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The Dirichlet problem for continuous data

Fix g ∈ Cc(∂Ω). The (continuous) Dirichlet problem for the Laplacian on
Ω with boundary data g is to find u ∈ C2(Ω) ∩ C(Ω) such that{

−∆u = 0, in Ω,
u = g, on ∂Ω.

If Ω and its boundary are sufficiently nice, then this problem is always
solvable for any g ∈ Cc(∂Ω) (exact characterization by [Wiener 1924]).
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Classical and contemporary considerations

Classical: Smooth data g and boundary ∂Ω

Contemporary: Singular, rough data g and boundary ∂Ω

Kind offer of Bruno Poggi.
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Generalizing Dirichlet problem to singular data

Let Ω ⊂ Rn+1, g ∈ Lp(σ),
σ = Hn|∂Ω the surface measure.

How do we understand u = g on ∂Ω when g is singular?

Non-tangential convergence. We say

u −→ g non-tangentially ,

if
lim

γ(ξ)∋x→ξ
u(x) = g(ξ), for σ − a.e. ξ ∈ ∂Ω,

where
γ(ξ) := {x ∈ Ω : |x − ξ| < 2 dist(x, ∂Ω)}.
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A singular analogue of the maximum principle

Let Ω ⊂ Rn+1, g ∈ Lp(σ), σ the
surface measure.

γ(ξ) := {x ∈ Ω : |x − ξ| < 2 dist(x, ∂Ω)}.

The non-tangential maximal function.

(N u)(ξ) := sup
x∈γ(ξ)

|u(x)|, ξ ∈ ∂Ω,

∥N u∥Lp(∂Ω,σ) ≤ C∥g∥Lp(∂Ω,σ),
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The Lp-Dirichlet problem for ellitic PDEs

L = − div A∇

A satisfies ellipticity assumptions

λ|ξ|2 ≤
n∑

i,j=1
Aij(x)ξiξj , ∥A∥L∞(Ω) ≤ 1

λ
, x ∈ Ω, ξ ∈ Rn.

We say that (DL
p′) is solvable if there exists C > 0 such that for each

g ∈ Cc(∂Ω), there exists a solution to the problem{
Lu = 0, in Ω,
u = g, on ∂Ω,

with
∥N (u)∥Lp′ (∂Ω,σ) ≤ C∥g∥Lp′ (∂Ω,σ).
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Lp-Regularity problem, i.e., the Dirichlet problem with
data in the Sobolev space Ẇ 1,p

For x ∈ Ω, define

mq(F )(x) :=
(

−
∫

Bx

|F (y)|q dy

)1/q

, where Bx := B(x, δ(x)/4).

The Kenig-Pipher modified non-tangential maximal function is defined

Ñq(u)(ξ) := N (mq(u))(ξ), ξ ∈ ∂Ω.

Let p > 1, L = − div A∇, A a strongly elliptic, bounded matrix. We say
that (RL

p ) is solvable if there exists C > 0 such that for each
f ∈ Lipc(∂Ω), there exists a solution to the problem{

Lu = 0, in Ω,
u = f, on ∂Ω,

with
∥Ñ2(∇u)∥Lp(∂Ω) ≤ C∥f∥Ẇ 1,p(∂Ω).
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Solvability of Regularity problem in Lp for ∆

1978 C1 domains: Fabes, Jodeit, and Rivière showed that the regularity
problem is solvable in Lp for all p ∈ (1, ∞).

1981 Lipschitz domains: Jerison and Kenig proved L2 solvability of the
Regularity problem using the so-called “Rellich inequality"
∥∂νu∥L2(∂Ω) ≈ ∥∇tu∥L2(∂Ω).

1984 Lipschitz domains: Verchota showed Lp-solvability of the regularity
problem for 1 < p ≤ 2 by showing invertibility of the single layer
potentials.

1987 Lipschitz domains: Dahlberg and Kenig showed Lp-solvability of the
regularity problem for 1 < p < 2 + ε. Invertibility of layer potentials
at the endpoint spaces as well (Hardy and BMO).

2010 ε-regular SKT domains: Hofmann, Mitrea, and Taylor showed for
each fixed p, there exists ε such that the regularity problem in Lp is
solvable.
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Question of C. E. Kenig in 1991

Question 1
If Ω ⊂ Rn+1 is a chord-arc domain with connected boundary, is there
p > 1 such that the regularity problem is solvable for the Laplacian?
Chord-arc domains:

– ∂Ω is n-Ahlfors regular, i.e., σ(B(ξ, r)) ≈ rn, for every ξ ∈ ∂Ω and
r ∈ (0, 2 diam ∂Ω).

– Ω and Rn+1 \ Ω have the corkscrew condition (quantitative,
scale-invariant openness condition).

– Ω has the Harnack-chain condition (quantitative, scale-invariant
connectivity condition).

Mihalis Mourgoglou Varopoulos extensions and Applications to BVPs in rough domains



10

Question of C. E. Kenig was solved in greater generality.

Theorem 2 (M.-Tolsa (2021))
Let Ω ⊂ Rn+1, n ≥ 2, be a bounded corkscrew domain with n-Ahlfors
regular boundary. Then

Solvability of (D∆
p′) on Ω

implies
Solvability of (R∆

p ) on Ω,

where 1
p + 1

p′ = 1, p > 1. We use uniform rectifiability.

Theorem 3 (M.-Tolsa (2021))
Let Ω ⊂ Rn+1, n ≥ 2, be a corkscrew domain with n-Ahlfors regular
boundary. Then, for every uniformly elliptic operator L = − div A∇,

Solvability of (RL
p ) on Ω

implies
Solvability of (DL

p′).
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The Hajłasz Sobolev Space Ṁ 1,p(Σ)

Let (Σ, σ) be a doubling metric space. For f : Σ → R, say
0 ≤ g : Σ → R is a Hajłasz upper gradient of f (g ∈ D(f)) if

|f(x) − f(y)| ≤ |x − y|(g(x) + g(y)), for σ − a.e. x, y ∈ Σ.

Ṁ1,p(Σ) := {f : f has a Hajłasz upper gradient in Lp(Σ)}.

∥f∥Ṁ1,p(Σ) := inf
g∈D(f)

∥g∥Lp(Σ).

Denote ∇H,pf the function g that attains the infimum.

If Σ := ∂Ω satisfies the weak-(1, p)-Poincaré inequality, then

∥f∥Ẇ 1,p(∂Ω) ≈ ∥∇tf∥Lp(∂Ω), for each f ∈ Lip(∂Ω).
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Carleson measures

A signed Radon measure ν on Ω is a Carleson measure if there exists
C > 0 so that for any ξ ∈ ∂Ω and r > 0, we have that

∥C (ν)∥L∞(∂Ω) ≤ C.

We let ∥ν∥C be the best possible constant C in the inequality above.
Carleson’s Theorem [Carleson, 1958]: If Ω = Rn+1

+ , then for all
w ∈ L∞

loc(Ω), ∫
Ω

|w| dν ≲ ∥ν∥C ∥N (w)∥L1(∂Ω).

So there is some L1 − L∞ duality between N and C .

Question 4
What would be the correct duality if we need to control ∥Ñq(w)∥Lp(∂Ω),
q, p > 1?
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Generalizing Carleson’s Theorem

If dµ = H dm, 0 ≤ H ∈ L1
loc(Ω), m the Lebesgue measure on Ω, then

we define
C (H)(ξ) := sup

r>0

1
rn

∫
B(ξ,r)∩Ω

H dm.

The N -C duality for p > 1 has been studied in Rn+1
+ in

[Coifman-Meyer-Stein, 1985], [Álvarez-Milman, 1987], and
[Hytönen-Rosén, 2013].

Let q ≥ 1 and q′ its Hölder conjugate. Define the q′−Carleson function
of H : Ω → Rn, H ∈ Lq′

loc(Ω) by

Cq′(H)(ξ) := sup
r>0

1
rn

∫
B(ξ,r)∩Ω

(
−
∫

B(x,δ(x)/4)
|H(y)|q

′
dy

) 1
q′

dx, ξ ∈ ∂Ω.
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Duality between N and C

Ñq(w)(ξ) := sup
x∈γ(ξ)

(
−
∫

B(x,δ(x)/4)
|w(y)|q dy

)1/q

, ξ ∈ ∂Ω.

Cq′(H)(ξ) := sup
r>0

1
rn

∫
B(ξ,r)∩Ω

(
−
∫

B(x,δ(x)/4)
|H(y)|q

′
dy

) 1
q′

dx, ξ ∈ ∂Ω.

Theorem 5 (Hytönen-Rosén (Rn+1
+ ), M.-Poggi-Tolsa)

Let n ≥ 1, Ω ⊂ Rn+1 is a corkscrew domain with n-Ahlfors regular
boundary. Suppose that either Ω is bounded, or that ∂Ω is unbounded.
Let p, q ∈ (1, ∞) and p′, q′ their Hölder conjugates. Then∫

Ω
|wH| dm ≲ ∥Cq′(H)∥Lp′ (∂Ω)∥Ñq(w)∥Lp(∂Ω), w ∈ Lq

loc(Ω), H ∈ Lq′

loc(Ω),

∥Ñq(w)∥Lp(∂Ω) ≲ sup
H:∥Cq′ (H)∥

Lp′ (∂Ω)=1

∣∣∣ ∫
Ω

Hw dm
∣∣∣, w ∈ Lq

loc(Ω),
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Let p > 1, L = − div A∇, A a strongly elliptic, bounded matrix. We say
that (RL

p ) is solvable if there exists C > 0 such that for each
f ∈ Lip(∂Ω), there exists a solution to the problem{

Lu = 0, in Ω,
u = f, on ∂Ω,

with
∥Ñ2(∇u)∥Lp(∂Ω) ≤ C∥f∥Ṁ1,p(∂Ω).

Recall δ = dist(·, ∂Ω). A is a DKP matrix if

sup
y∈B(x,δ(x)/2)

(
|∇A(y)|2δ(y)

)
dx is a Carleson measure.

(Dp′) studied for DKP operators in [Kenig-Pipher, 2001].
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The connections between (Dp′) and (Rp) for
L = − div A∇ on rough domains

[Dindoš-Pipher-Rule, 2017]:(DL∗

p′ ) =⇒ (RL
p ) if δ|∇A|2 is Carleson

measure with small norm, and Ω is a bounded Lipschitz domain with
small Lipschitz constant.
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(DL∗

p′ ) =⇒ (RL
p ) for DKP matrices on domains with unif.

rect. boundaries

Recall δ = dist(·, ∂Ω). A is a DKP matrix if

sup
y∈B(x,δ(x)/2)

(
|∇A(y)|2δ(y)

)
dx is a Carleson measure.

Theorem 6 (M.-Poggi-Tolsa, 2022)
Let Ω ⊂ Rn+1, n ≥ 2, be a bounded Corkscrew domain with uniformly
n-rectifiable boundary. Let L = − div A∇, where A is strongly elliptic,
bounded, DKP matrix. Then

Solvability of (DL∗

p′ ) on Ω
implies

Solvability of (RL
p ) on Ω,

where 1
p + 1

p′ = 1, p > 1, and L∗ = − div A∗∇.
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Related results

The problem was open even in the
Simultaneously and independently, M. Dindos, S. Hofmann, and J.
Pipher showed the same result in Lipschitz graph domains using a
different method (which cannot be generalized to more general
domains).
J. Feneuil recently gave an alternative (and simpler) proof of [DHP]
slightly improving the assumption on the matrix (weak-DKP
condition).
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First reduction

To solve (RL
p ) with data f ∈ Lipc(∂Ω), we first let u be the solution of

the continuous Dirichlet problem for L with data f . Recall that

∥Ñ2(∇u)∥Lp(∂Ω) ≲ sup
F :∥C2(F )∥

Lp′ (∂Ω)=1

∣∣∣ ∫
Ω

∇u · F dm
∣∣∣, ∇u ∈ L2

loc(Ω),

If there exists a function v ∈ W 1,2
0 (Ω) such that L∗v = − div F (weakly)

then ∫
Ω

∇u · F =
∫

Ω
∇u A∗∇v − ⟨∂νA∗ v, f⟩ = −⟨∂νA∗ v, f⟩.

For the moment, consider ∂νA
u = ν · A∇u (eventually it will be the

variational co-normal).
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Lp′-solvability of the Poisson problem
Let n ≥ 2, Ω ⊂ Rn+1 be a Corkscrew domain with n-Ahlfors regular
boundary. Let p > 1, p′ its Hölder conjugate, and L = − div A∇, A

elliptic, bounded. Write 2∗ := 2(n+1)
n−1 , 2∗ = (2∗)′ = 2(n+1)

n+3 . Recall
δ = dist(·, ∂Ω).
Theorem 7 (M.-Poggi-Tolsa)
Assume that (DL

p′) holds in Ω. Then for any H, F ∈ L∞
c (Ω), the weak

solution w ∈ Y 1,2
0 (Ω) to the problem{

− div A∇w = H − div F, in Ω,
w = 0, on ∂Ω.

satisfies the estimate

∥Ñ2∗(w)∥Lp′ (∂Ω) ≲ ∥C2∗(δH)∥Lp′ (∂Ω) + ∥C2(F )∥Lp′ (∂Ω).

Moreover, if A is a DKP matrix, Ω is bounded and H = 0, then for any
φ ∈ Ṁ1,p(∂Ω),

⟨∂νA
w, φ⟩ ≲ ∥C2(F )∥Lp′ (∂Ω)∥φ∥Ṁ1,p(∂Ω).
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w = 0, on ∂Ω.

satisfies the estimate

∥Ñ2∗(w)∥Lp′ (∂Ω) ≲ ∥C2∗(δH)∥Lp′ (∂Ω) + ∥C2(F )∥Lp′ (∂Ω).

Moreover, if A is a DKP matrix, Ω is bounded and H = 0, then for any
φ ∈ Ṁ1,p(∂Ω),

⟨∂νA
w, φ⟩ ≲ ∥C2(F )∥Lp′ (∂Ω)∥φ∥Ṁ1,p(∂Ω).
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The “Poisson-Dirichlet” and “Poisson-regularity” problems
We say that (PDL

p′) is solvable if there exists C > 0 so that for each
F, H ∈ L∞

c (Ω), the unique weak solution w ∈ Y 1,2
0 (Ω) to{

− div A∇w = − div F + H, in Ω,
w = 0, on ∂Ω.

satisfies the estimate

∥Ñ2∗(w)∥Lp′ (∂Ω) ≤ C∥C2(F )∥Lp′ (∂Ω) + ∥C2∗(δ H)∥Lp(∂Ω).

We say that (PRL
p ) is solvable if there exists C > 0 so that for each

F, H ∈ L∞
c (Ω), the unique weak solution v ∈ Y 1,2

0 (Ω) to{
− div A∇v = − div F + H, in Ω,
v = 0, on ∂Ω.

satisfies the estimate

∥Ñ2(∇v)∥Lp(∂Ω) ≤ C∥C2(F/δ)∥Lp′ (∂Ω) + ∥C2∗(H)∥Lp(∂Ω).

Mihalis Mourgoglou Varopoulos extensions and Applications to BVPs in rough domains



21

The “Poisson-Dirichlet” and “Poisson-regularity” problems
We say that (PDL

p′) is solvable if there exists C > 0 so that for each
F, H ∈ L∞

c (Ω), the unique weak solution w ∈ Y 1,2
0 (Ω) to{

− div A∇w = − div F + H, in Ω,
w = 0, on ∂Ω.

satisfies the estimate
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Characterizations of (DL
p′)

Theorem 8 (M., Poggi, Tolsa)
Let Ω ⊊ Rn+1, n ≥ 2 be a domain satisfying the corkscrew condition and
with n-Ahlfors regular boundary, such that either Ω is bounded, or ∂Ω is
unbounded. Let p ∈ (1, ∞), p′ its Hölder conjugate, and L = − div A∇.
The following are equivalent.
(a) (DL

p′) is solvable in Ω.
(b) (PDL

p′) is solvable in Ω.
(c) (PDL

p′) is solvable in Ω for H ≡ 0.

(d) (PRL∗

p ) is solvable in Ω.

(e) (PRL∗

p ) is solvable in Ω for F ≡ 0.
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Comparison with the case that L is the Laplacian
When L = −∆ we proved the 1-sided Rellich inequality for the solution of
the continuous Dirichlet problem uf with boundary data f ∈ Lipc(∂Ω):

∥∂νu∥Lp(∂Ω) ≲ ∥f∥Ṁ1,p(∂Ω)

and then used the representation of u via the difference of single and the
double layer potentials

uf (x) = D(u|∂Ω)(x) − S(∂νu|∂Ω)(x) for all x ∈ Ω.

and use the boundedness of the layer potentials.
When L = − div A∇ and A is DKP matrix, we do NOT have layer
potential bounds. We still need a 1-sided Rellich-type inequality but this
time it is for the Poisson Dirichlet problem.

⟨∂νA
w, φ⟩ ≲ ∥C2(F )∥Lp′ (∂Ω)∥φ∥Ṁ1,p(∂Ω).

In both case the important tools are the following:
a) A Corona decomposition of the domain in bounded Lipschitz

domains (with small Lip constant), used in the construction of
b) A suitable version of Varopoulos extension of M1,p(∂Ω) functions.
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Reduction to the construction of the extension

Define the bilinear form associated to the equation LAw = − div F by

BA(w, Φ) =
∫

Ω
A∇w · ∇Φ +

∫
Ω

F · ∇Φ,

where φ ∈ Lip(∂Ω) and Φ ∈ Lip(Ω) with Φ|∂Ω = φ. The variational
co-normal of w is defined by

⟨∂νA
w, φ⟩ := ℓw(φ) = BA(w, Φ).

Construct an extension vϕ such that
(i) vϕ ∈ W 1,2(Ω) ∩ C(Ω) such that vφ|∂Ω = φ.
(ii) ∥N2(∇vφ)∥Lp(∂Ω) ≲ ∥φ∥Ẇ 1,p(∂Ω)

and notice that φ − Φ ∈ W 1,2
0 (Ω) (test function) and so

B(w, Φ) = B(w, φ − Φ) + B(w, vϕ) = B(w, vϕ).
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Reduction to the construction of the extension

⟨∂νA
w, φ⟩ = B(w, vϕ) =

∫
Ω

A∇w · ∇vϕ +
∫

Ω
F · ∇vϕ =: I1 + I2.

By dualilty,

|I2| ≲ ∥C (F )∥Lp′ (∂Ω)∥Ñ2(∇vφ∥Lp(∂Ω) ≲ ∥C (F )∥Lp′ (∂Ω)∥φ∥Ẇ 1,p(∂Ω).

The desired bound for the I1 term is

|I1| ≲ ∥Ñ2∗(w)∥Lp′ (∂Ω)∥φ∥Ẇ 1,p(∂Ω) ≲ ∥C (F )∥Lp′ (∂Ω)∥φ∥Ẇ 1,p(∂Ω).

It follows by delicate estimates that are in the same spirit with the ones
that M. and Tolsa used to show that the extension in the paper for the
Laplacian satisfies

∥C (∆vφ)∥Lp′ (∂Ω) ≲ ∥φ∥Ẇ 1,p(∂Ω).

In other words, it is an estimate

∥C2(Lvφ)∥Lp′ (∂Ω) ≲ ∥φ∥Ẇ 1,p(∂Ω).

in disguise.
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In other words, it is an estimate

∥C2(Lvφ)∥Lp′ (∂Ω) ≲ ∥φ∥Ẇ 1,p(∂Ω).
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in disguise.
Mihalis Mourgoglou Varopoulos extensions and Applications to BVPs in rough domains



26

Construction of the auxiliary extension

Given a ball B ⊂ Rn+1 centered in ∂Ω and an affine map A : Rn+1 → R,
we consider the coefficient

γf (B) := inf
A

(
|∇A| + 1

σ(B)

∫
B

|f − A|
r(B) dσ

)
,

where the infimum is taken over all affine maps A : Rn+1 → R.
Denote by AB the minimizer.
For every ball B centered in ∂Ω with r(B) ≤ diam(Ω),

|∇AB | ≲ mB,σ(∇H,pf) := σ(B)−1
∫

B

|∇H,pf)| dσ. (1)

If B, B′ are balls centered in ∂Ω such that B ⊂ B′ with
r(B) ≈ r(B′) ≤ diam(Ω), then

|AB(x) − AB′(x)| ≲ mB′,σ(∇H,pf)
(
r(B) + dist(x, B)

)
. (2)
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Construction of the auxiliary extension

If φP is a partition of unity subordinate to the Whitney decomposition of
Ω in dyadic cubes P ∈ W(Ω), then we define

F (x) =
∑

P ∈W(Ω)

φP (x)AP (x), if x ∈ Ω

and F = f on ∂Ω.

We can show that:
(i) F ∈ Lip(Ω) with Lip(F ) ≲ Lip(f).
(ii) If P0 is a Whitney cube in Ω and b(P0) the associated boundary cube

s.t. ℓ(B(P0)) ≈ ℓ(P0) and dist(P0, ∂Ω) ≈ dist(P0, b(P0)), then

|∇F (x)| ≲ mCBb(P0),σ(∇H,pf) for al x ∈ P0.
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Corona decomposition of Ω

Ω =
⋃

R∈Top
ΩR ∪ H

where
(i) ΩR is a starlike Lipschitz domain, with sufficiently small constant in

which A is a DKP operator with sufficiently small constant.
(ii) ΩR ∩ ΩR′ = ∅,
(iii) for Hn-a.e. x ∈ ∂Ω, there exists a unique ΩR such that x ∈ ∂ΩR,
(iv) Top has Carleson paacking condition, i.e., for every S ∈ Dσ,∑

R∈Top:R⊂S

σ(R) ≤ Cσ(S)

(v) H is a “buffer" region in the sense that∑
P ∈W(Ω)∩H:b(P )⊂S

σ(b(P )) ≤ Cσ(S)
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Construction of the almost elliptic extension

Solve (Rp) in each starlike Lipschitz domain Ωj with boundary data
fj := F |∂Ωj ∈ Lip(∂Ωj) producing ufj extensions to Ωj such that
Lufj

= 0 in Ωj and, for any q ∈ (1, ∞),

∥Ñ2,Ωj (∇ufj )∥Lq(∂Ωj) ≲ ∥∇tfj∥Lq(∂Ωj).

The DESIRED EXTENSION is

v(x) =
{

ufj (x) , if x ∈ Ωj for some j ≥ 1
F (x) , if x ∈ H.
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= 0 in Ωj and, for any q ∈ (1, ∞),

∥Ñ2,Ωj (∇ufj )∥Lq(∂Ωj) ≲ ∥∇tfj∥Lq(∂Ωj).

The DESIRED EXTENSION is

v(x) =
{

ufj
(x) , if x ∈ Ωj for some j ≥ 1

F (x) , if x ∈ H.
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Varopoulos extension of Lp(∂Ω) functions

If Ω ⊂ Rn+1 is a corkscrew domain with n-Ahlfors regular boundary, the
following holds:

Theorem 9 (M.-Zacharopoulos)
If f ∈ Lipc(∂Ω), there exists a function F : Ω → R such that
(i) F ∈ C∞(Ω) ∩ Lip(Ω),
(ii) ∥Cs(∇F )∥Lp(∂Ω) ≲ ∥f∥Lp(∂Ω) and ∥N (F )∥Lp(∂Ω) ≲ ∥f∥Lp(∂Ω), for

p ∈ (1, ∞],
(iii) F |∂Ω = f continuously.
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Thank you for your attention!
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