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Abstract

We study the dependence on & in the critical dimension k(n, p, &) that one
can find random sections of the £3-ball which are (1+¢)-spherical. For any fixed
n we give lower estimates for k(n, p, &) for all eligible values p and &, which
agree with the sharp estimates for the extreme values p=1and p = co. In order
to do so, we provide bounds for the gaussian concentration of the {y-norm.

1 Introduction

The fundamental theorem of A. Dvoretzky from [3]] in geometric language states that
every centrally symmetric convex body on R" has a central section of large dimension
which is almost spherical. The optimal form of the theorem, which was proved by V.
Milman in [I7], reads as follows. For any ¢ € (0,1) there exists a function n(g) > 0
with the following property: for every n-dimensional symmetric convex body T there
exists k > n(e) logn and k-dimensional subspace F such that

1-¢ 1+¢
1.1 —B:CTNF < —Bg,
(L1) v BF € S BF

where Bg denotes the Euclidean ball in F and M = M(T) = fer 10l do () and o
stands for the uniform probability measure on the n-dimensional sphere S™'. The
example of the cube T = Bl shows that this result is best possible with respect to
n (see [I] or for the details). The approach of is probabilistic in nature
and shows that the vast majority of k-dimensional sections are (1 + &)-spherical.
Here the vast majority means in terms of the Haar probability measure vpx on the
Grassmannian manifold Gpk. Furthermore, provides an asymptotic formula, in terms
of the global parameters M(T) and b(T) = maxegn-1 ||0]lt of the body T, for which the
random k-dimensional section is (1 + &)-spherical as long as k < ¢c(e)k(T) (here c(e)
stands for the function of & in the probabilistic formulation). Then, we find a good
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linear image of the body T for which the k(T) is large enough with respect to n (see
for further details). It has been proved in that this formulation is optimal
with respect to the dimension K(T) in the sense that the k-dimensional sections
which are 4-Euclidean with probability greater than =L cannot exceed CK(T) for
some absolute constant C > 0. (Here and everywhere else C and ¢ stand for absolute
constants).

The probabilistic approach of [I7] was providing c(¢) > c&?/logl and this was
improved to c(g) > ce? by Gordon in [7] and alternatively by Schechtman in [23].
This dependence is known to be optimal. The recent works of Schectman in and
Tikhomirov in [29] established that the dependence on & in the randomized Dvoretzky
for BY is of the exact order &/ log %

As far as the dependence on ¢ in the existential version of Dvoretzky’s theorem
is concerned, Schechtman proved in that one can always (1 + &)-embed 5'2‘ in
any n-dimensional normed space X with k > celogn/(log é)Z. Tikhomirov in [30]
proved that for 1-symmetric space X we may have k > clogn/ IOgé and this was
subsequently extended by Fresen in [6] for permutation invariant spaces. In this
note we will not deal with the existential Dvoretzky theorem. Related results for £
spaces are presented in [12]. For more detailed information on the subject, explicit
statements and historical remarks the reader is consulted in the recent monograph
.

In this note we study the random version for the spaces fB and we give bounds on
the function k(n, p, €). These bounds are continuous with respect to p and coincide
with the known bounds in the extreme cases p =1 and p = co. In order to do that
first we study the concentration phenomenon for the £ norms and we prove the
following result:

Theorem 1.1. Let n > 2. Then, for any 1 < p < oo one has:
(1.2) P([I1XIlp - ENIXIp| > £EIXIlp) < Ci exp-cif(n, p. £)),

for 0 < & <1and Cy, ¢ > 0 absolute constants where 5(n, p, ) is defined as follows:

i. If1<p<2, then
(1.3) B(n, p,g) ~ &n,
ii. for2<p<gologn,

C2¢2n, 0<e< Cpn,%
(1.4) BN, p.&) =1 g2pp2le. CPn D < g < 1/p >
ko, I/p<e<1

where C > 0 is suitable absolute constant. In addition we have:
(1.5) B(n, p, €) = log(en®),

for some absolute constant ¢ > 0.



iii. For p> gylogn we have:
1.6) B, p, ) = ek,
where gy > 0 is suitable absolute constant.

The bound we retrieve in the case of fixed p is not new. It has been appeared
before in the literature by Naor in an even more general probabilistic context.
Also, for p = co we recover the same bounds proved by Schechtman in [24]]. Therefore,
the above concentration result interpolates between the sharp concentration estimates
for fixed 1 < p < oo and p = o and is derived in a unified way. However, our
methods are different from the techniques used in and and utilize Gaussian
functional inequalities. Actually, following the same ideas as in we will prove a
distributional inequality for Gaussian random matrices similar to the concentration
inequality described above. Using this inequality and a chaining argument we prove
the second main result of this note: The dependence on ¢ in randomized Dvoretzky
for By balls.

Theorem 1.2. Let 1 < p < co. Then, for each n and for any 0 < &€ < 1 the random
k-dimensional section of Bj with dimension K < k(n, p,&) is (1 + &)-Euclidean with
probability greater than 1 — C exp(ck(n, p, €)), where k(n, p, -) is defined as:

i. If1<p<2,then
1.7) k(n,p,g) ~&’n, 0 <e <1
ii. If2<p<egylogn, then

(Cp)Pe?n, 0 <e< (CpP2n oD
8 k(n.p.e)={ ple/en2le,  (Cp)P2n 1 < <1/p
epr?/P/log 1, L<e<1

In fact for p < gyplogn and p =~ logn we have:
(1.9) k(n, p, &) ~ logn/ log é
iii. If p = gologn, then
(1.10) k(n, p, &) ~ elogn/ log é O<e<l

where C, C, gy > 0 are absolute constants.

As one observes the dependence on & in 1 < p < 2 is &% as predicted by V.

Milman’s proof (and its improvement by [8] and [23]). However, for p > 2 the
dependence on & is much better than & for all values of p. This permits us to find
sections of BB of polynomial dimension which are closer to the Euclidean ball than



previously obtained. Observe that Theorem retrieves the right dependence on c(g)
when p =1 (actually when p is fixed) and at p = co.

The rest of the paper is organized as follows: In Section 2 we fix the notation,
we give the required background material and we include some basic probabilis-
tic inequalities. Gaussian functional inequalities as logarithmic Sobolev inequality,
Talagrand’s Ly — Ly inequality and Pisier’s gaussian inequality are also included.

Instead of proceeding and proving Theorem [l we prefer to deal with an easier
problem first; the problem of determining the right order of the gaussian variance
of the £p norm. We study this problem in Section 3. This is a warm-up for the
concentration result we will investigate in Section 4. The main techniques that we
will use, as well as the main problems we have to resolve, will be apparent already
in this Section 3. This estimate will be used to obtain the dependence logn/ IOgé for
p =~ logn in Theorem

In Section 4 we provide a proof of Theorem [ Moreover, efforts has been made
to provide lower estimates in the probability described in Theorem [l

In Section 5 we prove Theorem and we show that in several cases the result
is best possible up to constants.

We conclude in Section 6 with further remarks and open questions.

2 Notation and background material

We work in R" equipped with the standard inner product (X y) = ', Xy; for x =
Xty ..., %) and Yy = (Y1,...,¥n) in R". The p-norm in R" (1 < p < o) is defined as:

n 1/p
@1 IXllp = [Z |Xi|p) X=X )
i=1

and for p= oo as:
2.2) IXleo = max|xil, X = (X, ..., Xn).
1<i<n

The Euclidean sphere is defined as: S"™! = {x € R" : |[X|l, = 1}. The normed space
(R™ |- 1lp) is denoted by £p, for 1 < p < co. The unit ball of £ is denoted by By, Le.
B?,:{XGR” “IXllp £1}. For 1 < p<(< oo we have:

2.3) IXllq < 1IXllp < NP9 x]lq,

for all X € R". We write || - || for an arbitrary norm on R" and | - ||x if the norm
induced by the centrally symmetric convex body K on R". For any subspace F of
R" we write: Sg := S™'NF and Bg = B) N F. For any linear operator T : X — Y
between normed space we write [|[T|lx—y for the operator norm. If X = £, we simply
write ||T|lp=y.

The random variables or vectors in some probability space (€, P) are denoted by
Enor X=(X,...,X,) or Y,W Z. For the expectation we write E and for the variance
Var. We shall make frequent use of Paley-Zygmund inequality:

4



Lemma 2.1. Let X be non-negative random variable in some probability space (Q, P)
with X € Ly. Then,

(EX)*
EXZ

2.4) P(X > tEX) > (1 - t)?

forall 0 <t<1.

For a proof see [2]].

Also the multivariate version of Chebyshev’s association inequality due to Harris
will be useful:

Proposition 2.2 (Harris). Let (i, ..., be i.i.d. random variables taking values almost
surely in Q CR. If F,G : QX ¢ RX - R are coordinatewise non-dccreasinﬂ functions,
then we have:

2.5) EF(Z2)G(2) > EF(2)EG(2),
where Z = ({4, . . ., &).

Harris™ inequality can be derived from consecutive applications of Chebyshev’s
association inequality and conditioning. For the detailed proof the reader is consulted
in [2]. For some measure space (Q,E, 1) we write

1/p
26) 1l = (flflpdu) 1< p<oo,
Q

for any measurable function f : Q — R. If u is Borel probability measure on R" and
K centrally symmetric convex body on R" we also use the notation

r
2.7 Ir(u, K) = (f (X1l dy(x)) ,-n<r 0,
RI‘I
while
8 lo(u. K) = exp( [ toatbc ucs).
RI‘I

If o is the uniform probability measure on S™! which is invariant under orthogonal
transformations and T is centrally symmetric convex body on R" then we write:

1/q
(2.9) Mq(T) := ( j; ) lleNs do‘(G)) , q#0.

For the random version of Dvoretzky’s theorem recall V. Milman’s formulation
from (see also [18] or [1]) and see [8] and for the dependence on &:

1A real valued function H defined on U C R¥ is said to be coordinatewise non-decreasing if
it is non-decreasing in each variable while keeping all the other variables fixed at any value.



Theorem 2.3. Let T be centrally symmetric convex body on R". Define the critical
dimension K(T) of T as follows:

2
210) K(T) = Elglif _ (M(T)) ’

B2(T) "\ BTy

where b(T) is the Lipschitz constant of the map X — |X|r, i.e. b = maxes [|0]l7.
Then, the random k-dimensional subbace F of Xt := (R", || - ||7) satisfies:

1
(2.11) ———BrCTNFC

1
1+e)M (1—.9)|\/|BF

with probability greater than 1 — e % provided that k < k(n, £), where k(n, &) =~ £2k(T).

Here the probability is considered with respect to the Haar probability measure
vnk on the Grassmann manifold Gnk the set of all k-dimensional subspaces of R",
which is invariant under the orthogonal group action.

With some abuse of terminology for a subspace F of a normed space X = (R", ||-|])
(or equivalently for a section T N F of a centrally symmetric convex body T on R")
we say that is (1+ &)-spherical (or euclidean) if:

2.12 max||6]l/ min||0]| < 1+ max min <l+e.
@12) #eSr I ”/9es,: el £ or e ||Z||T/Z€SF 12|+ &

Thus, previous theorem states that the random k-dimensional subspace of Xr is }%j-
spherical with probability greater than 1 — e as long as k < £2k(X7). For the
{3 spaces we abbreviate by kp the critical dimension K(¢p). Next Section provides

asymptotic estimates for K, in terms of n and p.

§1. Gaussian averages of {, norms. If g; is standard gaussian random variable
we set O'E := E|gy|P for every p > 0. The next asymptotic estimate follows easily by
Stirling’s formula:

p/2

2P/2 +1 +1
(2.13) oh=Elgl’ = ﬁr(pT) ~ \/2/e(pT) s P oo

The n-dimensional standard Gaussian measure with density (27)™"V2el¥E/2 ig
denoted by yn. Next Proposition is a special case of a more general result from [26].

Proposition 2.4. Let 1 < p < co. Then, we have:

n/Pp, p<logn
(2.14) B, lgllp = f ||x||pdyn(x)={ VP, p<log
Rn

ylogn, p=>logn
We shall need Gordon’s lemma for the Mill’s ratio from [7]:

Lemma 2.5 (Gordon, 1941). For any X > 0 we have:

X 00
(2.15) S <el? f e"dt <
1+ X %

X | =



Equivalently, we have:

T xO(-x) T X

2.16) o) g, 1

for x> 0, where ®(X) = et2dtand ¢ = D'

1 X
Vor Loo
§2. Functional inequalities on Gauss’ space. First we refer to the logarithmic
Sobolev inequality. In general, if u is Borel measure on R" it is said that u satisfies
log-Sobolev inequality with constant p if for any smooth function f we have:

2.17) Ent,(f?) := E,(f?log f*) - E, f*log(E, f?) < zf||Vf||§ du.
P

It is well known (see [14]) that the standard n-dimensional Gaussian measure yn
satisfies log-Sobolev inequality with p = 1. Next lemma, based on classical Herbst’s
argument, is a useful estimate which holds for any measure satisfying log-Sobolev
inequality:

Lemma 2.6. Let 4 be a measure satisfying log-Sobolev inequality with constant p > 0.
Then, for any Lipschitz map f and for 2 < p < q we have:

7112,

2.18) IFIE gy = I ) < @-p).

In particular, we have:
11lLq¢o q-2
(2.19) <G+ =,
1L, ) pk(f)
for q > 2 where k(f) := ”f”Ez(/l)/”f”%iP' Furthermore,

11, () (l/p— 1/2)
< exp| /—=1,
111, ) pK(f)

(2.20)

forO<p<2.

Proof. The proof of the first estimate is essentially contained in [27]. The second
one is direct application of the first for p = 2. For the last assertion, note that by

; . ¢ .
Lyapunov’s convexity theorem (see [9]) the map p — |Og||f||g is convex. Moreover,
we have:

Ent,(|f|P)
J1fPdu’

For any 0 < p < 2, the convexity of ¢ and log-Sobolev inequality yield:

L9~ ¢(p)
2-p

(2.21) pe’(p) — ¢(p) =

Ent,(f2)

<200 =5z

2
+¢(2) < 2ok © $(2),



which gives that:
Ifll) _2-p
(2.22) Iog(— <—,
Ifllo) ~ 2pko
where k = k(f). O
Note. The above two estimates imply that:

Iy ey q-1
(2.23) T < 1+, >1,
T TN

as long as K(f) > 1. Furthermore, integration in polar coordinates yields:

(2.24) It (¥n, C) = cnr M (C),

for any centrally symmetric convex body C on R", where Cp, := \/Q[I“(%)/I“(g)]l/r
and M[(C) := fsn—l 6l do(6).  Applying this for C = B) we readily see that Cnr =
I (vn, BY). Therefore, for —n < s<r we obtain:

M, (C) le (7n, BS)} < M; (C) I (¥n, Bg) _ It (yn, C)
Ms(C)” Is(yns Bg) = Ms(C)ls(yn, Bg) Is(yn. C)’

(2.25) max{

It follows that:

-1
2.26) Ma(C)/M(C) < 1|1+ cl%, q> 1.

This estimate improves considerably upon the estimate presented in Statement 3.1]
or Proposition 1.10, (1.19)] in the range 1 < q < k(C). For a purely probabilistic
approach of this fact the reader is consulted in [21]. It is immediate that |, <

I Isrsk . Lipschitz function. In [I5] it d that f
VIRl 1>k or any Lipschitz function. In it was prove at for
norms this estimate can be reversed:
Lemma 2.7. Let || - || be a norm on R". Then, we have:
Iy, r<k
2.27) Iy =~ { ViRl rsk

This result implies the next well known fact:
Proposition 2.8. Let || - || be a norm on R". Then, we have:
(2.28) cexp(Ct?k) < P(IIX|| > (1 + 1)) < C exp(-ct®k),

for t > 1. Moreover, one has:

(2.29) (Elixi- i)’ ~ \/EEIIXII,

forallr >k



Proof. (Sketch). There exists ¢; € (0,1) such that ls > ¢; Vs/kl; for all s> k. Thus,
for t > 1 if we choose r > Kk by ¢; Vr/k = 4t we may write:

1 C
P(||X|| > Elr) < P(IlXIl > 51 \/I’/kh) < PIXI = 1+ t)1).
On the other hand Paley-Zygmund inequality (Lemma [Z1) yields:
1
P(||X|| > EI,) > (1-27)2(I/12)" > coe " > ¢y exp(-Cit?K),

where we have used also the fact that |, ~ Iy, which follows by Lemma 271 For the
second assertion we apply integration by parts and we use the first estimate. m|

The above estimate shows that the large deviation estimates for norms with
respect to yn are completely settled. Therefore for the concentration inequalities we
are interested in, we may restrict ourselves from now on in the range 0 < & < 1.

Other important functional inequalities related with the concentration of measure
phenomenon are Poincaré inequalities. Using a standard variational argument (see
[14]) we can show that any measure satisfying log-Sobolev inequality with constant
p also satisfies Poincaré inequality with constant p:

(2.30) pVar,(f) < f IV £1[2 dl,
Rn

for any smooth function f.

A refinement of Poincaré inequality was proved by Talagrand in [28]] for the
discrete cube {—1,1}" (see also [2]] for a recent exposition) and its continuous version,
in the Gaussian context, was presented in [4] (see also [3]]):

Theorem 2.9 (Talagrand’s L; — Ly bound). Let f : R" — R be smooth function. If
A =110 Tl g0 and & = 10 Tl ., then one has:

n Alz
2.31) Var, (f)j<CY ——
W<€ ogmra)

This inequality will be used in order to prove concentration for the £ norm when p
is sufficiently large.

Pisier discovered (see [22]) another Gaussian inequality which contains (r,r)-
Poincaré inequalities and the gaussian concentration inequality. Since, the proof is
very elegant and useful for our approach we reproduce it below:

Theorem 2.10. Let ¢ : R — R be convex function and let f : R" — R be Cl-smooth.
Then, if X,Y are independent copies of a Gaussian random vector, then we have:

2.32) Eé (F(X) - f(Y)) < B (’21<Vf(X), Y)).



Proof. (B. Maurey). Set Xy := c0s- X +sing-Y and Yy = d9X9 Note that (Xy, Yg) has
the same distribution as (X, Y) since (X, Yg) = Rg(X, Y) and Ry is the matrix obtained

. cosfd sing\ .
by tensorization of Ry := ) with In, ie. Ry = Ry® In € R and is

—sing coso
orthogonal. Furthermore, we may write:

/2

d /2
Bo(10) - 100) = o [ G100 do) =30 [ (v, )

<2 fo " B (ZAV106), Vo)) = B (27 F00. 1)),

where we have used Jensen's inequality, Fubini’s theorem and previous remark. O

Remark 2.11. 1. Poincaré inequality. When ¢(t) = t> we have:

2 2
2.33) Var(f(X)) < %El(Vf(X),Y)lz - %Ean(X)ng,

which is Poincaré’s inequality for Gaussian measure with non-optimal constant.
2. (r,r)-Poincaré inequalities. Even more generally, for ¢(t) = [t|", r > 1 we get:

2.34) I = EfllL gy = EIFX) - F(NN)" < gar BNV
3. Gaussian concentration. For ¢,(t) = exp(t), 2 > 0 we obtain:
2.35) Eexp(A(f(X) — F(Y))) < Eexp(ﬂ%(Vf(X),Y)).

Note that if f is Cl-smooth and Lipschitz then, one has:

f(x+tu) f(x)'

KVE(X), ] = D f ()] = hm] <l

for all ue S™! and x € R". It follows that [[Vf(X)llz < [|flliy for all x € R". Therefore,
we have:

T /12 2 )
Bexp(AZ(VF(X), V) = Eexp(—||Vf(X)||2)<exp( Aufum)

Let t > 0. It follows that:

P(f(X) - Ef > 1) < e "Eexp@(f(X) - Ef)) < e "Eexp@(f(X) - f(Y)))
< A S LTI,

Optimizing over A > 0 by choosing A =t/ (7T2||f||%ip) we obtain:

1t
Lip

10



The same reasoning applied to —f yields the concentration inequality:
(2:36) P((X) - Ef| > 1) < 2expt*/ 27l ,)).

for all t > 0. Alternatively, we may conclude similar estimate by equations (2.34)
and Markov’s inequality.

§ 3. Negative moments of norms. Next Theorem is due Klartag and Vershynin
from [11]]:

Proposition 2.12. Let T be a centrally symmetric convex body on R". We define:

, m
(2.37) d(m) = mm{n, —logvyn (ET)}’
where Mis the median of X — ||X|lt with respect to yn. Then, one has:
(2.38) o (06 11Xty < ceBIIXIIr}) < (Ca)*™ D,

for all 0 < € < gy where gy > 0 is an absolute constant.
Then, for all 0 < k < d(T) we have: | _«(yn, T) = cli(yn, T). Note that d(T) > c;k(T).

Note that this result inform us that the negative moments exhibit a stable behav-
ior up to the point d(T). Nevertheless one can show that up to the critical dimension
the moments of any norm with respect to the Gaussian (or the uniform on the sphere)
measure are almost constant, complementing the result of §2. We will need the next
consequence of Proposition

Lemma 2.13. Let T be centrally symmetric convex body on R" which satisfies the
small ball probability estimate:

2.39) Ya(ehT) < (Ae)™,
forall0<e<egy (A a>0). Then, for allr,s> 0 with r + s< ad/3 we have:

2.40) on T < () Hon T,
1

where C > 0 is an absolute constant.

Proof. For any 0 < & < gy we may write:

1 1 1 1
|:r:5=f—d X) < f_d %) + A (x
r-s [IX|[+s yn(X) (el)s lIXII" Yn(X) ot XIS Yn(X)
1 - ad/2)-r-s
< oge A e,

1



by Cauchy-Schwarz inequality. Note that the small ball probability assumption im-
plies that: 1_g¢ > cgoly for all 0 < s < 2ad/3. Thus, if r + S < ad/3 we get
[_2(r+g > Cil_(r+g and previous estimate yields:

|—r—s

S Gyt (Ae)" ey 01778

-r-s:

Choosing & small enough so that (Ag)*¥? < C*%/2, say 0 < & < ¢/(2A), then we
conclude the result. O

Theorem 2.14. Let T be a centrally symmetric convex body on R" and let k = k(T) be
the critical dimension of Xt = (R",|| - |lt). Then, one has:

|r(7n,T) <1+ Cr

(ym )~k

for all 0 <r < ck, where C,C > 0 are absolute constants.

2.41)

Proof. We present the argument in three steps:

Step 1. (positive moments). We use the log-Sobolev inequality, to estimate the growth
of the moments. The basic observation is that:

Ent, (1)

d
= (logllf T er,
— (l10glIfll. ») ZH

Applying this for the function || - |t : (R",¥n) = R we find:

, 1 _ b? .
(2.42) (logl (T))" < WEHXWT 2IVIX llz < WI{_S,
r r
for all r > 0. It is easy to see that (logl;)’ < ﬁ for r > 2, while for 0 <r <2 we
may write:
b? Cib* C
2.43 logly)" < < = ,

where we have used Proposition [2.12i

Step 2. (negative moments). As before, using log-Sobolev inequality, for all 0 <1 <
¢ d(T) we may write:

b? C,h? C,
2.44 logl_) > ———1"2>— =
( ) ( g r) = 2':: -r-2 = |12 k(T)’
where we have used Lemma [2.13]
Step 3. Using (2.43) we may write:

r "C Cir
(2.45) log(l;/lo) = f (logly) dt < f Zdt= =1,

0 o k k

12



for all r > 0. The same reasoning applied to €.44) shows that:

(2.46) log(l_+/1p) > —%,

for all 0 < r < ¢ d(T). Adding these two estimates up and restricting 0 < r < Cyk(T)
we conclude that:

Cyr

T

as claimed. O

(2.47) I/l < exp(%) <1+

3 The variance of {, norm

A standard way that provides upper estimates for the variance is concentration in-
equality 2.36), e.g. see or Proposition 1.9]. An integration by parts argument
implies that if f :R" — R is L-Lipschitz function, then:

(3.1 Var(f) < CL?,
for some absolute constant C > 0. In particular, if f(X) = [[X||p this estimate yields:
(3.2) Var|[X||p < Cb*(Bf) = max(n®/P~", 1}.

For 1 < p < 2 this estimate turns out to be the correct one. But, for 2 < p < oo this
method gives bounds which are far away from the actual ones. The purpose of this
paragraph is to compute the correct order of the variance of the £ norm with respect
to the Gaussian measure.

§ 1. The variance of {p norm for 1 < p < co. Our first approach lies in deter-
mining the limit distribution of the sequence of variables (|lgllam);; we use the next
Proposition known in Statistics as "Delta Method" (for a proof see [I0, Chapter 5]):

Proposition 3.1. Let (Yy) be a sequence of random variables that satisfies n/?(Y, —

d
0) — N(0, 0?) in distribution. For the differentiable function h assume that I (6) # 0.
Then,

3.3) n"2(h(Yn) — h(6)) L N(0, (N (9))?)
in distribution.

Now we may prove the next asymptotic estimate:

Theorem 3.2. Let 1 < p < co. Let (51)‘;‘;1 be sequence of i.i.d random variables with

mgg = BJ&PP < co. Then, there exist positive constants Cp, Cp depending only on p
and the distribution of (¢;) such that:

(3.4) cpn ! < Varligllg < Cpnd ',

Sfor all n.

13



Proof. Let Y, = r—11 Z?:l |i1P. Then by the Central Limit Theorem we know that:

(3.5) VI(Yn - ) =5 N(0,v2)

in distribution, where V3 := Varl¢|P. Consider the function h(t) = /P, t > 0 and

apply Proposition [3.1] to get:
~1/p d o aap)
(3.6) Vn(n™Pliéllp — mp) — N0, Emp ,

in distribution. Thus, the sequence of any moment of &’s converges to the corre-
sponding moment of the limit distribution, in particular we conclude:

2 1_1 Vz _
n'"s Var(lgllp) = Var (ni73igllp) = Var [ Vi(n™/?igll, — mp)| — p—‘;m%(‘ P,

as N — oo and the result follows. O

Remark. The reader should notice that for fixed p > 1 the dependence on the di-
mension is independent of the randomness we choose for the underlying variables
(&) and the argument is crucially based on the stochastic independence. Moreover,
in the case that (&) are normally distributed with mean zero and variance one, the
above limit value is estimated as:
Vo op 1 2P
PP evz p’

This suggests that the constants Cp, Cp should depend exponentially on p.

P — oo.

§2. The variance of {,, norm. Of course the variance in that case can be computed
by employing the tail estimates proved in for the {o-norm with respect to the
Gaussian measure. We prefer to give a proof here of more "probabilistic flavor".
Actually, the argument we present below works for any i.i.d. random variables
with exponential tails, but we shall focus on Gaussians. Let (g);°; be independent,
standard Gaussian random variables and let Y, := maX<,|gil, n > 2. We set a, :=
—<D‘1(%) > 0 and let b, := 1/a,. Note that a, — oo and Gordon's inequality
shows that a, ~ /2logn as n — co. We define W, := Y”l;]a" and we have the next
well known fact whose proof is included for the sake of completeness:

Proposition 3.3. Let n be Gumbel random variable, that is the cumulative distribution
function of n is given as:

3.7 F,() = expe™), teR.
If (W,) is sequence defined as above then, for every t € R we have:
(3.8) P(Z, < t) - expe™),

. . . e . d
that is Wy, converges to the Gumbel variable in distribution, i.e. Wy — 7.
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Proof. For fixed t we may write:
P(W;, < t) = P(Yn < thy + an) = [P(|lgi] < thy + a,)]" = [1 - 2D(-tb, — an)]".
Taylor’s theorem yields:

#(—an)
O(-an)

log ®(-th, — a,) = log®(-a,) — tby +O(t?b2), n— oo

or equivalently,

2
Iogz<1>(—tbn—an)=log%—t 9(2) +O(t )

an®(-an) logn

Finally, we get:

(3.9) P(Wh <t) = [1 - %exp(—t 9(@n) + O( v ))}n — exp(e™),

and(-ay) logn
as N — oo where we have used the fact anﬁ)(f_”;n) — 1, which follows by Gordon’s
inequality (Lemma [2.5). O

It is known for the random variable n one has En = y (the Euler-Mascheroni
constant) and Varny = n2/6. Therefore, we obtain:

(3.10) a’Var(Yy) = Var(W,) — Varn,
as N — oco. This proves the following:

Theorem 3.4. If g is Gaussian N-dimensional random vector, then we have:

1
3.11 \Y% o=V Koo = ——.
311) arlglle = Vary, Xl = oo

The reader will observe that the dependence on dimension we get for fixed 1 <
p < oo is polynomial in N while for p = oo is logarithmic in Nn. Moreover, the
variance as a function of p decreases exponentially fast and at the very end becomes
logarithmically small (on n). As we have already explained this “skew” behavior lies
on the fact that as p grows the constants in the equivalence should be expected to be
exponential in p. In the rest of the paragraph we try to quantify this phenomenon
and to give as sharp bounds as possible describing the behavior of p along n, too.

§3. Tightening the bounds. The purpose of this subsection is to provide continuous
bounds in terms of p for the variance of the £ norm when dimension n is fixed and
p varies from 1 to co. One can easily see that:

(3.12) cp < n"¥PVar|X|lp < c;pVarlgil® ~ p(2p/e)P,

by comparing with the variance of the {3 norm and the p-th power of the £, norm.
Below, we show that one can always have better estimates. In order to prove these
estimates we will use the following fact:

15



Fact. Let 4 < p < co. Then, for all n one has:

Cir
3.13)  Ir(yn, Bp)/1-r(yn, Bp) < exp( < Iogn)’ 0 <1 < ¢ +/Kplogn.

This will be proved in Section 4 (Theorem [4.10).
1. Upper bound: An approach through Talagrand’s inequality. For p > 1 we

have: dilIXllp = |||j|||;;j sgn) a.s. Thus, one has:
(3.14)
2. 2 2p-2; -2(p-1 -1 . 1, —(p—1 1
A= ol - pll,, < oo oty s BY ), @= il -l < op 1 50 s, BEY):

Set ls(yn-1, BB’I) = |g. Then, direct application of Theorem yields:

o 2P-2 | ~Ap-) o 2P2 | 2p-)
(3.15) Var(|X|lp) < Cn — 22200 cjp 222 20D
1+lo (”gpz '(pu) p
9l >t
p-t 2oy

-1
where we have used the fact that: (ng,g/(rp,l)p ~ 2P, follows by (ZI3). Now as

long as 2p < ¢;/kplogn, which is satisfied when p < ¢ylogn for some sufficiently
small absolute constant ¢y > 0 by Proposition 2.4] we may apply the Fact to get:

o p?
(3.16) 1200 > @ om | 20D > 6o P (n - 1) 2P,

Plug this estimate in (3I5) we derive the upper bound:

2p-2
Topn_ 2p
3.17) Var|X||p < Cz%n%* ~ 22l
0'pp p P

Note that this is exactly of the same order as the one we obtained at the limit value
using the delta method.

2. The lower bound. Here we will use the next numerical result:
Lemma 3.5. Let a,b> 0 and 0 < 0 < 1. Then, we have:

ae—l + be—l

92 1-0
(3.18) fla— b (—) <la’-b’| < ga-b| 5

a+b

Proof. We may assume without loss of generality that 0 <a<band 0 <8 <1 If
we set f(t) =t%, t > 0, then note that f is convex in [a, b] and:

a- 6 (P
b “boal, 0w

16



Therefore, Hermite-Hadamard inequality (see [9]):
a+b 1 b f@)+ f(b)
3.19 fl—| < — f<————=,
319) ( 2 ) b-a fa 2
yields the assertion. ]

Applying the lower bound of Lemma [3.5] for a = IIXIIS, b= ||Y||S and 0 =1/p we
obtain:

(3.20)
229 _ (IIX|Ip - IIYIIp)2 IX.I"—IYulp
2Var|X|lp = E(IXIlp = [IYllp)* > YTV BTV ’
o = Bl =INMle)" > & G ivipyere > |o2 Z e
where ( is the conjugate exponent of p, i.e. 1/p+1/q=1 and
(3.21) S:=1XIp +IIYIp = 1Zllp,  Z = (Zs, .., Z2n) ~ N(O, ln).

IXJ\

Now we observe that the variables 7; : ® have the same distribution and

satisfy E(min;) = 0 for i # j. Therefore, we have

Z |X||p—|Y||p
ST

Hence, estimate (3.20) becomes:

(%P = Wi[P)* _ ( X [*P |X1|p|Y1|p)
2

n

(3.22)

n
= > By} = nér}
i=1

i=1

629 VariiXllp = _pE S s7a s
Let T := Yio; IXilP + Xis11YilP and note that T < S, so we obtain:

|Zy*P
S2/9

(3.24) VarlXlp > [E _ o-%pE(T‘Z/q)}.

Now we apply Holder’s inequality to get:

1Z,20\* zper P2
(3.25) (E > ) =Bl s >—
S 12l (BI1ZI5P Dy

An application of the Fact again yields the further bound:

3p/2 2p
Z,2p 3/4 o 7 12p o
320 (El ; ) 2 o By
S/ (opn/P)3(P S~ G2 2pp-a/p
Again the Fact yields E(T%9) < —zp T 2 long as p < ¢glogn. Putting them all
together we obtain:
2p 2p
1 o a 3/2)P
(3.27) Var|Xllp 2 =~ 35/2 _cl= (3/2) /P,
p 0'pp ni-2/p 0'pp P
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for p larger than some sufficiently large absolute constant.

Finally, for larger values of p, namely for p > Cologn, we employ Theorem
again. Recall that for f(x) = [IX||, we have:

2 p—ls nei;
8 1(%) = [l p?l (i)
[IXIp
almost everywhere for i = 1,2,...,n. Therefore, if & := [10; fllL,¢,) we may write:

I%|P~ 1 IXllp-1 )" n/p
(3.28) a:f d x=—f dyn(X) < — =n7Y9,
n ||X||371 yn(X) N Jeo \ X yn(X) n

where in the last step we have used estimate (2.3) and ( is the conjugate exponent
of p, i.e. 1/p+1/q =1 Moreover, we have:

P2 1 [IXl2p-2 \*7~
=10 fIi? = - dyn(X),
AI i Lz(‘}/n) RO ”X“%p—z n Jgn ”X”p n

thus by estimates (Z.3) again, it follows that:

(3.29) na< A <nl2

Plug estimate (3.28) into the inequality of Theorem we derive:

n

Var(llgllp) <
2:1: 1 Iogn +logA’

Set By =1+ élogn and consider the function F : (€® 12 ) — R defined
Fn() = Bn:—lzogt' Differentiating we find: F[(t) = & +|ogt)2(Bn 1/2 + logt) > 0.

Note that since p > 2 we have e B2 <« 0714 hence, estimates 3.29), imply that
Fn(A) < Fo(n"Y2). Therefore we obtain:

1 1
1+(- ~1)logn " logn’

Var(|lgllp) < CnFa(n™?) =

since p > ¢y logn.

Finally, let us note that the variance of the £, norm stabilizes for p > (logn)? in
the following sense:

Proposition 3.6. Let p > (logn)%. Then, we have:

(3.30) Var||[X|lp = W

One way to verify that is to show that the concentration for the £ norm with
p > (logn)? is the same with the one of the £, norm (see for the concentration
of the {s norm):

18



Lemma 3.7. Let p > (logn)?. Then, we have:
(3.31) ce 9" < P([IIX|lp — ElIX|lp| > &ElIX||p) < Ce 9",
for all 0 < & <1, where C,C > 0 are absolute constant.
Proof. Consider ﬁ <& <1and write:
P([IIXllp = EllXIlp| > £EIIXIlp) > P(IXIlp > (1 + &)EIIXlp)
> P(IXlleo > (1 + £)n"/PE||X]|oo)

> P(IIX]leo > (1 + 2&)EIX]lw)
> Ce—CsIogn’

where we have used (Z.3) and at the last step the concentration from [24]. It follows
that:

(3:32) P(|IIXllp — EIXilp| > £EIIXIIp) > ¢’e o9,

forall 0 <e< 1. O

Proof of Proposition[3.6l We may write:

Var([Xllp) = 2(EXIlp)? f tP ([IIXIlo — ElIXIlp| > tE[IXIl5) dt
0

(ElIX]Ip)*

1
> 2c (B|IX|lp)? | te©toondt > ———PL
> 20 @I | 2 g

The result follows by Proposition 2.4 O

We close this section with some discussion on the methods used for bounding
the variance. If we are interested in giving sufficient upper estimates, we may use
Poincaré inequality which bounds the variance by the L, average of the euclidean
norm of the gradient of f, which in principle is smaller than the Lipschitz constant:

”||Vf||2”|_2(yn) < H||Vf||2|||_ o = L. The reader may check that for 2 < p < co we have:
, X5 1 o
f HVf(X)H2 dyn(X) = f 202 dyn(X) =p = < 1 = b(By) = Lip(f).
o w0 (1 n-3

In case p = o we have that ||V||X||o<,||2 = 1 almost everywhere, hence:

fRn [VIXlo| 2 chyn(¥) = 1= B(BL).

Thus, Poincaré inequality also fails to give the sharp upper bound for the variance
in this case. The recovery of the correct upper bound is promised by the different
order of magnitude for the L; — Ly norms of the partial derivatives of X — ||X||« and
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Talagrand’s inequality: for f(X) = [[X]le we have d; f(X) = SGNE) 1 (x: x;<ix|vj)(X) almost
everywhere. Therefore, we get:

(333) 184 FIIE, ¢y = 165 FllL, ) = 1/

Plug these estimates in Theorem [Z.9] we obtain the same upper bound as in Theorem
B4

The results of this paragraph can be summarized in the next:

Theorem 3.8. There exist absolute constants Cy, ¢, C; > 0 with the following property:
For all n and for any 1 < p < ¢y logn we have:

o B/2°

9p
(3.34) n'" Varl|X|lg < G

If p > ¢y logn then we have:

C
3.35 V. X n < S
(3.35) arl[Xlley < logn
whereas for p > (logn)? we also have:

Ci
3.36 Var||X||m > .
(3.36) arl[Xlle logn

Note. The choice of the exponent 3/4 and 1/4 in the applications of Holder’s inequal-
ity for the lower bound of the variance (3/2)P/p was done for simplicity. Different
choices will still give exponential lower bounds with base arbitrary close to 2 at the
cost of the range of p.

4 Gaussian concentration for the é’p norm

In this paragraph we study the Gaussian concentration for the fp-norms for 1 <
p < oo. First we show how we may employ log-Sobolev inequality in order to get
concentration results.

§ 1. An argument via log-Sobolev inequality. Note that for the {p norm with
1< p <2 the estimate 2.23) implies:

It (yn, Bp) < |1 G exp(
Il('}/n, BB) - kp -

for all r > 1. Therefore, for any 0 < & <1 we apply Markov’s inequality to get:

1) Caf ).

n

P(IXIlp > (1 + &)ly) < P(IXIlp > €/%11) < € /2(1,/1))" < exp(-er/2 + Cyr?/n).

Choosing r = en/(4C,) (as long as & > 4C,/n) we obtain:

1
PUIXp > (1 + £)ly) < exp(— 1 6C282n).
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Taking into account Theorem 2.14] and arguing similarly we find:

P(IX|lp < (1 - &)ly) < exp(-coe”n).
Combining those two estimates we arrive at the next concentration result:
4.2) P(|||X||p — 1y > sll) < C3 exp(-cse’n),

for all 0 < € < 1. This estimate is sharp, as we will show later, but as we have
already explained the same method fails for the £ norm, when 2 < p < oo, to give
the correct concentration estimate. By carefully inspecting the proof of the estimates
we used before we see that we have bound the Ly norm of the gradient by the L
norm, i.e. the Lipschitz constant. A first attempt to improve the estimates, it would
be to improve the bound on that quantity. To this end, we restrict ourselves in the
range 2 < p < logn and we use log-Sobolev inequality. We have the following:

Proposition 4.1. Let 2 < p < clogn. Then, for every r > 0 we have:

Clp/n, 0<r< kzp_z

d cP r\”
4.3) —(logly) < — 1+ < )
dr n k2p—2 (Clr)p, k2p—2 <r< kp/C1

while for 0 < r < cdp we have:

d CP
4.4) —a(logl_r) < o

where ¢,C, C; > 0 are absolute constants and ls = ls(yp, BB).

Proof. First we prove the growth condition on the positive moments. Our starting
point is the next estimate:

(4.5) (Iogl ) = Emyn(nxnp) zlrEHV(nxn”Z)Hz Wﬁnxnég_ﬁnxn’ 2P,

where we have used log-Sobolev inequality. We distinguish two cases:
Case 1: 0 <r <2p. We may write:

2p-2

2p-2 no-; p-1 p
%('Og'f)slau;uf o < BN 5 < n(czng : n(cp)
o IXIE o IXIEPT B (B 1P(BD)

by Proposition and Hoélder’s inequality. By Proposition for 0 < s < cikp we
have: |_s > Cyly. Since, p < cikp for p < logn we get: (logl;) < Cg/n.

Case 2: r > 2p. We may write:

2 2
P (yn’ p2)

d 1 2D-2) (v 1T ~2P
a(bg'r) < Z_IFE”X” [IXIlp ™ < 2129

2p-2
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by Hélder's inequality. By Lemma we get:

d 2p z(yn’ oo 2)( r )p—l o'zp_z/o'p ( r )P—l
—(logly) < 1+ = 1+
dr ( g r) 21 [2)p kgp,g 2n k2p—2

for some absolute constant Cg > 0.

Now we turn in providing bounds for the negative moments. Here the argument
is simpler. Using log-Sobolev inequality again and Proposition we have:

d - -
grlogln = -5 rEnxnég X1l pi: b P
2p zn
2p— -r-2p p Top-2 p
—r-ap = Gy 2 > -C;/n,

1

for r < C4dp, where in the last step we have used Lemma [215] The result easily
follows. d

Now we are ready to prove the next concentration inequality. Note that the
dependence we get on & is better than the one we get if we employ (2.36).

Proposition 4.2. Let 4 < p < gologn. Then, one has:

1
(4.6) P([I1XIlp - EIIXIlp| > £EIIXIlp) < Cr exp(-cie*Pkp),
for all 0 < € < 1. Moreover, we have:
A7) P(IIXllp < (1 - £)EIIX|lp) < Cy exp(-Coekp),
forO<e<l.

Proof. Let 4 < p < clogn, where ¢ > 0 is the constant from Proposition [41 Then,
for each 0 < £ <1 using Markov’s inequality we may write:

@8)  P(XIlp> (1+2)lo) < €™ expg logle/10)) = exp|r (5 - log(e/10))

for all r > 0. Using Proposition [£1] we obtain:

CP d S p-1 Cpkz —2 r p (2C)pk2 —2 r p
log(l, /I s—f(1+ ) ds< P (1+ ) < P ( )
9(l+/1o) n kap-2 pn kap-2 pn kap-2

for r > kgp_g. Therefore, becomes:

4.9) P(IX]lp > (1 +€)lp) < exp[ (ZC) ]

pl
npz
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for r > kzp_z. Minimizing the right-hand side with respect to r we find that rp;, = o
satisfies:

(2C)°

p-

(4.10) .
p-2

£ e\l/p 1/p b1
(p+ l)rg — § =0= lo = (2C)_1 (é) (ﬁ) nl/pk2272 ~ Sl/pkp,

and in order this value to be admissible we ought to have ro > kzp_z. Hence, the
value rq is admissible if & satisfies:
fo > kep_y == (20) P2 P Sk e 6> (20)°
2 p+1
Note that Proposition [Z4] implies that:

2(p+1)
pn

k2p_2 .

4.11) kg < cqn?9, VY2 < q<logn.

Since p > 4 it suffices to have ¢ > (2C)P8c,pn »T or equivalently to have & >
_p2
(16ec,C)Pn e,
b
First consider the case that kp P < g < 1. In this case the above restriction is
satisfied as long as p < czlogn for some sufficiently small absolute constant ¢z > 0.
Indeed; one needs to check that:

p-2
1

kﬁﬁ P2
p" > (16ec,C)Pn T,
p-2
and by taking into account (4II) again it suffices to have %LT > (16ec,C)P or
C2pn *
23

it's enough N > (16€*c;C)P. Thus, if & := min{cs,c} > 0 and 4 < p < g logn we
have all requirements and we conclude that:

gro  (2C)° Ly & &l
P(IXllp > @+ &)lp) < exp[ 5t — ro = exp{-gfo+ p+ D

p-2

= eXp(—WF:_l)Sro)
< exp(—coe“%kp),
for 4 < p < gplogn and for all k;% < & < 1. By adjusting the constants we conclude
that:
(4.12) P(IXIlp > (1+ £)lo) < Cj exp(—coe™ #kp).
for the whole range 0 <& <1 and for 4 < p < gy logn.

Now we turn in bounding the probability P(||X|| < (1 — &)ly). Proposition 1] shows
that (logl_;)’ = —CP/n for 0 < r < ¢cikp. Hence, we get:

r
P(IXIlp < (1= ¢)lo) < P(IXllp < €°lg) < e (Il—o) < exp(-er +r’CP/n),

-r
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forall 0 <r < Clkp, where we have used the bound:

p

log(lo/1-+) = _fo (logl_s)'ds < %r,

for 0 <r < ckp. Finally, choosing r =~ ky we see that Cpk%,/n < (2eC)Pn*/P1 < C’ as
long as 4 < p < ¢ logn, hence we conclude:

(4.13) P(IXllp < (1 - ¢&)lp) < C" exp(-C'ekp),

forO<e<l. O

Although this concentration result improves upon the one we get by just using
(2.36), it is still suboptimal. It turns out that although the Ly average of the euclidean
norm of the gradient is the proper quantity to be estimated for the concentration
result still it shouldn’t be used in order to bound the growth of the high moments of
the norm, i.e. with the log-Sobolev inequality.

§ 2. Estimating centered moments. We distinguish three cases:

§2.1. The case 1 < p < 2. We have the next theorem:

Theorem 4.3. Let 1 < p < 2. Then, one has:

4.14) ¢ exp(Cie®n) < v ({X: [IIXllp = EIIXIlp| > £ElIXlp}) < C; expl-cae™n),
for 0 < & <1, where Cy, ¢y, Cy, Cy > 0 are absolute constants.

Proof. (sketch). The rightmost inequality also follows by the gaussian concentration
inequality (2.36), Proposition 2.4] and the fact that Lip(|| - [Ip) = b(Bp) = n/P-1/2 for
1< p<2. Now we focus on the left-hand side inequality. We have the next:

Theorem 4.4. Let 1 < p < 2. Then, we have:

(4.15) (B [1Xi1p - ElX1e|)" ~ \gEuxup,

forallr > 1.

Proof. Indeed; the estimate

1/r r
(4.16) (B IXilo = EIXIIp| )" < Cs \EEnxnp, r>1

is well known and follows by integration by parts combined with the right-hand side
estimate we just mentioned (or follows immediately by the (r, r)-Poincaré inequalities
234) - this approach will be used for the case 2 < p < o0, t00). For the estimate

(4.17) (& X1, - E1X1])" = s \gEnxup
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we may apply the triangle inequality, Lemma [335] and finally Cauchy-Schwarz in-
equality to write:

2/r

el s el oy 1 (Elxip - ivig™)
2(B[IXllp = EIXI| )™ 2 (B [IX1lp = I¥1lp| ) 2 =
P P P P 2p (Ellelrp(p_l))l/r

1
Note that already implies (EHXHE) s < 2C3E[[X|lp = n/P for all 1 < s < n.
Moreover, we have:

s\1/s
(2 11X108 = IVIB[°)"* = E[1x,1° - i1 [E ] ~ V&

n
2.°
i=1

where we have used the fact that the joint distribution of (&/|Xi|P? —Y;|P|)i is the same
with (|Xi|P = |Yi|P);, Jensen’s inequality and at the last step, the well-known fact that

1
(ES |Zi”:1 8i|s) * L y/sn for 1 < s<n(see e.g. [16]). Putting them all together we see:
rn\1/r \/m r
(4.18) (B [1Xllp = BIXIo| ) 2 Camimrs = 4/ EIXIlp,
which completes the proof. O

Now we turn in the lower bound of the probabilistic estimate (414): For every
N2 < & < 2¢c3 consider r € [1,n] so that £ = 2¢3 Vr/n to write:

P([I1XIlp = ENIXIp| > £EIIXIlp) > P(lnxnp —~ ElIX|lp| > % (BlIX1lp - Euxupl‘)”)

(E2°

=P >2"E))>(1-2T")? B

by Lemma 21l where ¢ := |||X||p - ]E||X||p|r. Employing the estimates and (@11
we conclude:

P([IIXllp ~ EIXIl| > 2BIXIlp) > ce™,

as required. m|

§2.2. The case 2 < p < co. It is clear from the argument of the previous paragraph
that in order to obtain sharp concentration inequalities it is enough to get sharp

. r\1/r
estimates for the centered moments: (E |||X||p - ||Y||p| ) . We have the next theorem:

Theorem 4.35. Let 2 < p < co. Then, for each n we have:
rp/z

1/r r\2
41 E[IXN1p = 11| )" = (—),—EX,
(4.19) (B 1X1lp = 11YIIp]) pmax{ - n} IIXlp

ford<r <n?P.
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In view of emma B3l it is clear that estimates for the centered moments
(E[IXIE = 1YIE[") ™ will provide estimates for the moments (E [IXIl, = [[Yllp| ). This
approach was used (in a more general probabilistic context) in in order to es-
tablish the rightmost inequality in Theorem Here, we keep the same idea for
proving the lower estimate in Theorem but for the upper estimate we employ
the (r,r)-Poincaré inequalities instead. The reason we argue in two different ways
is because the main tool for the upper bound will be exploited further in the next
Section. There, will be used in order to obtain the optimal dependence on € in the
random version of Dvoretzky’s theorem. Therefore, we think it is more instructive to
present it here.

Proof of Theorem .3l (upper bound). Direct application of the inequality (2.34) yields:

—1)\1/T
x [uxu;i,”;)]

rn\1/r r
(E|“x“p_”Y”P|) < Ur (E[vIXits]l,) =50 XD

r(p-1)
I

Now we focus in bounding E”XH,(p T

) Note that since [ - [l2p—2 < || - [[p one has the

r(p-1
X

r(p-1)
X1l

1r
trivial bound (E ) < 1. Moreover, Cauchy-Schwarz inequality yields:

rp-n T Pl
Xl M
X1

(Efvixi[)" = [E

A standard application of Lemma @39)

—zr(p—l) (}’n, BB)

|U

p-1 b1
I2r(p 1)(7/“’ ng—z) <14 2p(r — 1) g (1 Ci(r - 1)) E
15 (s BY, ) gpfzn_l ne

Moreover, from Proposition [2.12| we see that:

p-1
ar(py O BD) cP

15" (rn, BY)

for rp < cikp. Plug these estimates we find:

—1 1/r ;1 —1
{ ||xu;<;’2>] < (1+ Clr)% 5 O Bap)
S r(p=1) 1 N
I[P 157 (yn, BD)
I,]1/2

ne-1

p-1
(1 + ﬂ)T Cp—o—2p 2
ne O'E_ ni-/p

p-1
1 r=
p __
< C3 max{ n1/2—1/p’ nl—l/p} ’
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1 .
for 1 < r < ¢n?P (since N7 < NP for p > 2), where C3 > 0 is large absolute
constant. Thus, we get the bound:

yr ) 1 rp%l
(Evixip],) " < mln{l, Cgmax{—nwup, —nll,p}},

for all r > 1. It follows that:

172 2 pp/2
1/r . r r r
(E[1XI1p = 1¥11p|) scs,ll(yn,Bg)mm{(k—) ,cfmax{(ﬁ) T}}
p

for all r > 1 where C5,C4 > 0 are absolute constants. O
Now we turn in the preparation needed in order to obtain the lower bound. Next

result is contained essentially in [20]:

Proposition 4.6. Let 1 < p < co. Then, we have:

(4.20) (Efixig - nvip[)" ~ (g)p/z max(2P ()2, rP/2nlr),

forallr > 2.

Naor in uses the following result of Latala from in order to prove the
aforementioned estimate:

Theorem 4.7. Ifr > 2 and &, &4, .. .,&n are i.i.d. symmetric random variables, then we
have:

n

Zfi

i=1

r\1/r
N r(nyve Is. r
) ~ sup{g(F) (BlEP)s max{z, ﬁ} <s< r}.

Note that if X = (Xi,..., Xp) is a gaussian random vector and Y an independent
copy of it, the variables & := |X|P — |Yj|P are i.i.d. and symmetric. For applying
Theorem A7 we need asymptotic estimates for the moments (E|£1|5)"/S. One can check
that for any S>1 we have:

(4.21) (E

2 /2 .
(4.22) Elél® = E|IXiP - 1Y1IP|” = \/ja}jng |cod g — sin® g|° dé.
T 0

Next lemma provides bounds on the trigonometric integral.

Lemma 4.8. For p>1and s> 1 we have:

1/s

T/ 2
(4.23) ( f |cod 6 — sin? 9|Sd9) ~ p /e,
0
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Proof. We may write:
1 /2 T/ 4
3 f [cod 6 —sinPg°>do = f (cof 9 - sin@)>do =: I(p, 9).
0 0

First note that one has the next simple estimate:

Claim. For B €[Z%,%] and for every a > 1 we have:

T

64

(4.24) fﬁ cog 0do ~ a2,
0

Indeed; we may write:
/2 1 +11
fﬂco§9d9 < f cos' Hdo = 5B(‘XT, §) ~ \r/2a + 1)V
0 0

from standard approximation for the Beta function. For the lower bound we argue
as follows:

? 1o fa+1 1) (7 I (a41 1 »
fC°§9d9=—B L —f cogodg> g2t L) 2008 A
0 2\ 2 2] U 27\ 2 72 a+l

which proves the claim. In order to estimate J(p,S) from below note that for 6 €
[0,7/6] one has Sing < 372 cosy, hence we may write:

/6 /6
(1- 3-9/2)3 f (cost)Psdg < f (cod 6 — sinP6)Sdo < I(p, 9).
0 0
On the other hand, for 8 € (0,7/2) we have sing > 0, thus:

/4
J(p,9) < f (cosh)P° de.
0

Now the assertion follows from the Claim and the previous estimates for J(p,s). O

Proof of Proposition .6l Note that ZI3) implies that:

bstl ps
1+ps _ ps+2)\ ? - 2 ( PS\Z
(4.25) Tlips = ( = ~ (ps) ~
Thus, by taking into account 22) and Lemma we get:
1 S\P/2 1 S\P/2
(4.26) (Elal9)"® = p= (%) [ (%) :

In view of Theorem [4.7] we have:

(EHIXIIE - IIYII.‘SIr)l/r = Sup{g(?)l/s(%s)w s max2,r/n} < s< r}

~ r(g)p/2 sup{sp/z‘l (?)1/5 s max2,r/np <s< r}.
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/s .
Set f(9) := sp/z’l(?) , S > 2 and note that f has a unique extremum at Sy =

(§p —1)7'log(¥) which is actually a minimum. For r > 2n we readily see that f is
increasing, hence:

1

1/ /2
azm (- vg) " = (B)" maxite), £y
p

2 1
N (_)P/ maX{ZP/ZI (m)l/z , [p/2 (E) /r} ,
e r

which proves the assertion. ]

Proof of Theorem (lower bound). Using Lemma for a = ||X||S, b= ||Y||E and
6 = 1/p we may write:

1/(2r)
(Bl = i) >

| { 1IXIE — V[ ]”‘2” L (i - vig)”
>-|E > —
p p(

p p )— b
(IXIE + IV E(IXI + VI e-vre)

where in the last step we have applied Cauchy-Schwarz inequality. Applying the
numerical inequality (a+ b)® < 25(a° + b%) for a,b, s> 0 we obtain:

ven 1 (BB - i)
TP @IXIE P Pyven
Thus, Proposition and Lemma [2.6] yield:
1

2P

(R

4%

1/(2r) p/2
(T ) max{2rzmy 2, roren]

ol

I

¢ e
p(l+ =5) T opn

C,"l {(r)l/z rp/z}
>—2 — —max{(=] ,—¢,
n n

(mastt, 551) *

B ro\/2 r\vz yrp/2
_ p i _ [
=C, |1m'”{(nz/p) ,max{(n) '

for r > 2 and for some large absolute constant Cy > 0. ]

ol

2
)p/ max{2P/(rn)"/%, rP/2n'’1}

Now we may prove the two sided concentration inequality for X = |[X|[p, p > 2.
Theorem 4.9. Let 2 < p < oo. Then, for all n we have:
4.28) cexpCpai(n, p,g)) < P(|||X||p - ]E||X||p| > sE||X||p) < Cexp(—caz(n, p, &),
for 0 < & <1, where ai(n, p,-) are defined as:
(4.29) ai(n, p,t) = min{CZpth, (tn)z/p} . as(n, p,t) =~ min{C’thZn, (tn)z/p}

and C,c > 0 are absolute constants.
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Proof. Let ¢(n, p,r) := max(r/n)¥2,r?2/n}, r > 0. Then, Theorem A3 yields:
1/r
(4.30) (E[IXIlo = EIXIp| )™ < CPy(n. p. NENXIlp.

for all 1 < r < n?P and some absolute constant C; > 0. Note that for 0 < & <1 and
for any 1 <r < n?P Markov’s inequality implies:

CPy(n, p,r)\
P([I1XIlp - ElIXIlp| > £EIIX|Ip) < (#)

Assume that e‘IC;pe > N2, Then, we may choose 1 <1 < n*P such that ¢(n, p,r) =
e‘.IC; Pe,ie. 1 =y7(n, p, e'C/ Pe) and taking into account the fact that y~'(n, p, S) =
min{s’n, (sn)¥P}, s> 0, we obtain:

P([IXIlp — EIIXIIp| > £EIIXIlp) < expEy~(p.n,e7'C;Pe)),
while for e‘ICI_ps < n 2 we have y~!(p,n, e‘lCl_ps) < 1, therefore we get:
P([I1XIlp - ElIXIlp| > £EIIX|l) < 3expy~'(n, p,e7'C; Pe))

< 3exp(—min{e*C*Pe’n, e¥/PC*(en)”/P))

< 3exp(~e2C; 2 min{C; *Pe?n, (en)?/?).

for every 0 < ¢ < 1. For the lower estimate we argue as in Theorem From
Theorem (lower bound) we know that there exists an absolute constant Cy > 0
such that:

1/ _
4.31) (E[1XlIp = EIXIp| )™ = C;Pu(n, p. EIXI,

for 4 < r < n*P, hence for C;pn‘l/2 <e< 1/(2C§) choose s € [4,n*P] such that
y(np,s) = 2805 to write:

1
P(|IX1lp = ElIXIlp| > £EIIXIlp) = F>(|||><||p ~EIXlg| > 5 (EfIXIlp - EIXIp|) )

(E[IXilp — EIXilp|")’
E|IXIlp — ElIXIlo| "

> 1_2*52

1, P
> 2 (27PPCPC, Py

\%

cge‘C3 PS _ g, exp(—03 pw—l(n, p, ZCES)) s

by the estimates @.30) and @31). The result follows. O
§2.3. The case logn < p < .
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Theorem 4.10. Let 4 < p < co. Then, for any 0 <1 < s< ¢ y/Kplogn we have:

Is(yn, Bp) (02(25— r))
4.32 — < exp| ———=|,
(452 O BD) kplogn
and

I_ ,B" _
@33) s(rn 2) . (_ co(2s r))

|—r(7n, Bp) kp |09 n

where C1, Cy > 0 are absolute constants.

Proof. Apply Theorem [2.9] for f(X) :=|[X|[l, r # 0. Then,
9 f(x) = rlixily *1xi[*~" sgn), x # 0.

Set |s = lg(yn, BB) and for a=a = |0i fllL,(,) we get:

Ir| p-1 r-p Ir| r-1
(4.34) a =" ] Ml dyn(¥) < gl

where we have used @3). In similar fashion, for A=A := [|0; fllL,(,) we have that:

(4.35) et e o 1[0 12221222 dyn() " <y
: nva 2-2 =717 q12 an p 2p-2 Vn = 2 22
by @.3) again. Therefore we obtain:

AZ

(436) Varyn(f) < Clnrg(p\/a).

The function F(t) = ﬁza/a)’ t > a is increasing and since @34) and @.35) imply
that a < [rjn™9771 < A< [rin 21571, for all 1 # 0 we obtain:

2r—2
|2r-2 22
(4.37) 12 — 12 = Var,, (f) < Cir? 22 — < Cyr’ 22,
1+ log (nt/a-1/2 (=2 ) logn
Irfl
since 1 < g<4/3 and log(lor—2/1r-1) = 0.
Claim. For r > —Kp, 1 # 0 we have:
22 or
5= < Csly /Kp.
We distinguish three cases:
e For 0<r<1wehave: 1272 = 2 < 2120 < Gy
=2 Tz, T 201 2r=2 = Ky 2re
2=z _ i r _oogor
e For r > 1 we may write: 15,75 = |§r72 < Csﬁ = k—‘plzr, since |y = |o.
3
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Finally, for —kp <1 < 0 we have: Igrrjg < lc—lg‘lgr' = E—ZI%{, by Lemma [2.13]

So, (A.37) becomes:

(4.38)

2r

|2I‘_|2I‘<Cr2 2r
2r r = :
kplogn

for r > —kp, r # 0. First we prove the stability for the positive means:

(@)

(o)

Consider the case r > 0. As long as 0 <1 < 4/kplogn/C we may write:
Cr?
(4.39) @s@+———yﬁ
kplogn

Iterating the last one we find:

lgm T 2l Cr(2m-1)
4.4 —_— O _
(440) I = exp{ C]Z(; kplogn] = exp( kplogn )

form=1,2,... as long as 2"r < y/kylogn/C. It follows that for 0 <r; <ry <

vKplogn/C we get:

I C@2rg—r
(4.41) L2 <exp c@r: —n))

Ir, kplogn
The case r < 0 is treated similarly. Set r = —=s, > 0. Then, inequality {@38)
is written as:

-2s
17251 8<Ccs—2
s kplogn

for s< kp. In particular, for s < 4/kylogn/C < ky we get:

Cs
I_9s > exp K logn I_s.
p

Arguing as before we conclude that for 0 < 5 < 5, < 4/kglogn/C we have:

C@&_&UIQ

(4.42) l_s, > exp(— ko logn
p

The proof of the Theorem is complete. O

Remark 4.11. The above argument also shows that for 0 <r,S< ¢ VK, K := ko logn
we get:

4.43)

Iy < lgexpar/K), l_s=>IlpexpEces/K),
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where |y = exp(f log|[Xllp dyn(X)). In particular,

(4.44) l—r < exp(@) .

Ifs -
Moreover, this allows us to conclude the next concentration inequality:
Corollary 4.12. Let clogn < p < oo. Then, one has:
(4.45) F>(|||X||p —ElIXIlp| > gEnxnp) < Cexp(—c maxe, &%} log n),
for all € > 0, where C,c > 0 are absolute constants.

Proof. Recall that by Proposition we only have to consider the range 0 < & < 1.
Then, using Markov’s inequality and Remark 411 we may write:

r
P(IXllp > (1+&)l1) < P(IIXIlp > €/%1,) < e/2 (:—*) < expl=sr /2 + cor?/K),
1

forall 0 <r <¢g VK. The choice r ~ VK yields the one-sided estimate:
P(||X||p > 1+ s)ll) <C exp(—c{s \/R)

Working similarly for the probability P(/|X||, < (I1-&)l{) we conclude the concentration
inequality:

P([IXllp = ] > &l1) < Cexp(—ce VK),

for all 0 < & < 1. The fact that k, = logn for p 2 logn and the standard Gaussian
concentration complete the proof. O

Taking into account the results of this paragraph we may have a concentration
result which interpolates between the concentration estimates for fixed p > 1 and

p = co:
Theorem 4.13. Let n > 2. Then, for any 1 < p < oo one has:
(4.46) P([IIXIlp = ElIXIlp| > £EIIXIlp) < C1expcia(n, p.£)),
for 0 < & <1and Cy, ¢ > 0 absolute constants where 5(n, p, ) is defined as follows:

i. If1<p<2, then

(4.47) B(n, p,g) ~ &n,
ii. for2<p<gologn,
C2rg2n, 0<e< Cpn’%

(4.48) B(n.p.g) =\ g2p2lp, CPr a5 <& <1/p -
ekp, l/p<e<l1

where C > 0 is suitable absolute constant, and
iii. for p > &ologn we have:

(4.49) B, p, ) = ek,

where gy > 0 is suitable absolute constant.
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9 The dependence on € in Dvoretzky’s theorem for €B

In this paragraph we study the dependence on & in random version of Dvoretzky’s
theorem for the é’g spaces. Our argument is inspired by Schecthman’s approach
in [23]. The key point in his proof is a distributional inequality for rectangular
matrices with independent standard gaussian entries. In particular, he proves that
if G=(gi l')in,!jkzl is such a Gaussian matrix then the process (GX)yesk-1 indexed by the
k-dimensional sphere is sub-gaussian:

Theorem 5.1 (Schechtman’s distributional inequality). Let f : R" — R be L-Lipschitz
map (with respect to the Euclidean metric) and let a,b € S¥"'. Then, for any random
matrix G = (g j):’jl(zl (where @ are iid standard Gaussian rv's) we have:

2
5.1) Prob (|f(G(a)) - £(G(b))| > t) < 2exp(—%|_2”at7_b”),
2

forallt>0.

Having proved this inequality, then a standard chaining argument gives the main
result in [23]]. The proof of Theorem [5.1lis based on an orthogonal splitting, combined
with a conditioning argument and inequality (Z:36). Here we use these ideas to prove
a functional inequality which generalizes B&.1). Once again, the advantage of this new
inequality is that involves ||V f||y instead of the Lipschitz constant of f. Our result
reads as follows:

Theorem 5.2. Let a,be S! and G = (gij):’jk:l

gaussians entries. If f : R" = R is Cl-smooth, then we have:

be random matrix with standard i.i.d.

r
6.2) (E|f(Ga) - F(Gh)[) " < Cvrlla- bil; (BIVF (W),
for allr > 1, where W ~ N(0, I,)) and C > 0 is an absolute constant.

Proof. Fix a,b € SK! and assume without loss of generality that a # +b. Define

p:= %b and note that since |[alls = ||blle the vector u := a—p is perpendicular to p. Set

X = G(u) and Z := G(p) and note that X, Z are independent gaussian random vectors
in R" with X ~ N(O, [lul31n), Z ~ N(O, [Ipl3]n) and G(&) = Z + X while G(b) = Z - X.
Thus, we may write:

E|f(Ga) - f(Gb)[" = EzEx|f(Z + X) - f(Z - X)I'.

For x,z € R" we define F(X,2) := f(z+ X) — f(z— X). Note that for fixed Z we have
ExF(X,2) = 0 since, X is symmetric random vector. Applying Theorem [2.10] for
o) =t", r > 1 and x> F(X,2) instead of f we derive:

EIF(X,2)| = Ex|f(z+ X) - f(z- X)I < (’21) Exy (VE(z+X),Y) + (Vi@z-X), V)

<7 Exy KV(z+ X),Y)
= n'lla— bllyoy Ex IV (z+ X)lls -
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Moreover, note that W := X + Z ~ N(0, I,), thus we get:

6.3)  EIf(G(a) - f(G(D)I = EIF(X, Z)| < n'lla- bllyoy Exz IVF(Z + X)lI;
=7'lla— bl o EIIVEW)II3

where W is standard Gaussian random vector in R". O

Remark 5.3. 1. Assuming further that f is L-Lipschitz and applying Markov’s in-
equality we conclude Schechtman’s distributional inequality G.).

2. The same proof can provide the following variant of Theorem [2.10] which we state
for future reference:

Theorem 5.4. Let ¢ : R — R be convex function and let f : R" — R be Cl-smooth. If
G = (g J—)R’jkzl is Gaussian matrix and a,b € S, then we have:

64) B4 (1(Ga) - 1(Gh) < E(Jla- bV 1(x). V)

where X, Y are independent copies of a Gaussian N-dimensional random vector.

The proof is left as an exercise to the interested reader.

3. For a,be Sk1 with (a,b) = 0 the above statements are reduced to the inequalities
we discussed in Section 2.

Now this refined form of @.34) and the same argument as in Theorem [4.5] (upper
bound) yields the following:

Corollary 5.5. Let 2 < p < co. Let a,b € S and let G = (g; j)in‘]-k:1 typical Gaussian
random variables. Then,

(5.5) (E1G@I - 1IGO)IE)"" < CPlla- bllay(n, p. NEIXI|

forr > 1. Moreover, for any t > 0 one has:

656 P (6@ - 1G] > t) < C exp{-cr (”’ P o))

where

C2t?n, O0<t< CPn 760
5.7) . p) =1 c2P2/p, CPhorn <t<1 -
C2t2n?/P, t>1

and C,c > 0 are absolute constants.
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The chaining method: Dudley-Fernique decomposition. For each j = 1,2,...
consider dj-nets Nj on SK1 with cardinality INjI < (3/6,—)k (see [18] Lemma 2.6]).
Note that for any 6 € S¥! and for all | there exist uj € Nj with ||§ — ujllz < &j and
by triangle inequality it follows that [[uj — Uj_i[lz < ] + dj_1. Moreover, if we assume
that §j — 0 as ] — oo and (tj) is sequence of numbers with tj > 0 and Xjtj <1 then,
for any € > 0 we have the next:

Claim. If we define the following sets:

(.8) A= {w| 30 S |IG,(0)I - E| > E}.
A= {w | Ju € Ny 2 [IGu(w)ll - E| > tisE}

and for j > 2
(5.9) Aj = {w | 3uj € N}, Ui € Nit : [IGu(Upll = IGu(uj-)Il| > tisE},

then the following inclusion holds:

(5.10) Ac| |A;.

-t

L
N

Indeed; if w ¢ U?‘;l Aj then for any j and any u; € Nj we have:
IGu ()l —E| <tE and [IGu(ujll - IGu(uj-)ll| <tE, j=2.3,....

For any 6 there exist 6; € Nj such that |0 — 8|l < 6; for j = 1,2,... and for any
N > 2 we may write:

N
IGL(O)]l - E| < [E = 1B @I + Y [IGu(6;-1)Il = IGu @] + IGu @Il - GO
i=2

N
< D #tE +0n - [1Gullox-
j=1
Since, N > 2 is arbitrary the claim is proved.
Now we apply the above chaining method for the £y norm with p > 2 and we

employ the distributional inequality of Corollary to prove our second main result:

Theorem 5.6 (Random Dvoretzky for ZB). Let 1 £ p < oo0. Then, for each n and
for any 0 < & < 1 the random subspace of {} with dimension k < k(n, p, &) is (1 + &)-
Euclidean with probability greater than 1—C expck(n, p, €)), where k(n, p, -) is defined
as follows:

(i) For1< p< 2 we have:

G.11) k(n, p, ) ~ &n,
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(i) For 2 < p < gylogn we have:

(Cp)Pe2n, 0 < e < (Cp)P/2n =0
o Kn.p.e) = § Len?s,  (CpPnmm <e<1/p
epn?’®,  1/p<s<l

Moreover, for p < gy logn but proportional to logn we have:
1
(5.13) k(n, p,&) ~ logn/log —,
e
(iit) For gglogn < p < oo we have:
1
(5.14) k(n, p, &) ~ elogn/ log —,
e

where C, C, g9 > 0 are absolute constants.

Proof. For 1< p < 2 follows from Theorem [2.3] and the fact that kp = n for 1 <p<2
Let 2 < p < co and onsider 0 < & < 1. Choose §; = €7, tj = s'jP%e], with
Sp = Z?‘;l jp/ 2e7l. Then, according to the previous chaining method we may write:

P(A) < CIM| exp(-cir(n, p, et) + C ) INj1l - INjlexpl-cir(n, p, s;'tiel /4))
j=2

<C ) ey expl-or(n p, s;'sj”?).
=1
Note that
Ny
(5.15) 7(n, p,t) = min @,(tn) PL. t>0,
1
thus we get:
. I ’n (en)?P .

(5.16) (n, p, s.'ejP?) > mm{ LI }: k(n, p, €),

(np,s,ej”) 2] CoP jk(n, p, &)

where we have used the fact that Sp < \/[—D(z—i)p/ 2, Therefore, we have:

P(A) < C ) exp(csjk — cajk(n. p.<)

j=1

< jZ::exp(—% jk(n, p, s)) <C exp(—%k(n, P, s)).
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as long as k < zc_ézk(n’ p,g). In the case that p < ¢cplogn and p > 1 for the range
1/p < & <1 we have for any 6 € SK! the concentration inequality:

(.17) P (IIG8Il, — ElIX|lp| > &ElIX|lp) < C exp(-ceky),

by Proposition Thus, the classical net argument yields the estimate: k(n, p, &) =
ekp/ IOQ%. Indeed; if N is 6-net on S¥! then previous distributional inequality
implies:
(5.18)

P(3ze N : [IGZl, - EIIXIlp| > £EIIX|lp) < CIN| exp(-cekp) < C(3/6)* exp(-ceky).

So, for K < @kp we get that with probability greater than 1— Cexp(&kp/ log %) we
B

have:
(5.19) 1G2lI, — ElIXIlp| < ElIXIlp

for all ze N. A standard approximation argument and a suitable choice d =~ & shows
that:

(5.20) 1G6ll, — EllXIlp| < 3£EIIXlp

for all 6 € Sk,

Moreover, for p < c¢jlogn but p =~ logn the main result of Section 2 shows
that Var||X|l[, s n™® for some absolute constant ¢; > 0. Therefore, Chebyshev’s
probabilistic inequality yields:

k-1
(5.21) vo e S P(|lIGHIl, - EIIXIlp| > £EIXIlp) < o
The net argument as before implies in that case k(n, p, &) ~ logn/ |Ogé. Finally, for
p = logn we employ Corollary [412] with the net argument again to get k(n, p, &) =
elogn/log % The result follows once we observe that the complement of the event
{w | 36 : |||Gm9||p - El > ¢E} is contained in the event that G(RY) is k-dimensional
l+e

subspace which is X£-spherical and by recalling the known fact that P(G(RX) € 8) =

1-¢

vnk(B) for any Borel set B in G. O
Note.

Below we show that the dependence on & we get for the randomized Dvoretzky
in 5?,, for fixed 2 < p < oo is essentially optimal. We have the following:

Theorem 3.7 (Optimality in Random Dvoretzky for 5?,). Let 2 < p < co. Assuming

that with probability larger than 1 — €%, a k-dimensional subspace satisfies that the
ratio between the € norm and a multiple of the €} norm are (1 + €) equivalent for all

__p2
vectors in the subspace, with N0 <p & < 1, then k < 7' p(en)?/P.

For the proof we will need the next lemma from [24]:
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Lemma 5.8. Let 1 < k< n-1and let A C Gnx be a vnx-measurable set. Then, for
U4 = U{F | F € A} we have:

(5.22) Vak(A) < [yn(UA)T<

Proof of Theorem[57] Let 0 < £ < 1/3 and define the collection of all k-dimensional
subspaces of the space X = (R", ||-||p) for which the restricted norm there has distortion
(with respect to the euclidean norm) at most 1+ &:

(5.23) A, = {F € Gnx | Ak 1 Ak < [I6ll < (1+ &)Ag, Y6 € Sg).

Note that for F € A, we have: (1+&)"'Mg < Ar < Mg, thus instead of working with
Ar we may define A, using Mg := M(F N Bx) namely, if

Fe = {F € Gok | (1+&)'Me < |Ifll < (1 + &)ME V0 € Se},

then we get A, C F,. Define further:

Elgl gl
5.24 B F < (1-2¢ <M +2
o2 { €T lU=2e)gy < Me <+ )Engu}

and note that 7., B, are measurable] Hence, an application of Lemma 5.8 yields:

Vn,k(?_g) = Vn,k(?_g \ ,88) + Vn,k(-gs)

_ 1+ 2¢ Elgl Ellgl }) “
< XX > X XI<(1+&e)(1-2 X +
[Yn({ [1X]| Tre Ellgllz” llz or [IXI| < (1 + &)( S)Ellgllz” Il
Elgl Elgl })}k
<Xl <1+ 1+ 2g)—— .
[)’n ({ Ellgllz [IXIl < (1 +&)( )E||g|| [1X][2

Apply this argument for the {p norm with 2 < p < co and consider the next:

_ P2
Claim. For every CPn"2>7 <t <1 we have:

(1-DElldllp 1+ DElldllp

(5.25) ce M < F’(ugnp < lgllz or liglly > gl ) <cet

Ellgllz Ellgllz
Proof of the Claim. Follows by Theorem and Theorem O

__p2 . . .
Now assume that CPn"20 < & < 1/3 and take into account the previous claim
to get:

n k(?_g) < Ck —ck(en)?/P n (1 _ —Cp(sn)Z/p)k

c’k(en)?/P Cp(gn)z/ p

<€ +1-—

2The map F — Mg is Lipschitz continuous with respect to the unitarily invariant metric d
on Gy defined as: d(E, F) = inf{||l —=Ull,, : U(E) = F, U € O(n)}, E,F € Gpx.
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Now assuming that vox(Fz) = 1— e for some absolute constant 8> 0 and note that
B < (en)?/P, for this range of & we obtain:

1— Ce—Cp(sn)z/ P >1— ek _ e—c’k(en)z/ P >1— Ze—c”ﬁk,
which implies that:
C/
k< —p(en)*P,
B

as required. m|

6 Further remarks and questions

1. Instability of the variance. It is worth mentioning that the variance is not
isomorphic invariant. Note that Theorem implies the following:

There exists absolute constant 0 < ¢y < 1 with the following property: for
every n > 2 there exist two I1-symmetric convex bodies K and L on R"
such that:

Var,, [IXIlk = O(n~°(logn)™), Var, |IX|. =~ (logn)™ and e VL c K C L,
where 6 =1 - Cy.

Indeed; for po := Cylogn, where 0 < ¢y < 1 as in Theorem [B.8] we consider K := BBO,
hence we have:

2Po B Clez/cﬂ
poni-2/P  cylogn

Var|[X|lk < C -(-colog?)

1

1
wgn and IIXIL < lIXilk < n'/PlIx]|. for any

whereas for L := B} we have Var||X||_ =
x € R".

2. Non-centered moments. We know that for any centrally symmetric convex body
T on R" one has:

cr

6.1 — < (

n li(yn, T) a ﬁ’

for all r > 2, where C;,C; > 0 are absolute constants. This follows from the lower
estimate in £25) and Lemma [2.6] In particular, for 2 <r < k(T) we obtain:

Ir('}/n, T))2 _ 1 < Czl'

car < I (yn, T) 1< Cyr

2 —
62 n S omT) S kD)

and when K(T) = n we readily see that this estimate is sharp up to constants. Fur-
thermore, one can show that this is the case even for the {p norms for 2 < p < oo
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even though the critical dimension kp is much smaller than n: For 2 < p < co we
have:
|r(7n’ B?)) Cp

I 2
Il('}/n, B?)) - n

for all 1 <1 < kp/C. In fact for the negative moments this is already clear if we
take into account Theorem [Z14] Proposition [A1] and Theorem [AI0 More precisely
we have: For 1< p<clogn and for any 1 <r < ckp we get:

6.3)

L(yn.BY) 1, (yn. B"
6.4) max{ 0n. Bp) 1rly p)}s e

I+ (yn, BB) " li(yn, B?))

and for p> clogn and 1 <r < ckp we have:

|1(7n, BB) |r(7n, BB)} C

™ (S 1+ .
I+ (n, Bp) li(yn, Bp) (logn)
We should note here the next threshold phenomenon when 2 < p < oo:

6.5) max{

e 2 <p<x<clogn: Itis I /Iy =1 <p r/n = Op(n*P) for 1
r>ckp we have I;/l; —1=1.

IA

r < ckp while for

A

e p>clogn: It is I/l —1 < r/(logn)* = O((logn)™) for r < ck, ~ logn, while
for r > C'’ky we have I;/l; =1 =1,

for some absolute constant ¢’ > C. The detailed study of this phenomenon will be

presented elsewhere. Let us also note that although the behavior of the quantities

:—: -1, ||Tlr — 1 is completely determined for the £, norms - it is of the order r/n for

1 <r < ckp - combining this information with Markov’s inequality we still do not
derive the optimal concentration inequality in the range 2 < p < oco.

3. The dependence on ¢ in randomized Dvoretzky. The gaussian concentration
for any norm || - |7 states:

6.6) o (X IXl = 1] > 1) < Cer ™™D t> 0.

In case that k(T) =~ n we may prove that this estimate is best possible in the following
sense:

Lemma 6.1. Let T be centrally symmetric convex body on R" with k = k(T) > an for
some constant «a € (0,1) with a > (Io%)l/z. Then,

©.7) o (X2 X = 1| > 1) > ce 0,

for all \/logn/n< e <1andC,c> 0 absolute constants.
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Proof. We know that there exists ¢; € (0,1) such that |, > (1+%)|1 forall 2 <r < k(T).

Let 4/logn/n < & < cia/2. Set 1y := zc—r:g and note that 2 < ro < an < K(T). Then,
using (6.2) we may write:

2ry
1+¢&
Ya(X X > (1 + &)l1) > yn (x S IxI > H—c]_ro“o) = (X2 IXII > 6lp,) > (1 - 6r0)2r2_0r0’
n Izro
by the Paley-Zygmund inequality, where ¢ := 1. Recall that there exists absolute

1+1L0
constant Cy > 1 such that Iy /I, < Cy for all r > 1. Thus, we get:

Ya(X X > (1+ &)ly) > (1 - 8)? exp(=2ro 10gCy) > (£/2)%e %™ > ce ™M,

For the range Cja/2 < & < 1 we argue as follows: From Lemma [Z7 we have |, >
Cs Vr/Kkly for all r > k. Sett:=(1+ c%)e > 1 and note that for s:= 4kt?/c2 > k we
have:

1 1 _
Ya(X X > (14 &)l1) = yn(X: IX| > tly) > yn (x: IX] > 5|S) > e 2slogC;

where in the last step we have used Paley-Zygmund inequality again. The estimate
s < ke?/a? completes the proof. m]

Although, the Gaussian concentration for such spaces is sharp, the argument pro-
vided in Section 5 fails to give the optimal dependence on ¢ in randomized Dvoretzky.
The reason for that, roughly speaking, is that in the Gaussian setting norms with
concentration estimate less than € cannot be distinguished from the Euclidean
norm. To this end is more appropriate to work with the uniform probability mea-
sure on S"™! when we study Dvoretzky’s theorem in normed spaces. Assume that
X =(R" |- satisfies:

©6.8) o({oes™ il - My > eMi}) > ce @0, o<z <.

If a random k-dimensional subspace satisfies that the ratio between the given norm
and a multiple of the fg norm are 1+ ¢ equivalent for all vectors in the subspace
with probability > 1 — €% then k < CB'¢?k(X). The proof follows the same lines
as in Section 5, but we skip the dilation passing from the sphere to the whole space:
Consider the set

Fe ={F € Gnx: Mg < [Igll < (1 + &)Mg, Y¢ € S¢}
and the set:
G. = (FeF.:(1-29M < Mg < (1+£)M).
Then, we have:
vak(Fe) = vak(Fe \ Ge) + vak(Ge)
<[o(0es™ 1 1ol - M| > eM)] + [0 (02 (1 - 26)M < [l < (1 + 36)M)]¥
< exp(-cke’k(X)) + 1 — cexp(Ce’k(X)),
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by the assumption and we have also used the fact that if z,...,7 are independent
random vectors uniformly distributed over S then F = span{z, ..., z} is uniformly
distributed in Gy almost surely. It follows that 1— ek — g tke’k(X) < 1 — ceCe'kX) gnd
assuming that 8 < £2k(X) the assertion follows.

4. Optimal Gaussian concentration and "new dimensions". The reader should
notice that the refined form of the Gaussian concentration for 2 < p < co (Theorem
and moreover Theorem provide random, almost Euclidean subspaces of rel-
atively large dimensions in which the norm has very small distortion. Previously,
that phenomenon couldn’t be observed if one was using the classical concentration
inequality in terms of the Lipschitz constant. In order to illustrate this let us consider
an example, say the {p norm with p = 5. The classical setting yields the existence
of k-dimensional sections of B} which are (1 + )-isomorphic to a mupltiple of B'; as
long as k < £2n?/ and this makes sense for & € (7%, 1). Now, we may consider dis-
tortions smaller than N5, in fact as small as N"/2, since 7(n, 5, &) ~ min{s?n, (n)?/°}
for 0 < & < 1. For instance, there exists (for & ~ N~2/9) a k-dimensional section (in
fact with probability > 1 — e ") of BY with k ~ n'/?, which is (1 + n"*?)-isomorphic
to a multiple of B'2<.

5. The existence of log(l/€) as p — o. Note that Theorem and furthermore
Corollary suggest that the concentration of the £, norm with p > logn is similar
with the one we get for the {» norm. This means that the classical net argument
yields random subspaces which are (1 + &)-spherical as long as k < elogn/ log é We
do not know if this logarithmic on & term is needed, for this range of p. Nevertheless,
it is easy to check that this is the case when p > (logn)

Proposition 6.2. Let p > (logn)? and & € (0,1/3). If the random K-dimensional
subspace of €} is (1+ &)-spherical with probability greater 3/4, then k < Celogn/ log é
where C > 0 is an absolute constant.

Proof. Tt follows by reducing it to the case of the €7, and by applying Tikhomirov’s
main result from [29]. O
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