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Abstract

We present proofs of the reverse Santaló inequality, the existence of M -
ellipsoids and the reverse Brunn–Minkowski inequality, using purely convex
geometric tools. Our approach is based on properties of the isotropic posi-
tion.

1 Introduction

We work in Rn, which is equipped with a Euclidean structure 〈·, ·〉. We denote the
corresponding Euclidean norm by ‖ · ‖2, and write Bn2 for the Euclidean unit ball,
and Sn−1 for the unit sphere. Volume is denoted by | · |.

A convex body K in Rn is a compact convex subset of Rn with non-empty
interior. We say that K is symmetric if x ∈ K implies that −x ∈ K. We say
that K is centered if its barycenter is at the origin, i.e.

∫
K
〈x, θ〉 dx = 0 for every

θ ∈ Sn−1. For every interior point x of K, we define the polar body (K − x)◦ of K
with respect to x as follows:

(1.1) (K − x)◦ := {y ∈ Rn : 〈z − x, y〉 6 1 for all z ∈ K}.

Note that (K − x)◦◦ = K − x.

The purpose of this article is to present an alternative route to some funda-
mental theorems of the asymptotic theory of convex bodies: the reverse Santaló
inequality, the existence of M -ellipsoids and the reverse Brunn–Minkowski inequal-
ity. The starting point for our approach is the isotropic position of a convex body,
which can be shown to simultaneously be an M -position for the body if its isotropic
constant is bounded. The new ingredient in this paper is a way to also show, using
only basic tools from the theory of convex bodies and log-concave measures, that
every convex body with bounded isotropic constant satisfies the reverse Santaló
inequality, and then that all bodies do.

We first recall the statements and the history of the results. The classical
Blaschke-Santaló inequality states that for every symmetric convex body K in Rn,
the volume product s(K) := |K||K◦| is less than or equal to the volume product
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s(Bn2 ), and equality holds if and only if K is an ellipsoid. More generally, for every
convex body K, there exists a unique point z in the interior of K such that

(1.2) |(K − z)◦| = inf
x∈int(K)

|(K − x)◦|,

and for this point we have

(1.3) |K||(K − z)◦| 6 s(Bn2 )

(with equality again if and only if K is an ellipsoid). This unique point is usually
called the Santaló point of K and is characterized by the following property: the
polar body (K−z)◦ of K with respect to the point z has its barycenter at the origin
if and only if z is the Santaló point of K. Observe now that the body K − bar(K)
is centered and it is the polar body of (K − bar(K))◦ with respect to the origin,
hence 0 is the Santaló point of (K − bar(K))◦. This means that for every centered
convex body K,

(1.4) s(K) = |K||K◦| = inf
x∈int(K◦)

|K◦||(K◦ − x)◦|,

and this allows us to restate the Blaschke-Santaló inequality in a more concise way:
for every centered convex body K in Rn, s(K) 6 s(Bn2 ), with equality if and only
if K is an ellipsoid.

In the opposite direction, a well-known conjecture of Mahler states that s(K) >
4n/n! for every symmetric convex body K, and that s(K) > (n+1)n+1/(n!)2 in the
not necessarily symmetric case. This has been verified for some classes of bodies,
e.g. zonoids and 1-unconditional bodies (see [28], [18], [30] and [10]). The reverse
Santaló inequality, or the Bourgain–Milman inequality, tells us that there exists an
absolute constant c > 0 such that

(1.5)

(
s(K)

s(Bn2 )

)1/n

> c

for every convex body K in Rn which contains 0 in its interior. The inequality was
first proved in [5] and answers the question of Mahler in the asymptotic sense: for
every centered convex body K in Rn, the affine invariant s(K)1/n is of the order
of 1/n. A few other proofs have appeared (see [20], [15], [25]), the most recent of
which give the best lower bounds for the constant c and exploit tools from quite
diverse areas: Kuperberg in [15] shows that in the symmetric case we have c > 1/2,
and his proof uses tools from differential geometry, while Nazarov’s proof [25] uses
multivariable complex analysis and leads to the bound c > π2/32. It should also
be mentioned that Kuperberg had previously given an elementary proof [14] of the
weaker lower bound s(K)1/n > c/(n log n).

The original proof of the reverse Santaló inequality in [5] employed a dimension
descending procedure which was based on Milman’s quotient of subspace theorem.
Thus, an essential tool was the MM∗-estimate which follows from Pisier’s inequal-
ity for the norm of the Rademacher projection. In [20], Milman offered a second
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approach, which introduced an “isomorphic symmetrization” technique. This is
a symmetrization scheme which is in many ways different from the classical sym-
metrizations. In each step, none of the natural parameters of the body is being
preserved, but the ones which are of interest remain under control. The MM∗-
estimate is again crucial for the proof.

Our approach is based on properties of the isotropic position of a convex body
and combines a very simple one-step isomorphic symmetrization argument (which is
reminiscent of [20]) with the method of convex perturbations that Klartag invented
in [12] for his solution to the isomorphic slicing problem. Aside from the use of
the latter, the approach is elementary, in the sense that it uses only standard
tools from convex geometry; namely, some classical consequences of the Brunn–
Minkowski inequality. Recall that a convex body K in Rn is called isotropic if it
has volume 1, it is centered and its inertia matrix is a multiple of the identity: there
exists a constant LK > 0 such that

(1.6)

∫
K

〈x, θ〉2dx = L2
K

for every θ ∈ Sn−1. It is relatively easy to show that every convex body has an
isotropic position and that this position is well-defined (by this we mean unique
up to orthogonal transformations): if K is a centered convex body, then any linear
image K̃ of K which has volume 1 and satisfies

(1.7)

∫
K̃

‖x‖22 dx = inf
{∫

T (K̃)

‖x‖22 dx : T is linear and volume-preserving
}

is an isotropic image of K. This also implies that any isotropic image of K has
the same isotropic constant, and thus LK can be defined for the entire affine class
of K. One of the main problems in the asymptotic theory of convex bodies is the
hyperplane conjecture, which, in an equivalent formulation, says that there exists
an absolute constant C > 0 such that

(1.8) Ln := max{LK : K is isotropic in Rn} 6 C.

A classical reference on the subject is the paper of Milman and Pajor [21] (see
also [7]). The problem remains open: Bourgain [4] has obtained the upper bound
LK 6 c 4

√
n log n, and Klartag [12] has improved that to LK 6 c 4

√
n – see also [13].

However, in this paper we only need a few basic results from the theory of isotropic
convex bodies and, more generally, of isotropic log-concave probability measures.
All this background information is given in Section 2; there we also list a few more
necessary tools from the general asymptotic theory of convex bodies and, in order
to stress the fact that all of them are of purely “convex geometric nature”, we
include a short description of the arguments leading to them.

In Section 3 we prove the reverse Santaló inequality in two stages. First, using
elementary covering estimates, we prove a version of it which involves the isotropic
constant LK of K.
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Theorem 1.1. Let K be a convex body in Rn which contains 0 in its interior.
Then

(1.9) 4ns(K)1/n > ns(K−K)1/n >
c1
LK

,

where c1 > 0 is an absolute constant.

Then, we use Klartag’s ideas from [12] to show that every symmetric convex
body K is “close” to a convex body T with isotropic constant LT bounded by
1/
√
ns(K)1/n.

Theorem 1.2. Let K be a symmetric convex body in Rn. There exists a convex
body T in Rn such that (i) c2K ⊆ T−T ⊆ c3K and (ii) LT 6 c4/

√
ns(K)1/n, where

c2, c3, c4 > 0 are absolute constants.

Since K and T −T have bounded geometric distance, we easily check that
s(K)1/n ' s(T−T )1/n. Then we can use Theorem 1.1 for T to obtain the lower
bound LT > c5/

(
ns(K)1/n

)
. Combining this estimate with Theorem 1.2(ii), we

immediately get the reverse Santaló inequality for symmetric bodies, and hence for
all bodies.

Theorem 1.3. Let K be a symmetric convex body in Rn. Then

(1.10) s(K)1/n >
c6
n
,

where c6 > 0 is an absolute constant.

In Section 4 we briefly indicate how one can use Theorem 1.3 in order to es-
tablish the existence of M -ellipsoids and the reverse Brunn–Minkowski inequality.
The procedure is rather standard.

The existence of an “M -ellipsoid” associated with any centered convex body
K in Rn was proved by Milman in [19] (see also [20]): there exists an absolute
constant c > 0 such that for any centered convex body K in Rn we can find an
origin symmetric ellipsoid EK satisfying |K| = |EK | and

1

c
|EK + T |1/n 6 |K + T |1/n 6 c|EK + T |1/n,(1.11)

1

c
|E◦K + T |1/n 6 |K◦ + T |1/n 6 c|E◦K + T |1/n,

for every convex body T in Rn. The existence of M -ellipsoids can be equivalently
established by introducing the M -position of a convex body. To any given centered
convex body K in Rn we can apply a linear transformation and find a position
K̃ = uK(K) of volume |K̃| = |K| such that (1.11) is satisfied with EK a multiple
of Bn2 . This is the so-called M -position of K. It follows then that for every pair of
convex bodies K1 and K2 in Rn and for all t1, t2 > 0,

(1.12) |t1K̃1 + t2K̃2|1/n 6 c′
(
t1|K̃1|1/n + t2|K̃2|1/n

)
,

4



where c′ > 0 is an absolute constant, and that (1.12) remains true if we replace
K̃1 or K̃2 (or both) by their polars. This statement is Milman’s reverse Brunn-
Minkowski inequality.

Another way to define the M -position of a convex body is through covering
numbers. Recall that the covering number N(A,B) of a body A by a second body
B is the least integer N for which there exist N translates of B whose union covers
A. Then, as Milman proved, there exists an absolute constant β > 0 such that every
centered convex body K in Rn has a linear image K̃ which satisfies |K̃| = |Bn2 | and

(1.13) max{N(K̃, Bn2 ), N(Bn2 , K̃), N(K̃◦, Bn2 ), N(Bn2 , K̃
◦)} 6 exp(βn).

We say that a convex body K which satisfies (1.13) is in M -position with constant
β. If K1 and K2 are two such convex bodies, there is a standard way to show that
they and their polar bodies satisfy the reverse Brunn–Minkowski inequality (1.12)
(see the end of Section 4). Note that M -ellipsoids and the M -position of a convex
body are not uniquely defined; see [2] for a recent description in terms of isotropic
restricted Gaussian measures.

Pisier (see [26] and [27, Chapter 7]) has proposed a different approach to these
results, which allows one to find a whole family of special M -ellipsoids satisfying
stronger entropy estimates. The precise statement is as follows. For every 0 < α < 2
and every symmetric convex body K in Rn, there exists a linear image K̃ of K which
satisfies |K̃| = |Bn2 | and

(1.14) max{N(K̃, tBn2 ), N(Bn2 , tK̃), N(K̃◦, tBn2 ), N(Bn2 , tK̃
◦)} 6 exp

(
c(α)n

tα

)
for every t > 1, where c(α) is a constant depending only on α, with c(α) = O

(
(2−

α)−1
)

as α→ 2. We then say that K̃ is in M -position of order α (or α-regular M -
position). It is an interesting question to give an elementary proof of the existence
of, say, an 1-regular M -position. Another interesting question is to check if the
isotropic position is α-regular for some α > 1 (assuming that LK ' 1).

2 Tools from asymptotic convex geometry

2.1. Basic notation. As mentioned at the beginning of the Introduction, we
denote the Euclidean norm on Rn by ‖ · ‖2. More generally, if K is a convex body
in Rn which contains 0 in its interior, then we write pK for its Minkowski functional
which is defined as follows:

(2.1) pK(x) := inf{r > 0 : x ∈ rK}, x ∈ Rn.

If K is symmetric, we also write ‖ · ‖K instead of pK . For every q > 1 and every
symmetric convex body B, we define

(2.2) Iq(K,B) :=

(
1

|K|1+ q
n

∫
K

‖x‖qB dx
)1/q

.
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If B is the Euclidean ball Bn2 and K is an isotropic convex body in Rn, then from
(1.6) we see that

(2.3) I22 (K,Bn2 ) =

∫
K

‖x‖22 dx =

∫
K

( n∑
i=1

〈x, ei〉2
)
dx = nL2

K ,

so LK = I2(K,Bn2 )/
√
n. More generally, as was explained in the Introduction, if K

is an arbitrary convex body in Rn, and we write K̃ for the translate of K which is
centered, K̃ = K−bar(K), then the isotropic constant LK of K can be defined by

(2.4) LK :=
1√
n

inf
{
I2
(
T (K̃), Bn2

)
: T is an invertible linear transformation

}
.

In the sequel, we write B for the homothetic image of volume 1 of a convex body
B ⊂ Rn, i.e. B := B

|B|1/n .

As a generalization to convex bodies, we also consider logarithmically concave
(or log-concave) measures on Rn. This more general approach is justified by a well-
known and very fruitful idea of K. Ball from [1] which allows one to transfer results
from the setting of convex bodies to the broader setting of log-concave measures
and vice versa. We write P[n] for the class of all Borel probability measures on Rn
which are absolutely continuous with respect to the Lebesgue measure. The density
of µ ∈ P[n] is denoted by fµ. A probability measure µ ∈ P[n] is called symmetric if
fµ is an even function on Rn. We say that µ ∈ P[n] is centered if for all θ ∈ Sn−1,

(2.5)

∫
Rn
〈x, θ〉dµ(x) =

∫
Rn
〈x, θ〉fµ(x)dx = 0.

A measure µ on Rn is called log-concave if for any Borel subsets A and B of Rn
and any λ ∈ (0, 1), µ(λA+(1−λ)B) > µ(A)λµ(B)1−λ. A function f : Rn → [0,∞)
is called log-concave if log f is concave on its support {f > 0}. It is known that
if a probability measure µ is log-concave and µ(H) < 1 for every hyperplane H,
then µ ∈ P[n] and its density fµ is log-concave (see [3]). Note that if K is a convex
body in Rn, then the Brunn-Minkowski inequality implies that 1K is the density
of a log-concave measure.

There is also a way to generalize the notion of the isotropic constant of a convex
body in the setting of log-concave measures. Set

(2.6) ‖µ‖∞ = sup
x∈Rn

fµ(x).

The isotropic constant of µ is defined by

(2.7) Lµ :=

(
‖µ‖∞∫

Rn fµ(x)dx

) 1
n

[det Cov(µ)]
1
2n ,

where Cov(µ) is the covariance matrix of µ with entries

(2.8) Cov(µ)ij :=

∫
Rn xixjfµ(x) dx∫

Rn fµ(x) dx
−
∫
Rn xifµ(x) dx∫
Rn fµ(x) dx

∫
Rn xjfµ(x) dx∫
Rn fµ(x) dx
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(in the case that µ is a centered probability measure, we can write more simply
Cov(µ)ij :=

∫
Rn xixjfµ(x) dx). It is straightforward to see that this definition

coincides with the original definition of the isotropic constant when fµ is the char-
acteristic function of a convex body. In addition, any bounds that we have for
the isotropic constants of convex bodies continue to hold essentially in this more
general setting. This can be seen through the following construction: let µ ∈ P[n]

and assume that 0 ∈ supp(µ). For every p > 0, we define a set Kp(µ) as follows:

(2.9) Kp(µ) :=

{
x ∈ Rn : p

∫ ∞
0

fµ(rx)rp−1dr > fµ(0)

}
.

The sets Kp(µ) were introduced in [1] and allow us to study log-concave measures
using convex bodies. K. Ball proved that if µ is log-concave, then Kp(µ) is a convex
body. Moreover, if µ is centered, then Kn+1(µ) is also centered, and we can prove
that

(2.10) c1LKn+1(µ) 6 Lµ 6 c2LKn+1(µ)

for some constants c1, c2 > 0 independent of n.

For basic facts from the Brunn-Minkowski theory and the asymptotic theory of
finite dimensional normed spaces, we refer to the books [31], [24] and [27].

The letters c, c′, c1, c2 etc. denote absolute positive constants whose value may
change from line to line. Whenever we write a ' b for two quantities a, b associated
with convex bodies or measures on Rn, we mean that we can find positive constants
c1, c2, independent of the dimension n, such that c1a 6 b 6 c2a. Also, if K,L ⊆ Rn,
we will write K ' L if there exist absolute positive constants c1, c2 such that
c1K ⊆ L ⊆ c2K.

In the rest of the section, we collect several tools and results from the asymptotic
theory of convex bodies which will be used in Section 3.

2.2. Some lemmas on covering numbers. Let K,B be convex bodies in Rn
with B symmetric. We will give an estimate for the covering numbers N(K, tB),
t > 0, in terms of the quantity

(2.11) I1(K,B) =
1

|K|1+ 1
n

∫
K

‖x‖B dx.

Lemma 2.1. Let K be a convex body of volume 1 in Rn containing 0 as an interior
point. For any symmetric convex body B in Rn and any t > 0, one has

(2.12) logN(K, tB) 6
c1nI1(K,B)

t
+ log 2,

where c1 > 0 is an absolute constant.
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Proof. We define a Borel probability measure on Rn by

(2.13) µ(A) =
1

cK

∫
A

e−pK(x)dx,

where pK is the Minkowski functional of K and cK =
∫
Rn exp(−pK(x))dx. A simple

computation, based on the fact that {x ∈ Rn : pK(x) 6 t} = tK for any t > 0,
shows that cK = n!.

Let {x1, . . . , xN} be a subset of K which is maximal with respect to the condi-
tion ‖xi−xj‖B > t for i 6= j. Then K ⊆

⋃
i6N (xi+ tB), and hence N(K, tB) 6 N .

Let a > 0. Note that if we set yi = (2a/t)xi, by the subadditivity of pK and the
fact that pK(xi) 6 1, we have

(2.14) µ(yi + aB) >
1

cK

∫
aB

e−pK(x)e−pK(yi)dx > e−2a/tµ(aB).

The bodies yi + aB have disjoint interiors, therefore Ne−2a/tµ(aB) 6 1. It follows
that

(2.15) N(K, tB) 6 2e2a/t(µ(aB))−1.

Now, we choose a > 0 so that µ(aB) > 1/2. A simple computation shows that

(2.16) J :=

∫
Rn
‖x‖K dµ(x) = (n+ 1)I1(K,B).

By Markov’s inequality, µ(2JB) > 1/2, so if we choose a = 2J , we get

(2.17) N(K, tB) 6 2 exp(4J/t) 6 2 exp
(
4(n+ 1)I1(K,B)/t

)
for every t > 0. 2

Remark 2.2. (i) In the case that B is the Euclidean ball Bn2 and K is an isotropic
convex body, we have that I1(K,B) 6

√
nLK and therefore

(2.18) logN(K, tBn2 ) 6
c′1n

3/2LK
t

for any t > 0 (for very large t the estimate is trivially true, since every isotropic
body K satisfies the inclusion K ⊆ cnLKB

n
2 for some absolute constant c). Given

(1.7), this is essentially the best way we can apply Lemma 2.1 when B = Bn2 . This
version of the lemma appeared in the Ph.D. Thesis of Hartzoulaki [11]. The idea
of using I1(K,Bn2 ) as a parameter in entropy estimates for isotropic convex bodies
comes from [22]. It was also used in [17] for a proof of the low M∗-estimate in the
case of quasi-convex bodies.

(ii) Knowing that we have for any set S,

(2.19) N(S − S, 2Bn2 ) = N(S − S,Bn2 −Bn2 ) 6 N(S,Bn2 )2,
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we can use (2.18) to also get an upper bound for the covering numbers of the
difference body of an isotropic convex body K by the Euclidean ball:

(2.20) logN(K −K, tBn2 ) 6
2c′1n

3/2LK
t

.

(iii) Lemma 2.1 is also related to the problem of estimating the mean width of an
isotropic convex body K, namely the parameter w(K) :=

∫
Sn−1 hK(θ)dσ(θ) where

hK is the support function of K and σ is the uniform probability measure on Sn−1.
The best upper bound we have is w(K) 6 cn3/4LK (there are several arguments
leading to this estimate; see [9] and the references therein). It is known (see e.g.
[8, Theorem 5.6]) that an improvement of the form

(2.21) logN(K, tBn2 ) 6
c′1n

3/2LK
t1+δ

(for some δ > 0) in (2.18) would immediately imply a better bound for w(K) in
the isotropic case.

The next lemma allows us to bound the dual covering numbers N(Bn2 , tK
◦).

Lemma 2.3. Let K be a convex body in Rn which contains 0 in its interior. For
every t > 0 we set A(t) := t logN(K, tBn2 ) and B(t) := t logN(Bn2 , tK

◦). Then,
one has

(2.22) sup
t>0

B(t) 6 16 sup
t>0

A(t).

In particular, if K is isotropic (or a translate of an isotropic convex body which still
contains 0 in its interior), then

(2.23) logN(Bn2 , tK
◦) 6 logN

(
Bn2 , t(K −K)◦

)
6
c2n

3/2LK
t

,

where c2 > 0 is an absolute constant.

Proof. We use a well-known idea from [32] (see also [16, Section 3.3]). For any
t > 0 we have (t2K◦) ∩ (4K) ⊆ 2tBn2 . Passing to the polar bodies we see that

(2.24) Bn2 ⊆ conv

(
t

2
K◦,

2

t
K

)
⊆ t

2
K◦ +

2

t
K.

We write

N(Bn2 , tK
◦) 6 N

(
t

2
K◦ +

2

t
K, tK◦

)
= N

(
2

t
K,

t

2
K◦
)

(2.25)

6 N

(
2

t
K,

1

4
Bn2

)
N

(
1

4
Bn2 ,

t

2
K◦
)

= N

(
K,

t

8
Bn2

)
N(Bn2 , 2tK

◦).
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Taking logarithms we get

(2.26) B(t) 6 8A(t/8) +
1

2
B(2t),

for all t > 0. This implies that

(2.27) B := sup
t>0

B(t) 6 16A,

and the result follows. 2

The last covering lemma is from [20] and shows that the volume |conv
(
K∪L

)
| of

the convex hull of two convex bodiesK and L is essentially bounded byN(L,K) |K|,
provided that L ⊆ bK for some “reasonable” b > 1.

Lemma 2.4. Let L be a convex body and let K be a symmetric convex body in Rn.
Assume that L ⊆ bK for some b > 1. Then

(2.28)
∣∣conv

(
K ∪ L

)∣∣ 6 3enb N(L,K)|K|.

Proof. By the definition of N ≡ N(L,K), there exist x1, . . . , xN ∈ Rn such that
(xi +K) ∩ L 6= ∅ for every i = 1, . . . , N , and

(2.29) L ⊆
N⋃
i=1

(xi +K).

From the symmetry of K and the fact that L ⊆ bK, it follows that, for every
i = 1, . . . , N ,

(2.30) xi ∈ L+K ⊆ (1 + b)K.

Now, for every α, β ∈ [0, 1] with α+ β = 1, we have that

αL+ βK ⊆
N⋃
i=1

(αxi + αK) + βK =

N⋃
i=1

(
αxi + (α+ β)K

)
(2.31)

=

N⋃
i=1

(αxi +K),

and therefore

(2.32) conv(L ∪K) =
⋃

06α61

(
αL+ (1− α)K

)
⊆

N⋃
i=1

⋃
06α61

(αxi +K).

We set T = 2n and consider dbT e numbers αj equidistributed in [0, 1], j =
1, . . . , dbT e. From (2.30) and (2.32) it follows that: for every z ∈ conv(L ∪ K)
there exist α, αj ∈ [0, 1], with distance |α− αj | 6 1

bT , such that

(2.33) z ∈ αxi +K = αjxi + (α− αj)xi +K ⊆ αjxi +

(
1 + b

bT
+ 1

)
K.
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We observe that

(2.34)
1 + b

bT
=

1 + b

2nb
6

1

n

because b > 1 and 1+b
2 6 b, so (2.33) gives us that

(2.35) z ∈ αjxi +

(
1 +

1

n

)
K.

Going back to (2.32), we see that

(2.36) conv(L ∪K) ⊆
N⋃
i=1

dbTe⋃
j=1

{
αjxi +

(
1 +

1

n

)
K

}
.

Then,

|conv(L ∪K)| 6 NdbT e
(

1 +
1

n

)n
|K| 6 3

2bTeN |K|(2.37)

= 3enbN(L,K)|K|,

which is our claim. 2

2.3. The method of convex perturbations. In [12] Klartag gave an affirmative
answer to the following question: even if we don’t know that every convex body
in Rn has bounded isotropic constant, given a body K can we find a second body
T “geometrically close” to K with isotropic constant LT ' 1? Here when we say
that K and T are “geometrically close”, we will mean that there exists an absolute
constant c > 0 such that for some x, y ∈ Rn,

(2.38)
1

c
(T − x) ⊆ K − y ⊆ c(T − x).

The method Klartag used is based on two key observations. The first one is that in
order to find a body T close to K which has bounded isotropic constant, it suffices
to define a positive log-concave function on K (vanishing everywhere else) with
bounded isotropic constant and the extra property that its range is not too large.

Proposition 2.5. Let K be a convex body in Rn and let f : K → (0,∞) be a
log-concave function such that

(2.39) sup
x∈K

f(x) 6 mn inf
x∈K

f(x)

for some m > 1. Let x0 be the barycenter of f , i.e. x0 =
∫
Rn xf(x) dx/

∫
Rn f(x) dx,

and set g(x) = f(x+x0). Then, for the centered convex body T := Kn+1(g), defined
as in (2.9), we have that Lf ' LT and

(2.40)
1

m
T ⊆ K − x0 ⊆ mT.
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The second observation is that a family of suitable candidates for the function
f we need so as to apply Proposition 2.5 can be found through the logarithmic
Laplace transform on K. In general, the logarithmic Laplace transform of a finite
Borel measure µ on Rn is defined by

(2.41) Λµ(ξ) = log

(∫
Rn
e〈ξ,x〉

dµ(x)

µ(Rn)

)
.

In [12], Klartag makes use of the following properties of Λµ:

Proposition 2.6. Let µ = µK denote the Lebesgue measure on some convex body
K in Rn. Then,

(2.42)
(
∇Λµ

)
(Rn) = int(K)

(actually, for the arguments in [12] and for our proof here, it suffices to know that(
∇Λµ

)
(Rn) ⊆ K). If µξ is the probability measure on Rn with density proportional

to the function e〈ξ,x〉1K(x), then

(2.43) b(µξ) = ∇Λµ(ξ) and Hess (Λµ(ξ)) = Cov(µξ).

Moreover, the map ∇Λµ, which is one-to-one, transports the measure ν with density
det Hess (Λµ) to µ. In other words, for every continuous non-negative function
φ : Rn → R,

(2.44)

∫
K

φ(x) dx =

∫
Rn
φ(∇Λµ(ξ)) det Hess(Λµ(ξ)) dξ =

∫
Rn
φ(∇Λµ(ξ))dν(ξ).

Klartag’s approach has been recently applied in [6] where Dadush, Peikert and
Vempala provide an algorithm for enumerating lattice points in a convex body,
with applications to integer programming and problems about lattice points. They
use the techniques of [12] in order to give an expected 2O(n)-time algorithm for
computing an M -ellipsoid for any convex body in Rn.

3 Proof of the reverse Santaló inequality

We now prove the reverse Santaló inequality using the results that were described
in Section 2. The proof consists of three steps which roughly are the following:
(i) we obtain a lower bound for the volume product s(K) which is optimal up
to the value of the isotropic constant LK of K, (ii) by adapting Klartag’s main
argument from [12] we show that every symmetric convex body K has bounded
geometric distance (in the sense defined in (2.38)) from a second convex body T
whose isotropic constant LT can be expressed in terms of s(K), and (iii) we use
the lower bound for s(T ) in terms of LT , and the fact that s(K) and s(T ) are
comparable, to get a lower bound for s(K) in which LK does not appear anymore.

3.1. Lower bound involving the isotropic constant. Our first step will be to
prove the following lower bound for s(K).

12



Proposition 3.1. Let K be a convex body in Rn which contains 0 in its interior.
Then

(3.1) 4|K|1/n|nK◦|1/n > |K −K|1/n|n(K −K)◦|1/n >
c1
LK

,

where c1 > 0 is an absolute constant.

Proof. We may assume that |K| = 1. From the Brunn-Minkowski inequality and
the classical Rogers–Shephard inequality (see [29]), we have 2 6 |K −K|1/n 6 4.
Since (K −K)◦ ⊆ K◦, we immediately see that

(3.2) |K|1/n|nK◦|1/n >
1

4
|K −K|1/n|n(K −K)◦|1/n,

so it remains to prove the second inequality. Since

(3.3)
∣∣T (K)− T (K)

∣∣∣∣(T (K)− T (K)
)◦∣∣ = |K −K||(K −K)◦|

for any invertible affine transformation T of K, we may assume for the rest of the
proof that K is isotropic. We define

(3.4) K1 :=
K −K
LK

∩Bn2

and observe that the inclusion K1 ⊆ B
n

2 implies that B
n

2 ⊆ c1nK◦1 for some absolute
constant c1. Moreover,

(3.5) nK◦1 ' conv{nLK(K −K)◦, B
n

2},

therefore we can apply Lemma 2.4 with L = B
n

2 and K = nLK(K −K)◦ to bound
|nK◦1 | from above; note that in this case b '

√
n, because K − K ⊆ cnLKB

n
2

since we have assumed K isotropic (see [7, Theorem 1.2.4]), and hence B
n

2 ⊆
c′
√
n
(
nLK(K − K)◦

)
for some absolute constants c, c′. Using also (2.23) from

Lemma 2.3 (with t '
√
nLK), we see that

c−n1 6 |nK◦1 | 6 cn2 |conv{nLK(K −K)◦, B
n

2}|(3.6)

6 cn3n
3/2|nLK(K −K)◦|N

(
B
n

2 , nLK(K −K)◦
)

6 cn3n
3/2|nLK(K −K)◦|N

(
Bn2 , c4

√
nLK(K −K)◦

)
6 ec5n|nLK(K −K)◦|.

This shows that there exists an absolute constant c′1 so that

(3.7) |nLK(K −K)◦|1/n > c′1,

and since |K −K|1/n > 2, we have proven that

(3.8) |K −K|1/n|(K −K)◦|1/n >
2c′1
nLK

. 2

3.2. A variant of Klartag’s argument. Our second step will be to show that
every convex body K in Rn has bounded geometric distance from a second convex
body T whose isotropic constant LT can be bounded in terms of s(K−K).
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Proposition 3.2. Let K be a convex body in Rn. For every ε ∈ (0, 1) there exist
a centered convex body T ⊂ Rn and a point x ∈ Rn such that

(3.9)
1

1 + ε
T ⊆ K + x ⊆ (1 + ε)T

and

(3.10) LT 6
c2√

εns(K−K)1/n
,

where c2 > 0 is an absolute constant.

Proof. We may assume that K is centered and that |K−K| = 1. Indeed, once
we prove the proposition for K̃ := (K−bar(K))/|K−K|1/n and some ε ∈ (0, 1),
and find a convex body T which satisfies (3.9) and (3.10) with K̃ instead of K, it
will immediately hold that the pair (K, |K−K|1/nT ) also satisfies these properties,
because LT and s(K−K) are affine invariants.

Recall from Proposition 2.6 that if µ = µK is the Lebesgue measure restricted
on K, then the function ∇Λµ transports the measure ν with density

(3.11)
dν

dξ
= det Hess (Λµ(ξ)) ≡ det Cov(µξ)

to µ. This implies that

(3.12) ν(Rn) =

∫
Rn

1det Hess (Λµ(ξ)) dξ =

∫
K

1 dx = |K| 6 |K−K| = 1.

Thus, for every ε > 0 we may write

(3.13) |εn(K−K)◦| min
ξ∈εn(K−K)◦

det Cov(µξ) 6

6
∫
εn(K−K)◦

det Cov(µξ) dξ = ν(εn(K−K)◦) 6 1,

which means that there exists ξ ∈ εn(K−K)◦ such that
(3.14)

det Cov(µξ) = min
ξ′∈εn(K−K)◦

det Cov(µξ′) 6 |εn(K−K)◦|−1 =
(
εns(K−K)1/n

)−n
(where the last equality holds because |K −K| = 1). Now, from the definition of
µξ and (2.7) we have that

(3.15) Lµξ =

(
supx∈K e

〈ξ,x〉∫
K
e〈ξ,x〉dx

) 1
n

[det Cov(µξ)]
1
2n .

Since ξ ∈ εn(K−K)◦ and K ∪ (−K) ⊂ K−K, we know that |〈ξ, x〉| 6 εn for all
x ∈ K, therefore supx∈K e

〈ξ,x〉 6 exp(εn). On the other hand, since K is centered,
from Jensen’s inequality we have that

(3.16)
1

|K|

∫
K

e〈ξ,x〉dx > exp

(
1

|K|

∫
K

〈ξ, x〉 dx
)

= 1,
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which means that
∫
K
e〈ξ,x〉dx > |K| > 4−n|K−K| by the Rogers-Shephard inequal-

ity. Combining all these we get

(3.17) Lµξ 6
4eε√

εns(K−K)1/n
.

Finally, we note that the function fξ(x) = e〈ξ,x〉1K(x) (which is proportional to the
density of µξ) is obviously log-concave and satisfies

(3.18) sup
x∈supp(fξ)

fξ(x) 6 e2εn inf
x∈supp(fξ)

fξ(x)

(since |〈ξ, x〉| 6 εn for all x ∈ K). Therefore, applying Proposition 2.5, we can find
a centered convex body Tξ in Rn such that

(3.19) LTξ ' Lfξ = Lµξ 6
4eε√

εns(K−K)1/n

and

(3.20)
1

e2ε
Tξ ⊆ K − bξ ⊆ e2εTξ

where bξ is the barycenter of fξ. Since e2ε 6 1 + cε when ε ∈ (0, 1), the result
follows. 2

3.3. Removing the isotropic constant. Combining the previous two results we
can remove the isotropic constant LK from the lower bound for s(K)1/n.

Theorem 3.3. Let K be a convex body in Rn which contains 0 in its interior.
Then

(3.21) |K|1/n|nK◦|1/n > c3,

where c3 > 0 is an absolute constant.

Proof. Since |K|1/n|nK◦|1/n > 1
4 |K − K|

1/n|n(K − K)◦|1/n, we may assume for
the rest of the proof that K is symmetric. Using Proposition 3.2 with ε = 1/2, we
find a convex body T ⊂ Rn and a point x ∈ Rn such that

(3.22)
2

3
T ⊆ K + x ⊆ 3

2
T

and LT 6 c0/
√
ns(K)1/n for some absolute constant c0 > 0. Proposition 3.1 shows

that

(3.23) |T − T |1/n|n(T − T )◦|1/n >
c1
LT

,
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where c1 > 0 is an absolute constant too. Observe that 2
3 (T −T ) ⊆ K−K = 2K ⊆

3
2 (T − T ), and thus K◦ ⊇ 4

3 (T − T )◦. Therefore, combining the above, we get

ns(K)1/n = |nK◦|1/n|K|1/n >
4

9
|n(T − T )◦|1/n|T − T |1/n(3.24)

>
c′1
LT

> c2

√
ns(K)1/n,

and so it follows that

(3.25) s(K)1/n >
c3
n

with c3 = c22. This completes the proof. 2

Having proved the reverse Santaló inequality, one can go back to Proposition
3.2 and insert the lower bound for s(K−K). This is the last step in Klartag’s
solution of the isomorphic slicing problem.

Theorem 3.4 (Klartag). Let K be a convex body in Rn. For every ε ∈ (0, 1) there
exist a centered convex body T ⊂ Rn and a point x ∈ Rn such that

(3.26)
1

1 + ε
T ⊆ K + x ⊆ (1 + ε)T

and

(3.27) LT 6
c4√
ε
,

where c4 > 0 is an absolute constant.

4 M-ellipsoids and the reverse Brunn-Minkowski
inequality

We can now prove the existence of M -ellipsoids for any convex body and, as a
consequence, the reverse Brunn–Minkowski inequality.

4.1. Existence of M-ellipsoids. Let K be a centered convex body in Rn. We
will give a proof of the existence of an M -ellipsoid for K. The next Proposition is
the first step.

Proposition 4.1. Let K be a centered convex body in Rn. Then there exists an
ellipsoid EK such that |K| = |EK | and

(4.1) max{logN(K, tEK), logN(E◦K , tK◦)} 6
cn

t

for all t > 0, where c > 0 is an absolute constant.
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Proof. Applying Proposition 3.4, we can find a centered convex body T with
isotropic constant LT 6 C such that

(4.2)
2

3
T ⊆ K + x ⊆ 3

2
T

for some x ∈ Rn. Let Q(T ) be an isotropic position of T . From Remark 2.2(ii) and
Lemma 2.3 we know that

(4.3) max{logN
(
Q(T )−Q(T ), t

√
nBn2

)
, logN

(
Bn2 , t

√
n(Q(T )−Q(T ))◦

)
} 6 cn

t

for every t > 0. Since

(4.4)
2

3
(Q(T )−Q(T )) ⊆ Q(K)−Q(K) ⊆ 3

2
(Q(T )−Q(T ))

and Q(K) ⊆ Q(K)−Q(K), (Q(K)−Q(K))◦ ⊆ (Q(K))◦, from (4.3) it follows that

(4.5) max{logN
(
Q(K), t

√
nBn2

)
, logN

(
Bn2 , t

√
n(Q(K))◦

)
} 6 c′n

t

for every t > 0. We define EK := Q−1(a
√
nBn2 ) where a is chosen so that |Q(K)| =

|a
√
nBn2 | (equivalently, so that |EK | = |K|), and from (4.3) we get that

(4.6) max{logN(K, tEK), logN(E◦K , tK◦)} 6
c′an

t

for all t > 0. It remains to observe that

(4.7) |
√
nBn2 |1/n ' 1 = |Q(T )|1/n ' |Q(K + x)|1/n = |Q(K)|1/n,

whence it follows that a ' 1. 2

We now recall some standard entropy estimates which are valid for arbitrary
convex bodies in Rn.

Lemma 4.2. Let K and L be convex bodies in Rn. If L is symmetric, then

(4.8) N(K,L) 6
|K + L/2|
|L/2|

6 2n
|K + L|
|L|

,

whereas in the general case

(4.9) N(K,L) 6 4n
|K + L|
|L|

.

Moreover,

(4.10)
|K + L|
|L|

6 2nN(K,L).
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Proof. The proof of (4.10) is an easy consequence of the definitions. To prove (4.8),
note that if N is a maximal subset of K with respect to the property

(4.11) x, y ∈ N and x 6= y ⇒ ‖x− y‖L > 1,

then K ⊆
⋃
x∈N (x + L), while every two sets x + L/2, y + L/2 (x, y ∈ N) have

disjoint interiors when x 6= y.
Finally, when L is not necessarily symmetric, we recall that N(K +x, L+ y) =

N(K,L) for every x, y ∈ Rn, and also that the ratio |K +L|/|L| obviously remains
unaltered if we translate K or L. Hence, we can assume that L is centered, in which
case it follows from [23, Corollary 3] that

(4.12) |L ∩ (−L)| > 2−n|L|.

But then, from (4.8) we get that

(4.13) N(K,L) 6 N(K,L ∩ (−L)) 6 2n
|K + (L ∩ (−L))|
|L ∩ (−L)|

6 4n
|K + L|
|L|

,

and we have (4.9). 2

Corollary 4.3. Let K and L be two convex bodies in Rn. Then,

(4.14) N(K,L)1/n ' |K + L|1/n

|L|1/n
.

It also follows that if K and L have the same volume, then

(4.15) N(K,L)1/n 6 8N(L,K)1/n.

Combining Proposition 4.1 with the classical Santaló inequality and Corollary
4.3, we can now prove the existence of M -ellipsoids for any centered convex body
in Rn.

Theorem 4.4. Let K be a centered convex body in Rn. There exists an ellipsoid
EK such that |K| = |EK | and

(4.16) max
{

logN(K, EK), logN(EK ,K), logN(K◦, E◦K), logN(E◦K ,K◦)
}
6 cn,

where c > 0 is an absolute constant.

Proof. Let EK be the ellipsoid defined in Proposition 4.1. It immediately follows
that

(4.17) max
{
N(K, EK), N(E◦K ,K◦)

}
6 exp(cn).

For the other two covering numbers we use Lemma 4.2: N(EK ,K) 6 8nN(K, EK),
which means that logN(EK ,K) 6 (log 8)n+ logN(K, EK). Similarly,

(4.18) N(K◦, E◦K) 6 2n
|K◦ + E◦K |
|E◦K |

6 2n
|K◦ + E◦K |
|K◦|

6 4nN(E◦K ,K◦),
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where we have also used the fact that |K| = |EK | ⇒ |K◦| 6 |E◦K | from the classical
Santaló inequality. This completes the proof. 2

4.2. Reverse Brunn–Minkowski inequality. As a consequence of Theorem 4.4
and Corollary 4.3, we get the “reverse” Brunn-Minkowski inequality.

Theorem 4.5. Let K be a centered convex body in Rn. There exists an ellipsoid
EK such that |K| = |EK | and for every convex body T in Rn,

e−(c+log8) |EK + T |1/n 6 |K + T |1/n 6 ec+log8 |EK + T |1/n,(4.19)

e−(c+log8) |E◦K + T |1/n 6 |K◦ + T |1/n 6 ec+log8 |E◦K + T |1/n,(4.20)

where c is the constant we found in Theorem 4.4.

Proof. Let EK be the ellipsoid defined in Proposition 4.1. Using Lemma 4.2, we
can write

|EK + T |1/n 6 2|T |1/nN(EK , T )1/n 6 2|T |1/nN(EK ,K)1/nN(K,T )1/n(4.21)

6 2ec|T |1/nN(K,T )1/n 6 8ec|K + T |1/n.

The same reasoning gives us the second part of (4.19) and (4.20). 2

Remark 4.6. We usually say that a centered convex body K is in M -position if
the ellipsoid EK that we look for in Theorem 4.4 can be taken to be a multiple of
the Euclidean ball. Obviously, if rK := |K|1/n/|Bn2 |1/n and EK = TK(rKB

n
2 ) for

some volume-preserving TK , then K̃ := T−1K (K) is a linear image of K of the same

volume which is in M -position. Assume then that K̃1 and K̃2 are two such images
of some bodies K1 and K2 in Rn, and that K ′i stands for either K̃i or (K̃i)

◦. Using
(4.19) and (4.20), we see that

|K ′1 +K ′2|1/n 6 c|K ′1 + rK′2B
n
2 |1/n 6 c2|rK′1B

n
2 + rK′2B

n
2 |1/n(4.22)

= c2
(
rK′1 + rK′2

)
|Bn2 |1/n = c2

(
|K ′1|1/n + |K ′2|1/n

)
.

This means that we have a partial inverse to the Brunn-Minkowski inequality which
holds true for certain affine images of any convex bodies K1,K2 and the polars of
those images. A direct consequence of (4.22) and Corollary 4.3 is the following:

Corollary 4.7. Let K and L be two convex bodies in Rn of the same volume which
are in M -position. Then,

(4.23) N(K, tL)1/n ' N(L, tK)1/n

for every t > 0.

Proof. Since tL and tK are also in M -position for every t > 0, we have that

N(K, tL)1/n ' |K + tL| 1n
|tL| 1n

' |K|
1
n + t|L| 1n
t|L| 1n

(4.24)

=
t|K| 1n + |L| 1n

t|K| 1n
' |tK + L| 1n

|tK| 1n
' N(L, tK)1/n. 2
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Finally, let us remark that, as Pisier notes in [27], the asymptotic form of the
Santaló inequality and its inverse and the existence of an M -position for any convex
body are interconnected results: if we know that for every centered convex body
K there exists an ellipsoid EK such that

(4.25) max
{

logN(K, EK), logN(EK ,K), logN(K◦, E◦K), logN(E◦K ,K◦)
}
6 cn

for some absolute constant c > 0, then we can prove that

(4.26) e−2(c+log8)s(Bn2 ) 6 s(K) 6 e2(c+log8)s(Bn2 )

for all centered bodies K. Indeed, if EK is an M -ellipsoid for K as above, then
from Lemma 4.2,

|EK +K|1/n

|K|1/n
6 2N(EK ,K)1/n 6 2ec 6 2ecN(K, EK)1/n 6 8ec

|EK +K|1/n

|EK |1/n
,

so |EK |1/n 6 8ec|K|1/n, and in the same manner,

(4.27) max
{ |K|1/n
|EK |1/n

,
|E◦K |1/n

|K◦|1/n
,
|K◦|1/n

|E◦K |1/n
}
6 8ec.

(4.26) now follows.
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55 (1986), 317-326.
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