_{\varphi}|_{\partial \Omega} = \varphi$. (\mathbf{ii}) $\|\mathcal{N}_2(\nabla v_{\varphi})\|_{L^p(\partial\Omega)} \lesssim \|\varphi\|_{\dot{W}^{1,p}(\partial\Omega)}$ and notice that $\varphi - \Phi \in W^{1,2}_0(\Omega)$ (test function) and so

$$
B(w, \Phi) = B(w, \varphi - \Phi) + B(w, v_{\phi}) = B(w, v_{\phi}).
$$

$$
\langle \partial_{\nu_A} w, \varphi \rangle = B(w, v_{\phi}) = \int_{\Omega} A \nabla w \cdot \nabla v_{\phi} + \int_{\Omega} F \cdot \nabla v_{\phi} =: I_1 + I_2.
$$

By dualilty,

 $|I_2| \lesssim \|\mathscr{C}(F)\|_{L^{p'}(\partial\Omega)}\|\widetilde{\mathcal{N}}_2(\nabla v_{\varphi}\|_{L^p(\partial\Omega)} \lesssim \|\mathscr{C}(F)\|_{L^{p'}(\partial\Omega)}\|\varphi\|_{\dot{W}^{1,p}(\partial\Omega)}.$ The desired bound for the I_1 term is

 $|I_1| \lesssim \|\widetilde{\mathcal{N}}_{2^*}(w)\|_{L^{p'}(\partial \Omega)}\|\varphi\|_{\dot{W}^{1,p}(\partial \Omega)} \lesssim \|\mathscr{C}(F)\|_{L^{p'}(\partial \Omega)}\|\varphi\|_{\dot{W}^{1,p}(\partial \Omega)}.$

It follows by delicate estimates that are in the same spirit with the ones that M. and Tolsa used to show that the extension in the paper for the Laplacian satisfies

$$
\|\mathscr{C}(\Delta v_{\varphi})\|_{L^{p'}(\partial\Omega)} \lesssim \|\varphi\|_{\dot{W}^{1,p}(\partial\Omega)}.
$$

In other words, it is an estimate

 $\|\mathscr{C}_2(Lv_\varphi)\|_{L^{p'}(\partial\Omega)} \lesssim \|\varphi\|_{\dot{W}^{1,p}(\partial\Omega)}.$

in disguise.

$$
\langle \partial_{\nu_A} w, \varphi \rangle = B(w, v_{\phi}) = \int_{\Omega} A \nabla w \cdot \nabla v_{\phi} + \int_{\Omega} F \cdot \nabla v_{\phi} =: I_1 + I_2.
$$

By dualilty,

$$
|I_2| \lesssim ||\mathscr{C}(F)||_{L^{p'}(\partial\Omega)} ||\widetilde{\mathcal{N}}_2(\nabla v_{\varphi}||_{L^p(\partial\Omega)} \lesssim ||\mathscr{C}(F)||_{L^{p'}(\partial\Omega)} ||\varphi||_{\dot{W}^{1,p}(\partial\Omega)}.
$$

The desired bound for the I_1 term is

$$
|I_1| \lesssim \|\widetilde{\mathcal N}_{2^*}(w)\|_{L^{p'}(\partial\Omega)} \|\varphi\|_{\dot W^{1,p}(\partial\Omega)} \lesssim \|\mathscr C(F)\|_{L^{p'}(\partial\Omega)} \|\varphi\|_{\dot W^{1,p}(\partial\Omega)}.
$$

It follows by delicate estimates that are in the same spirit with the ones that M. and Tolsa used to show that the extension in the paper for the Laplacian satisfies

$$
\|\mathscr{C}(\Delta v_{\varphi})\|_{L^{p'}(\partial\Omega)} \lesssim \|\varphi\|_{\dot{W}^{1,p}(\partial\Omega)}.
$$

In other words, it is an estimate

 $\|\mathscr{C}_2(Lv_\varphi)\|_{L^{p'}(\partial\Omega)} \lesssim \|\varphi\|_{\dot{W}^{1,p}(\partial\Omega)}.$

in disguise.

$$
\langle \partial_{\nu_A} w, \varphi \rangle = B(w, v_{\phi}) = \int_{\Omega} A \nabla w \cdot \nabla v_{\phi} + \int_{\Omega} F \cdot \nabla v_{\phi} =: I_1 + I_2.
$$

By dualilty,

$$
|I_2| \lesssim ||\mathscr{C}(F)||_{L^{p'}(\partial\Omega)} ||\widetilde{\mathcal{N}}_2(\nabla v_{\varphi}||_{L^p(\partial\Omega)} \lesssim ||\mathscr{C}(F)||_{L^{p'}(\partial\Omega)} ||\varphi||_{\dot{W}^{1,p}(\partial\Omega)}.
$$

The desired bound for the I_1 term is

$$
|I_1| \lesssim \|\widetilde{\mathcal N}_{2^*}(w)\|_{L^{p'}(\partial\Omega)} \|\varphi\|_{\dot W^{1,p}(\partial\Omega)} \lesssim \|\mathscr C(F)\|_{L^{p'}(\partial\Omega)} \|\varphi\|_{\dot W^{1,p}(\partial\Omega)}.
$$

It follows by delicate estimates that are in the same spirit with the ones that M. and Tolsa used to show that the extension in the paper for the Laplacian satisfies

$$
\|\mathscr{C}(\Delta v_{\varphi})\|_{L^{p'}(\partial\Omega)}\lesssim \|\varphi\|_{\dot{W}^{1,p}(\partial\Omega)}.
$$

In other words, it is an estimate

$$
\|\mathscr{C}_2(Lv_\varphi)\|_{L^{p'}(\partial\Omega)}\lesssim \|\varphi\|_{\dot{W}^{1,p}(\partial\Omega)}.
$$

in disguise.

 G iven a ball $B \subset \mathbb{R}^{n+1}$ centered in $\partial\Omega$ and an affine map $A: \mathbb{R}^{n+1} \to \mathbb{R}$, we consider the coefficient

$$
\gamma_f(B):=\inf_A \left(|\nabla A|+\frac{1}{\sigma(B)}\int_B\frac{|f-A|}{r(B)}\,d\sigma\right),
$$

where the infimum is taken over all affine maps $A:\mathbb{R}^{n+1}\rightarrow\mathbb{R}.$ Denote by A_B the minimizer. For every ball *B* centered in $\partial\Omega$ with $r(B) \leq \text{diam}(\Omega)$,

$$
|\nabla A_B| \lesssim m_{B,\sigma}(\nabla_{H,p}f) := \sigma(B)^{-1} \int_B |\nabla_{H,p}f| \, d\sigma. \tag{1}
$$

If *B, B*′ are balls centered in *∂*Ω such that *B* ⊂ *B*′ with $r(B) \approx r(B') \leq \text{diam}(\Omega)$, then

> $|A_B(x) - A_{B'}(x)| \lesssim m_{B',\sigma}(\nabla_{H,p}f)(r(B) + \text{dist}(x, B))$ *.* (2)

 G iven a ball $B \subset \mathbb{R}^{n+1}$ centered in $\partial\Omega$ and an affine map $A: \mathbb{R}^{n+1} \to \mathbb{R}$, we consider the coefficient

$$
\gamma_f(B):=\inf_A \left(|\nabla A|+\frac{1}{\sigma(B)}\int_B\frac{|f-A|}{r(B)}\,d\sigma\right),
$$

where the infimum is taken over all affine maps $A:\mathbb{R}^{n+1}\rightarrow\mathbb{R}.$ Denote by A_B the minimizer.

For every ball *B* centered in $\partial\Omega$ with $r(B) \leq \text{diam}(\Omega)$,

$$
|\nabla A_B| \lesssim m_{B,\sigma}(\nabla_{H,p}f) := \sigma(B)^{-1} \int_B |\nabla_{H,p}f| \, d\sigma. \tag{1}
$$

If *B, B*′ are balls centered in *∂*Ω such that *B* ⊂ *B*′ with $r(B) \approx r(B') \leq \text{diam}(\Omega)$, then

> $|A_B(x) - A_{B'}(x)| \lesssim m_{B',\sigma}(\nabla_{H,p}f)(r(B) + \text{dist}(x, B))$ *.* (2)

 G iven a ball $B \subset \mathbb{R}^{n+1}$ centered in $\partial\Omega$ and an affine map $A: \mathbb{R}^{n+1} \to \mathbb{R}$, we consider the coefficient

$$
\gamma_f(B):=\inf_A \left(|\nabla A|+\frac{1}{\sigma(B)}\int_B\frac{|f-A|}{r(B)}\,d\sigma\right),
$$

where the infimum is taken over all affine maps $A:\mathbb{R}^{n+1}\rightarrow\mathbb{R}.$ Denote by A_B the minimizer. For every ball *B* centered in $\partial\Omega$ with $r(B) \leq \text{diam}(\Omega)$,

$$
|\nabla A_B| \lesssim m_{B,\sigma}(\nabla_{H,p}f) := \sigma(B)^{-1} \int_B |\nabla_{H,p}f| \, d\sigma. \tag{1}
$$

If *B, B*′ are balls centered in *∂*Ω such that *B* ⊂ *B*′ with $r(B) \approx r(B') \leq \text{diam}(\Omega)$, then

> $|A_B(x) - A_{B'}(x)| \lesssim m_{B',\sigma}(\nabla_{H,p}f)(r(B) + \text{dist}(x, B))$ *.* (2)

 G iven a ball $B \subset \mathbb{R}^{n+1}$ centered in $\partial\Omega$ and an affine map $A: \mathbb{R}^{n+1} \to \mathbb{R}$, we consider the coefficient

$$
\gamma_f(B):=\inf_A \left(|\nabla A|+\frac{1}{\sigma(B)}\int_B\frac{|f-A|}{r(B)}\,d\sigma\right),
$$

where the infimum is taken over all affine maps $A:\mathbb{R}^{n+1}\rightarrow\mathbb{R}.$ Denote by A_B the minimizer. For every ball *B* centered in $\partial\Omega$ with $r(B) \leq \text{diam}(\Omega)$,

$$
|\nabla A_B| \lesssim m_{B,\sigma}(\nabla_{H,p}f) := \sigma(B)^{-1} \int_B |\nabla_{H,p}f| \, d\sigma. \tag{1}
$$

If B, B' are balls centered in $\partial\Omega$ such that $B \subset B'$ with $r(B) \approx r(B') \leq \text{diam}(\Omega)$, then

$$
|A_B(x) - A_{B'}(x)| \lesssim m_{B',\sigma}(\nabla_{H,p}f)\left(r(B) + \text{dist}(x,B)\right). \tag{2}
$$

If *φ^P* is a partition of unity subordinate to the Whitney decomposition of Ω in dyadic cubes $P \in \mathcal{W}(\Omega)$, then we define

$$
F(x) = \sum_{P \in \mathcal{W}(\Omega)} \varphi_P(x) A_P(x), \quad \text{if } x \in \Omega
$$

and $F = f$ on $\partial\Omega$.

We can show that:

- (i) $F \in \text{Lip}(\overline{\Omega})$ with $\text{Lip}(F) \lesssim \text{Lip}(f)$.
- (ii) If P_0 is a Whitney cube in Ω and $b(P_0)$ the associated boundary cube s.t. $\ell(B(P_0)) \approx \ell(P_0)$ and $dist(P_0, \partial \Omega) \approx dist(P_0, b(P_0))$, then

 $|\nabla F(x)| \lesssim m_{CB_b(P_0),\sigma}(\nabla_{H,p}f)$ for al $x \in P_0$.

If *φ^P* is a partition of unity subordinate to the Whitney decomposition of Ω in dyadic cubes $P \in \mathcal{W}(\Omega)$, then we define

$$
F(x) = \sum_{P \in \mathcal{W}(\Omega)} \varphi_P(x) A_P(x), \quad \text{if } x \in \Omega
$$

and $F = f$ on $\partial \Omega$.

We can show that:

- (i) $F \in \text{Lip}(\overline{\Omega})$ with $\text{Lip}(F) \leq \text{Lip}(f)$.
- (ii) If P_0 is a Whitney cube in Ω and $b(P_0)$ the associated boundary cube s.t. $\ell(B(P_0)) \approx \ell(P_0)$ and $dist(P_0, \partial \Omega) \approx dist(P_0, b(P_0))$, then

 $|\nabla F(x)| \lesssim m_{CB_b(p_1),\sigma}(\nabla_{H,p}f)$ for al $x \in P_0$.

If *φ^P* is a partition of unity subordinate to the Whitney decomposition of Ω in dyadic cubes $P \in \mathcal{W}(\Omega)$, then we define

$$
F(x) = \sum_{P \in \mathcal{W}(\Omega)} \varphi_P(x) A_P(x), \quad \text{if } x \in \Omega
$$

and $F = f$ on $\partial \Omega$.

We can show that:

- (i) $F \in \text{Lip}(\overline{\Omega})$ with $\text{Lip}(F) \leq \text{Lip}(f)$.
- (ii) If P_0 is a Whitney cube in Ω and $b(P_0)$ the associated boundary cube s.t. $\ell(B(P_0)) \approx \ell(P_0)$ and $dist(P_0, \partial \Omega) \approx dist(P_0, b(P_0))$, then

$$
|\nabla F(x)|\lesssim m_{CB_{b(P_0)},\sigma}(\nabla_{H,p}f)\quad\text{for al }x\in P_0.
$$

Corona decomposition of Ω

 $\Omega = \bigcup \Omega_R \cup H$ *R*∈Top

where

(i) Ω_R is a starlike Lipschitz domain, with sufficiently small constant in which *A* is a DKP operator with sufficiently small constant.

(ii)
$$
\overline{\Omega}_R \cap \overline{\Omega}_{R'} = \emptyset,
$$

- (iii) for \mathcal{H}^n -a.e. $x \in \partial \Omega$, there exists a unique Ω_R such that $x \in \partial \Omega_R$,
- (iv) Top has Carleson paacking condition, i.e., for every $S \in \mathcal{D}_{\sigma}$,

$$
\sum_{R\in \mathsf{Top}: R\subset S}\sigma(R)\leq C\sigma(S)
$$

$$
\sum_{P \in \mathcal{W}(\Omega) \cap H : b(P) \subset S} \sigma(b(P)) \leq C\sigma(S)
$$

Corona decomposition of Ω

$$
\Omega = \bigcup_{R \in \mathsf{Top}} \Omega_R \cup H
$$

where

(i) Ω_R is a starlike Lipschitz domain, with sufficiently small constant in which *A* is a DKP operator with sufficiently small constant.

(ii)
$$
\overline{\Omega}_R \cap \overline{\Omega}_{R'} = \emptyset,
$$

- (iii) for \mathcal{H}^n -a.e. $x \in \partial \Omega$, there exists a unique Ω_R such that $x \in \partial \Omega_R$,
- (iv) Top has Carleson paacking condition, i.e., for every $S \in \mathcal{D}_{\sigma}$,

$$
\sum_{R\in \mathsf{Top}: R\subset S}\sigma(R)\leq C\sigma(S)
$$

$$
\sum_{P \in \mathcal{W}(\Omega) \cap H : b(P) \subset S} \sigma(b(P)) \leq C\sigma(S)
$$

Corona decomposition of Ω

$$
\Omega = \bigcup_{R \in \mathsf{Top}} \Omega_R \cup H
$$

where

(i) Ω_R is a starlike Lipschitz domain, with sufficiently small constant in which *A* is a DKP operator with sufficiently small constant.

(ii)
$$
\overline{\Omega}_R \cap \overline{\Omega}_{R'} = \emptyset
$$
,

- (iii) for \mathcal{H}^n -a.e. $x \in \partial \Omega$, there exists a unique Ω_R such that $x \in \partial \Omega_R$,
- (iv) Top has Carleson paacking condition, i.e., for every $S \in \mathcal{D}_{\sigma}$,

$$
\sum_{R\in \mathsf{Top}: R\subset S}\sigma(R)\leq C\sigma(S)
$$

$$
\sum_{P \in \mathcal{W}(\Omega) \cap H : b(P) \subset S} \sigma(b(P)) \leq C\sigma(S)
$$

Corona decomposition of Ω

$$
\Omega = \bigcup_{R \in \mathsf{Top}} \Omega_R \cup H
$$

where

(i) Ω_R is a starlike Lipschitz domain, with sufficiently small constant in which *A* is a DKP operator with sufficiently small constant.

(ii)
$$
\overline{\Omega}_R \cap \overline{\Omega}_{R'} = \emptyset,
$$

- (iii) for \mathcal{H}^n -a.e. $x \in \partial\Omega$, there exists a unique Ω_R such that $x \in \partial\Omega_R$,
- (iv) Top has Carleson paacking condition, i.e., for every $S \in \mathcal{D}_{\sigma}$,

$$
\sum_{R \in \mathsf{Top}: R \subset S} \sigma(R) \leq C \sigma(S)
$$

$$
\sum_{P \in \mathcal{W}(\Omega) \cap H : b(P) \subset S} \sigma(b(P)) \leq C\sigma(S)
$$

Corona decomposition of Ω

$$
\Omega = \bigcup_{R \in \mathsf{Top}} \Omega_R \cup H
$$

where

(i) Ω_R is a starlike Lipschitz domain, with sufficiently small constant in which *A* is a DKP operator with sufficiently small constant.

$$
(ii) \ \overline{\Omega}_R \cap \overline{\Omega}_{R'} = \emptyset,
$$

- (iii) for \mathcal{H}^n -a.e. $x \in \partial \Omega$, there exists a unique Ω_R such that $x \in \partial \Omega_R$,
- (iv) Top has Carleson paacking condition, i.e., for every $S \in \mathcal{D}_{\sigma}$,

$$
\sum_{R \in \mathsf{Top}: R \subset S} \sigma(R) \leq C \sigma(S)
$$

$$
\sum_{P \in \mathcal{W}(\Omega) \cap H : b(P) \subset S} \sigma(b(P)) \leq C\sigma(S)
$$

Solve (R_p) in each starlike Lipschitz domain Ω_i with boundary data $f_j := F|_{\partial \Omega_j} \in \mathrm{Lip}(\partial \Omega_j)$ producing u_{f_j} extensions to Ω_j such that $Lu_{f_i} = 0$ in Ω_i and, for any $q \in (1, \infty)$,

$$
\|\widetilde{\mathcal{N}}_{2,\Omega_j}(\nabla u_{f_j})\|_{L^q(\partial\Omega_j)} \lesssim \|\nabla_t f_j\|_{L^q(\partial\Omega_j)}.
$$

The DESIRED EXTENSION is

$$
v(x) = \begin{cases} u_{f_j}(x) & \text{, if } x \in \Omega_j \text{ for some } j \ge 1\\ F(x) & \text{, if } x \in H. \end{cases}
$$

Solve (R_p) in each starlike Lipschitz domain Ω_i with boundary data $f_j := F|_{\partial \Omega_j} \in \mathrm{Lip}(\partial \Omega_j)$ producing u_{f_j} extensions to Ω_j such that $Lu_{f_i} = 0$ in Ω_i and, for any $q \in (1, \infty)$,

$$
\|\widetilde{\mathcal{N}}_{2,\Omega_j}(\nabla u_{f_j})\|_{L^q(\partial\Omega_j)} \lesssim \|\nabla_t f_j\|_{L^q(\partial\Omega_j)}.
$$

The DESIRED EXTENSION is

$$
v(x) = \begin{cases} u_{f_j}(x) & \text{, if } x \in \Omega_j \text{ for some } j \ge 1\\ F(x) & \text{, if } x \in H. \end{cases}
$$

If $\Omega \subset \mathbb{R}^{n+1}$ is a corkscrew domain with *n*-Ahlfors regular boundary, the following holds:

Theorem 9 (M.-Zacharopoulos)

- If $f \in \operatorname{Lip}_c(\partial \Omega)$, there exists a function $F:\overline{\Omega}\to\mathbb{R}$ such that (i) $F \in C^{\infty}(\Omega) \cap \text{Lip}(\overline{\Omega})$,
- $\|W\|_{L^p(\partial\Omega)} \lesssim \|f\|_{L^p(\partial\Omega)}$ and $\|N(F)\|_{L^p(\partial\Omega)} \lesssim \|f\|_{L^p(\partial\Omega)}$, for $p \in (1, \infty]$.

(iii) $F|_{\partial\Omega} = f$ continuously.

Thank you for your attention!