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Abstract

We provide estimates for suitable normalizations of the affine and dual
affine quermassintegrals of a convex body K in Rn. These follow by a more
general study of normalized p-means of projection and section functions of
K.

1 Introduction

The starting point of this paper is an integral formula of Furstenberg and Tzkoni
[5] about the volume of k-dimensional sections of ellipsoids: for every ellipsoid E in
Rn and every 1 6 k 6 n one has

(1.1)
∫

Gn,k

|E ∩ F |ndνn,k(F ) = cn,k|E|k,

where νn,k is the Haar measure on the Grassmannian Gn,k and cn,k is a constant
depending only on n and k; more precisely, cn,k = Γ

(
n
2 + 1

)k /Γ (k
2 + 1

)n
. It

was proved by Miles [16] that this formula can be obtained in a simpler way as a
consequence of classical formulas of Blaschke and Petkantschin.

Later, analogous quantities were considered by Lutwak and Grinberg in the
setting of convex bodies. Lutwak introduced in [11] – for every convex body K in
Rn and every 1 6 k 6 n− 1 – the quantities

(1.2) Φn−k(K) =
ωn

ωk

(∫
Gn,k

|PF (K)|−ndνn,k(F )

)−1/n

,

where PF (K) is the orthogonal projection onto F and ωk is the volume of the
Euclidean unit ball in Rk. For k = 0 and k = n one sets Φ0(K) = |K| and
Φn(K) = ωn respectively. Grinberg [8] proved that these quantities are invariant
under volume preserving affine transformations; this justifies the terminology “affine
quermassintegrals” for Φn−k(K). From the definition of Φn−k(K) it is clear that

(1.3) Φn−k(K) 6
ωn

ωk

∫
Gn,k

|PF (K)| dνn,k(F ) = Wn−k(K),
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where Wn−k(K) = V (K, [k]Bn
2 , [n − k]) are the Quermassintegrals of K. Lutwak

conjectured in [12] that the affine quermassintegrals satisfy the inequalities

(1.4) ωj
nΦn−j

i 6 ωi
nΦj(K)n−i

for all 0 6 i < j < n. For example, Lutwak asks if

(1.5) Φn−k(K) > ω(n−k)/n
n |K|k/n

with equality if and only if K is an ellipsoid; note that the weaker inequality
Wn−k(K) > ω

(n−k)/n
n |K|k/n holds true by the isoperimetric inequality. Most of

these questions remain open (see [6, Chapter 9]); two cases of (1.5) follow from
classical results: when k = n − 1 this inequality is the Petty projection inequality
and when k = 1 and K is symmetric then (1.5) is the Blaschke-Santaló inequality.

Lutwak proposed in [13] to study the dual affine quermassintegrals Φ̃n−k(K).
For every convex body K in Rn and every 1 6 k 6 n− 1 one defines

(1.6) Φ̃n−k(K) =
ωn

ωk

(∫
Gn,k

|K ∩ F |ndνn,k(F )

)1/n

.

For k = 0 and k = n one sets Φ̃0(K) = |K| and Φ̃n(K) = ωn respectively. Grinberg
proved in [8] that these quantities are also invariant under volume preserving linear
transformations, and he established the inequality

(1.7) Φ̃n−k(K) 6 ω(n−k)/n
n |K|k/n

for all 1 6 k 6 n − 1, with equality if and only if K is a centered ellipsoid. The
case k = n− 1 of this inequality is the Busemann intersection inequality (while the
case k = 1 becomes an identity for symmetric convex bodies).

Being affinely invariant, affine and dual affine quermassintegrals appear to be
useful in asymptotic convex geometry. So, one of the purposes of this work is to
give upper and lower bounds for Φn−k(K) and Φ̃n−k(K) in the remaining cases.
We introduce a different notation and normalization which is better adapted to our
needs. Nevertheless, the question we study is equivalent to e.g. [6, Problem 9.7].

Definition 1.1 (normalized affine quermassintegrals). For every convex body
K in Rn and every 1 6 k 6 n− 1 we define

(1.8) Φ[k](K) =

(∫
Gn,k

|PF (K)|−ndνn,k(F )

)− 1
kn

.

We also set Φ[n](K) = |K|1/n. Lutwak’s conjectures about affine quermassintegrals
can now be restated as follows:
(i) For every (symmetric) convex body K of volume 1 in Rn and every 1 6 k 6 n−1,

(1.9) Φ[k](K) > Φ[k](Dn),
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where Dn is the Euclidean ball of volume 1.
(ii) For every convex body K of volume 1 in Rn and every 1 6 k 6 n− 1,

(1.10) Φ[k](K) 6 Φ[k](Sn),

where Sn is the regular Simplex of volume 1.
In view of these conjectures, in the asymptotic setting it is reasonable to ask if the
following holds true: There exist absolute constants c1, c2 > 0 such that for every
convex body K of volume 1 in Rn and every 1 6 k 6 n− 1,

(1.11) c1

√
n/k 6 Φ[k](K) 6 c2

√
n/k.

For k = 1 the Blaschke-Santaló inequality shows that (1.9) holds true. Proving
(1.10) for k = 1 corresponds to Malher’s conjecture. Clearly, (1.11) for k = 1
follows from the Blaschke-Santaló and the reverse Santaló inequality of Bourgain-
Milman [3].

Note that for k = n− 1 we have

(1.12) Φ[n−1](K) =
(

|Bn
2 |

|Π∗(K)|

) 1
n(n−1)

,

where Π∗(K) is the polar projection body of K. Then, Hölder’s inequality and the
isoperimetric inequality show that (1.9) holds true. The same is true for (1.10):
this follows from Zhang’s inequality; see [30].

Definition 1.2 (normalized dual affine quermassintegrals). For every convex
body K in Rn and every 1 6 k 6 n− 1 we define

(1.13) Φ̃[k](K) =

(∫
Gn,k

|K ∩ F⊥|ndνn,k(F )

) 1
kn

.

Grinberg’s theorem about dual affine quermassintegrals states that if K has volume
1 then

(1.14) Φ̃[k](K) 6 Φ̃[k](Dn) 6 c2,

where c2 > 0 is an absolute constant. As we will see, if the hyperplane conjecture
has an affirmative answer then

(1.15) Φ̃[k](K) > c1

for every centered convex body of volume 1, where c1 > 0 is an absolute constant.
In view of the above, here one asks if the following holds true: There exist absolute
constants c1, c2 > 0 such that for every centered convex body K of volume 1 in Rn

and every 1 6 k 6 n− 1,

(1.16) c1 6 Φ̃[k](K) 6 c2.
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Our estimates on the normalized affine and dual affine quermassintegrals are
summarized in the following:

Theorem 1.3. Let K be a convex body of volume 1 in Rn. Then, for every 1 6
k 6 n− 1,

(1.17) Φ[k](K) 6 c1

√
n/k log n

and, if K is also centered,

(1.18) Φ̃[k](K) >
c2

LK
,

where LK is the isotropic constant of K. In particular, assuming the hyperplane
conjecture we have that Φ̃[k](K) ' 1 for all 1 6 k 6 n−1. We also have the bounds

(1.19) Φ[k](K) 6 c3(n/k)3/2
√

log (en/k)

and

(1.20) Φ̃[k](K) >
c4√

n/k
√

log(en/k)
.

which are sharp when k is proportional to n.

For the proofs of these estimates, we attempt a more general study of normalized
p-means of projection and section functions of K, which we introduce for every
1 6 k 6 n− 1 and every p 6= 0 by setting

(1.21) W[k,p](K) :=

(∫
Gn,k

|PF (K)|pdνn,k(F )

) 1
kp

.

and

(1.22) W̃[k,p](K) =

(∫
Gn,k

|K ∩ F⊥|pdνn,k(F )

) 1
kp

.

respectively. The k-th normalized affine and dual affine quermassintegrals of K
correspond to the cases p = −n and p = n respectively:

(1.23) Φ[k](K) = W[k,−n](K) and Φ̃[k](K) = W̃[k,n](K).

We list several properties of the p-means and prove some related inequalities.

Acknowledgment. We would like to thank Apostolos Giannopoulos for many
interesting discussions. The second named author wishes to thank the US National
Science Foundation for support through the grant DMS-0906150.
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2 Notation and Preliminaries

We work in Rn, which is equipped with a Euclidean structure 〈·, ·〉. We denote
by ‖ · ‖2 the corresponding Euclidean norm, and write Bn

2 for the Euclidean unit
ball, and Sn−1 for the unit sphere. Volume is denoted by | · |. We write ωn for the
volume of Bn

2 and σ for the rotationally invariant probability measure on Sn−1.
The Grassmann manifold Gn,k of k-dimensional subspaces of Rn is equipped with
the Haar probability measure νn,k. We also write A for the homothetic image of
volume 1 of a compact set A ⊆ Rn of positive volume, i.e. A := |A|− 1

n A. If A
and B are compact sets in Rn, then the covering number N(A,B) of A by B is the
smallest number of translates of B whose union covers A.

The letters c, c′, c1, c2 etc. denote absolute positive constants which may change
from line to line. Whenever we write a ' b, we mean that there exist absolute
constants c1, c2 > 0 such that c1a 6 b 6 c2a.

A star-shaped body C with respect to the origin is a compact set that satisfies
tC ⊆ C for all t ∈ [0, 1]. We denote by ‖ · ‖C the gauge function of C:

(2.1) ‖x‖C = inf{λ > 0 : x ∈ λC}.

A convex body in Rn is a compact convex subset C of Rn with non-empty interior.
We say that C is symmetric if x ∈ C implies that −x ∈ C. We say that C is
centered if it has centre of mass at the origin:

∫
C
〈x, θ〉 dx = 0 for every θ ∈ Sn−1.

The support function hC : Rn → R of C is defined by hC(x) = max{〈x, y〉 : y ∈ C}.
The radius of C is the quantity R(C) = max{‖x‖2 : x ∈ C} and, if the origin is an
interior point of C, the polar body C◦ of C is

(2.2) C◦ := {y ∈ Rn : 〈x, y〉 6 1 for all x ∈ C}.

Let K be a centered convex body of volume 1 in Rn. Then, the Blaschke–Santaló
inequality and the Bourgain–Milman inequality imply that

(2.3) |K◦| 1
n ' 1

n
.

Let K be a centered convex body in Rn. For every F ∈ Gn,k, 1 6 k 6 n − 1, we
have that PF (K◦) = (K ∩ F )◦, and hence,

(2.4) |K ∩ F |1/k|PF K◦|1/k ' 1
k

.

The Rogers-Shephard inequality [26] states that

(2.5) 1 6 |PF K|1/k|K ∩ F⊥|1/k 6

(
n

k

)1/k

6
en

k
.

We refer to the books [28], [21] and [25] for basic facts from the Brunn-Minkowski
theory and the asymptotic theory of finite dimensional normed spaces.
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Let K be a centered convex body of volume 1 in Rn. For every q > 1 and
θ ∈ Sn−1 we define

(2.6) hZq(K)(θ) :=
(∫

K

|〈x, θ〉|qdx

)1/q

.

We define the Lq-centroid body Zq(K) of K to be the centrally symmetric convex
set with support function hZq(K). Lq–centroid bodies were introduced in [14]. Here
we follow the normalization (and notation) that appeared in [23].

It is easy to check that Z1(K) ⊆ Zp(K) ⊆ Zq(K) ⊆ Z∞(K) for every 1 6 p 6
q 6 ∞, where Z∞(K) = conv{K,−K}. Note that if T ∈ SL(n) then Zp(T (K)) =
T (Zp(K)). Moreover, as a consequence of the Brunn–Minkowski inequality (see,
for example, [23]), one can check that

(2.7) Zq(K) ⊆ c
q

p
Zp(K)

for all 1 6 p < q, where c > 1 is an absolute constant, and

(2.8) Zq(K) ⊇ cK

for all q > n, where c > 0 is an absolute constant.
A centered convex body K of volume 1 in Rn is called isotropic if Z2(K) is a

multiple of Bn
2 . Then, we define the isotropic constant of K by

(2.9) LK :=
(
|Z2(K)|
|Bn

2 |

)1/n

.

It is known that LK > LBn
2

> c > 0 for every convex body K in Rn. Bourgain
proved in [2] that LK 6 c 4

√
n log n and, a few years ago, Klartag [9] obtained the

estimate LK 6 c 4
√

n (see also [10]). The hyperplane conjecture asks if LK 6 C,
where C > 0 is an absolute constant. We refer to [19], [7] and [23] for additional
information on isotropic convex bodies.

Let K be a centered convex body of volume 1 in Rn. For every star shaped
body C in Rn and any −n < p 6 ∞, p 6= 0, we set

(2.10) Ip(K, C) :=
(∫

K

‖x‖p
Cdx

)1/p

.

If C = Bn
2 we simply write Ip(K) instead of Ip(K, Bn

2 ).

3 p-mean projection functions and estimates for
Φ[k](K)

We first consider the question whether there exist absolute constants c1, c2 > 0
such that for every convex body K of volume 1 in Rn and every 1 6 k 6 n− 1,

(3.1) c1

√
n/k 6 Φ[k](K) 6 c2

√
n/k.

We can prove that the right-hand side inequality holds true up to a log n term.
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Theorem 3.1. Let K be a centered convex body of volume 1 in Rn. Then, for
every 1 6 k 6 n− 1,

(3.2) Φ[k](K) 6 c
√

n/k log n.

For the proof of Theorem 3.1 we introduce a normalized version of the quermass-
integrals of a convex body.
§3.1 Normalized quermassintegrals. Let K be a convex body in Rn. For every
1 6 k 6 n− 1 we define the normalized k-quermassintegral of K by

(3.3) W[k](K) :=

(∫
Gn,k

|PF (K)|dνn,k(F )

)1/k

.

We also set W[n](K) = |K|1/n and W[0](K) = 1. Note that

(3.4) W[1](K) =
∫

Sn−1
[hK(θ) + hK(−θ)] dσ(θ) = 2w(K).

From the definition and Kubota’s formula (see [28]) it is clear that, for every 1 6
k 6 n− 1 one has

(3.5) W[k](K) =
(

ωk

ωn
V (K, [k];Bn

2 , [n− k])
)1/k

.

Applying the Aleksandrov-Fenchel inequality (see [28, Chapter 6]) one can check
the following:
(i) If K and L are convex bodies in Rn, then, for all 1 6 k 6 n,

(3.6) W[k](K + L) > W[k](K) + W[k](L).

(ii) For all 0 6 k1 < k2 < k3 6 n,

(3.7)
W[k2](K)W[k1](B

n
2 )

W[k1](K)W[k2](B
n
2 )

>

(
W[k3](K)W[k1](B

n
2 )

W[k1](K)W[k3](B
n
2 )

) (k2−k1)k3
k2(k3−k1)

.

(iii) For all 1 6 k1 6 k2 6 n,

(3.8)
W[k2](K)
W[k2](B

n
2 )

6
W[k1](K)
W[k1](B

n
2 )

.

Proof of Theorem 3.1. Since Φ[k](K) is affine invariant we may assume that K
is centered. It is well-known that Pisier’s inequality (see [25, Chapter 2]) on the
norm of the Rademacher projection implies that there exists T ∈ SL(n) such that

(3.9) W[1](T (K)) = 2w(T (K)) 6 c
√

n log n.
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More precisely, (3.9) follows from Pisier’s inequality in the case where K is sym-
metric. However, it is not difficult to extend the inequality to the non necessarily
symmetric case (see e.g. [22, Lemma3]). Then, using the affine invariance of Φ[k]

and the fact that Φ[k](K) 6 W[k](K), we write

(3.10) Φ[k](K) = Φ[k](T (K)) 6 W[k](T (K)).

Since W[k](Bn
2 ) = ω

1/k
k ' 1√

k
, it follows from (3.8) that

(3.11) W[k](T (K)) 6
W[k](Bn

2 )
W[1](Bn

2 )
W[1](T (K)) 6 c

√
n/k log n.

This completes the proof. 2

Next, we introduce the p-mean projection function W[k,p](K) and the p-mean
width wp(K) of a convex body K and prove a weak lower bound in the direction
of the left hand side inequality of (3.1).
§3.2. p-mean projection function. Let K be a convex body in Rn. For every
1 6 k 6 n − 1 and for every p 6= 0 we define the p-mean projection function
W[k,p](K) by

(3.12) W[k,p](K) :=

(∫
Gn,k

|PF (K)|pdνn,k(F )

) 1
kp

.

We also set W[n](K) := |K|1/n. Observe that the k-th normalized affine quermass-
integral of K corresponds to the case p = −n:

(3.13) Φ[k](K) := W[k,−n](K).

It is clear that W[k,p](K) is an increasing function of p, W[s,p](λK) = λW[s,p](K)
for every λ > 0 and W[s,p](K) 6 W[s,p](L) whenever K ⊆ L. Moreover, for every
1 6 k < m 6 n− 1 and every p 6= 0, one has

(3.14) W[k,p](K) =

(∫
Gn,m

W kp
[k,p](PE(K))dνn,m(E)

) 1
kp

.

In particular,

(3.15) W[k,−m](K) =

(∫
Gn,m

Φ−km
[k] (PE(K))dνn,m(E)

)− 1
km

.

§3.3. p-mean width. The p-mean width of K is defined for every p 6= 0 by

(3.16) wp(K) =
(∫

Sn−1
hp

K(θ)dσ(θ)
)1/p

.
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It is clear that wp(K) is an increasing function of p, wp(λK) = λwp(K) for every
λ > 0 and wp(K) 6 wp(L) whenever K ⊆ L. Note that, if K◦ is the polar body of
K, then

(3.17) w−n(K) =
(
|Bn

2 |
|K◦|

) 1
n

.

Also, for every 1 6 k 6 n− 1,

(3.18) wp(K) =

(∫
Gn,k

wp
p(PE(K))dνn,k(E)

)1/p

and, in particular,

(3.19) w−k(K) = ω
1/k
k

(∫
Gn,k

|(PE(K))◦|dνn,k(E)

)−1/k

.

Using the above we are able to prove that, in the symmetric case, W[k,−q](K) >

c
√

n/k as far as q 6 n/k; recall that Φ[k](K) = W[k,−n](K).

Theorem 3.2. Let K be a symmetric convex body of volume 1 in Rn. Then, for
every 1 6 k 6 n− 1,

(3.20) W[k,−n/k](K) > c
√

n/k.

Proof. Using Hölder’s inequality, the Blaschke-Santaló and the reverse Santaló
inequality, for every p > 1 we can write(∫

Gn,k

|PF (K)|−pdνn,k(F )

) 1
kp

'

(∫
Gn,k

|(PF (K))◦|p

ω2p
k

dνn,k(F )

) 1
kp

'
√

k

(∫
Gn,k

(∫
SF

1
hk

K(θ)
dσF (θ)

)p

dνn,k(F )

) 1
kp

6 c
√

k

(∫
Gn,k

∫
SF

1

hkp
K (θ)

dσF (θ) dνn,k(F )

) 1
kp

= c
√

k

(∫
Sn−1

1

hkp
K (θ)

dσ(θ)

) 1
kp

= c
√

kw−1
−kp(K).

We set p := n/k > 1. Then, from (3.17) we get

(3.21) W[k,−n/k](K) >
w−n(K)

c
√

k
' 1

c
√

k

ω
1/n
n

|K◦|1/n
'
√

n/k.
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This completes the proof. 2

Note. What we have actually shown in the proof of Theorem 3.2 is that
(3.22)

W[k,−p](K) '
√

k

(∫
Gn,k

(∫
SF

1
hk

K(θ)
dσF (θ)

)p

dνn,k(F )

)− 1
kp

> c
w−kp(K)√

k

for all 1 6 k 6 n− 1 and p > 1.

4 p-mean section functions and estimates for Φ̃[k](K)

Next, we consider the dual affine quermassintegrals. We first provide a lower bound
which is sharp up to the isotropic constant of the body.

Theorem 4.1. Let K be a centered convex body of volume 1 in Rn and let 1 6 k 6
n− 1. Then,

(4.1) Φ̃[k](K) >
c

LK
.

Proof. By the linear invariance of Φ̃[k](K), we may assume that K is in the isotropic
position. Let F be a k-dimensional subspace of Rn. We denote by E the orthogonal
subspace of F and for every φ ∈ F \ {0} we define E+(φ) = {x ∈ span{E, φ} :
〈x, φ〉 > 0}. K. Ball (see [1] and [19]) proved that, for every q > 0, the function

(4.2) φ 7→ ‖φ‖1+ q
q+1

2

(∫
K∩E+(φ)

〈x, φ〉qdx

)− 1
q+1

is the gauge function of a convex body Bq(K, F ) on F . We will make use of the
fact that, if K is isotropic then

(4.3) |K ∩ F⊥|1/k '
LBk+1(K,F )

LK
.

See [19] and [23] for a proof. Therefore,

(4.4) Φ̃[k](K)LK '

(∫
Gn,k

Lkn
Bk+1(K,F )dνn,k(F )

) 1
kn

.

Recall that the isotropic constant is uniformly bounded from below: we know that
LBk+1(K,F ) > c, where c > 0 is an absolute constant. It follows that

(4.5) Φ̃k(K)LK '

(∫
Gn,k

Lkn
Bk+1(K,F )dνn,k(F )

) 1
kn

> c,
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and the result follows. 2

Note. Theorem 4.1 shows that if the hyperplane conjecture is correct then (if we
also take into account Grinberg’s theorem), for every centered convex body K of
volume 1 in Rn and for every 1 6 k 6 n− 1,

(4.6) c1 6 Φ̃[k](K) 6 c2

where c1, c2 > 0 are absolute constants. This would answer completely the asymp-
totic version of our original problems about the dual affine quermassintegrals.

The proof of Theorem 4.1 has some interesting consequences:

Corollary 4.2. Let K be an isotropic convex body in Rn. For every 1 6 k 6 n− 1
we have

(4.7) νn,k

(
{F ∈ Gn,k : LBk+1(K,F ) > cLK}

)
6 e−kn,

where c > 0 is an absolute constant.

Proof. From Grinberg’s theorem – see (1.14) – we know that Φ̃[k](K) 6 Φ̃[k](Dn) 6
c2, where c2 > 0 is an absolute constant. From (4.5) we get

(4.8)

(∫
Gn,k

Lkn
Bk+1(K,F )dνn,k(F )

) 1
kn

6 c3LK ,

and the result follows from Markov’s inequality. 2

We complement Theorem 4.1 with a second lower bound for Φ̃[k](K), which is
sharp when k is proportional to n.

Theorem 4.3. Let K be a centered convex body of volume 1 in Rn. For every
1 6 k 6 n− 1 we have that

(4.9) Φ̃[k](K) >
c√

n/k
√

log(en/k)
.

For the proof of this bound, we introduce the p-mean section function W̃[k,p](K)
of a convex body K.

§4.1. p-mean section function. Let K be a convex body in Rn. For every 1 6 k 6
n− 1 and for every p 6= 0 we define the p-mean W̃[k,p](K) by

(4.10) W̃[k,p](K) =

(∫
Gn,k

|K ∩ F⊥|pdνn,k(F )

) 1
kp

.

The normalized dual k-quermassintegral of K is W̃[k](K) := W̃[k,1](K). Observe
that the k-th normalized dual affine quermassintegral of K corresponds to the case
p = n:

(4.11) Φ̃[k](K) = W̃[k,n](K).
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Hölder’s inequality implies that, for a fixed value of k, W̃[k,p](K) is an increasing
function of p.

The next Proposition shows that the normalized dual quermassintegrals W̃[k](K)
are strongly related to the quantities Ip(K).

Proposition 4.4. Let K be a convex body of volume 1 in Rn and let 1 6 k 6 n−1.
Then,

(4.12) W̃[k](K)I−k(K) =
(

(n− k)ωn−k

nωn

)1/k

= W̃[k](Dn)I−k(Dn).

Note. It is easy to check that
(

(n−k)ωn−k

nωn

)1/k

'
√

n.

Proof. We integrate in polar coordinates:

I−k
−k (K) =

nωn

n− k

∫
Sn−1

1
‖x‖n−k

K

dσ(x)

=
nωn

(n− k)ωn−k

∫
Gn,n−k

ωn−k

∫
SF

1
‖θ‖n−k

K∩F

dσ(θ)dνn,n−k(F )

=
nωn

(n− k)ωn−k

∫
Gn,n−k

|K ∩ F |dνn,n−k(F )

=
nωn

(n− k)ωn−k

∫
Gn,k

|K ∩ F⊥|dνn,k(F ).

The definition of W̃[k](K) completes the proof. 2

Proposition 4.4 has the following consequence:

Proposition 4.5. Let K be a centered convex body of volume 1 in Rn. Then, for
every 1 6 s 6 m 6 n− 1,

(4.13) W̃[s](K) 6 W̃[s](Dn)

and

(4.14)
W̃[m](K)

W̃[s](K)
>

W̃[m](Dn)

W̃[s](Dn)
.

Proof. It is known (see [24]) that for any q > p > −n we have

(4.15) Ip(K) > Ip(Dn)

and

(4.16)
Iq(K)
Ip(K)

>
Iq(Dn)
Ip(Dn)

.

12



Then, the result follows from Proposition 4.4. 2

Note. It is easy to check that

(4.17) W̃[k](Dn) = W̃[k,p](Dn) = Φ̃[k](Dn) ' 1.

Proof of Theorem 4.3. Hölder’s inequality and Proposition 4.4 imply that

(4.18) Φ̃[k](K) > W̃[k](K) >
c
√

n

I−k(K)
.

Now, we use the fact (see Theorem 5.2 and Lemma 5.6 in [4]) that there exists
T ∈ SL(n) such that

(4.19) I−k(T (K)) 6 c
√

n
√

n/k
√

log en/k.

By the affine invariance of Φ̃[k](K) we have

(4.20) Φ̃[k](K) = Φ̃[k](T (K)) >
c
√

n

I−k(T (K))
,

and this completes the proof. 2

5 Duality relations

In this Section we prove some inequalities involving the p-means of projection and
section functions of a convex body. In particular, we obtain duality relations be-
tween Φ[n/2](K) and Φ̃[n/2](K◦). These will allow us to obtain a second upper
bound for Φ[k](K) which is sharp when k is proportional to n.

One source of such inequalities is the following “Lq–version of the Rogers-
Shephard inequality” which was proved in [24].

Lemma 5.1. Let K be a centered convex body of volume 1 in Rn. Then, for every
1 6 k 6 n− 1 and every F ∈ Gn,k we have that

(5.1) c1 6 |K ∩ F⊥|1/k|PF (Zk(K))|1/k 6 c2,

where c1, c2 > 0 are universal constants.

A direct application of Lemma 5.1 leads to the following:

Proposition 5.2. Let K be a centered convex body of volume 1 in Rn. For every
1 6 k 6 n− 1 and p 6= 0 we have that

(i) c1 6 W̃[k,p](K)W[k,−p](Zk(K)) 6 c2,

(ii) c3 6 Φ̃[k](K)Φ[k](Zk(K)) 6 c4,

(iii) c5 6 Φ̃[k](K)Φ[k](K) 6 c6n/k,

13



where ci > 0, i = 1, . . . , 6 are absolute constants.

Proof. From the definitions and (5.1) we readily see that

W̃[k,p](K) =

(∫
Gn,k

|K ∩ F⊥|pdνn,k(F )

)1/(kp)

'

(∫
Gn,k

|PF (Zk(K))|−pdνn,k(F )

)1/(kp)

= W−1
[k,−p](Zk(K)).

This proves (i). Then, (ii) corresponds to the special case p = n. Since K ⊆
cn
k Zk(K), (iii) follows. 2

A second source of inequalities is the Blaschke-Santaló and the reverse Santaló
inequality. Since (K ∩F⊥)◦ = PF⊥(K◦), for every 1 6 k 6 n− 1 and F ∈ Gn,k we
have

(5.2) cn−kω2
n−k 6 |PF⊥(K◦)| |K ∩ F⊥| 6 ω2

n−k.

Therefore,

W̃[k,p](K) =

(∫
Gn,k

|K ∩ F⊥|pdνn,k(F )

)1/(kp)

6 ω
2/k
n−k

(∫
Gn,k

|PF⊥(K◦)|−pdνn,k(F )

)1/(kp)

= ω
2/k
n−k

(∫
Gn,n−k

|PF (K◦)|−pdνn,n−k(F )

)1/(kp)

= ω
2/k
n−kW

−(n−k)/k
[n−k,p] (K◦).

Working in the same way we check that

(5.3) W̃[k,p](K)W (n−k)/k
[k,p] (K◦) > c(n−k)/kω

2/k
n−k.

We summarize in the following Proposition.

Proposition 5.3. Let K be a centered convex body of volume 1 in Rn. For every
1 6 k 6 n− 1 and p 6= 0 we have:

(i) c(n−k)/kω
2/k
n−k 6 W̃[k,p](K)W (n−k)/k

[k,p] (K◦) 6 ω
2/k
n−k.

(ii) If n is even, then W̃[n/2,p](K)W[n/2,p](K◦) ' 1
n .

(iii) If n is even, then Φ̃[n/2](K)Φ[n/2](K◦) ' 1.

14



Taking into account Proposition 5.2(iii) we have the following:

Corollary 5.4. Let K be a centered convex body of volume 1 in Rn. Then,

(5.4) Φ̃[n/2](K) ' Φ̃[n/2](K◦) and Φ[n/2](K) ' Φ[n/2](K◦).

We can get more precise information if we use the M -ellipsoid of K. Let K be
a convex body of volume 1 in Rn. Milman (see [17], [18] and also [20] for the not
necessarily symmetric case) proved that there exists an ellipsoid E with |E| = 1,
such that

(5.5) log N(K, E) 6 νn,

where ν > 0 is an absolute constant. In other words, for any centered convex body
K of volume 1 in Rn there exists T ∈ SL(n) such that

(5.6) N(T (K), Dn) 6 eνn.

Theorem 5.5. Let n be even and let K be a centered convex body of volume 1 in
Rn. Then,

(5.7) c1 6 Φ̃[n/2](K) 6 c2,

where c1, c2 > 0 are absolute constants.

Proof. We will use the following inequality of Rogers and Shephard [27]. If K is a
centered convex body of volume 1 in Rn then

(5.8) |K −K| 6 4n.

We choose T ∈ SL(n) so that

(5.9) N(T (K −K), Dn) 6 eνn

Then, for any F ∈ Gn, n
2
,

(5.10) |PF (T (K −K))| 6 N
(
T (K −K)), Dn

)
|PF (Dn)| 6 eνncn.

Moreover, using (5.8) we have that

|PF (Zn
2
(T (K)))| 6 |PF (conv(T (K),−T (K)))| 6 |PF (T (K−K))| 6 4n|PF (T (K −K))|.

Combining the above with (5.10) and (5.1) we have that

(5.11) |T (K) ∩ F⊥| > c
n
2
0

|PF (Zn
2
(T (K)))|

>
c

n
2
0

eνncn
=: c

n
2
1 .

So, we have shown that for any F ∈ Gn, n
2
,

(5.12) |T (K) ∩ F | > c
n
2
1 .

15



This implies that

(5.13) Φ̃[ n
2 ](K) = Φ̃[ n

2 ](T (K)) > min
F∈Gn, n

2

|T (K) ∩ F | 2
n > c2.

This shows the left hand side inequality in (5.7). The right hand side inequality
follows from (1.14). 2

Combining Theorem 5.5 with Proposition 5.3 and Corollary 5.4 we conclude
the following:

Corollary 5.6. Let K be a centered convex body of volume 1 in Rn. Then,

(5.14) Φ̃[n/2](K) ' Φ̃[n/2](K◦) ' Φ[n/2](K) ' Φ[n/2](K◦) ' 1.

Note. In view of Corollary 5.6, if n is even and k = n/2, then (4.4) becomes a
formula:

Corollary 5.7. Let K be an isotropic convex body in Rn. Then,

(5.15) LK '

(∫
Gn,n/2

L
n2/2
B n

2 +1(K,F )dνn,n/2(F )

)2/n2

.

In particular, there exists F ∈ Gn,n/2 such that

(5.16) LK 6 cLB n
2 +1(K,F ).

Making use of Theorem 4.3 and of Proposition 5.2 we can now give a second
upper bound for Φ[k](K), which sharpens the estimate in Theorem 3.1 when k is
proportional to n.

Theorem 5.8. Let K be a convex body of volume 1 in Rn and let 1 6 k 6 n− 1.
Then,

(5.17) Φ[k](K) 6 c(n/k)3/2
√

log en/k.

Proof. We may assume that K is also centered. By Proposition 5.2 we have that

(5.18) Φ[k](K) =
Φ[k](K)Φ̃[k](K)

Φ̃[k](K)
6

cn/k

Φ̃[k](K)
.

Then, we use the lower bound of Theorem 4.3 for Φ̃[k](K). 2
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