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Abstract

Let Z be an n-dimensional Gaussian vector and let f : Rn → R be a convex

function. We prove that:

P

(

f (Z) ≤ E f (Z) − t
√

Var f (Z)
)

≤ exp(−ct2),

for all t > 1 where c > 0 is an absolute constant. As an application we derive

refinements of the Johnson-Lindenstrauss flattening lemma and the random

version of Dvoretzky’s theorem.

1 Introduction

The purpose of this note is to establish a sharp distributional inequality for convex

functions on Gauss’ space (Rn, γn). Our goal and motivation stems from the attempt

to strengthen the classical Gaussian concentration for special cases that are of inter-

est in high-dimensional geometry. The Gaussian concentration phenomenon (see [1]

and [14]) states that for any L-Lipschitz map f : Rn → R one has

P

(∣

∣

∣ f (Z) − M
∣

∣

∣ > t
)

≤ exp
(

− 1
2
t2/L2

)

,(1.1)

for all t > 0, where Z is n-dimensional standard Gaussian random vector and M
is a median for f (Z). In turn this implies bounds on the variance Var f (Z) for any

Lipschitz map f in terms of the Lipschitz constant L:

Var[ f (Z)] ≤ 2L2.(1.2)
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One may check that the above inequalities are sharp (up to constants) for linear

functionals. However, one can easily construct examples of convex functions (see

Section 2) for which the above estimates are far from being optimal. On the other

hand it is known (see [18] and [21, Proposition 2.9]) that for positively homogeneous,

convex functions the estimate (1.1) is sharp (up to absolute constants) in the large

deviation regime t > M. Therefore, in this paper we focus on the one-sided small

deviation inequality:

P ( f (Z) − M < −t) ≤ 1

2
exp

(

− 1
2
t2/L2

)

,

which holds for all t > 0 and for any L-Lipschitz map f . Our main result reads as

follows: For any convex map f ∈ L2(γn) one has

P ( f (Z) − M < −t) ≤ 1

2
exp

(

− π
256

t2/Var[ f (Z)]
)

,(1.3)

for all t > 0. In view of (1.2) this obviously improves the one-sided concentration

inequality in the small deviation regime. We want to emphasize the fact that the

inequality we propose does not require the Lipschitz condition; instead it is valid for

any convex function f ∈ L2(γn) (in fact we may even consider f ∈ L1,∞(γn)).
As a consequence of this distributional inequality one can get refined versions

of classical results such as: the Johnson-Lindenstrauss dimension reduction lemma

from [7] and the random version of Dvoretzky’s theorem due to V. Milman [16] (see

also [17]).

The rest of the paper is organized as follows: In Section 2 we present a proof

of the main result. The key ingredient in our argument is Ehrhard’s inequality [3],

inspired by the approach of Kwapien in [13]. The applications of our main result in

asymptotic geometric analysis are presented in Section 3. We conclude in Section 4

with further comments.

2 Proof of the main result

Let Φ be the cumulative distribution function of a standard Gaussian random vari-

able, i.e.

Φ(x) =
1
√
2π

∫ x

−∞
e−z2/2 dz, x ∈ R.

Our goal is to prove the next:

Theorem 2.1. Let Z be an n-dimensional standard Gaussian vector. Let f be a convex

function on Rn with f ∈ L1(γn) and let M be a median for f (X). Then, we have:

P

(

f (Z) − M < −tE
∣

∣

∣ f (Z) − M
∣

∣

∣

)

≤ Φ












−
√
2π

16
t













,

for all t > 0.
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Proof. We may assume that E| f (Z) − M| > 0 otherwise we have nothing to prove.

Note that since f is convex, the level sets { f < t}, t ∈ R are convex sets and the

function F(t) := P( f (Z) < t) is log-concave. The latter follows by the following

inclusion:

(1 − λ){ f < t} + λ{ f < s} ⊆ { f < (1 − λ)t + λs},

for t, s ∈ R and 0 ≤ λ ≤ 1 and the fact that γn is log-concave measure (see [1, Section

1.8] for the related definition). Now, we may use Ehrhard’s inequality from [3] (see

also [1, Theorem 4.2.1.]) to get that the map s 7→ Φ−1 ◦ F(s), s ∈ R is concave (for a

proof see [1, Theorem 4.4.1.]). Therefore, we obtain:

(Φ−1 ◦ F)(s + M) = (Φ−1 ◦ F)(s + M) − (Φ−1 ◦ F)(M)(2.1)

≤ s(Φ−1 ◦ F)′(M) = s
√
2πF′(M), s ∈ R.

Now we give a lower bound for F′(M) in terms of the standard deviation of f (X).

Claim. We have the following:

F′(M) ≥ 1

16E| f (X) − M| .

Proof of Claim. Fix δ > 0 (that will be chosen appropriately later). Using the log-

concavity of F we may write:

δ
F′(M)
F(M)

≥ logF(M + δ) − logF(M) = log
(

1 + 2P(M ≤ f (Z) < M + δ)
)

≥ P(M ≤ f (Z) < M + δ
)

=
1

2
− P( f (Z) ≥ M + δ),

where we have used the elementary inequality log(1+ u) ≥ u/2 for all 0 < u ≤ 1. Now

we apply Markov’s inequality to get:

P( f (Z) ≥ M + δ) ≤ E| f (Z) − M|
δ

.

Combing the above we conclude that:

F′(M) ≥ 1

δ

(

1

2
− E| f (Z) − M|

δ

)

.

The choice δ = 4E| f (Z) − M| yields the assertion of the Claim.

Going back to (2.1) we readily see that (for s = −tE| f (Z) − M|):

Φ
−1

[

P

(

f (Z) − M < −tE| f (Z) − M|
)]

≤ −t

√
2π

16
,

as required. �
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Remarks 2.2. 1. The advantage of this one-sided concentration inequality is that

it can be applied for the wide class of convex functions which are not necessarily

(globally) Lipschitz or which are not even in L2(γn); e.g. the function f (t) = exp(−t +
t2/2) is (logarithmically) convex, belongs to L1(γ1) but f < L2(γ1). Moreover, a careful

inspection of the argument shows that it is enough to have f ∈ L1,∞(γn) (see e.g. [5])

and the conclusion still holds:

P
(

f (Z) < M − t‖( f − M)+‖1,∞
) ≤ Φ(−ct), t > 0,(2.2)

where c > 0 is an absolute constant.1

2. Note that (2.1) implies that the variable f (Z) is stochastically dominated by the

normal random variable ζ := M + a · g, where g is a standard normal variable and

1/a := (2π)1/2F′(M) > 0, i.e.

P( f (Z) ≤ s) ≤ P(ζ ≤ s),

for all s ∈ R. Hence one gets: E f (Z) ≥ Eζ = M. This result is due to Kwapien [13].

In fact our proof steps on the same starting line as in [13].

3. Taking into account the fact that E| f (Z) − M| ≤
√

Var f (Z) and that

1 −Φ(u) = Φ(−u) ≤ 1

2
e−u2/2(2.3)

for all u > 0 (for a proof see [15, Lemma 1]) we immediately get:

P

(

f (Z) − M < −t
√

Var f (Z)
)

≤ Φ












−t

√
2π

16













≤ 1

2
exp

(

− π

256
t2
)

,

for all t > 0, which is the announced estimate (1.3) provided that f ∈ L2.

Furthermore, using the fact M ≥ E f (Z)−
√

Var f (Z) once more, we may conclude

the following “Central Limit type” normalization in Theorem 2.1: For any convex

function f on Rn with f ∈ L2(γn) one has the following distributional inequality:

P

(

f (Z) − E f (Z) < −t
√

Var f (Z)
)

≤ 1

2
exp

(

− π

256
(t − 1)2

)

< e−t2/1000,(2.4)

for all t > 1.

4. It turns out that one can prove a similar inequality for the n-dimensional ex-

ponential measure but for 1-unconditional functions f , i.e. functions which satisfy

f (x1, . . . , xn) = f (|x1|, . . . , |xn|) for all x = (x1, . . . , xn) ∈ Rn.

We fix W for an n-dimensional exponential random vector, i.e. W = (ξ1, . . . , ξn),
where (ξi)n

i=1 are independent identically distributed according to the measure ν1

with density function
dν1(x)

dx =
1
2
e−|x|. Note that if g1, g2 are i.i.d. standard normals

and ξ is independent exponential random variable then |ξ| and g2
1
+g2

2

2
have the same

distribution (follows easily by examining the moment generating functions). Based

on this remark we have the following consequence of Theorem 2.1:

1Here and everywhere else C and c stand for absolute constants whose values may change

from line to line.
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Theorem 2.3. Let f be 1-unconditional and convex function on Rn. If W is an

exponential random vector on Rn, then one has:

P ( f (W) − M ≤ −tE| f (W) − M|) ≤ 1 −Φ(ct) ≤ exp(−ct2),

for all t > 0.

Proof. Consider the function F : R2n → R defined as:

F(x1, . . . , xn, y1, . . . , yn) := f













x2
1
+ y2

1

2
, . . . ,

x2n + y2n
2













.

Since f is convex and 1-unconditional it follows that f is convex and coordinatewise

non-decreasing2 in the octant Rn
+ = {z = (z1, . . . , zn) : zi ≥ 0}. Hence F is convex on

R
2n. Therefore a direct application of Theorem 2.1 yields:

P

(

f (W̃) − M ≤ −tE| f (W̃) − M|
)

≤ exp(−ct2),

for all t > 1, where W̃ = (|ξ1|, . . . , |ξn|) and ξi are i.i.d. exponential random variables.

The fact that f (x1, . . . , xn) = f (|x1|, . . . , |xn|) completes the proof. �

5. In the above argument it is clear that we may also consider longer sums of the

form g2
1
+ . . . + g2

k . That is, if f : Rn
+
→ R is a coordinatewise non-decreasing and

convex function, then

P ( f (χ) < M − tE| f (χ) − M|) ≤ Φ(−t/20),

for all t > 0, where χ ∼ χ2(k) is a chi squared random variable with k degrees of

freedom.

6. Finally, let us note that in all statements above, one can derive the reverse

distributional inequality for concave functions, i.e. if f is a concave function on Rn

then,

P ( f (Z) − M > tE| f (Z) − M|) ≤ Φ(−ct),

for all t > 0, where M is a median for f (Z).

7. Probabilistic inequalities similar to (1.3), in the context of log-concave measures,

will be presented elsewhere [19].

3 Applications in asymptotic convex geometry

The concentration of measure phenomenon has two famous applications in asymp-

totic geometric analysis: the Johnson-Lindenstrauss flattening lemma [7] and the

2A real valued function H defined on U ⊆ Rk is said to be coordinatewise non-decreasing if

it is non-decreasing in each variable while keeping all the other variables fixed at any value.
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random version of Dvoretzky’s theorem due to V. Milman [16]. Being the concentra-

tion inequality a two sided estimate, provides sufficient information for low distortion

embeddings of any point-set on the Euclidean space to an arbitrary normed space.

On the other hand, if one only focus on the one-sided inequality on the iso-

morphic version of the randomized Dvoretzky then the dimension dependence can be

considerably improved. Klartag and Vershynin in [11], building on ideas of Latala

and Oleszkiewicz from [15], introduced a new parameter d(A), associated with any

convex body A on Rn to study this phenomenon. They showed that this parameter

replaces the critical dimension k(A) and one may still has the one-sided inclusion

(see below for the related definitions). They also proved that this parameter is at

least as big as the critical dimension. However, there was no connection with other

global, computable parameter associated with the body (or the norm); neither an al-

most isometric version of their result was available. The motivation to prove 2.1 is

to provide answers to the above questions.

In the rest of the Section we start with proving a small ball probability estimate

for norms. Then, we shall apply this result to get refined one-sided versions of the

almost isometric version of Dvoretzky’s theorem and the J-L lemma.

3.1 Small ball probabilities

Let A be a centrally symmetric convex body on Rn and let M be the median for the

map x 7→ ‖x‖A with respect to the Gaussian measure. Recall the Klartag-Vershynin

parameter from [11]:

d(A) := min
{

n,− logγn

( M
2

A
)}

.

Using the main argument of Latala and Oleszkiewicz from [15], Klartag and Ver-

shynin prove in [11] that this parameter is responsible for small ball probability esti-

mates. Namely, they show that P(‖Z‖A ≤ cεE‖Z‖A) ≤ (Cε)cd(A) for all ε ∈ (0, ε0), where

c,C > 0 and 0 < ε0 < 1 are absolute constants and Z is an n-dimensional standard

Gaussian vector. Furthermore, they show that d(A) ≥ ck(A) where k(A) is the critical

dimension of the body A defined as k(A) := E‖Z‖2A/b(A)2, where b(A) = maxθ∈S n−1 ‖θ‖A .
Thus, they recover the main result of [15]. Also, they comment that there exist convex

bodies A for which d(A)≫ k(A) (e.g. A being the n-dimensional cube Bn
∞; see [11]).

Here we suggest another global parameter β(A), associated with any convex body

A, which is defined as follows:

β(A) :=
Var‖Z‖A

M2
,(3.1)

where Z is n-dimensional standard Gaussian vector and M stands for the median of

‖Z‖A . In view of (1.2) and by taking into account the fact that M ≃ E‖Z‖A we may

easily deduce the bound β(A) ≤ c/k(A). We should mention that there exist many

classical examples (e.g. the ℓp balls Bn
p for 2 < p ≤ ∞) for which β is dramatically

smaller compared to 1/k (see [21, Section 3]; see also [20] for an extension of this

result for any subspace of Lp, 2 < p < ∞). Below we prove that 1/β(A) serves as a

general lower bound for d(A). Namely, we have the following:
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Theorem 3.1. Let A be a centrally symmetric convex body on Rn. Then, one has the

one-sided concentration estimate:

P (‖Z‖A ≤ (1 − ε)M) ≤ 1

2
exp

(

−cε2/β(A)
)

,(3.2)

for all 0 < ε < 1 where Z is n-dimensional standard Gaussian random vector. In

particular, one has:

d(A) ≥ c1/β(A) ≥ c2k(A).(3.3)

Moreover, we have the following small ball probability estimate:

P (‖Z‖A ≤ εE‖Z‖A) ≤ 1

2
εc/β(A),(3.4)

for all ε ∈ (0, 1/2).

Proof. The bound d(A) ≥ c/β(A) will follow by the definition of d and once we

will have proved (3.2) by plugging ε = 1/2. The estimate (3.2) follows from the next

general:

Claim. Let f be a convex map with f ∈ L1(γn) and let M = med f (Z) , 0. Then, we

have:

P ( f (Z) ≤ (1 − ε)M) ≤ 1

2
exp

(

−cε2/β( f )
)

,

for all ε ∈ (0, 1), where β( f ) = Var[ f (Z)]/M2.

Proof of Claim. Fix ε ∈ (0, 1). Apply Theorem 2.1 for tε := ε/
√
β to get:

P ( f (Z) ≤ (1 − ε)M) = P
(

f (Z) − M ≤ −tε
√

Var[ f (Z)]
)

≤ Φ












−tε

√
2π

16













≤ 1

2
e−cε2/β,

where in the last step we have used (2.3) again. This proves the claim.

In order to prove the probabilistic estimate (3.4) we may apply directly the result

from [11]. However, we prefer to present a proof which provides explicit constants

and range for ε. To this end we may argue as in [15] and apply a theorem of

Cordero-Erausquin, Fradelizi and Maurey from [2] known as B-Theorem. The latter

states that for any centrally symmetric convex body K on Rn one has:

γn(a1−λbλK) ≥ [γn(aK)]1−λ[γn(bK)]λ,

for all a, b > 0 and 0 < λ < 1. To the contrary of the approach in [15] instead

of using the Gaussian isoperimetry, we use Ehrhard’s inequality which is formally

stronger. We roughly give the details: Let ε ∈ (0, 1/2). We choose λ ∈ (0, 1) such that

1/2 = ε1−λ, i.e. 1 − λ = log2

log(1/ε) . We employ B-Theorem to obtain:

γn

( M
2

A
)

≥ [γn(εMA)]1−λ[γn(MA)]λ,

7



or equivalently

[

2γn (εMA)
]1−λ ≤ 2γn

( M
2

A
)

.(3.5)

Now we estimate γn( M
2

A) from above by using Ehrhard’s inequality. Set for simplicity

FA(t) = γn({x : ‖x‖A ≤ t}) = γn(tA), t > 0; we may write:

Φ
−1 ◦ FA(M/2) ≤ −M

2

√
2πF′(M) ≤ −

√
2π

32

M
√
Var‖Z‖A

,

where we have used the same reasoning as in Theorem 2.1. It follows that:

γn

( M
2

A
)

= FA(M/2) ≤ Φ












−
√
2π

32
β−1/2













≤ 1

2
exp

(

− π

10000
β−1

)

.(3.6)

Plug (3.6) into (3.5) and taking into account the value of λ we obtain:

2γn(εMA) ≤ exp

(

− πβ−1

10000(1 − λ)

)

= εc/β,

as required. �

Remark. In [2] it is also proved that any 1-unconditional log-concave measure µ

and 1-unconditional convex body K on Rn has the B-property, that is t 7→ µ(etK) is

concave. Therefore, in view of Theorem 2.3 we readily get the following:

Proposition 3.2. If K is 1-unconditional convex body on Rn, then one has:

νn
1 (εmK) ≤ 1

2
εc/β, ε ∈ (0, 1/2),

where m is a median for x 7→ ‖x‖K with respect to νn
1
and β =

√
Var‖W‖K/m.

We also have the following reverse Hölder inequality for negative moments due

to the small deviation (3.2) and the small ball probability (3.4):

Corollary 3.3. Let K be a centrally symmetric convex body on Rn. Then, one has:

E‖Z‖K
(

E‖Z‖−q
K

)1/q
≤ exp

(

C
√

β + Cqβ
)

,

for all 0 < q < c/β(K) where C, c > 0 are absolute constants and Z is n-dimensional

standard Gaussian vector.

Proof. We know that:

P(‖Z‖K ≤ εM) ≤ 1

2
εc1/β, P(‖Z‖K ≤ (1 − ε)M) ≤ 1

2
e−c2ε2/β,

8



for all ε ∈ (0, 1/2), where M is the median for ‖Z‖K and Z ∼ N(0, In). Therefore, we

may write:

E‖Z‖−q
K = M−q

∫ ∞

0

P(‖Z‖K ≤ tM)
q

tq+1
dt

≤ M−q

(

q
2

∫ 1/2

0

ε
c1
β
−q−1 dε +

∫ 1

1/2

q
tq+1

P(‖Z‖K ≤ tM) dt + 1

)

≤ M−q

















(

1

2

)

c1
β
−q qβ

c1 − qβ
+ q

∫ 1/2

0

1

(1 − ε)q+1
e−c2ε2/β dε + 1

















≤ M−q

(

1 + c3qβ + q
∫ 1/2

0

exp(2(q + 1)ε − c2ε
2/β) dε

)

,

for all 0 < q < c4/β, where we have also used the the elementary inequality 1−v ≥ e−2v

for 0 ≤ v ≤ 1/2. It is easy to check that the last integral can be bounded as:

∫ 1/2

0

exp(2(q + 1)ε − c2ε
2/β) dε .

√

βexp(c5q2β),

for3 all 0 < q . 1/β. The result follows. �

3.2 The Johnson-Lindenstrauss flattening lemma

The J-L lemma from [7] (see also [8]) asserts that: if ε ∈ (0, 1) and x1, . . . , xN ∈ ℓ2 then

there exists a linear mapping (which can be chosen to be an orthogonal projection)

P : ℓ2 → F, where F is a subspace of ℓ2 with dimF ≤ cε−2 logN such that

(1 − ε)‖xi − x j‖2 ≤ ‖Pxi − Px j‖2 ≤ (1 + ε)‖xi − x j‖2,

for all i, j = 1, . . . ,N.

This dimension reduction principle has found many applications in mathematics

and computer science, in addition to the original application in [7] for the Lipschitz

extension problem. We refer the interested reader to [6, 12, 25] and the references

therein for a partial list of its many applications.

Below we suggest a form of the J-L Lemma for an arbitrary target space, as was

formulated in [24], which exhibits an improved one-sided scaling.

Proposition 3.4 (J-L lemma). Let E = (Rn, ‖ · ‖) be a normed space and let T be a

finite subset of the metric space ℓk
2
. Let ε ∈ (0, 1) and assume that log |T | . ε2k(E).

Then, there exists a map P : T → E with the following property:

(1 − sε) · ‖u − v‖2 ≤ ‖Pu − Pv‖ ≤ (1 + ε) · ‖u − v‖2,

for all u, v ∈ T , where s ≡ s(E) :=
√
Var‖Z‖/b(E) < 1 and b(E) = maxθ∈S n−1 ‖θ‖.

3For any two quantities A, B depending on n, p, etc. we write A . B if there exists numerical

constant C > 0 - independent of everything - such that A ≤ CB. We write A & B if B . A
and A ≃ B if A . B and B . A. Accordingly we write A ≃p B if the constants involved are

depending only on p.
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Proof. The classical Gaussian concentration estimate asserts that for any Lipschitz

map f : Rn → R we have:

P ( f (Z) > t + M) ≤ 1

2
exp

(

− t2

2L2

)

, t > 0,

where L = Lip( f ). Consider Z1, . . . , Zk i.i.d. standard Gaussian vectors on Rn and

define the random matrix G = [Z1, . . . , Zk]. Then, for any fixed θ ∈ S k−1 one has:

P(‖Gθ‖ > (1 + t)M) = P(‖Z1‖ > tM + M) ≤ 1

2
exp(−t2k/2), t > 0,

where k = k(E). If T = {u1, . . . , uN}, consider the points Θ :=
{

ui−u j

‖ui−u j‖2 : 1 ≤ i < j ≤ N
}

on S k−1. Then, by the union bound we get:

P(∃ θ ∈ Θ : ‖Gθ‖ > (1 + t)M) <
N2

4
exp(−t2k/2).

Arguing similarly and applying Theorem 3.1 (note that x 7→ ‖x‖ is convex) we get:

P(∃ θ ∈ Θ : ‖Gθ‖ < (1 − ts)M) <
N2

4
exp

(

− t2k
800

)

,

for all t ∈ (0, 1). Thus, for any ε ∈ (0, 1) assuming that logN ≤ ε2k/4 we have with

positive probability (greater than 1/2) that there exists a Gaussian matrix G such that:

(1 − sε)M ≤ ‖Gθ‖ ≤ (1 + ε)M,

for all θ ∈ Θ. The required map P is given by P := 1
M G. �

Following the same idea of proof, but using (3.4) instead, we derive:

Proposition 3.5 (One-sided J-L). Let X = (Rn, ‖ · ‖) be normed space and let T ⊆ ℓ2 be
a finite set with T = {u1, . . . , uN}. Let ε ∈ (0, 1) and assume that log |T | . log(1/ε)/β(X).
Then, the random Gaussian matrix G = (gi j)

N,n
i, j=1 satisfies:

‖Gui −Gu j‖ & ε · E‖Z‖X · ‖ui − u j‖2,

for all i, j,= 1, . . . ,N, where Z ∼ N(0, In), with probability greater than 1 − cεc/β(X).

3.3 The random version of Dvoretzky’s theorem

The classical Dvoretzky theorem asserts that every centrally symmetric convex body

on Rn has a linear image which in turn has a central section of relatively large

dimension which is almost Euclidean. The optimal form of the theorem, in terms

of the dimension, was proved by V. Milman in [16]. His pioneering work put forth

the concentration of measure phenomenon and established it as the main tool for

the study of high-dimensional structures. Milman’s random formulation reads as

10



follows: For any ε ∈ (0, 1) there exists a c(ε) > 0 with the following property: For

any centrally symmetric convex body A on Rn, there exists k ≥ c(ε)k(A) such that the

random k-dimensional subspace F satisfies

1

(1 + ε)M1

BF ⊆ A ∩ F ⊆ 1

(1 − ε)M1

BF ,

provided that the critical dimension k(A) = (E‖Z‖A)2/b(A)2 is large enough and M1 ≡
M1(A) =

∫

S n−1 ‖θ‖A dσ(θ). Here the randomness is considered with respect to the Haar

probability measure on the Grassmann space Gn,k of all k-dimensional subspaces.

Milman’s approach yields the dependence c(ε) ≃ ε2/ log(1/ε). This is improved to

c(ε) ≥ cε2 by Gordon in [4] and an alternative approach is given by Schechtman in

[22]. This dependence is known to be optimal.

Dvoretzky’s theorem can also be viewed as the “continuous version" of the J-L

principle (see [24] for a unified approach). Roughly speaking, if we consider the set

T ⊆ S k−1 to be dense enough then we can embed the whole sphere S k−1. Since the

mapping is linear this entails in an almost isometric embedding of ℓk
2
into X.

Next, we state our version of the randomized Dvoretzky theorem with a refined

one-sided estimate.4

Theorem 3.6 (Randomized Dvoretzky). For every ε ∈ (0, 1) there exists η = η(ε) with
the following property: For any centrally symmetric convex body A on Rn (with k∗(A)≫
1) there exists a set F in Gn,k with k := ⌊ηk∗(A)⌋, which satisfies νn,k(F ) ≥ 1 − e−cε2k∗

and for any E ∈ F we have

w(A)















1 −
ε
√

β∗k∗
log(1/ε)

log















e

ε
√

k∗β∗





























BE ⊆ PE(A) ⊆














1 +
ε

√

log(1/ε)















w(A)BE.

We may take η(ε) ≃ ε2/ log 1
ε
.

Before we proceed with the proof of the theorem we would like to illustrate its

concept in two classical cases (for the related estimates in the examples the reader is

consulted in [21, Section 2 & 3]):

i. The ℓ1 ball (crosspolytope). We have k∗(ℓn
1
) = k(ℓn

∞) ≃ logn and β∗(ℓn
1
) =

β(ℓn
∞) ≃ (logn)−2. The above theorem yields that the random logn-dimensional

subspace E satisfies:















1 − c
log logn
√

logn















w(Bn
1 )BE ⊆ PE(Bn

1 ) ⊆ 2w(Bn
1 )BE,

with probability greater than 1 −Ce−c logn.

4The ∗ quantities are referred to the corresponding ones for the polar body, i.e. β∗(A) ≡
β(A◦), k∗(A) ≡ k(A◦) and w(A) = M1(A◦).
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ii. The ℓp ball; p = 4/3. We have k∗(Bn
p) = k(Bn

4
) ≃ n1/2 and β∗(Bn

p) = β(Bn
4
) ≃

1/n. Then Theorem 3.6 shows that the random n1/2-dimensional subspace F
satisfies:

(

1 − c
logn

n1/4

)

w(Bn
p)BF ⊆ PF (Bn

p) ⊆ 2w(Bn
p)BF ,

with probability greater than 1 −Ce−c
√

n.

For the proof of Theorem 3.6 we focus on the lower inclusion (the upper inclusion

follows by the work of Gordon [4] – see Schechtman [22] for an alternative proof).

To this end we shall need several auxiliary results. The first lemma, which can be

proved by using integration in polar coordinates, goes back to [9]:

Lemma 3.7. Let A be symmetric convex body on Rm. Then, for any p > 0 we have:

[v.rad(A)]m Jp
p (A) =

m
m + p

M−(m+p)
−(m+p) (A),

where Jp(A) :=
(

1
|A|

∫

A
‖x‖p

2
dx

)1/p
and M−q

−q(A) :=
∫

S m−1 ‖θ‖
−q
A dσ(θ).

Next lemma is essentially from [9]. The proof we present here is due to Rudelson

(see [10, Lemma 2.4]):

Lemma 3.8. Let K be symmetric convex body on Rn. Then, for all q > 0 we have:

Jq(K) :=

(

1

|K|

∫

K
‖x‖q

2
dx

)1/q

≥ a−1n,qR(K), a−q
n,q :=

q
2

B(q, n+ 1),

where R(K) := maxx∈K ‖x‖2.

Proof. Let R = R(K). Then we have the following:

Claim. For any 0 < ε < 1 we have:

|{x ∈ K : ‖x‖2 ≥ εR}| ≥ (1 − ε)n|K|/2.

Proof of Claim. (M. Rudelson). Let x0 ∈ K such that R = ‖x0‖2. Then, there exists

x∗
0
∈ S n−1 such that 〈x0, x∗

0
〉 = ‖x0‖2 = R. We easily check that:

εx0 + (1 − ε){x ∈ K : 〈x, x∗0〉 ≥ 0} ⊆ {x ∈ K : ‖x‖2 ≥ εR}.

Taking volumes we obtain:

|{x ∈ K : ‖x‖C ≥ εR}| ≥ (1 − ε)n|K+| = (1 − ε)n|K|/2,

where K+ = {x ∈ K : 〈x, x∗
0
〉 ≥ 0}. This proves the claim.

Now we may write:

Jq
q(K) =

qRq

|K|

∫ ∞

0

tq−1|{x ∈ K : ‖x‖2 ≥ tR}| dt ≥ qRq

2

∫ 1

0

tq−1(1 − t)n dt,

12



where we have used the Claim. The proof is complete. �

Remark. Let us note that by using standard asymptotic estimates for the Beta func-

tion we have:

an,q ≤ exp

(

cn
q

log
(eq

n

)

)

(3.7)

for all q ≥ n.

Proposition 3.9. Let A be a centrally symmetric convex body on Rn. For any matrix

T = (ti j)
k,n
i, j=1 ∈ Rk×n we define the map T 7→ ψ(T ) := w(T A). Then, ψ enjoys the

following properties:

i. The map ψ is Lipschitz on (Rk×n, ‖ · ‖HS) with:

|ψ(T ) − ψ(S )| ≤ c1
R(A)
√

k
‖T − S ‖HS,(3.8)

for all T = (ti j), S = (si j) ∈ Rk×n.

ii. If G = (gi j) ∈ Rk×n has i.i.d. standard Gaussian entries, then

E[ψ(G)] = E[hA(Z)] = w(A)E‖Z‖2,(3.9)

where Z is an n-dimensional standard Gaussian vector.

iii. For G = (gi j) as before we have:

(E[ψ(G)]r)1/r

E[ψ(G)]
≤

√

1 +
c2r

kk∗(A)
,(3.10)

for any r ≥ 1.

Proof. (i) Note that for any matrix T = (ti j) we may write:

ψ(T )E‖Y‖2 = E[hT A(Y)] = E[hA(T ∗Y)],

where Y ∼ N(0, Ik). Thus, we get:

E‖Y‖2|ψ(T ) − ψ(S )| ≤ E|hA(T ∗Y) − hA(S ∗Y)| ≤ R(A)E‖(T − S )∗Y‖2
≤ R(A) · ‖(T − S )∗‖HS.

The assertion follows once we recall that E‖Y‖2 ≃
√

k.

(ii) Follows by the invariance of the Gaussian measure under orthogonal transfor-

mations and integration in polar coordinates.

(iii) Follows by [21, Lemma 2.6] and the assertion (i). �
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Proof of Theorem 3.6. Let p > 0 and 1 ≤ k ≤ n − 1 with k + p ≤ n − 1. Using Lemma

3.8 and Lemma 3.7 we may write:

E[r(GA)]−p/2 ≤ ap/2
k,p E[Jp/2

p ((GA)◦)]

=

pap/2
k,p

k + p
E[w−(k+p)/2

−(k+p) (GA)] · [vrad((GA)◦)
]−k/2

≤ ap/2
k,p

(

E[w−(k+p)
−(k+p)(GA)]

)1/2
·
(

E[vrad((GA)◦)]−k
)1/2

≤ ap/2
k,p

(

E[hA(Z)]−(k+p)
)1/2 (

E[w(GA)]k
)1/2

≤ ap/2
k,p

(

E[hA(Z)]−(k+p)
)1/2

(E[hA(Z)])k/2 ec/k∗ ,

where we have applied the inequality w(K)vrad(K◦) ≥ 1 (following by Hölder’s in-

equality) and Proposition 3.9. Using Corollary 3.3 and restricting ourselves in the

case 1 ≤ k ≤ p ≤ c1/β∗ we obtain:

(

E[r(GA)]−p/2
)2/p
≤

ak,p

EhA(Z)
exp

(

c
pk∗
+ c

√

β∗ + cpβ∗

)

≤ 1

EhA(Z)
exp

(

ck
p

log
(ep

k

)

+
c

pk∗
+ c

√

β∗ + cpβ∗

)

,

where in the last step we have also used the estimate (3.7). Given ε ∈ (0, 1) we choose

p := c1ε
√

β∗k∗/β∗ and k := pε
√

β∗k∗/ log e
ε
to get:

(

E[r(GA)]−p/2
)2/p
≤ eD

EhA(Z)
,

where D :=
c2ε
√
β∗k∗

log(e/ε) log( e

ε
√
β∗k∗

). Markov’s inequality shows that the set:

F1 :=
{

G = (gi j)
k,n
i, j=1 : r(GA) ≥ e−2D

EhA(Z)
}

,

with k ≃ ε2k∗/ log 1
ε
satisfies

P(F c
1 ) ≤ exp

(−c′1pD
) ≤ exp(−c2ε

2k∗).

In order to translate the above conclusion to the Grassmann space Gn,k we need one

more step: First recall the fact that the random Gaussian matrix G = (gi j)
k,n
i, j=1 satisfies

for any t ∈ (0, 1), with probability greater than 1 − e−c3t2n, that

(1 − t)‖x‖2 ≤ (E‖Z‖2)−1‖G∗x‖2 ≤ (1 + t)‖x‖2,

for all x ∈ Rk . Apply this for t = D we find that the set

F2 :=
{

G = (gi j)
k,n
i, j=1 : ‖G∗x‖2 ≤ (1 + D) · E‖Z‖2 · ‖x‖2 ∀x ∈ Rk

}
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satisfies

P(F c
2 ) ≤ exp(−c3D2n) ≤ exp(−c4ε

2k∗).

Moreover, we can easily see that:

F1 ∩ F2 ⊆
{

G = (gi j)
k,n
i, j=1 : hA(z) ≥ e−3Dw(A)‖z‖2 ∀z ∈ ImG∗

}

.

Finally, the fact that the ImG∗ = G∗(Rk) = F is distributed over the Gn,k with respect

to the Haar probability measure νn,k (generated by the action of the orthogonal group

O(n) onto Gn,k), completes the proof. �

4 Further remarks

We end this note with some concluding comments that arise from our work.

1. We should stress the fact that in the statement of Theorem 2.1 we refer to con-

vex functions in L1,∞. Thus it is pointless to ask about a similar upper estimate

other than the weak L1 estimate. However for all applications presented in Section

3 the functions under consideration are norms or more generally Lipschitz functions

which are known to belong in Lψ2
(γn). In fact ‖ f −M‖ψ2

. Lip( f ). Moreover we have

mentioned that there are many examples of norms for which β is much smaller than

k. Therefore, it is natural to ask if there is one-sided concentration estimate (in the

large regime) which takes into account both the parameter β and the Lipschitz con-

stant. A naive approach which puts these remarks together is to combine Chebyshev’s

inequality with the concentration estimate in terms of the Lipschitz constant:

P(| f (Z) − M| > t) ≤ exp
(

− 1
2

max
{

log
(

t/
√

Var f (Z)
)

, t2/L2
})

.

Even in the case of a norm with k ≃ log(1/β) this bound depends continuously on

t > 0 and seems to be the right one. Example of such a norm is the ℓp norm on Rn

with p = c0 logn, for sufficiently small absolute constant c0 > 0 (see [21, Section 3]).

2. (Non-optimality in ℓn
∞). Note that Theorem 3.1 for the case of A = Bn

∞ only yields:

P(‖Z‖∞ < (1 − ε)M) ≤ 1

2
e−cε2 log2 n,

for all 0 < ε < 1. This estimate is far from being the sharp one: It is known (see [23,

Claim 3]) that one has:

exp(−Cec′ε logn) ≤ P(‖Z‖∞ < (1 − ε)M) ≤ C exp(−cecε logn),

for all 0 < ε < 1/2.

3. (Optimality in ℓn
p, 1 ≤ p < ∞). In [21] it is proved that for any 1 ≤ p < ∞ one has

β(ℓn
p) .p 1/n (see also [20] for an extension of this result to any finite dimensional

subspace of Lp). On other hand, for any norm ‖ · ‖ on Rn we can deduce that:

P (‖Z‖ < (1 − ε)E‖Z‖) ≥ c exp(−Cε2n),
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for all 0 < ε < 1. Therefore, we obtain:

P

(

‖Z‖p < (1 − ε)Mp,n

)

≥ c′ exp
(

−Cpε
2β(Bn

p)
)

,

where Mp,n is a median for ‖Z‖p .
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