Volume radius of a random polytope in a convex body

A. Giannopoulos and A. Tsolomitis

Abstract

Let K be a convex body in \mathbb{R}^{n} with volume $|K|=1$. We choose N points x_{1}, \ldots, x_{N} independently and uniformly from K, and write $C\left(x_{1}, \ldots, x_{N}\right)$ for their convex hull. If $n(\log n)^{2} \leq N \leq \exp \left(c_{1} n\right)$, we show that the expected volume radius $$
\mathbb{E}_{1 / n}(K, N)=\int_{K} \cdots \int_{K}\left|C\left(x_{1}, \ldots, x_{N}\right)\right|^{1 / n} d x_{N} \cdots d x_{1}
$$ of this random N-tope can be estimated by $$
c_{1} \frac{\sqrt{\log (N / n)}}{\sqrt{n}} \leq \mathbb{E}_{1 / n}(K, N) \leq c_{2} L_{K} \frac{\log (N / n)}{\sqrt{n}},
$$ where c_{1}, c_{2} are absolute positive constants and L_{K} is the isotropic constant of K.

1 Introduction

We work in \mathbb{R}^{n} which is equipped with a Euclidean structure $\langle\cdot, \cdot\rangle$. We denote the corresponding Euclidean norm by $|\cdot|$ and fix an orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$.

Let K be a compact subset of \mathbb{R}^{n} with volume $|K|=1$. The matrix of inertia $M(K)$ of K is the $n \times n$ matrix with entries

$$
(M(K))_{i j}=\int_{K}\left\langle x, e_{i}\right\rangle\left\langle x, e_{j}\right\rangle d x .
$$

The determinant of $M(K)$ can be expressed in the form

$$
\begin{equation*}
n!\operatorname{det}(M(K))=\int_{K} \cdots \int_{K}\left[\operatorname{det}\left(x_{1}, \ldots, x_{n}\right)\right]^{2} d x_{n} \cdots d x_{1} . \tag{1.1}
\end{equation*}
$$

This identity goes back to Blaschke and can be easily verified by expanding the determinant inside the integral. Since the right hand side is invariant under $S L(n)$, we
see that $\operatorname{det}(M(K))=\operatorname{det}(M(T K))$ for every $T \in S L(n)$. On the other hand, there exists $T_{1} \in S L(n)$ for which $M\left(T_{1} K\right)$ is a multiple of the identity. Equivalently,

$$
\begin{equation*}
\int_{T_{1} K}\left\langle x, e_{i}\right\rangle\left\langle x, e_{j}\right\rangle d x=L_{K}^{2} \delta_{i j} \tag{1.2}
\end{equation*}
$$

where L_{K} is the isotropic constant of K (we refer to [5] for the isotropic position of a convex body). By (1), L_{K} is well defined and satisfies

$$
\begin{equation*}
n!L_{K}^{2 n}=\int_{K} \cdots \int_{K}\left[\operatorname{det}\left(x_{1}, \ldots, x_{n}\right)\right]^{2} d x_{n} \cdots d x_{1} \tag{1.3}
\end{equation*}
$$

Assume now that K is a convex body with centroid at the origin. We fix $N \geq n+1$ and choose points x_{1}, \ldots, x_{N} independently and uniformly from K. Let $C\left(x_{1}, \ldots, x_{N}\right)$ be their convex hull. For every $p>0$ we consider the quantity

$$
\begin{equation*}
\mathbb{E}_{p}(K, N)=\left(\int_{K} \ldots \int_{K}\left|C\left(x_{1}, \ldots, x_{N}\right)\right|^{p} d x_{N} \cdots d x_{1}\right)^{1 / p n} . \tag{1.4}
\end{equation*}
$$

When $N=n+1$, these quantities are exact functions of the isotropic constant of K. To see this, note that

$$
A_{n}(K):=\int_{K} \ldots \int_{K}\left|\operatorname{co}\left(0, x_{1}, \ldots, x_{n}\right)\right|^{2} d x_{n} \cdots d x_{1}
$$

satisfies the identity $L_{K}^{2 n}=n!A_{n}(K)$ and

$$
\begin{equation*}
A_{n}(K) \leq \mathbb{E}_{2}^{2 n}(K, n+1) \leq(n+1)^{2} A_{n}(K) \tag{1.5}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
c_{1} \frac{L_{K}}{\sqrt{n}} \leq \mathbb{E}_{2}(K, n+1) \leq c_{2} \frac{L_{K}}{\sqrt{n}} \tag{1.6}
\end{equation*}
$$

where $c_{1}, c_{2}>0$ are absolute constants. Moreover, using Khintchine type inequalities for linear functionals on convex bodies (see the next section) one can show that $\mathbb{E}_{p}(K, n+1) \geq c L_{K} / \sqrt{n}$ for every $p>0$, where $c>0$ is an absolute constant.

In this paper, we give estimates for the volume radius $\mathbb{E}_{1 / n}(K, N)$ of a random N-tope $C\left(x_{1}, \ldots, x_{N}\right)$ in K. It turns out that a generalization of the upper bound in (6) is possible.

Theorem 1.1. Let K be a convex body in \mathbb{R}^{n} with volume $|K|=1$. For every $N \geq$ $n+1$, we have

$$
\mathbb{E}_{1 / n}(K, N) \leq c L_{K} \frac{\log (2 N / n)}{\sqrt{n}}
$$

where $c>0$ is an absolute constant.
The proof of this fact is presented in Section 2. We can also obtain upper estimates for $\mathbb{E}_{p}(K, N), p>1 / n$, but the dependence on p does not seem to be optimal. Our method shows that if K is a ψ_{2}-body then one has the stronger estimate $\mathbb{E}_{1 / n}(K, N) \leq$ $c L_{K} \sqrt{\log (2 N / n)} / \sqrt{n}$. This is optimal and might be the right dependence for every convex body K in \mathbb{R}^{n}.

Our lower bound is based on an extension of a result of Groemer [3].

Theorem 1.2. Let K be a convex body of volume 1 and B be a ball of the same volume. Then,

$$
\mathbb{E}_{p}(K, N) \geq \mathbb{E}_{p}(B, N)
$$

for every $p>0$. In particular, the expected volume radius $\mathbb{E}_{1 / n}(K, N)$ of a random N-tope in K is minimal when $K=B$.

Groemer proved the same fact for $p \geq 1$. Schöpf [7] proved Theorem 1.2 in the case $N=n+1$. Our argument is along the same lines: we show that Steiner symmetrization decreases $\mathbb{E}_{p}(K, N)$. A different extremal problem concerning the p-th moment of the volume of Minkowski sums of intervals defined by random points from a convex body was solved in [2]: the solution is again given by the Euclidean ball for every $p>0$.

In the case of the ball, one can give a lower bound for $\mathbb{E}_{1 / n}(K, N)$.
Theorem 1.3. Let B be a ball of volume 1 in \mathbb{R}^{n}. If $n(\log n)^{2} \leq N \leq \exp (c n)$, then

$$
\mathbb{E}_{1 / n}(B, N) \geq c \frac{\sqrt{\log (N / n)}}{\sqrt{n}}
$$

where $c>0$ is an absolute constant.
Theorems 1.2 and 1.3 are proved in Section 3. It follows that $\mathbb{E}_{1 / n}(K, N) \geq$ $c \sqrt{\log (N / n)} / \sqrt{n}$ for every convex body K of volume 1 . This bound is optimal. However, an interesting question is to give lower bounds for $\mathbb{E}_{1 / n}(K, N)$ in terms of L_{K}. Since $\mathbb{E}_{1 / n}(K, N) \leq 1$, this would lead to non-trivial upper estimates for the isotropic constant.

For standard notation and definitions we refer to [5] and [6]. We use c, c_{1}, c^{\prime} etc. for absolute positive constants which are not necessarily the same in all their occurences.

2 The upper bound

Let $\alpha \in[1,2]$. We say that a convex body K in \mathbb{R}^{n} is a ψ_{α}-body with constant b_{α} if

$$
\begin{equation*}
\left(\int_{K}|\langle x, y\rangle|^{p} d x\right)^{1 / p} \leq b_{\alpha} p^{1 / \alpha} \int_{K}|\langle x, y\rangle| d x \tag{2.1}
\end{equation*}
$$

for every $y \in \mathbb{R}^{n}$ and $p \geq 1$. It is clear by the definition that if K is a ψ_{α}-body then the same is true for $T K, T \in G L(n)$ (with the same constant b_{α}). By Borell's lemma (see [6], Appendix III), every convex body K is a ψ_{1}-body with constant $b_{1}=c$, where $c>0$ is an absolute constant.

Assume that K has volume 1 and satisfies the isotropic condition

$$
\int_{K}\langle x, y\rangle^{2} d x=L_{K}^{2}
$$

for every $y \in S^{n-1}$. Then, the fact that K is a ψ_{α}-body with constant b_{α} is equivalent to the inequality

$$
\left(\int_{K}|\langle x, y\rangle|^{p} d x\right)^{1 / p} \leq b_{\alpha} p^{1 / \alpha} L_{K}
$$

for every $p \geq 1$ and $y \in S^{n-1}$. We shall prove the following.

Theorem 2.1. Let K be a convex body in \mathbb{R}^{n} with volume 1. Assume that K is a ψ_{α}-body with constant b_{α}. Then, for every $N \geq n+1$

$$
\mathbb{E}_{1 / n}(K, N) \leq c b_{\alpha} L_{K} \frac{(\log (2 N / n))^{1 / \alpha}}{\sqrt{n}}
$$

This implies Theorem 1.1. For the proof, we will use a result of Ball and Pajor [1] on the volume of symmetric convex bodies which are intersections of symmetric strips in \mathbb{R}^{n}.

Lemma 2.2. Let $x_{1}, \ldots, x_{N} \in \mathbb{R}^{n}$ and $1 \leq q<\infty$. If $W=\left\{z \in \mathbb{R}^{n}:\left|\left\langle z, x_{j}\right\rangle\right| \leq\right.$ $1, j=1, \ldots, N\}$, then

$$
|W|^{1 / n} \geq 2\left(\frac{n+q}{n} \sum_{j=1}^{N} \frac{1}{\left|B_{q}^{n}\right|} \int_{B_{q}^{n}}\left|\left\langle z, x_{j}\right\rangle\right|^{q} d z\right)^{-1 / q}
$$

Proof of Theorem 2.1: We may assume that K is isotropic. Write K_{N} for the absolute convex hull co $\left\{ \pm x_{1}, \ldots, \pm x_{N}\right\}$ of N random points from K. By the BlaschkeSantaló inequality,

$$
\mathbb{E}_{1 / n}(K, N) \leq \mathbb{E}\left|K_{N}\right|^{1 / n} \leq \omega_{n}^{2 / n} \cdot \mathbb{E}\left|K_{N}^{\circ}\right|^{-1 / n}
$$

where K_{N}° is the polar body of K_{N}. Lemma 2.2 shows that

$$
\begin{equation*}
\left|K_{N}^{\circ}\right|^{-1 / n} \leq \frac{1}{2}\left(\frac{n+q}{n} \sum_{j=1}^{N} \frac{1}{\left|B_{q}^{n}\right|} \int_{B_{q}^{n}}\left|\left\langle z, x_{j}\right\rangle\right|^{q} d z\right)^{1 / q} \tag{2.2}
\end{equation*}
$$

for every $q \geq 1$. Consider the convex body $W=K \times \cdots \times K$ (N times) in $\mathbb{R}^{N n}$. We apply Hölder's inequality, change the order of integration and use the ψ_{α}-property of K :

$$
\begin{aligned}
\mathbb{E}\left|K_{N}^{\circ}\right|^{-1 / n} & \leq \int_{W} \frac{1}{2}\left(\frac{n+q}{n} \sum_{j=1}^{N} \frac{1}{\left|B_{q}^{n}\right|} \int_{B_{q}^{n}}\left|\left\langle z, x_{j}\right\rangle\right|^{q} d z\right)^{1 / q} d x_{N} \cdots d x_{1} \\
& \leq \frac{1}{2}\left(\frac{n+q}{n} \sum_{j=1}^{N} \frac{1}{\left|B_{q}^{n}\right|} \int_{B_{q}^{n}} \int_{W}\left|\left\langle z, x_{j}\right\rangle\right|^{q} d x_{N} \cdots d x_{1} d z\right)^{1 / q} \\
& \leq \frac{1}{2}\left(\frac{n+q}{n}\left(q^{1 / \alpha} b_{\alpha} L_{K}\right)^{q} N \frac{1}{\left|B_{q}^{n}\right|} \int_{B_{q}^{n}}|z|^{q} d z\right)^{1 / q}
\end{aligned}
$$

Since $\omega_{n}^{2 / n} \leq c_{1} / n$ and $|z| \leq n^{1 / 2-1 / q}$ for all $z \in B_{q}^{n}$, we get

$$
\mathbb{E}_{1 / n}(K, N) \leq \frac{c}{\sqrt{n}} b_{\alpha} L_{K} q^{1 / \alpha}\left(\frac{N}{n}\right)^{1 / q}\left(\frac{n+q}{n}\right)^{1 / q}
$$

Choosing $q=\log (2 N / n)$ we complete the proof.
Remark The proof shows that $\mathbb{E}_{p_{0}}(K, N) \leq c b_{\alpha} L_{K}(\log (2 N / n))^{1 / \alpha} / \sqrt{n}$, where $p_{0}=$ $\log (2 N / n) / n$. Since

$$
f\left(x_{1}, \ldots, x_{N}\right)=\left(\sum_{j=1}^{N} \int_{B_{q}^{n}}\left|\left\langle z, x_{j}\right\rangle\right|^{q} d z\right)^{1 / q}
$$

is a norm on $\mathbb{R}^{N n}$, one can estimate $\mathbb{E}_{p}(K, N)$ for larger values of p by a standard application of Borell's lemma (see [6], Appendix III). When p is close to 1 , the right dependence of $\mathbb{E}_{p}(K, N)$ on p is not clear.

3 The lower bound

Let H be an $(n-1)$-dimensional subspace of \mathbb{R}^{n}. We identify H with \mathbb{R}^{n-1} and write $x=(y, t), y \in H, t \in \mathbb{R}$ for a point $x \in \mathbb{R}^{n}$. If K is a convex body in \mathbb{R}^{n} with $|K|=1$ and $P(K)$ is the orthogonal projection of K onto H, then

$$
\begin{equation*}
\mathbb{E}_{p}^{p n}(K, N)=\int_{P(K)} \cdots \int_{P(K)} M_{p, K}\left(y_{1}, \ldots, y_{N}\right) d y_{N} \cdots d y_{1} \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{p, K}\left(y_{1}, \ldots, y_{N}\right)=\int_{\ell\left(K, y_{1}\right)} \ldots \int_{\ell\left(K, y_{N}\right)}\left|C\left(\left(y_{1}, t_{1}\right), \ldots,\left(y_{N}, t_{N}\right)\right)\right|^{p} d t_{N} \cdots d t_{1} \tag{3.2}
\end{equation*}
$$

and $\ell(K, y)=\{t \in \mathbb{R}:(y, t) \in K\}$.
We fix $y_{1}, \ldots, y_{N} \in H$ and consider the function $F_{Y}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
F_{Y}\left(t_{1}, \ldots, t_{N}\right)=\left|C\left(\left(y_{1}, t_{1}\right), \ldots,\left(y_{N}, t_{N}\right)\right)\right| \tag{3.3}
\end{equation*}
$$

where $Y=\left(y_{1}, \ldots, y_{N}\right)$. The key observation in [3] is the following:
Lemma 3.1. For any $y_{1}, \ldots, y_{N} \in H$, the function F_{Y} is convex.
We now also fix $r_{1}, \ldots, r_{N}>0$ and define $Q=\left\{U=\left(u_{1}, \ldots, u_{N}\right):\left|u_{i}\right| \leq r_{i}, i=\right.$ $1, \ldots, N\}$. For every N-tuple $W=\left(w_{1}, \ldots, w_{N}\right) \in \mathbb{R}^{N}$ we set

$$
\begin{equation*}
G_{W}\left(u_{1}, \ldots, u_{N}\right)=F_{Y}\left(w_{1}+u_{1}, \ldots, w_{N}+u_{N}\right) \tag{3.4}
\end{equation*}
$$

and write

$$
G_{W}(U)=F_{Y}(W+U)
$$

This is the volume of the polytope which is generated by the points $\left(y_{i}, w_{i}+u_{i}\right)$. Finally, for every $W \in \mathbb{R}^{N}$ and $\alpha>0$, we define

$$
\begin{equation*}
A(W, \alpha)=\left\{U \in Q: G_{W}(U) \leq \alpha\right\} . \tag{3.5}
\end{equation*}
$$

With this notation, we have
Lemma 3.2. Let $\alpha>0$ and $\lambda \in(0,1)$. If $W, W^{\prime} \in \mathbb{R}^{N}$, then

$$
\begin{equation*}
\left|A\left(\lambda W+(1-\lambda) W^{\prime}, \alpha\right)\right| \geq|A(W, \alpha)|^{\lambda}\left|A\left(W^{\prime}, \alpha\right)\right|^{1-\lambda} \tag{3.6}
\end{equation*}
$$

Proof: Let $U \in A(W, \alpha)$ and $U^{\prime} \in A\left(W^{\prime}, \alpha\right)$. Then, using the convexity of F_{Y} we see that

$$
\begin{aligned}
G_{\lambda W+(1-\lambda) W^{\prime}}\left(\lambda U+(1-\lambda) U^{\prime}\right) & =F_{Y}\left(\lambda(W+U)+(1-\lambda)\left(W^{\prime}+U^{\prime}\right)\right) \\
& \leq \lambda F_{Y}(W+U)+(1-\lambda) F_{Y}\left(W^{\prime}+U^{\prime}\right) \\
& =\lambda G_{W}(U)+(1-\lambda) G_{W^{\prime}}\left(U^{\prime}\right) \\
& \leq \alpha .
\end{aligned}
$$

Therefore,

$$
A\left(\lambda W+(1-\lambda) W^{\prime}\right) \supseteq \lambda A(W, \alpha)+(1-\lambda) A\left(W^{\prime}, \alpha\right)
$$

and the result follows from the Brunn-Minkowski inequality.
Observe that the polytopes $C\left(\left(y_{i}, w_{i}+u_{i}\right)_{i \leq N}\right)$ and $C\left(\left(y_{i},-w_{i}-u_{i}\right)_{i \leq N}\right)$ have the same volume since they are reflections of each other with respect to H. It follows that

$$
\begin{equation*}
A(-W, \alpha)=-A(W, \alpha) \tag{3.7}
\end{equation*}
$$

for every $\alpha>0$. Taking $W^{\prime}=-W$ and $\lambda=1 / 2$ in Lemma 3.2 , we obtain the following:
Lemma 3.3. Let $y_{1}, \ldots, y_{N} \in H$. For every $W \in \mathbb{R}^{N}$ and every $\alpha>0$,

$$
\begin{equation*}
|A(O, \alpha)| \geq|A(W, \alpha)| \tag{3.8}
\end{equation*}
$$

where O is the origin in \mathbb{R}^{N}.
For every $y \in P(K)$, we denote by $w(y)$ the midpoint and by $2 r(y)$ the length of $\ell(K, y)$. Let $S(K)$ be the Steiner symmetral of K. By definition, $P(S(K))=P(K)=$ P and for every $y \in P$ the midpoint and length of $\ell(S(K), y)$ are $w^{\prime}(y)=0$ and $2 r^{\prime}(y)=2 r(y)$ respectively.
Lemma 3.4. Let $y_{1}, \ldots, y_{N} \in P(K)=P(S(K))$. Then,

$$
M_{p, K}\left(y_{1}, \ldots, y_{N}\right) \geq M_{p, S(K)}\left(y_{1}, \ldots, y_{N}\right)
$$

for every $p>0$.
Proof: In the notation of the previous lemmata, we have

$$
\begin{aligned}
M_{p, K}\left(y_{1}, \ldots, y_{N}\right) & =\int_{Q}\left(G_{W}(U)\right)^{p} d U \\
& =\int_{0}^{\infty}\left|\left\{U \in Q: G_{W}(U) \geq t^{1 / p}\right\}\right| d t \\
& =\int_{0}^{\infty}\left(|Q|-\left|A\left(W, t^{1 / p}\right)\right|\right) d t
\end{aligned}
$$

By the definition of $S(K)$,

$$
M_{p, K}\left(y_{1}, \ldots, y_{N}\right)=\int_{Q}\left(G_{O}(U)\right)^{p} d U=\int_{0}^{\infty}\left(|Q|-\left|A\left(O, t^{1 / p}\right)\right|\right) d t
$$

and the result follows from Lemma 3.3.
It is now clear that $\mathbb{E}_{p}(K, N)$ decreases under Steiner symmetrization.
Theorem 3.5. Let K be a convex body with volume $|K|=1$ and let H be an ($n-1$)dimensional subspace of \mathbb{R}^{n}. If $S_{H}(K)$ is the Steiner symmetral of K with respect to H, then

$$
\mathbb{E}_{p}\left(S_{H}(K), N\right) \leq \mathbb{E}_{p}(K, N)
$$

for every $p>0$.
Proof: We may assume that $H=\mathbb{R}^{n-1}$. Since $P\left(S_{H}(K)\right)=P(K)$, Lemma 3.4 and (9) show that

$$
\begin{aligned}
\mathbb{E}_{p}^{p n}(K, N) & =\int_{P(K)} \cdots \int_{P(K)} M_{p, K}\left(y_{1}, \ldots, y_{N}\right) d y_{N} \cdots d y_{1} \\
& \geq \int_{P\left(S_{H}(K)\right)} \cdots \int_{P\left(S_{H}(K)\right)} M_{p, S_{H}(K)}\left(y_{1}, \ldots, y_{N}\right) d y_{N} \cdots d y_{1} \\
& =\mathbb{E}_{p}^{p n}\left(S_{H}(K), N\right)
\end{aligned}
$$

completing the proof.
Proof of Theorem 1.2: Since the ball B of volume 1 is the Hausdorff limit of a sequence of successive Steiner symmetrizations of K, Theorem 3.1 shows that the expected volume radius is minimal in the case of B.

Remark The argument shows that a more general fact holds true.
Theorem 3.6. Let K be a convex body of volume 1 and let B be a ball of the same volume. Then,

$$
\begin{aligned}
\int_{K} \cdots \int_{K} f\left(\left|C\left(x_{1}, \ldots, x_{N}\right)\right|\right) d x_{N} \cdots & d x_{1} \\
& \geq \int_{B} \cdots \int_{B} f\left(\left|C\left(x_{1}, \ldots, x_{N}\right)\right|\right) d x_{N} \cdots d x_{1}
\end{aligned}
$$

for every increasing function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$.
Next, we give a lower bound for $\mathbb{E}_{1 / n}(B, N)$. We will actually prove that the convex hull of N random points from $K=B$ contains a ball of radius $c \sqrt{\log (2 N / n)} / \sqrt{n}$ (an analogous fact was proved in [4] for an arbitrary convex body K, but the fact that we are dealing with a ball leads to the much better estimate which is needed).
Lemma 3.7. Let $B=r D_{n}$ be the centered ball of volume 1 in \mathbb{R}^{n}. If $\theta \in S^{n-1}$, then

$$
\operatorname{Prob}(x \in B:\langle x, \theta\rangle \geq \varepsilon r) \geq \exp \left(-4 \varepsilon^{2} n\right)
$$

for every $\varepsilon \in\left(c_{1} / \sqrt{n}, 1 / 4\right)$, where $c_{1}>0$ is an absolute constant.
Proof: A simple calculation shows that

$$
\begin{aligned}
\operatorname{Prob}(x \in B:\langle x, \theta\rangle \geq \varepsilon r) & =\omega_{n-1} r^{n} \int_{\varepsilon}^{1}\left(1-t^{2}\right)^{(n-1) / 2} d t \\
& \geq \frac{\omega_{n-1}}{\omega_{n}} \varepsilon\left(1-4 \varepsilon^{2}\right)^{(n-1) / 2} \\
& \geq \exp \left(-4(n-1) \varepsilon^{2}\right) \\
& \geq \exp \left(-4 \varepsilon^{2} n\right)
\end{aligned}
$$

since $\sqrt{n} \omega_{n} \leq c_{1} \omega_{n-1}$ for some absolute constant $c_{1}>0$.
Lemma 3.8. There exist $c>0$ and $n_{0} \in \mathbb{N}$ such that if $n \geq n_{0}$ and $n(\log n)^{2} \leq N \leq$ $\exp (c n)$, then

$$
C\left(x_{1}, \ldots, x_{N}\right) \supseteq \frac{\sqrt{\log (N / n)}}{6 \sqrt{n}} B
$$

with probability greater than $1-\exp (-n)$.

Proof: By Lemma 3.7, for every $\theta \in S^{n-1}$ we have

$$
\begin{aligned}
\operatorname{Prob}\left(\left(x_{1}, \ldots, x_{N}\right): \max _{j \leq N}\left\langle x_{j}, \theta\right\rangle \leq \varepsilon r\right) & \leq\left(1-\exp \left(-4 \varepsilon^{2} n\right)\right)^{N} \\
& \leq \exp \left(-N \exp \left(-4 \varepsilon^{2} n\right)\right)
\end{aligned}
$$

for every $\varepsilon \in\left(c_{1} / \sqrt{n}, 1 / 4\right)$. Let \mathcal{N} be a ρ-net for S^{n-1} with cardinality $|\mathcal{N}| \leq$ $\exp (\log (1+2 / \rho) n)$. If

$$
\begin{equation*}
\exp \left(n \log (1+2 / \rho)-N \exp \left(-4 \varepsilon^{2} n\right)\right) \leq \exp (-n) \tag{3.9}
\end{equation*}
$$

we have $\max _{j \leq N}\left\langle x_{j}, \theta\right\rangle>\varepsilon r$ for all $\theta \in \mathcal{N}$ with probability greater than $1-\exp (-n)$. For every $u \in S^{n-1}$ we find $\theta \in \mathcal{N}$ with $|\theta-u|<\rho$. Then,

$$
\max _{j \leq N}\left\langle x_{j}, u\right\rangle \geq \max _{j \leq N}\left\langle x_{j}, \theta\right\rangle-\max _{j \leq N}\left\langle x_{j}, \theta-u\right\rangle \geq(\varepsilon-\rho) r .
$$

We choose $\varepsilon=2 a\left((\log (N / n) / n)^{1 / 2}(a>0\right.$ is an absolute constant to be determined) and $\rho=\varepsilon / 2$. Then,

$$
n \log (1+2 / \rho)+n \leq 2 n \log (3 / \rho) \leq n \log \left(\frac{9 n}{a^{2} \log (N / n)}\right) \leq n \log n
$$

if $a^{2} \geq 9 / \log (N / n)$. Therefore, (17) will be a consequence of

$$
\begin{equation*}
\exp \left(16 a^{2} \log (N / n)\right) \leq \frac{N}{n \log n} \tag{3.10}
\end{equation*}
$$

which can be written equivalently in the form

$$
\begin{equation*}
\left(\frac{N}{n}\right)^{1-16 a^{2}} \geq \log n \tag{3.11}
\end{equation*}
$$

If $N \geq n(\log n)^{2}$ and $a=1 / 6$, then (19) is clearly satisfied. The restriction we had posed on a was $a^{2} \geq 9 / 2 \log \log n$, which is also satisfied when $n \geq n_{0}$, for a suitable (absolute) $n_{0} \in \mathbb{N}$.

Theorem 3.9. Let B be the ball of volume 1 in \mathbb{R}^{n}. If $n(\log n)^{2} \leq N \leq \exp (c n)$, then

$$
\mathbb{E}_{1 / n}(B, N) \geq c \frac{\sqrt{\log (N / n)}}{\sqrt{n}}
$$

where $c>0$ is an absolute constant.
Proof: Let $f(N, n)=\sqrt{\log (N / n)} / 6 \sqrt{n}$ and

$$
A=\left\{\left(x_{1}, \ldots, x_{N}\right): C\left(x_{1}, \ldots, x_{n}\right) \supseteq f(N, n) B\right\} .
$$

By Lemma 3.8, $\operatorname{Prob}(A) \geq 1-\exp (-n)$, and hence

$$
\begin{aligned}
\mathbb{E}(B, N) & \geq \int_{A}\left|C\left(x_{1}, \ldots, x_{N}\right)\right| d x_{1} \cdots d x_{N} \\
& \geq(1-\exp (-n)) f(N, n)|B| \\
& \geq f(N, n) / 2
\end{aligned}
$$

completing the proof.
This completes the proof of Theorem 1.3.
Remarks (a) The argument shows that if $\delta>0$ and $c_{1} n(\log n)^{1+\delta} \leq N \leq \exp \left(c_{2} n\right)$, then

$$
\begin{equation*}
\mathbb{E}_{1 / n}(B, N) \geq c \sqrt{\delta} \frac{\sqrt{\log (2 N / n)}}{\sqrt{n}} \tag{3.12}
\end{equation*}
$$

(b) The estimate of Lemma 3.8 implies that

$$
\begin{equation*}
\mathbb{E}_{p}(B, N) \geq c \frac{\sqrt{\log (2 N / n)}}{\sqrt{n}} \tag{3.13}
\end{equation*}
$$

for every $p \geq \exp (-n)$. However, it is not clear if (21) holds true for every $p>0$.

References

[1] K. Ball and A. Pajor, Convex bodies with few faces, Proc. Amer. Math. Soc. 110 (1990), 225-231.
[2] J. Bourgain, M. Meyer, V. Milman and A. Pajor On a geometric inequality, Lecture Notes in Mathematics 1317, Springer, Berlin (1986-87), 271-282.
[3] H. Groemer, On the mean value of the volume of a random polytope in a convex set, Arch. Math. 25 (1974), 86-90.
[4] A.A. Giannopoulos and V.D. Milman, Concentration property on probability spaces, Advances in Math. 156 (2000), 77-106.
[5] V.D. Milman and A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space, Lecture Notes in Mathematics 1376, Springer, Berlin (1989), 64-104.
[6] V.D. Milman and G. Schechtman, Asymptotic Theory of Finite Dimensional Normed Spaces, Lecture Notes in Mathematics 1200 (1986), Springer, Berlin.
[7] P. Schöpf, Gewichtete Volumsmittelwerte von Simplices, welche zufällig in einemen konvexen Körper des \mathbb{R}^{n} gewählt werden, Monatsch. Math. 83 (1977), 331-337.
A. Giannopoulos: Department of Mathematics, University of Crete, Iraklion, Greece.

E-mail address: apostolo@math.uch.gr
A. Tsolomitis: Department of Mathematics, University of the Aegean, Samos, Greece. E-mail address: atsol@iris.math.aegean.gr

