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On the thin-shell conjecture for the Schatten classes

Jordan Radke and Beatrice-Helen Vritsiou

Abstract

We study the thin-shell conjecture for the Schatten classes. In particular, we establish
the conjecture for the operator norm; we also improve on the best known bound for the
Schatten classes, due to Barthe and Cordero-Erausquin [5], for a few more cases. Moreover,
we show that a necessary condition for the conjecture to be true for any of the Schatten
classes is a rather strong negative correlation property: this implies of course that, for the
cases for which we already have the conjecture (as for example for the operator norm), but
in fact also for all the cases for which we can get a better estimate than the one in [5], this
negative correlation property follows. For the proofs, our starting point is techniques that
were employed for the Schatten classes with regard to other problems in [24] and [16].

1 Introduction

We work in real, finite-dimensional vector spaces (that can be identified with R
m for some

m > 1) which are equipped with a fixed Euclidean structure (or inner product 〈·, ·〉). The
Euclidean norm in all these spaces is denoted by ‖ · ‖2, and the unit Euclidean ball by Bm

2 .
More generally, we denote by ‖ · ‖p, p > 1, the ℓp norm of a vector in R

m, and by Bm
p the

corresponding unit ball. A convex body K is a compact, convex subset of the space with
non-empty interior. It is called symmetric if x ∈ K implies −x ∈ K, and it is called centred if

∫

K
〈x, y〉 dx = 0 for all y ∈ R

m,

where dx denotes integration with respect to the Lebesgue measure. A convex body K in R
m is

called isotropic if: (i) it has Lebesgue volume 1, (ii) it is centred, and (iii) its covariance matrix
is a multiple of the identity, or, in other words,

∫

K
〈x, y〉2 dx = L2

K‖y‖22 for all y ∈ R
m;

the number LK appearing here is an invariant of the affine class of K (that is, of the family of
all images of K under an invertible linear, or affine, transformation of Rm), and is called the
isotropic constant of K.

A famous open question in the asymptotic theory of convex bodies is the hyperplane con-

jecture or isotropic constant conjecture: in one of its many equivalent formulations, it asks
whether, for all m > 1, the isotropic constants of all convex bodies in R

m can be bounded from
above by a number which is independent of m (it is already known that, for every convex body
K in R

m, LK > LBm
2

≃ 1). Bourgain [7] has shown that, if K ⊂ R
m, then LK 6 C1

4
√
m logm,

and Klartag [18] has improved that to LK 6 C2
4
√
m, where C1, C2 are absolute constants,

independent of m or K (see also [23] for an alternative proof of the latter bound).
In [6] another quantity for symmetric (or centred) convex bodies K in R

m was introduced:

σ2
K = m

VarK
(

‖X‖22
)

[

EK

(

‖X‖22
)]2 ,

1
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where X is a random vector distributed uniformly in K. The thin-shell conjecture is the
question whether the quantity σK is bounded from above by an absolute constant (namely a
constant independent of the dimension m) for all isotropic convex bodies K in R

m. The initial
interest in this quantity stems from a long-understood principle going back to Sudakov [30] and
to Diaconis and Freedman [9] that connects strong concentration of mass with respect to an
isotropic probability distribution on R

m to the existence of many almost-gaussian 1-dimensional
marginals of that distribution. In the case of convex bodies, a sharp quantitative version of
this principle was put forth by Anttila, Ball and Perissinaki [2]. In [19] Klartag resolved the
question of whether a uniform distribution over an isotropic convex body has gaussian marginals
by employing exactly this principle after managing to estimate σ2

K as o(m) for every isotropic
convex bodyK in R

m (see also [14], and see the introduction of [19] and the references therein for
more background on the central limit problem for convex bodies). Shortly after, polynomially
better (in the dimension) estimates for the quantities σK appeared in [20] and in [13]. The best
known general estimate is now due to Guédon and Milman [15] who showed that, for every
isotropic convex body K in R

m, σ2
K 6 Cm2/3 for some absolute constant C.

The thin-shell conjecture is of course interesting in its own right, and it implies more about
isotropic convex bodies than merely the existence of almost gaussian marginals. It is closely
related to two other central conjectures in the theory of isotropic convex bodies, the above-
mentioned hyperplane conjecture and the Poincaré (or Kannan-Lovász-Simonovits) conjecture:
Eldan and Klartag [12] have proved that the worst estimate we have for σK for an isotropic
convex body K in R

m also serves as an upper bound for the isotropic constants of all convex
bodies in R

m, and hence that the thin-shell conjecture would imply the hyperplane conjecture.
On the other hand, the thin-shell conjecture is merely a special case of the Poincaré conjecture.
It has thus been a rather surprising and extremely interesting development that, up to a log-
arithmic term at least, the thin-shell conjecture is also equivalent to the Poincaré conjecture;
this breakthrough result is due to Eldan [11]. We refer the reader to the book [8] e.g. for more
details about these conjectures and the links between them.

Although, as we saw, the general estimates we have for the thin-shell conjecture are far
from the conjectured ones, there are a few cases of special families of convex bodies for which
the conjecture has been resolved optimally. The first such case is the family of ℓp balls: the
thin-shell conjecture in this case follows from a subindependence property established by Ball
and Perissinaki [4], which implies that the cross terms we get when we expand the variance of
the Euclidean norm are non-positive and hence can be ignored when we are trying to bound
σBm

p
(see also [2] for an alternative and more simple proof of this subindependence property).

For the same reason, that is, a subindependence property (see [28]), the thin-shell conjecture
follows in the broader class of generalised Orlicz balls as well. Two more important cases are
the family of unconditional isotropic convex bodies, and the simplex, which Klartag has shown
([21] and [22] respectively) both satisfy the thin-shell conjecture (see also [5] for the case of the
simplex).

In this paper we study one more special family of convex bodies with respect to the thin-shell
conjecture. Let Mn(C) denote the space of all n×n matrices with complex entries (viewed as a
real vector space, that is, so that dim(Mn(C)) = 2n2). For T ∈ Mn(C) and p > 1, one defines
the Schatten p-norm of T by

‖T‖Sn
p
:= ‖s(T )‖p =

(

n
∑

i=1

si(T )
p

)1/p

,

where s(T ) = (s1(T ), . . . , sn(T )) is the non-increasing rearrangement of the singular values of
T , that is, of the eigenvalues of (T ∗T )1/2. As usual, by ‖s(T )‖∞ we mean just the maximum
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of these singular values, namely s1(T ), and we set ‖T‖Sn
∞

:= ‖s(T )‖∞ to be the operator or
spectral norm of T . Let B(Sn

p ) denote the unit ball of Mn(C) equipped with the Schatten
p-norm, and let E be either the whole space Mn(C), or the subspace Mn(R) of all n × n
matrices with real entries, or one of the following classical subspaces: of real self-adjoint (or,
more simply, symmetric) matrices, of complex self-adjoint (or Hermitian) matrices, of anti-
symmetric Hermitian matrices, or of complex symmetric matrices. We can also consider the
more general space Mn(H) of all n×n matrices with quaternion entries (viewed again as a real
vector space, that is, so that dim(Mn(H)) = 4n2), and its subspace of Hermitian quaternionic
matrices; the Schatten p-norm on those spaces is defined in the same way as above.

Let Kp,E ≡ B(Sn
p ) ∩ E stand for the unit ball of the Schatten p-norm in one of the above

subspaces E. Of course Kp,E is a convex body which, when E = Mn(R), Mn(C) or Mn(H), we
also know is isotropic (more precisely, its homothetic copy Kp,E that has volume 1 is isotropic),
so it is natural to ask whether it satisfies the thin-shell conjecture. In fact, we can ask the same
question for all of the abovementioned Schatten classes Sn

p ∩E, even if we do not know whether

Kp,E is in isotropic position (for example, it is known that this may not happen in the subspace
of real self-adjoint matrices as indicated in the paper [3]). In all cases it will turn out that
bounding σKp,E

by an absolute constant is equivalent to bounding the variance VarKp,E

(

‖T ‖22
)

of the Euclidean norm by an absolute constant times the dimension dn := dim(E) of the space,
which for all cases of E that we consider is ≃ n2: this is due to the fact that, by the methods
referred to in the next paragraph, we have for all these Schatten classes that

EKp,E

(

‖T ‖22
)

≃ dn ≃ n2. (1)

The best known bound for VarKp,E

(

‖T ‖22
)

is due to Barthe and Cordero-Erausquin [5], who
generalised Klartag’s method in [21] in a way that allows one to obtain useful estimates on
variances of various Lipschitz functions by taking advantage of certain symmetries the function
and the underlying probability measure (in our case, the uniform measure on Kp,E) possess:
for example, in the case of the isotropic unit balls of Sn

p ∩Mn(F), where p ∈ [1,∞] and F = R,
or C or H, there are enough symmetries to lead to the bound

VarKp

(

‖T ‖22
)

6 Cn · dn ≃ n3, (2)

or equivalently to the estimate σ2
Kp

= O(n) = O
(√

dim(Mn(F))
)

, which is an improvement of
what would follow from the general upper bound for the thin-shell conjecture due to Guédon
and Milman [15]. One of the main results of this paper is an improvement of (2) for p = ∞ and
for a few more cases.

The unit balls of Sn
p have been studied in the past with respect to other important conjectures

or questions in Convex Geometry as well:

• in [24] König, Meyer and Pajor established the hyperplane conjecture for them;

• in [16] Guédon and Paouris studied the behaviour of the Schatten classes with respect to
concentration of volume, and showed that all but an exponentially small (in the dimension)
fraction of the unit balls Kp of Sn

p is found in a Euclidean ball of radius twice the average
distance of an element in Kp from the origin. Note that in many ways this question is
complementary to the thin-shell conjecture.

Not long after [16], Paouris [27] resolved the latter question in the affirmative for all convex
bodies in isotropic position (as are the unit balls of Sn

p ∩Mn(F)); however, as should be expected
perhaps, the method he used was quite different from the methods of [16] and of [24], which are
very specific to the Schatten classes. We use a refinement of the latter methods, a key ingredient
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of which is the following fundamental fact from Random Matrix Theory (see for example [25]
or [1, Proposition 4.1.3]; see also Section 2 for corresponding results for the other subspaces):

Fact 1. Let E = Mn(R), or E = Mn(C), or E = Mn(H), and let β = 1 or β = 2 or β = 4
respectively. There exists a constant cn,E, depending on n and on the subspace E, such that,

given any function F : Rn → R
+ that is symmetric (namely, invariant under permutations of

the coordinates of the input) and measurable, we have that

∫

E
F
(

s(T )
)

dT = cn,E ·
∫

Rn

F
(

|x1|, . . . , |xn|
)

· f2,β,β−1(x) dx,

where s(T ) is the singular-values-vector of the matrix T ∈ E, and where, for non-negative

integers a, b, c, we write

fa,b,c(x) =
∏

16i<j6n

∣

∣xai − xaj
∣

∣

b ·
∏

16i6n

|xi|c.

Making use of Fact 1 in the very specific cases for which we need it, which concern estimation
of certain integrals over the balls Kp,E, we arrive at the following lemma (used in both [24] and
[16]).

Lemma 1. Let E = Mn(R), or E = Mn(C), or E = Mn(H), and let F : Rn → R
+ be a

measurable, symmetric function. Then

∫

Kp,E

F
(

s1(T ), . . . , sn(T )
)

dT = cn,E

∫

Bn
p

F
(

|x1|, . . . , |xn|
)

f2,β,β−1(x) dx, (3)

where β ∈ {1, 2, 4} and fa,b,c are as above.

If, in addition, F is positively homogeneous of degree k for some real number k (that is,

F
(

rx1, . . . , rxn
)

= rk · F (x1, . . . , xn) for all r > 0), then (3) can also take the following form:

∫

Kp,E

F
(

s(T )
)

dT =
cn,E

Γ
(

1 + dn+k
p

)

∫

Rn

F
(

|x1|, . . . , |xn|
)

e−‖x‖ppf2,β,β−1(x) dx, (4)

where dn = βn2 is the dimension of E.

Note that, by using (3), or more generally

∫

Kp,E

F
(

s1(T ), . . . , sn(T )
)

dT = cn,E

∫

Bn
p

F (x)fa,b,c(x) dx,

with F = 1sBn
p
for different values of s ∈ (0, 1), we readily see that we must have dn = dim(E) =

abn(n − 1)/2 + (c + 1)n (which is in accordance with the values of a, b, c that appear above).
Note also that in the sequel we may write fa,b,c,p for the density

exp
(

−‖x‖pp
)

· fa,b,c(x) = exp
(

−‖x‖pp
)

·
∏

16i<j6n

∣

∣xai − xaj
∣

∣

b ·
∏

16i6n

|xi|c.

By taking advantage of this type of reduction of estimation of certain integrals over the
balls Kp,E to estimation of integrals over R

n with respect to the densities fa,b,c,p, and also by
exploiting certain symmetry properties of these densities, we manage to establish the thin-shell

4



conjecture for the operator norm on each one of the three main matrix spaces, Mn(R), Mn(C)
or Mn(H). In fact, the same arguments also work and allow us to obtain the same result for
the subspaces of Hermitian matrices, of anti-symmetric Hermitian matrices, and of complex
symmetric matrices as well (even though we do not know whether the normalised unit ball
of Sn

p in these subspaces is in isotropic position); these cases may be of independent interest
although we are not aware right now of any applications of this result to more classical questions
concerning these subspaces of random matrices.

A further result we establish is a necessary condition for the thin-shell conjecture to be true
on any of the Schatten classes Sn

p ∩E, where E is any of the subspaces mentioned in the previous
paragraph: this necessary condition is a certain type of negative correlation property for the
densities fa,b,c,p, as well as for the uniform densities on the balls Kp,E under certain conditions.

We move on to giving the exact technical statements of our main results.

1.1 Outline of the present paper

Let us briefly describe the main ideas behind our arguments by focusing on the case of E =
Mn(F) where F = R, or C or H. Recall that then dn = dim(E) = βn2, where β = 1, 2 or 4
respectively, and that for every p > 1 the ball Kp,Mn(F) = Kp, normalised so that it has volume
1, is in isotropic position (we will recall the reasons for this in Section 6, where we will need to
study symmetry (or invariance) properties of the balls Kp,E in more detail). By (1) we wish to
bound the variance VarKp

(

‖T ‖22
)

by C · dn, where C is an absolute constant.

Given the equality ‖T‖2 ≡ ‖T‖HS = ‖T‖Sn
2
of the Hilbert-Schmidt norm and the Schatten

2-norm of any matrix T ∈ Mn(H), we can expand the quantity VarKp

(

‖T ‖22
)

in two different
ways:

VarKp

(

‖T ‖22
)

=

∫

Kp

‖T‖42 dT −
(

∫

Kp

‖T‖22 dT
)2

=

n
∑

i,j=1

∫

Kp

|ai,j(T )|4 dT +

n
∑

i,j,k,l=1
(i,j)6=(k,l)

∫

Kp

|ai,j(T )|2|ak,l(T )|2 dT −





n
∑

i,j=1

∫

Kp

|ai,j(T )|2 dT





2

where ai,j(T ) is the (i, j)-th entry of T ,

=

∫

Kp

‖(s1(T ), . . . , sn(T ))‖42 dT −
(

∫

Kp

‖(s1(T ), . . . , sn(T ))‖22 dT
)2

=

∫

Kp

‖(s1(T ), . . . , sn(T ))‖44 dT +

n
∑

i,j=1
i 6=j

∫

Kp

si(T )
2sj(T )

2 dT −
(

∫

Kp

‖(s1(T ), . . . , sn(T ))‖22 dT
)2

.

(5)

Focusing on the second way for now, we build on ideas and techniques from [24] and [16], and
try, in this context as well, to reduce the estimation of moments of the Euclidean norm (or of
other functions) over the balls Kp to estimation of integrals with respect to the densities fa,b,c,p
in R

n, which are no longer uniform, or even log-concave, but have strong symmetry properties.
In the cases of Mn(F) we can do so because of Lemma 1, which we use it with F (s(T )) being
the Euclidean norm of T ∈ Kp, that is, the ℓ2 norm of the singular values, or the constant
function 1, or the ℓ4 norm of the singular values, or the sum of all cross terms in (5). The core
of our reduction then is the following
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Proposition 2. Let VarM2,β,β−1,p

(

‖x‖22
)

(or more briefly VarMp

(

‖x‖22
)

) denote the quantity

M2,β,β−1,p

(

‖x‖42
)

M2,β,β−1,p(1)
−
(

M2,β,β−1,p

(

‖x‖22
)

M2,β,β−1,p(1)

)2

,

that is, the variance of the Euclidean norm with respect to the density e−‖x‖ppfa,b,c(x) where

a = 2 and b = c+ 1 = β . The following relation is true:

VarMp

(

‖x‖22
)

≃ max
{

σ2
Kp

,
1

p

}

· n4/p.

In fact, this proposition remains valid for all cases of E among the classical subspaces of
n × n matrices that we have mentioned, where in place of the quantity VarM2,β,β−1,p

(

‖x‖22
)

we
will have VarMa,b,c,p

(

‖x‖22
)

for the non-negative integers a, b, c which make (a variant of) Lemma
1 valid for E. Its proof is detailed in Section 3.

Our main task now shifts into studying the expression

VarMp

(

‖x‖22
)

=
Mp

(

‖x‖42
)

Mp(1)
−
(

Mp

(

‖x‖22
)

Mp(1)

)2

=
n
∑

i=1

VarMp(x
2
i ) +

∑

i 6=j

[

Mp

(

x2ix
2
j

)

Mp(1)
−

Mp

(

x2i
)

Mp

(

x2j
)

(Mp(1))2

]

, (6)

and the various terms that appear in it. A key lemma for this purpose, which is central to the
methods of [24] and [16], is the following integration-by-parts result which allows one to obtain
a series of recursive equivalences that could facilitate the estimation of the integrals at hand or
of other similar quantities.

Lemma 3. For every l = (ǫl, ρl) ∈ {+1,−1}n × {ρ is a permutation of [n]} we consider the

following subsets of Rn that can be written as intersections of 2n − 1 halfspaces:

Pl := {x : ǫl(i)xi > 0 for all i, and |xρl(1)| 6 |xρl(2)| 6 · · · 6 |xρl(n)|}.

Let ξ > 0 and s > −dn − ξ, and let f : Rn \ {0} → R be an s-homogeneous function with the

property that the product

f(x) · fa,b,c(x) = f(x) ·
∏

16i<j6n

∣

∣xai − xaj
∣

∣

b ·
∏

16i6n

|xi|c

is C1 in the interior of each of the subsets Pl, and its partial derivatives can be continuously

extended to the border of Pl (except perhaps at the origin). Then

(ξ + c+ 1)Mp

(

f(x)

n
∑

i=1

|xi|ξ
)

=

pMp

(

‖x‖ξ+p
ξ+pf(x)

)

−Mp

(

n
∑

i=1

|xi|ξxi
∂f

∂xi
(x)

)

− abMp



f(x)
n
∑

i=1

∑

j 6=i

|xi|ξ xai
xai − xaj



 . (7)

Trying to optimise on the way this lemma can be used for our problem, we manage to obtain
precise identities (in the place of inequalities or equivalences deduced in [24] and [16]) which
involve the terms appearing in (6) and which allow us to establish the thin-shell conjecture for
all p large enough with regard to the dimension.
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Theorem 4. Suppose that p > nt log n for some t > 0. Then we have that

VarMp

(

‖x‖22
)

6 Cn4/p ·max{n2−t, 1}

for some absolute constant C. Combined with Proposition 2, this shows that

σ2
Kp

6 C ′max{n2−t, 1}

for all p > nt log n, and in particular that σKp = O(1) for all p > n2 log n. The latter range

includes the case of the operator norm Sn
∞.

We also deduce that σKp & 1 for all p & n2 log n, and hence, in particular, that σK∞
≃ 1.

All the details and intermediate results leading to the proof of this theorem are presented in
Section 4. In fact, we can obtain the exact same result for the cases of Hermitian matrices, of
anti-symmetric Hermitian matrices, and of complex symmetric matrices (the latter case follows
immediately, whereas the required adjustments to the arguments for the other two cases are
discussed in Section 5); the common feature of all these subspaces with the spaces Mn(F), that
lets the method go through in all these instances, is that, for all of them, we do have a version
of Lemma 1 where the density fa,b,c,p that appears is such that a = 2 (for the case of Hermitian
matrices this is an intriguing fact with several other applications, see [10]). Unfortunately, to
the best of our knowledge, this is not true for the subspaces of real self-adjoint or of Hermitian
quaternionic matrices.

The second main result of that section and of the paper is a necessary condition for the
thin-shell conjecture to hold true for any of the Schatten classes Sn

p , p > 1.

Theorem 5. (Negative correlation property for the densities f2,b,c,p) We have

Mp

(

x41
)

Mp(1)
>
(3

2
+ o(1)

)

(

Mp

(

x21
)

Mp(1)

)2

, (8)

and hence n ·VarMp

(

x21
)

>
(n

2
+ o(n)

)

(

Mp

(

x21
)

Mp(1)

)2

≃ n · n4/p.

Therefore, for

VarMp

(

‖x‖22
)

= n · VarMp

(

x21
)

+ n(n− 1)





Mp

(

x21x
2
2

)

Mp(1)
−
(

Mp

(

x21
)

Mp(1)

)2


 , (9)

to be bounded by n4/p, or even by o(n · n4/p), we need the cross terms in (9) to be negative.

Corollary 6. Combining Theorems 4 and 5, we can conclude that the densities f2,b,c,p on

R
n satisfy a negative correlation property for all p ∈ [c0n log n,+∞), where c0 is an absolute

constant that can be computed explicitly. The same is true for the densities 1Bn
p
(x) ·f2,b,c(x) for

all p ∈ [c0n log n,+∞].

Finally, in Section 6 we explore this “desirable” negative correlation property further, with
particular emphasis on what it entails for the original uniform densities over the balls Kp in
Mn(F).
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2 Further notation and preliminaries

As mentioned in the Introduction, a function F : Rm → R is called symmetric if it is invariant
under permutations of the coordinates of the input. It is called positively homogeneous of degree

k, where k ∈ R, or more simply k-homogeneous, if F
(

rx1, . . . , rxn
)

= rk · F (x1, . . . , xn) for all
r > 0. We write A for the homothetic copy of volume 1 of a set A ⊂ R

m (as long as this exists).
Lebesgue volume will be denoted by |A|, and hence A := 1

|A|1/m
A whenever |A| 6= 0.

Recall that there is a one-to-one and onto correspondence between symmetric convex bodies
in R

m and unit balls of norms on R
m (and thus it makes perfect sense to try to deal with

a question about convex bodies in the specific case of the unit balls of the Schatten classes,
or of some other family of norms). We refer to [8] for background on isotropic convex bodies
(or more generally, isotropic log-concave measures), as well as for a detailed account on the
three important conjectures about isotropic convex bodies mentioned in the Introduction, the
hyperplane conjecture, the thin-shell conjecture and the KLS conjecture.

Unless otherwise specified, the letters c, c′, c1, c2 etc. denote absolute positive constants
whose value may change from line to line. Whenever we write A ≃ B (or A . B) for two
quantities A,B related to objects in R

m, we mean that there exist absolute constants c1, c2 > 0,
independent of the dimension m, such that c1A ≤ B ≤ c2A (or A 6 c1B). We will also use the
Landau notation: A = O(B) means the same thing as A . B, whereas A = o(B) means that
the ratio A/B tends to 0 as the dimension grows to infinity.

We now list the remaining results from Random Matrix Theory which we are going to use,
that are analogous to Fact 1 and its consequence, Lemma 1, and cover the cases of the other
classical subspaces we mentioned in the Introduction: the subspaces of real self-adjoint matri-
ces, of Hermitian matrices, and of Hermitian quaternionic matrices, or of complex symmetric
matrices, or of anti-symmetric Hermitian matrices. Recall that, if T =

(

ai,j
)

i,j
is an n × n

matrix, then its adjoint matrix is the matrix T ∗ =
(

aj,i
)

i,j
(where a = a1 − a2 · i− a3 · j − a4 · k

for any quaternion a = a1 + a2 · i+ a3 · j + a4 · k ∈ H with a1, a2, a3, a4 ∈ R).
We first turn to the case of self-adjoint matrices, that is, matrices T which satisfy T = T ∗:

remember that such matrices have n real eigenvalues e1(T ), e2(T ), . . . , en(T ), and that their
singular values are just the absolute values of their eigenvalues. The latter fact of course
implies that any symmetric function of the singular values of T , such as any of the Sn

p norms,
can be thought of as a symmetric function of its eigenvalues as well. For such functions we have
the following fact (see for example [25] or [1, Proposition 4.1.1]).

Fact 2. Let F = R, or C or H, and let E be the subspace of Mn(F) of matrices T that satisfy

T = T ∗. There exists a constant cn,E, depending on n and on the subspace E, such that, given

any function F : Rn → R
+ that is symmetric and measurable, we have that

∫

E
F
(

e1(T ), . . . , en(T )
)

dT = cn,E ·
∫

Rn

F
(

x1, . . . , xn
)

· f1,β,0(x) dx

= cn,E ·
∫

Rn

F
(

x1, . . . , xn
)

·
∏

16i<j6n

∣

∣xi − xj
∣

∣

β
dx,

where e1(T ), e2(T ), . . . , en(T ) are the n real eigenvalues of T (arranged in non-increasing order),
and where β = 1 if F = R, β = 2 if F = C, and β = 4 if F = H.

In the case of the complex symmetric matrices we have the following (see [17, Chapter 3]).

Fact 3. Let E be the subspace of Mn(C) of complex symmetric matrices, namely matrices T
with complex entries and the property that aj,i(T ) = ai,j(T ). There exists a constant cn,E such

8



that, given any function F : Rn → R
+ that is symmetric and measurable, we have that

∫

E
F
(

s1(T ), . . . , sn(T )
)

dT = cn,E ·
∫

Rn

F
(

|x1|, . . . , |xn|
)

· f2,1,1(x) dx

= cn,E ·
∫

Rn

F
(

|x1|, . . . , |xn|
)

·
∏

16i<j6n

∣

∣x2i − x2j
∣

∣ ·
∏

16i6n

|xi| dx,

where s1(T ), . . . , sn(T ) are the singular values of T (arranged in non-increasing order).

The counterparts of Lemma 1 following from Facts 2 and 3 are obvious, thus we will not
state them.

Finally, we have the following result for the subspace of Mn(C) of anti-symmetric Hermitian
matrices, where antisymmetric means that T ∗ = −T (see [25, Chapter 13] or [10, Section 2]
for an alternative proof). Recall that the eigenvalues of such a matrix come in pairs, and are
of the form ±iθ1, . . . ,±iθs if n = 2s, where θ1 > · · · θs > 0 are s = ⌊n2 ⌋ non-negative real
numbers, while, if n = 2s + 1, they are of the form ±iθ1, . . . ,±iθs, 0, that is, the matrix T has
one additional eigenvalue, which is equal to 0. Then the singular values of T are the numbers
θ1, . . . , θs with multiplicity two, as well as the number 0 if n = 2s + 1.

Fact 4. Let E be the subspace of Mn(C) of anti-symmetric Hermitian matrices equipped with

the standard Gaussian measure. Then the induced joint probability density of the singular values

θ1, . . . , θs of the random matrix T ∈ E is given by

Pn

(

(θ1, . . . , θs) ∈ A
)

= cn,E ·
∫

A

∏

16i<j6s

∣

∣x2i − x2j
∣

∣

2
exp
(

−‖x‖22
)

dx

if n = 2s, and by

Pn

(

(θ1, . . . , θs) ∈ A
)

= cn,E ·
∫

A

∏

16i<j6s

∣

∣x2i − x2j
∣

∣

2 ·
∏

16i6s

|xi|2 exp
(

−‖x‖22
)

dx

if n = 2s+1, where A is a 1-symmetric measurable subset of Rs, and cn,E is a constant depending

only on n.

Fact 4 will allow us in Section 5 to show that the subspaces of anti-symmetric Hermitian
matrices, as well as of Hermitian matrices, satisfy Theorems 4 and 5.

In the sequel we will also need the following result that gives us the order of magnitude of
the volume radius of the balls Kp,E (far more accurate estimates for the volume of the unit balls
of the Schatten classes of real and complex matrices have been found by Saint-Raymond [29],
but we won’t need those here).

Fact 5. (See [16, Proposition 3]) Let F = R, or C or H, and let E be any subspace of Mn(F) with
dimension dn ≃ n2 (this includes all the classical subspaces we mentioned in the Introduction).
Then for every p > 1 we have

|Kp,E|1/dn = |B(Sn
p ) ∩E|1/dn ≃ d

− 1
4
− 1

2p
n ≃ n

− 1
2
− 1

p .

9



3 Reduction to integrals over Rn

In this section the main purpose is to prove Proposition 2. We start with detailed estimates
about the Gamma function.

Lemma 7. For every p > 1, for every dimension dn ≃ n2 as above, and for every q ∈ [2, c0dn],
the following estimates are true:

(a)
Γ
(

1 + dn
p

)

Γ
(

1 + dn+q
p

) =

(

dn + p+ q

p

)−q/p
(

1 +O
( q

n2

))q
;

(b)
C2

p (p+ dn)





Γ
(

1 + dn
p

)

Γ
(

1 + dn+2
p

)





2

6





Γ
(

1 + dn
p

)

Γ
(

1 + dn+2
p

)





2

−
Γ
(

1 + dn
p

)

Γ
(

1 + dn+4
p

) 6
C3

p dn





Γ
(

1 + dn
p

)

Γ
(

1 + dn+2
p

)





2

,

where the O-notation in (a) implies constants which may depend on p, dn and q, but which

are in absolute value less than some absolute constant c1 > 0, and where c0, C2, C3 are positive

absolute constants.

Proof. For part (a) we will use one of Binet’s formulas for log Γ(x):

log Γ(x) =

(

x− 1

2

)

log x− x+
1

2
log(2π) + 2

∫ ∞

0

arctan(t/x)

e2πt − 1
dt

for every positive x. Hence

log
Γ
(

1 + dn
p

)

Γ
(

1 + dn+q
p

)

=

(

p+ dn
p

− 1

2

)

log

(

p+ dn
p

)

− p+ dn
p

+ 2

∫ ∞

0

arctan
(

pt/(p+ dn)
)

e2πt − 1
dt

−
(

p+ dn + q

p
− 1

2

)

log

(

p+ dn + q

p

)

+
p+ dn + q

p
− 2

∫ ∞

0

arctan
(

pt/(p + dn + q)
)

e2πt − 1
dt

=
1

2
log

(

p+ dn + q

p+ dn

)

+

[

q

p
− p+ dn

p
log

(

p+ dn + q

p+ dn

)]

− q

p
log

(

p+ dn + q

p

)

+ 2

∫ ∞

0

arctan
(

pt/(p + dn)
)

− arctan
(

pt/(p + dn + q)
)

e2πt − 1
dt.

By a second-order Taylor approximation of the logarithmic funtion, we obtain

log

(

p+ dn + q

p+ dn

)

= log

(

1 +
q

p+ dn

)

=
q

p+ dn
+O

(

(

q

p+ dn

)2
)

,

and so
1

2
log

(

p+ dn + q

p+ dn

)

= O

(

q

p+ dn

)

= O
( q

n2

)

,

and
q

p
− p+ dn

p
log

(

p+ dn + q

p+ dn

)

= O

(

q2

p(p+ dn)

)

.
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On the other hand, by the mean value theorem we get, for every t > 0,

arctan
(

pt/(p + dn)
)

− arctan
(

pt/(p+ dn + q)
)

=
1

1 + (t/xt)2

∣

∣

∣

pt

p+ dn
− pt

p+ dn + q

∣

∣

∣

for some xt ∈
[

(p+ dn)/p, (p + dn + q)/p
]

, which makes the difference above

6
(p+ dn + q)2

(p+ dn + q)2 + (pt)2
pqt

(p+ dn)(p+ dn + q)
.

Hence
∫ ∞

0

arctan
(

pt/(p+ dn)
)

− arctan
(

pt/(p+ dn + q)
)

e2πt − 1
dt

6

∫ ∞

0

pqt
(p+dn)(p+dn+q)

2πt[1 + (2πt)/2! + (2πt)2/3! + · · · ]
(p+ dn + q)2

(p+ dn + q)2 + (pt)2

6

∫ ∞

0

q

2π(p + dn)

1

1 + t2
dt = O

(

q

p+ dn

)

Part (a) follows (given that q/n2 = O(1) for every q ∈ [2, dn], so exp
(

O(q/n2)
)

= 1+O(q/n2)).

For part (b) we will use Euler’s infinite product representation for the Gamma function:

Γ(x) =
1

x

∞
∏

l=1

(

1 + 1
l

)x

1 + x
l

valid for all x > 0. By this we obtain

Γ
(

1 + dn
p

)

Γ
(

1 + dn+q
p

) =

(

1 +
q

p+ dn

) ∞
∏

l=1

(

1 +
q

p(l + 1) + dn

) (

1 +
1

l

)−q/p

=

∞
∏

l=1

(

1 +
q

pl + dn

) (

1 +
1

l

)−q/p

for both q = 2 and q = 4, therefore





Γ
(

1 + dn
p

)

Γ
(

1 + dn+2
p

)





2

−
Γ
(

1 + dn
p

)

Γ
(

1 + dn+4
p

)

=

∞
∏

l=1

(

1 +
2

pl+ dn

)2 (

1 +
1

l

)−4/p

−
∞
∏

l=1

(

1 +
4

pl + dn

) (

1 +
1

l

)−4/p

=

∞
∏

l=1

(

1 +
4

pl+ dn
+

4

(pl + dn)2

) (

1 +
1

l

)−4/p

−
∞
∏

l=1

(

1 +
4

pl + dn

) (

1 +
1

l

)−4/p

6

∞
∑

l=1

4

(pl + dn)2
·

∞
∏

l=1

(

1 +
4

pl + dn
+

4

(pl + dn)2

) (

1 +
1

l

)−4/p

.

6

∫ ∞

0

4

(pt+ dn)2
dt ·





Γ
(

1 + dn
p

)

Γ
(

1 + dn+2
p

)





2

.
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Similarly,





Γ
(

1 + dn
p

)

Γ
(

1 + dn+2
p

)





2

−
Γ
(

1 + dn
p

)

Γ
(

1 + dn+4
p

) >

∞
∑

l=1

4
(pl+dn)2

1 + 4
pl+dn

·
∞
∏

l=1

(

1 +
4

pl + dn

) (

1 +
1

l

)−4/p

&

∫ ∞

1

4

(pt+ dn)2
dt ·

Γ
(

1 + dn
p

)

Γ
(

1 + dn+4
p

) .

Using also the conclusion of part (a), we deduce part (b).

We are now ready to prove the following proposition (which is just a generalised version of
Proposition 2).

Proposition 8. Let VarMa,b,c,p

(

‖x‖22
)

(or more briefly VarMp

(

‖x‖22
)

) denote the quantity

Ma,b,c,p

(

‖x‖42
)

Ma,b,c,p(1)
−
(

Ma,b,c,p

(

‖x‖22
)

Ma,b,c,p(1)

)2

,

that is, the variance of the Euclidean norm with respect to the density exp
(

−‖x‖pp
)

fa,b,c(x),
where

fa,b,c(x) =
∏

16i<j6n

∣

∣xai − xaj
∣

∣

b ·
∏

16i6n

|xi|c.

Let also Kp,E denote the unit ball of the p-Schatten class in the subspace E corresponding to

the density fa,b,c, and let

σ2
Kp,E

= dn
VarKp,E

(

‖s(T )‖22
)

[

EKp,E

(

‖s(T )‖22
)

]2 .

The following relation is true:

VarMa,b,c,p

(

‖x‖22
)

≃ max
{

σ2
Kp,E

,
1

p

}

· n4/p, (10)

where the implied constants depend only on the integers a, b, c.

Remark 9. The proposition shows that Kp,E satisfies the thin-shell conjecture, in other words,
σ2
Kp,E

6 C for some absolute constant C, if and only if VarMa,b,c,p

(

‖x‖22
)

6 C ′n4/p (for some

other absolute constant depending linearly on C).

In fact, using the best bounds for σKp,E
that we currently have, which are due to Barthe

and Cordero-Erausquin [5], we can infer the following estimate right now: for all p and for all
subspaces E for which we know that Kp,E is in isotropic position (these include Mn(R), Mn(C)
and Mn(H)),

VarMp

(

‖x‖22
)

. n · n4/p = o(n2) · n4/p. (11)

We are going to take advantage of this estimate in the sequel.

Remark 10. Note that in (10) the estimate

EKp,E

(

‖s(T )‖22
)

≃ dn, (12)
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which follows from the arguments of [24] and [16], and is valid for all of the classical subspaces
E we have mentioned, is already incorporated. If we do not use it yet, then, as will be clear
from the ensuing proof, we will get

VarMp

(

‖x‖22
)

≃ max
{

σ2
Kp,E

,
1

p

}

· d4/p−1
n |Kp,E|4/dn

[

EKp,E

(

‖s(T )‖22
)

]2

≃ max
{

σ2
Kp,E

,
1

p

}

· 1

d2n

[

EKp,E

(

‖s(T )‖22
)

]2
· n4/p,

where the last equivalence follows from the volume estimates for the unit balls of the Schatten
classes provided by [16, Proposition 3] (see end of Section 2).

Proof. Note that by (12) we have

VarKp,E

(

‖s(T )‖22
)

=
1

dn

[

EKp,E

(

‖s(T )‖22
)

]2
· σ2

Kp,E
≃ σ2

Kp,E
· dn.

But

VarKp,E

(

‖s(T )‖22
)

=

∫

Kp,E

‖s(T )‖42 dT −
(

∫

Kp,E

‖s(T )‖22 dT
)2

=
1

|Kp,E |1+
4
dn

∫

Kp,E

‖s(T )‖42 dT −
(

1

|Kp,E|1+
2
dn

∫

Kp,E

‖s(T )‖22 dT
)2

=
1

|Kp,E |4/dn





1

|Kp,E|

∫

Kp,E

‖s(T )‖42 dT −
(

1

|Kp,E|

∫

Kp,E

‖s(T )‖22 dT
)2


 .

Given that |Kp,E|4/dn ≃ d
−1−2/p
n , we therefore obtain that

σ2
Kp,E

· d−2/p
n ≃ |Kp,E|4/dn ·VarKp,E

(

‖s(T )‖22
)

=
1

|Kp,E|

∫

Kp,E

‖s(T )‖42 dT −
(

1

|Kp,E|

∫

Kp,E

‖s(T )‖22 dT
)2

,

which, by use of Lemmas 1 and its counterparts for the other subspaces, becomes

=
Γ
(

1 + dn
p

)

Γ
(

1 + dn+4
p

)

Mp

(

‖x‖42
)

Mp(1)
−





Γ
(

1 + dn
p

)

Γ
(

1 + dn+2
p

)





2
(

Mp

(

‖x‖22
)

Mp(1)

)2

=
Γ
(

1 + dn
p

)

Γ
(

1 + dn+4
p

)





Mp

(

‖x‖42
)

Mp(1)
−
(

Mp

(

‖x‖22
)

Mp(1)

)2


 (13)

−











Γ
(

1 + dn
p

)

Γ
(

1 + dn+2
p

)





2

−
Γ
(

1 + dn
p

)

Γ
(

1 + dn+4
p

)







(

Mp

(

‖x‖22
)

Mp(1)

)2

. (14)

Now we use the estimates of Lemma 7 (without needing yet the more accurate form in which
we stated them): the term in (13) can be rewritten as

Γ
(

1 + dn
p

)

Γ
(

1 + dn+4
p

) VarMp

(

‖x‖22
)

≃ d−4/p
n ·VarMp

(

‖x‖22
)

,

13



and since the term in (14) is negative, we get

VarMp

(

‖x‖22
)

& σ2
Kp,E

· d2/pn ≃ σ2
Kp,E

· n4/p. (15)

In addition, since the sum of the terms in (13) and (14) is equal to a positive quantity, we obtain

d−4/p
n ·VarMp

(

‖x‖22
)

&











Γ
(

1 + dn
p

)

Γ
(

1 + dn+2
p

)





2

−
Γ
(

1 + dn
p

)

Γ
(

1 + dn+4
p

)







(

Mp

(

‖x‖22
)

Mp(1)

)2

>
C2

p(p+ dn)





Γ
(

1 + dn
p

)

Γ
(

1 + dn+2
p

)





2
(

Mp

(

‖x‖22
)

Mp(1)

)2

=
C2

p(p+ dn)
|Kp,E|4/dn

[

EKp,E

(

‖s(T )‖22
)

]2

≃ C2

p(p+ dn)
d1−2/p
n .

This shows that VarMp

(

‖x‖22
)

& 1
p · d2/pn ≃ 1

p · n4/p if 1 6 p . dn, whereas if p & dn then

max{σ2
Kp,E

, 1/p} = σ2
Kp,E

given that for every centred convex body in a dn-dimensional space
we have

σ2
Kp,E

> σ2
Bdn

2

=
4

dn + 4

(see [6, Theorem 2]). Combining with (15), we conclude that

VarMp

(

‖x‖22
)

& max
{

σ2
Kp,E

,
1

p

}

· n4/p. (16)

In the opposite direction, we have

d−4/p
n ·VarMp

(

‖x‖22
)

. σ2
Kp,E

· d−2/p
n +











Γ
(

1 + dn
p

)

Γ
(

1 + dn+2
p

)





2

−
Γ
(

1 + dn
p

)

Γ
(

1 + dn+4
p

)







(

Mp

(

‖x‖22
)

Mp(1)

)2

6 σ2
Kp,E

· d−2/p
n +

C3

p dn
|Kp,E|4/dn

[

EKp,E

(

‖s(T )‖22
)

]2

≃ σ2
Kp,E

· d−2/p
n +

C3

p dn
d1−2/p
n ,

whence we obtain the reverse inequality to (16). This completes the proof of the proposition.

As mentioned in the Introduction, our task now becomes to find good estimates for the
quantity VarMp

(

‖x‖22
)

, and ideally to show that it is O(n4/p). One of our tools towards this
goal is Lemma 3 that was stated in the Introduction; it will become apparent that one other
thing we need is to be able to relate integrals of the form Mp

(

‖x‖lpf(x)
)

, where l is some real
number, to each other.

Lemma 11. Let l, s ∈ R be such that s > −dn and l+s > −dn. Suppose also that f : Rn\{0} →
R is a continuous, s-homogeneous function. Then

Mp

(

‖x‖lpf(x)
)

=
Γ
(

dn+l+s
p

)

Γ
(

dn+s
p

) Mp(f).
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Proof. We use a polar integration formula. Since both f and ‖x‖lp f(x) are positively homoge-
neous functions of order s and l + s respectively, we have

Mp(f) =

∫

Rn

f(x) · fa,b,c(x) exp
(

−‖x‖pp
)

dx

= n vol(Bn
p )

∫ ∞

0
rdn+s−1e−rp

∫

∂Bn
p

f(u)fa,b,c(u) dµBn
p
(u) dr

= n vol(Bn
p )

Γ
(

dn+s
p

)

p

∫

∂Bn
p

f(u)fa,b,c(u) dµBn
p
(u),

and similarly

Mp

(

‖x‖lpf(x)
)

=

∫

Rn

‖x‖lp f(x) · fa,b,c(x) exp
(

−‖x‖pp
)

dx

= n vol(Bn
p )

∫ ∞

0
rdn+l+s−1e−rp

∫

∂Bn
p

‖u‖lp f(u)fa,b,c(u) dµBn
p
(u) dr

= n vol(Bn
p )

Γ
(

dn+l+s
p

)

p

∫

∂Bn
p

f(u)fa,b,c(u) dµBn
p
(u),

where µBn
p
is a type of cone-volume measure (see e.g. [26]) on the boundary ∂Bn

p of Bn
p , which

is defined by

µBn
p
(A) :=

|{tu : u ∈ A, 0 6 t 6 1}|
|Bn

p |
.

This completes the proof.

Note that the case l = p also follows from Lemma 3 applied with ξ = 0 (and at first with
functions f that satisfy the hypotheses of the lemma; see also [16, Corollary 7(a)] for a different
proof of the case l = p that works directly for arbitrary continuous functions). However, in
what follows, we will need to make use of other cases of Lemma 11 too.

3.1 Orders of magnitude of relevant quantities

Given that, by symmetry,

VarMp

(

‖x‖22
)

=
Mp

(

‖x‖42
)

Mp(1)
−
(

Mp

(

‖x‖22
)

Mp(1)

)2

= n · Mp

(

x41
)

Mp(1)
+ n(n− 1) · Mp

(

x21x
2
2

)

Mp(1)
− n2 ·

(

Mp

(

x21
)

Mp(1)

)2

(17)

= n · VarMp

(

x21
)

+ n(n− 1) ·





Mp

(

x21x
2
2

)

Mp(1)
−
(

Mp

(

x21
)

Mp(1)

)2


 ,

our first objective thus becomes to study the order of magnitude of the quantities Mp(x
2
1)/Mp(1),

Mp(x
4
1)/Mp(1) and Mp(x

2
1x

2
2)/Mp(1).

To this end we will use Lemma 3 that was stated in the Introduction, and has been used for
the exact same purpose both in [24] and in [16].
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Remark 12. In [24] the authors apply Lemma 3 with ξ = 0 or ξ = p and with f(x) = 1. On
the other hand, the authors of [16] have to apply the lemma in more general cases as well: they
obtain recursive equivalences using the lemma with ξ = 2 or ξ = p and with f being different
powers of the Euclidean norm.

In both situations, it turns out that the most bothersome to deal with term in (7) is the
last one: the way they estimate it in both of the abovementioned papers is by observing that

ζ1(a, ξ) ·
(

|xi|ξ + |xj |ξ
)

6
|xi|ξ xai − |xj|ξ xaj

xai − xaj
6 ζ2(a, ξ) ·

(

|xi|ξ + |xj|ξ
)

(18)

for all xi 6= xj , where ζ1(a, ξ) = min
{

1
2 ,

a+ξ
2a

}

(or, if a is even, ζ1(a, ξ) = min
{

1, a+ξ
2a

}

), and

ζ2(a, ξ) = max
{

1, a+ξ
2a

}

, and then by writing

Mp



f(x)

n
∑

i=1

∑

j 6=i

|xi|ξ xai
xai − xaj



 = Mp



f(x)
∑

i<j

|xi|ξ xai − |xj |ξ xaj
xai − xaj





≃ ζi(a, ξ) ·Mp



f(x)
∑

i<j

(

|xi|ξ + |xj|ξ
)





= ζi(a, ξ) · (n− 1)Mp

(

f(x)‖x‖ξξ
)

.

In this way Lemma 3 leads to

(

ζ1(a, ξ)
dn
n

+ ξ

)

Mp

(

f(x)‖x‖ξξ
)

. pMp

(

‖x‖ξ+p
ξ+pf(x)

)

−Mp

(

n
∑

i=1

|xi|ξxi
∂f

∂xi
(x)

)

(19)

. ζ2(a, ξ)
dn
n
Mp

(

f(x)‖x‖ξξ
)

for any positive function f satisfying the assumptions of the lemma.

Proposition 13. Let Mp denote integration over R
n with respect to one of the densities fa,b,c,p

of the form

fa,b,c,p(x) = exp
(

−‖x‖pp
)

·
∏

16i<j6n

∣

∣xai − xaj
∣

∣

b ·
∏

16i6n

|xi|c,

where p ∈ [1,+∞) and a, b are positive integers, c is a non-negative integer. We have

Mp

(

x21
)

Mp(1)
≃ n2/p and

Mp

(

x41
)

Mp(1)
≃ Mp

(

x21x
2
2

)

Mp(1)
≃ n4/p. (20)

Proof. The first part of (20) is essentially the core result of [24]. For the reader’s convenience,
let us recall how one can easily deduce it from (19) with the help of Hölder’s inequality and
Lemma 11: we first apply (19) with ξ = 2 and f(x) = 1 to obtain that

dn
n

Mp

(

‖x‖22
)

& pMp

(

‖x‖p+2
p+2

)

>
p

n2/p
Mp

(

‖x‖p+2
p

)

≃ d
2/p
n

n2/p
dn Mp(1),

or in other words that Mp(x
2
1)/Mp(1) & n2/p. To also get the reverse inequality, we apply (19)

with ξ = p and f(x) = 1: this gives

a+ p

2a

dn
n

Mp

(

‖x‖pp
)

& pMp

(

‖x‖2p2p
)

,
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and then, by a simple application of Hölder’s inequality, we can conclude that

Mp

(

x21
)

Mp(1)
6

(

Mp

(

|x1|2p
)

Mp(1)

)1/p

.

(

n
Mp

(

|x1|p
)

Mp(1)

)1/p

=

(

dn
p

)1/p

.

The second part of (20) can follow by very similar reasoning: in this case we have to apply
(19) with ξ = 2p or ξ = 3p as well, to be able to compare Mp(x

4
1)/Mp(1) to Mp(|x1|4p)/Mp(1).

Finally note that

Mp

(

x21x
2
2

)

Mp(1)
6

√

Mp

(

x41
)

Mp(1)

Mp

(

x42
)

Mp(1)
,

while

n(n− 1)
Mp

(

x21x
2
2

)

Mp(1)
=

Mp

(

‖x‖42
)

Mp(1)
− n

Mp

(

x41
)

Mp(1)
>

(

Mp

(

‖x‖22
)

Mp(1)

)2

− n
Mp

(

x41
)

Mp(1)

> c1n
2 · n4/p − c2n · n4/p ≃ n2 · n4/p.

This completes the proof.

4 Proof of the main results

It is not difficult to convince ourselves that estimating the variance of the Euclidean norm
with respect to the densities fa,b,c,p is a more delicate problem than merely finding the orders of

magnitude of the terms
(

Mp(x
2
1)/Mp(1)

)2
, Mp(x

4
1)/Mp(1) andMp(x

2
1x

2
2)/Mp(1) appearing when

we write out the variance: we have just seen that they are all ≃ n4/p, however it is obvious
that we cannot extract any non-trivial information about the variance from these equivalences
if we do not also find a way to estimate the constants appearing in them (or in other words, the
coefficient of n4/p in each case). Thus, we will now attempt to estimate the contribution of the
last term in (7) in a more precise manner: one way this can be done is through the following
proposition.

Proposition 14. Let ξ > 0 and s > −dn − ξ, and let f : Rn \ {0} → R
+ be an s-homogeneous

function that satisfies the hypotheses of Lemma 3. Suppose moreover that f is a symmetric

function. Then we have

(

2dn + (ξ − c− 1)n

n

)

Mp

(

‖x‖ξξf(x)
)

=

pMp

(

‖x‖ξ+p
ξ+p f(x)

)

−Mp

( n
∑

i=1

|xi|ξxi
∂f

∂xi
(x)

)

+ abn(n− 1)Mp

( |x2|ξxa1
xa1 − xa2

f(x)

)

, (21)

where by symmetry we can also write

Mp

( |x2|ξxa1
xa1 − xa2

f(x)

)

=
1

2
Mp

(

xa1|x2|ξ − xa2|x1|ξ
xa1 − xa2

f(x)

)

.

17



If in addition a is an even integer, then

Mp

( |x2|ξxa1
xa1 − xa2

f(x)

)

=







































1

2
Mp

( |x1|a−ξ − |x2|a−ξ

|x1|a − |x2|a
|x1x2|ξf(x)

)

> 0 if ξ < a

0 if ξ = a

1

2
Mp

( |x2|ξ−a − |x1|ξ−a

|x1|a − |x2|a
|x1x2|af(x)

)

< 0 if ξ > a.

. (22)

Proof. We first prove (21). By Lemma 3 we can write

(ξ + c+ 1)Mp

(

f(x)

n
∑

i=1

|xi|ξ
)

=

pMp

(

‖x‖ξ+p
ξ+pf(x)

)

−Mp

(

n
∑

i=1

|xi|ξxi
∂f

∂xi
(x)

)

− abMp



f(x)

n
∑

i=1

∑

j 6=i

|xi|ξ xai
xai − xaj



 . (23)

Note that by symmetry the last summand is equal to

abn(n− 1)Mp

( |x1|ξ xa1
xa1 − xa2

f(x)

)

,

which we can rewrite as

Mp

(

(

|x1|ξ + |x2|ξ
)

xa1
xa1 − xa2

f(x)

)

−Mp

( |x2|ξ xa1
xa1 − xa2

f(x)

)

.

Since the function
(

|x1|ξ + |x2|ξ
)

f(x) is invariant under permuting the first two coordinates, it
follows that

Mp

(

xa1
xa1 − xa2

(

|x1|ξ + |x2|ξ
)

f(x)

)

=
1

2
Mp

(

xa1 − xa2
xa1 − xa2

(

|x1|ξ + |x2|ξ
)

f(x)

)

=
1

2
Mp

((

|x1|ξ + |x2|ξ
)

f(x)
)

=
1

n
Mp

(

‖x‖ξξf(x)
)

.

We thus conclude that the last summand in (23) is equal to

ab(n− 1)Mp

(

‖x‖ξξf(x)
)

− abn(n− 1)Mp

( |x2|ξ xa1
xa1 − xa2

f(x)

)

=

(

2(dn − (c+ 1)n)

n

)

Mp

(

‖x‖ξξf(x)
)

− abn(n− 1)Mp

( |x2|ξ xa1
xa1 − xa2

f(x)

)

.

This gives (21). The other two equations follow by symmetry and, in the case of (22), by the
fact that xai = |xi|a when a is an even integer. This completes the proof.

The following corollary summarises the three main identities that Proposition 14 gives us
for densities of the form f2,b,c,p and which we will need to prove Theorems 4 and 5.

Corollary 15. Let Mp denote integration with respect to a density of the form f2,b,c,p =
∏

i<j

∣

∣ x2i − x2j
∣

∣

b ·∏i |xi|c e−‖x‖pp (namely, let a = 2). By applying Proposition 14 with ξ = 2 and

f(x) = 1 we obtain
(

2dn + (1− c)n

n

)

Mp

(

‖x‖22
)

Mp(1)
= p

Mp

(

‖x‖p+2
p+2

)

Mp(1)
. (24)
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By applying Proposition 14 with ξ = 2 and f(x) = ‖x‖22 we obtain

(

2dn + (1− c)n

n

)

Mp

(

‖x‖42
)

Mp(1)
= p

Mp

(

‖x‖22 · ‖x‖p+2
p+2

)

Mp(1)
− 2

Mp

(

‖x‖44
)

Mp(1)
. (25)

Finally, by applying Proposition 14 with ξ = 4 and f(x) = 1 we obtain

(

2dn + (3− c)n

n

)

Mp

(

‖x‖44
)

Mp(1)
= p

Mp

(

‖x‖p+4
p+4

)

Mp(1)
−
(

dn − (c+ 1)n
)Mp

(

x21x
2
2

)

Mp(1)
. (26)

4.1 On the cases of Schatten classes corresponding to a = 2 and to large p

Here we prove Theorem 4. We will combine identities (24) and (25) with a simple application
of Hölder’s inequality, by which we have

‖x‖p+2
p > ‖x‖p+2

p+2 > ‖x‖p+2
p · n−2/p =

(

1−O

(

log n

p

))

‖x‖p+2
p (27)

for every p >> log n. Indeed, by (24), (27) and Lemma 11 we obtain that

(

2dn + (1− c)n

n

)

Mp

(

‖x‖22
)

Mp(1)
= p

Mp

(

‖x‖p+2
p+2

)

Mp(1)
(28)

>

(

1−O

(

log n

p

))

p
Mp

(

‖x‖p+2
p

)

Mp(1)

=

(

1−O

(

log n

p

))

dn
Γ
(

1 + dn+2
p

)

Γ
(

1 + dn
p

) .

We obviously also have

Mp

(

‖x‖44
)

Mp(1)
= n

Mp

(

x41
)

Mp(1)
> n

(

Mp

(

x21
)

Mp(1)

)2

=
1

n

(

Mp

(

‖x‖22
)

Mp(1)

)2

.

In view of the above estimates, as well as of part (a) of Lemma 7, (25) and Lemma 11 now give

(

2dn + (1− c)n

n

)

Mp

(

‖x‖42
)

Mp(1)
= p

Mp

(

‖x‖22 · ‖x‖
p+2
p+2

)

Mp(1)
− 2

Mp

(

‖x‖44
)

Mp(1)

6 p
Mp

(

‖x‖22 · ‖x‖p+2
p

)

Mp(1)
− 2

n

(

Mp

(

‖x‖22
)

Mp(1)

)2

= (dn + 2)
Γ
(

1 + dn+4
p

)

Γ
(

1 + dn+2
p

)

Mp

(

‖x‖22
)

Mp(1)
− 2

n

(

Mp

(

‖x‖22
)

Mp(1)

)2

=

(

1 +O

(

log n

p

)

+O

(

1

n2

))(

2dn + (1− c)n

n

)

(

Mp

(

‖x‖22
)

Mp(1)

)2

.

Thus, we conclude that

VarMp

(

‖x‖22
)

=

(

O

(

log n

p

)

+O

(

1

n2

))

(

Mp

(

‖x‖22
)

Mp(1)

)2

6 Cmax
{n2 log n

p
, 1
}

· n4/p,
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where C is an absolute constant.
This completes the proof of the first part of Theorem 4. For the second part, namely for

the statement that σ2
Kp

& 1 when p & n2 log n, see the next subsection.

Remark 16. Note that (24), (25) and Lemma 11 imply the thin-shell conjecture when p = 2 as
well. Although this is not interesting when E = Mn(F), given that in those cases we know that
K2,E is simply the Euclidean ball of volume 1 in E, it is perhaps worth noting in the case of
Hermitian matrices, of anti-symmetric Hermitian, or of complex symmetric matrices (especially
so if K2,E turns out not to be isotropic for one or more of these three subspaces E).

Remark 17. Note that, since Kp,E is in isotropic position when E = Mn(R) or Mn(C), we
have that

dnL
2
Kp,E

=
1

|Kp,E|1+
2
dn

∫

Kp,E

‖s(T )‖22 dT =
1

|Kp,E|2/dn

(

1

|Kp,E|

∫

Kp,E

‖s(T )‖22 dT
)

=
1

|Kp,E|2/dn
Γ
(

1 + dn
p

)

Γ
(

1 + dn+2
p

)

Mp

(

‖x‖22
)

Mp(1)

which for large p can be rewritten, using (28), as

=

(

1 +O

(

log n

p

))

dn

|Kp,E|2/dn

(

2dn + (1− c)n

n

)−1

.

This shows that, for p >> log n,

LKp,E
=

(

1 +O

(

log n

p

)

+O

(

1

n

))√

n

2dn

1

|Kp,E|1/dn

=

(

1 +O

(

log n

p

)

+O

(

1

n

))

1√
2βn

1

|Kp,E|1/dn
,

where β = 1 if E = Mn(R), and β = 2 if E = Mn(C).
Recall now that Saint-Raymond [29] has found very precise estimates for the volume of

Kp,Mn(R) and of KpMn(C), and in particular he has shown that

|K∞,Mn(R)|1/n
2
= (1 + o(1))

1

2

√

2πe3/2

n
, |K∞,Mn(C)|1/(2n

2) = (1 + o(1))
1

2

√

πe3/2

n
.

We can thus conclude that

LK∞,Mn(R)
= (1 + o(1))

1√
πe3/2

= LK∞,Mn(C)
.

4.2 Necessity of a negative correlation property

Here we prove Theorem 5. Let us set

Mp

(

x21
)

Mp(1)
= c2

Mp

(

|x1|p
)

Mp(1)
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where c2 depends both on p and on n. Then by (24) we can also write

Mp

(

|x1|p+2
)

Mp(1)
=

2dn + (1− c)n

pn
· c2

Mp

(

|x1|p
)

Mp(1)
.

Using this and the fact that

Mp

[

|x1|p
(

x21 −
2dn + (1− c)n

pn
c2

)2
]

> 0,

we can deduce that

p
Mp

(

|x1|p+4
)

Mp(1)
>

(

2dn + (1− c)n
)2

dn · n

(

Mp

(

x21
)

Mp(1)

)2

. (29)

Furthermore, as we mentioned in Remark 9, we have

VarMp

(

‖x‖22
)

. n · n4/p = o(n2) · n4/p,

which implies that

Mp

(

x21x
2
2

)

Mp(1)
= (1 + o(1))

(

Mp

(

x21
)

Mp(1)

)2

. (30)

Combining (29)-(30) with identity (26) we obtain that

(

2dn + (3− c)n

n

)

Mp

(

x41
)

Mp(1)
= p

Mp

(

|x1|p+4
)

Mp(1)
−
(

dn − (c+ 1)n

n

)

Mp

(

x21x
2
2

)

Mp(1)

>

(

2dn + (1− c)n
)2

dn · n

(

Mp

(

x21
)

Mp(1)

)2

− dn
n

(1 + o(1))

(

Mp

(

x21
)

Mp(1)

)2

.

This gives inequality (8) of Theorem 5, and the rest of the theorem follows as a consequence
too.

It remains to estimate σK∞
more accurately and establish the second part of Theorem 4 as

well. Combining identities (25) and (26), we get

(

2dn + (1− b− c)n

n

)

Mp

(

x21x
2
2

)

Mp(1)
= p

Mp

(

x21|x2|p+2
)

Mp(1)

=
p

n− 1

(

Mp

(

x21‖x‖p+2
p+2

)

Mp(1)
− Mp

(

|x1|p+4
)

Mp(1)

)

.

Provided that p is large enough, we can compute the latter terms with great accuracy:

Mp

(

|x1|p+4
)

Mp(1)
=

1

n

Mp

(

‖x‖p+4
p+4

)

Mp(1)

=

(

1

n
+O

(

log n

pn

))

Mp

(

‖x‖p+4
p

)

Mp(1)

=

(

1

n
+O

(

log n

pn

)) Γ
(

dn+p+4
p

)

Γ
(

dn
p

) ,
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while similarly

Mp

(

x21‖x‖
p+2
p+2

)

Mp(1)
=

(

1 +O

(

log n

p

))

Mp

(

x21‖x‖p+2
p

)

Mp(1)

=

(

1 +O

(

log n

p

)) Γ
(

dn+p+4
p

)

Γ
(

dn+2
p

)

Mp

(

x21
)

Mp(1)
.

Using also identity (24) now, we can continue by writing

(

2dn + (1− c)n

n

)

Mp

(

x21
)

Mp(1)
= p

Mp

(

|x1|p+2
)

Mp(1)

=

(

1 +O

(

log n

p

))

· dn + 2

n

Γ
(

dn+2
p

)

Γ
(

dn
p

) .

In the end,

(

2dn + (1− b− c)n

n

)

Mp

(

x21x
2
2

)

Mp(1)
=

p

n− 1

(

1 +O

(

log n

p

)) Γ
(

dn+p+4
p

)

Γ
(

dn
p

)

(

dn + 2

2dn + (1− c)n
− 1

n

)

,

or in other words

Mp

(

x21x
2
2

)

Mp(1)
=

(

1 +O

(

log n

p

)) Γ
(

1 + dn+4
p

)

Γ
(

1 + dn
p

)

dn
(

ndn − 2dn + (1 + c)n
)

(n− 1)
(

2dn + (1− c)n
)(

2dn + (1− b− c)n
) ,

(31)

while

Mp

(

x21
)

Mp(1)
=

(

1 +O

(

log n

p

)) Γ
(

1 + dn+2
p

)

Γ
(

1 + dn
p

)

dn
2dn + (1− c)n

. (32)

Returning to (26) we also see that

(

2dn + (3− c)n

n

)

Mp

(

x41
)

Mp(1)
= p

Mp

(

|x1|p+4
)

Mp(1)
− b(n− 1)

Mp

(

x21x
2
2

)

Mp(1)

=

(

1 +O

(

log n

p

)) Γ
(

1 + dn+4
p

)

Γ
(

1 + dn
p

)

[

dn
n

− bdn
(

ndn − 2dn + (1 + c)n
)

(

2dn + (1− c)n
)(

2dn + (1 − b− c)n
)

]

,

or in other words

Mp

(

x41
)

Mp(1)
=

(

1 +O

(

log n

p

)) Γ
(

1 + dn+4
p

)

Γ
(

1 + dn
p

)

[

dn
2dn + (3− c)n

−

− b ndn
(

ndn − 2dn + (1 + c)n
)

(

2dn + (1− c)n
)(

2dn + (1− b− c)n
)(

2dn + (3− c)n
)

]

. (33)
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Combining all these, and taking into account that if p > n2 log n then dn/p = o(1), as well
as Lemma 7(b), we conclude that, for all such p,

n · Mp

(

x41
)

Mp(1)
+ n(n− 1) · Mp

(

x21x
2
2

)

Mp(1)
− n2 ·

(

Mp

(

x21
)

Mp(1)

)2

=

(

1 + o(1)
)

·
[

n ·
(

dn
2dn + (3− c)n

− b ndn
(

ndn − 2dn + (1 + c)n
)

(

2dn + (1− c)n
)(

2dn + (1− b− c)n
)(

2dn + (3− c)n
)

)

+

+ n(n− 1) · dn
(

ndn − 2dn + (1 + c)n
)

(n− 1)
(

2dn + (1− c)n
)(

2dn + (1− b− c)n
) − n2 ·

(

dn
2dn + (1− c)n

)2
]

=
1

8b
+ o(1).

Given in addition that

VarMp

(

‖x‖22
)

≃ max
{

σ2
Kp

,
1

p

}

· n4/p,

and that for all dn-dimensional bodies K we have σ2
K & 1/dn, we obtain that

σ2
Kp

≃ VarMp

(

‖x‖22
)

≃ 1

8b
+ o(1)

for all p & n2 log n.

5 The cases of complex anti-symmetric and of Hermitian ma-

trices

We will now show why we have analogues of Proposition 8, Theorem 4 and Theorem 5 for
the Schatten classes in the subspaces of anti-symmetric Hermitian matrices and of Hermitian
matrices too. We stated in Section 2, Fact 4, that, if the subspace of anti-symmetric Hermitian
matrices is equipped with the standard Gaussian measure, then the induced joint probability
density of the singular values θ1, . . . , θs of a random matrix T ∈ E is given by

Pn

(

(θ1, . . . , θs) ∈ A
)

= cn,E ·
∫

A

∏

16i<j6s

∣

∣x2i − x2j
∣

∣

2
exp
(

−‖x‖22
)

dx

if n = 2s, and by

Pn

(

(θ1, . . . , θs) ∈ A
)

= cn,E ·
∫

A

∏

16i<j6s

∣

∣x2i − x2j
∣

∣

2 ·
∏

16i6s

|xi|2 exp
(

−‖x‖22
)

dx

if n = 2s+1, where A is any 1-symmetric measurable subset of Rs. This of course implies that
for every symmetric measurable function F : Rs → R

+ we must have

∫

E
F (θ1, . . . , θs) exp

(

−‖T‖2Sn
2
/2
)

dT =

cn,E ·
∫

Rs

F
(

|x1|, . . . , |xs|
)

·
∏

16i<j6s

∣

∣x2i − x2j
∣

∣

2 ·
∏

16i6s

|xi|2r exp
(

−‖x‖22
)

dx, (34)

where n = 2s+ r, r ∈ {0, 1}. This allows us to prove the following
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Lemma 18. Let F : Rs → R
+ be a measurable, symmetric and k-homogeneous function. Then

∫

Kp,E

F (θ1, . . . , θs) dT =

cn,E 2−(n2+k)/p

Γ
(

1 + n2+k
p

)

∫

Rs

F
(

|x1|, . . . , |xs|
)

·
∏

16i<j6s

∣

∣x2i − x2j
∣

∣

2 ·
∏

16i6s

|xi|2r exp
(

−‖x‖pp
)

dx,

where n2 = dim(E).

Proof. We first note that, for every anti-symmetric Hermitian matrix T and for each p > 1,

‖T‖pSn
p
= 2

s
∑

i=1

|θi|p = 2‖(θ1, . . . , θs)‖pp,

therefore, applying (34) with the function

F (x1, . . . , xs) ·
exp(−‖x‖pp)
exp(−‖x‖22)

,

we see that

∫

E
F (θ1, . . . , θs) exp

(

−‖T‖pSn
p
/2
)

dT =

cn,E ·
∫

Rs

F
(

|x1|, . . . , |xs|
)

·
∏

16i<j6s

∣

∣x2i − x2j
∣

∣

2 ·
∏

16i6s

|xi|2r exp
(

−‖x‖pp
)

dx.

Furthermore, given that Kp,E =
{

T ∈ E : ‖T‖Sn
p
6 1
}

, we can write

∫

E
F (θ1, . . . , θs) exp

(

−‖T‖pSn
p
/2
)

dT =

∫ +∞

0
e−t

∫

(2t)1/pKp,E

F (θ1, . . . , θs) dT dt

= 2(n
2+k)/p Γ

(

1 +
n2 + k

p

)

·
∫

Kp,E

F (θ1, . . . , θs) dT.

This concludes the proof.

Note now that, if M2,2,2r,p denotes integration on R
s with respect to the density

exp
(

−‖x‖pp
)

· f2,2,2r(x) = exp
(

−‖x‖pp
)

·
∏

16i<j6s

∣

∣x2i − x2j
∣

∣

2 ·
∏

16i6s

|xi|2r,

where r ∈ {0, 1}, then

EKp,E

(

‖s(T )‖22
)

=
1

|Kp,E|2/dn

∫

Kp,E
2‖(θ1, . . . , θs‖22 dT

|Kp,E|

=
1

|Kp,E|2/dn
·

Γ
(

1 + n2

p

)

22/p Γ
(

1 + n2+2
p

)

M2,2,2r,p

(

‖x‖22
)

M2,2,2r,p(1)
,
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and similarly

|Kp,E|4/dn · VarKp,E

(

‖s(T )‖22
)

=
1

|Kp,E|

∫

Kp,E

‖s(T )‖42 dT −
(

1

|Kp,E|

∫

Kp,E

‖s(T )‖22 dT
)2

=
1

24/p







Γ
(

1 + n2

p

)

Γ
(

1 + n2+4
p

)

M2,2,2r,p

(

‖x‖42
)

M2,2,2r,p(1)
−





Γ
(

1 + n2

p

)

Γ
(

1 + n2+2
p

)





2
(

M2,2,2r,p

(

‖x‖22
)

M2,2,2r,p(1)

)2





.

From this point on, we can proceed as in Sections 3 and 4 to prove that

EKp,E

(

‖s(T )‖22
)

≃ n1−2/p · s · M2,2,2r,p

(

x21
)

M2,2,2r,p(1)
≃ n2 = dim(E),

as well as Theorems 4 and 5 (note that this time, when we apply Lemma 3 and Propositions
13 and 14, dn is replaced by ds = 2s(s− 1) + (2r + 1)s, which is not equal to dim(E), still the
conclusions we obtain are of the same form given that s = ⌊n2 ⌋ ≃ n).

Let us finally see why Theorems 4 and 5 hold true when E is the subspace of Hermitian
matrices, even though by Fact 2 we know that the density we have to use when we reduce
integrals over the balls Kp,E to integrals over Rn is the density f1,2,0(x).

Proposition 19. Let f : Rn → R
+ be a symmetric function. Then there exists a constant cn

depending only on n such that

∫

Rn

f
(

|x1|, . . . , |xn|
)

· f1,2,0(x) e−‖x‖pp dx =

∑

A⊂[n]
|A|=⌈n/2⌉

cn ·
∫

Rn

f
(

|x1|, . . . , |xn|
)

e−‖x‖pp ·
∏

i,j∈A;i<j

∣

∣x2i − x2j
∣

∣

2 ·
∏

l,k /∈A;l<k

∣

∣x2l − x2k
∣

∣

2 ·
∏

l /∈A

|xl|2 dx.

Proof. Since the integrand f
(

|x1|, . . . , |xn|
)

e−‖x‖pp is invariant under permutations of the coor-
dinates or flipping of their signs, we can make use of the exact argument of Edelman and La
Croix from [10, Section 4] to obtain the result.

We now remark that, with f(x) = ‖x‖ξξ or f(x) = 1, we have

∑

A⊂[n]
|A|=⌈n/2⌉

cn ·
∫

Rn

f(x) e−‖x‖pp ·
∏

i,j∈A;i<j

∣

∣x2i − x2j
∣

∣

2 ·
∏

l,k /∈A;l<k

∣

∣x2l − x2k
∣

∣

2 ·
∏

l /∈A

|xl|2 dx

=

(

n

⌈n/2⌉

)

cn ·
∫

Rn

f(x) e−‖x‖pp ·
∏

i,j∈I1;i<j

∣

∣x2i − x2j
∣

∣

2 ·
∏

l,k /∈I1;l<k

∣

∣x2l − x2k
∣

∣

2 ·
∏

l /∈I1

|xl|2 dx

where I1 is the subset of the first n1 = ⌈n/2⌉ indices from {1, 2, . . . , n}, and where we will write
I2 for its complement. Let us denote by Np,I1 integration over R

I1 with respect to the density
∏

i,j∈I1;i<j

∣

∣x2i − x2j
∣

∣

2
e
−‖x‖pp,I1 , where ‖x‖p,I1 denotes the p-norm of the coordinates of x with

indices in I1 only, and let us denote by Np,I2 integration over R
I2 with respect to the density

∏

l,k∈I2;l<k

∣

∣x2l − x2k
∣

∣

2 ·
∏

l∈I2
|xl|2 e−‖x‖pp,I2 . Let us finally denote by Np,I1,I2 integration over Rn
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with respect to the product of both densities. Then, by the independent nature of these two
densities and by the above relations, we see that

M1,2,0,p

(

‖x‖ξξ
)

M1,2,0,p(1)
=

Np,I1,I2

(

‖x‖ξξ
)

Np,I1,I2(1)
=

Np,I1

(

‖x‖ξξ,I1
)

Np,I1(1)
+

Np,I2

(

‖x‖ξξ,I2
)

Np,I2(1)
.

Similarly we have that

M1,2,0,p

(

‖x‖42
)

M1,2,0,p(1)
=

Np,I1,I2

(

‖x‖42
)

Np,I1,I2(1)

=
Np,I1,I2

(

‖x‖42,I1 + ‖x‖42,I2 + 2‖x‖22,I1‖x‖
2
2,I2

)

Np,I1,I2(1)

=
Np,I1

(

‖x‖42,I1
)

Np,I1(1)
+

Np,I2

(

‖x‖42,I2
)

Np,I2(1)
+ 2

Np,I1

(

‖x‖22,I1
)

Np,I1(1)

Np,I2

(

‖x‖22,I2
)

Np,I2(1)
.

Therefore, to show that

M1,2,0,p

(

‖x‖42
)

M1,2,0,p(1)
=

(

1 +O

(

1

n2

))

(

M1,2,0,p

(

‖x‖22
)

M1,2,0,p(1)

)2

for some index p, we only need to establish that

Np,I1

(

‖x‖42,I1
)

Np,I1(1)
=

(

1 +O

(

1

n2

))

(

Np,I1

(

‖x‖22,I1
)

Np,I1(1)

)2

and that
Np,I2

(

‖x‖42,I2
)

Np,I2(1)
=

(

1 +O

(

1

n2

))

(

Np,I2

(

‖x‖22,I2
)

Np,I2(1)

)2

.

But we have already seen the latter are true when p > n2 log n or when p = 2 (since Np,I1 is
exactly M2,2,0,p over RI1 , while Np,I2 stands for M2,2,2,p over RI2).

Similarly for those p we obtain that

Np,I1

(

x41
)

Np,I1(1)
>

(

3

2
+ o(1)

)

(

Np,I1

(

x21
)

Np,I1(1)

)2

and
Np,I2

(

x4n
)

Np,I2(1)
>

(

3

2
+ o(1)

)

(

Np,I2

(

x2n
)

Np,I2(1)

)2

,

whence inequality (8) of Theorem 5 follows:

M1,2,0,p

(

‖x‖44
)

M1,2,0,p(1)
=

Np,I1

(

‖x‖44,I1
)

Np,I1(1)
+

Np,I2

(

‖x‖44,I2
)

Np,I2(1)

>

(

3

2
+ o(1)

)





1

n1

(

Np,I1

(

‖x‖22,I1
)

Np,I1(1)

)2

+
1

n2

(

Np,I2

(

‖x‖22,I2
)

Np,I2(1)

)2




>

(

3

2
+ o(1)

)

1

n

(

Np,I1

(

‖x‖22,I1
)

Np,I1(1)
+

Np,I2

(

‖x‖22,I2
)

Np,I2(1)

)2

=

(

3

2
+ o(1)

)

1

n

(

M1,2,0,p

(

‖x‖22
)

M1,2,0,p(1)

)2

.
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Remark 20. Note that for the subspaces of anti-symmetric Hermitian and of Hermitian ma-
trices, as well as for the subspace of complex symmetric spaces, inequality (8) holds only con-
ditionally, depending on whether we have

Mp

(

x21x
2
2

)

Mp(1)
=
(

1 + o(1)
)

(

Mp

(

x21
)

Mp(1)

)2

,

or equivalently whether we have σ2
Kp,E

= o(n2), which we a priori do not know for these
balls Kp,E. Nevertheless, since through the arguments for Theorem 4 we can conclude that
σ2
Kp,E

= o(n2) for all p >> log n for these subspaces too, inequality (8) holds unconditionally
in this range of p.

At any rate, the final conclusion of Theorem 5 remains unaffected: given any p > 1, for the
thin-shell conjecture to hold true for Kp,E, where E is any of the three subspaces mentioned
here, or even for σ2

Kp,E
to be o(n), we need the density fa,b,c,p corresponding to Kp,E to possess

a negative correlation property.

6 More on the negative correlation property when E = Mn(F)

The purpose of this final section is to establish a type of negative correlation property for the
original, uniform measures on Kp,Mn(F) as well. We start with the following lemma which allows
us to relate terms that appear when we expand VarMp

(

‖x‖22
)

and VarKp,E

(

‖T‖2HS

)

respectively.

Lemma 21. For every n × n matrix T ∈ Mn(F), where F = R or C or H, we have that, if

T = (ai,j)16i,j6n and if (si(T ))16i6n = (si)16i6n is the non-increasing rearrangement of the

singular values of T , then

n
∑

i=1

s4i =
∑

16i,j6n

|ai,j|4 +
n
∑

i=1

∑

j 6=l

(

|ai,j |2|ai,l|2 + |aj,i|2|al,i|2
)

+
∑

i 6=l

∑

j 6=k

ai,jal,jal,kai,k, (35)

while
∑

i 6=j

s2i s
2
j =

∑

i 6=l

∑

j 6=k

|ai,j |2|al,k|2 −
∑

i 6=l

∑

j 6=k

ai,jal,jal,kai,k. (36)

Remark 22. When the entries of the matrix T are real or complex numbers, we have that
multiplication between different entries is commutative, hence we can rewrite (36) as

∑

i 6=j

s2i s
2
j =

∑

i 6=l

∑

j 6=k

|ai,j|2|al,k|2 −
∑

i 6=l

∑

j 6=k

ai,jal,kal,jai,k (37)

= 2
∑

i<l

∑

j 6=k

ai,jal,k
(

ai,jal,k − ai,kal,j
)

= 2
∑

i<l

∑

j<k

∣

∣ai,jal,k − ai,kal,j
∣

∣

2
.

This is of course not necessarily true when T ∈ Mn(H), since H is a skew field. Note however
that the last sum in both (35) and (36) is a real number in all cases.

Proof. Note that
∑n

i=1 s
4
i = tr

(

(T ∗T )2
)

= tr
(

(TT ∗)2
)

. We also have that

TT ∗ =





n
∑

j=1

ai,jal,j





16i,l6n

,
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thus the (i, i)-th entry of (TT ∗)2 is equal to

(

(TT ∗)2
)

i,i
=

n
∑

l=1





n
∑

j=1

ai,jal,j





(

n
∑

k=1

al,kai,k

)

=

n
∑

l=1

∑

16j,k6n

ai,jal,jal,kai,k.

Summing over all i ∈ {1, . . . , n} we get (35).
To also obtain (36), we recall that

∑n
i=1 s

2
i = ‖T‖2HS =

∑

16i,j6n |ai,j|2, and also that
(
∑n

i=1 s
2
i

)2
=
∑n

i=1 s
4
i +

∑

i 6=j s
2
i s

2
j . Thus

n
∑

i=1

s4i +
∑

i 6=j

s2i s
2
j =





∑

16i,j6n

|ai,j|2




2

=
∑

16i,j6n

|ai,j|4 +
n
∑

i=1

∑

j 6=l

(

|ai,j|2|ai,l|2 + |aj,i|2|al,i|2
)

+
∑

i 6=l

∑

j 6=k

|ai,j |2|al,k|2,

which combined with (35) leads to (36).

We now need to study the orders of magnitude of the terms appearing in (35)-(36). This
will be done through the study of symmetries of the balls Kp,Mn(F), one immediate consequence
of which is the isotropicity of these convex bodies.

Lemma 23. Suppose p > 1 and let E = Mn(R) or Mn(C) or Mn(H). If A : E → E is

an invertible transformation that can be realised as left or right multiplication by an orthogonal

or unitary or symplectic matrix respectively, then A(Kp,E) = Kp,E. The same conclusion is

true if A takes a matrix in E to its conjugate transpose, or simply to its transpose. Immediate

consequences are the following:

1. For every p > 1, the normalised unit ball Kp,E is in isotropic position.

2. For all i, j ∈ {1, 2, . . . , n}, and for every power s > 0,

∫

Kp,E

|ai,j |s dT =

∫

Kp,E

|a1,1|s dT.

3. For all i, j, l, k ∈ {1, 2, . . . , n} with i 6= l, j 6= k,

∫

Kp,E

|ai,j |2|ai,k|2 dT =

∫

Kp,E

|aj,i|2|ak,i|2 dT =

∫

Kp,E

|a1,1|2|a1,2|2 dT =

∫

Kp,E

|a1,1|2|a2,1|2 dT

∫

Kp,E

|ai,j |2|al,k|2 dT =

∫

Kp,E

|a1,1|2|a2,2|2 dT
∫

Kp,E

ai,jal,jal,kai,k dT =

∫

Kp,E

a1,1a2,1a2,2a1,2 dT.

Proof. Let U be an orthogonal (or unitary) matrix. Then for every n × n matrix M , we have
that the singular values of UM or of MU are the same as those of M : indeed, (UM)∗(UM) =
M∗(U∗U)M = M∗M , while (MU)∗(MU) = U∗(M∗M)U , so it has the same eigenvalues as
M∗M . This implies that {UM : M ∈ Kp,E} or {MU : M ∈ Kp,E} coincide with Kp,E.
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On the other hand, if A(M) = M∗, then
(

A(M)∗A(M)
)

= MM∗, which has the same
eigenvalues as M∗M . The latter is true even if A(M) is just the transpose of M .

Finally, if A is a linear transformation on E = Mn(F) of one of the above forms, then, since
A(Kp,E) = Kp,E, we must have that |det(A)| = 1. This shows that for every integrable function
F on Kp,E,

∫

Kp,E

F (T ) dT =

∫

A(Kp,E)
F (T ) dT =

∫

Kp,E

|det(A)| · F (A(T )) dT =

∫

Kp,E

F (A(T )) dT. (38)

It is now easy to establish statements 2 and 3 of the lemma: we apply (38) with F being
suitable functions of the entries of T ∈ Kp,E, and the linear transformation A being either
multiplication from the left or from the right (or from both sides) by a permutation matrix Pi,j

(formed by permuting the i-th and the j-th row of the identity matrix, and leaving all other
rows unchanged), or A being the transformation that sends each matrix T to its (conjugate)
transpose.

To also show thatKp,E is isotropic, we need to prove in addition that all integrals of products
of pairs of different entries (or of pairs of real and imaginary parts of them) are 0. In the real
case, all such integrals must be equal

either to

∫

Kp,E

a1,1a1,2 dT =

∫

Kp,E

a1,1a2,1 dT, or to

∫

Kp,E

a1,1a2,2 dT, (39)

so we just have to show that the latter integrals are 0. For the first one, consider the rotation
matrix

U =













cos(θ) sin(θ)
− sin(θ) cos(θ)

0

0 Idn−2













, (40)

and apply (38) with A being multiplication from the left by U and F being the absolute value
of the first entry squared (or simply the first entry squared): since
∫

Kp,E

|a1,1(T )|2 dT =

∫

Kp,E

|a1,1(UT )|2 dT and

∫

Kp,E

a1,1(T )
2 dT =

∫

Kp,E

a1,1(UT )2 dT,

we must have
∫

Kp,E

2 cos(θ) sin(θ)Re
(

a1,1(T )a2,1(T )
)

dT =

∫

Kp,E

2 cos(θ) sin(θ) a1,1(T )a2,1(T ) dT = 0.

These in the real case are the same thing and show that the first integral in (39) is 0. In the
complex and quaternion cases, we should also use as A linear combinations of permutation
matrices with coefficients from {1, i, j, k} ∩ F to deduce first that

∫

Kp,E

Re(a1,1)Re(a2,1) dT =

∫

Kp,E

Im1(a1,1) Im1(a2,1) dT = · · · ,
∫

Kp,E

Re(a1,1) Im1(a2,1) dT =

∫

Kp,E

Im1(a1,1)Re(a2,1) dT,

∫

Kp,E

2Re(a1,1)
2 dT =

∫

Kp,E

2 Im1(a1,1)
2 dT =

∫

Kp,E

Re
(

(1 + i)a1,1
)2

dT = · · · ,

(41)

and so on.
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Finally, to also show that the second integral in (39) is 0, note that

0 =

∫

Kp,E

a1,1(T )a2,1(T ) dT =

∫

Kp,E

a1,1(T )a1,2(T ) dT

=

∫

Kp,E

a1,1(UT )a1,2(UT ) dT

=

∫

Kp,E

(

cos(θ)a1,1(T ) + sin(θ)a2,1(T )
)(

cos(θ)a1,2(T ) + sin(θ)a2,2(T )
)

dT

=

∫

Kp,E

cos2(θ)a1,1(T )a1,2(T ) dT +

∫

Kp,E

sin2(θ)a2,1(T )a2,2(T ) dT

+ cos(θ) sin(θ)

[

∫

Kp,E

a1,1(T )a2,2(T ) dT +

∫

Kp,E

a2,1(T )a1,2(T ) dT

]

= 2cos(θ) sin(θ)

∫

Kp,E

a1,1(T )a2,2(T ) dT.

This shows that

∫

Kp,E

a1,1(T )a2,2(T ) dT = 0 and completes the proof (again, in the complex

and quaternion cases, if we combine it with equalities from (41)).

The next proposition is about how the integrals appearing in substatement 3 of Lemma 23
relate to each other.

Proposition 24. Suppose p > 1 and E = Mn(F) with Mn(F) = Mn(R) or Mn(C) or Mn(H).
Then

∫

Kp,E

|a1,1|2|a1,2|2 dT =

∫

Kp,E

|a1,1|2|a2,2|2 dT +
2

β

∫

Kp,E

a1,1a2,1a2,2a1,2 dT,

where β = 1 if F = R, β = 2 if F = C, and β = 4 if F = H.

Proof. We apply (38) again with A being multiplication from the left by the rotation matrix U
in (40): we obtain

∫

Kp,E

|a1,1(T )|2 · |a2,2(T )|2 dT =

∫

Kp,E

|a1,1(UT )|2 · |a2,2(UT )|2 dT

=

∫

Kp,E

∣

∣ cos(θ)a1,1(T ) + sin(θ)a2,1(T )
∣

∣

2 ·
∣

∣− sin(θ)a1,2(T ) + cos(θ)a2,2(T )
∣

∣

2
dT

=

∫

Kp,E

cos2(θ) sin2(θ)
(

|a1,1(T )|2|a1,2(T )|2 + |a2,1(T )|2|a2,2(T )|2
)

dT

+

∫

Kp,E

(

cos4(θ)|a1,1(T )|2|a2,2(T )|2 + sin4(θ)|a2,1(T )|2|a1,2(T )|2
)

dT

+

∫

Kp,E

cos(θ) sin3(θ)
(

2Re
(

a1,1(T )a2,1(T )
)

· |a1,2(T )|2 − 2Re
(

a2,2(T )a1,2(T )
)

· |a2,1(T )|2
)

dT

+

∫

Kp,E

cos3(θ) sin(θ)
(

2Re
(

a1,1(T )a2,1(T )
)

· |a2,2(T )|2 − 2Re
(

a2,2(T )a1,2(T )
)

· |a1,1(T )|2
)

dT+

−
∫

Kp,E

cos2(θ) sin2(θ)
(

2Re
(

a1,1(T )a2,1(T )
)

· 2Re
(

a2,2(T )a1,2(T )
)

)

dT.
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Given that
∫

Kp,E

Re
(

a1,1(T )a2,1(T )
)

· |a1,2(T )|2 dT =

∫

Kp,E

Re
(

a2,2(T )a1,2(T )
)

· |a2,1(T )|2 dT

=

∫

Kp,E

Re
(

a1,1(T )a2,1(T )
)

· |a2,2(T )|2 dT =

∫

Kp,E

Re
(

a2,2(T )a1,2(T )
)

· |a1,1(T )|2 dT

(which follows if we use (38) with A given by suitable permutation matrices), we immediately
see that
∫

Kp,E

|a1,1|2|a1,2|2 dT =

∫

Kp,E

|a1,1|2|a2,2|2 dT+2

∫

Kp,E

Re
(

a1,1(T )a2,1(T )
)

·Re
(

a2,2(T )a1,2(T )
)

dT.

Now, combining Lemmas 21 and 23, we have that
∫

Kp,E

a1,1a2,1a2,2a1,2 dT

is a real number, and hence
∫

Kp,E

a1,1a2,1a2,2a1,2 dT =

∫

Kp,E

Re
(

a1,1a2,1a2,2a1,2
)

dT

=

∫

Kp,E

a1,1a2,1a2,2a1,2 dT

if E = Mn(R), or

=

∫

Kp,E

Re
(

a1,1(T )a2,1(T )
)

· Re
(

a2,2(T )a1,2(T )
)

dT −
∫

Kp,E

Im
(

a1,1(T )a2,1(T )
)

· Im
(

a2,2(T )a1,2(T )
)

dT

if E = Mn(C), or

=

∫

Kp,E

Re
(

a1,1(T )a2,1(T )
)

· Re
(

a2,2(T )a1,2(T )
)

dT −
∫

Kp,E

Im1

(

a1,1(T )a2,1(T )
)

· Im1

(

a2,2(T )a1,2(T )
)

dT

−
∫

Kp,E

Im2

(

a1,1(T )a2,1(T )
)

· Im2

(

a2,2(T )a1,2(T )
)

dT −
∫

Kp,E

Im3

(

a1,1(T )a2,1(T )
)

· Im3

(

a2,2(T )a1,2(T )
)

dT

if E = Mn(H). Applying (38) with suitable permutation matrices again (or linear combinations
of such matrices with coefficients from {1, i, j, k} ∩ F), we conclude that

∫

Kp,E

a1,1a2,1a2,2a1,2 dT = β

∫

Kp,E

Re
(

a1,1(T )a2,1(T )
)

·Re
(

a2,2(T )a1,2(T )
)

dT.

The conclusion of the lemma follows.

Corollary 25. We have that

∣

∣

∣

∫

Kp,Mn(F)

a1,1a2,1a2,2a1,2 dT
∣

∣

∣ .
1

n

(

∫

Kp,Mn(F)

|a1,1|2 dT
)2

=
1

n
β2L4

Kp,Mn(F)
, (42)

and
∫

Kp,Mn(F)

|a1,1|2|a1,2|2 dT,
∫

Kp,Mn(F)

|a1,1|2|a2,2|2 dT

= (1 + o(1))

(

∫

Kp,Mn(F)

|a1,1|2 dT
)2

= (1 + o(1))β2L4
Kp,Mn(F)

, (43)

where β ∈ {1, 2, 4} is as above.
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Proof. In Proposition 13 we saw that

Mp

(

‖x‖44
)

Mp(1)
= n

Mp

(

x41
)

Mp(1)
≃ n

(

Mp

(

x21
)

Mp(1)

)2

≃ n · n4/p.

By reversing the identities that Lemma 1 gives us, we can write

1

|Kp,Mn(F)|

∫

Kp,Mn(F)

|a1,1|2 dT =
1

n2

1

|Kp,Mn(F)|

∫

Kp,Mn(F)

‖s(T )‖22 dT

≃ d
−2/p
n

n2

Mp

(

‖x‖22
)

Mp(1)
=

d
−2/p
n

n

Mp

(

x21
)

Mp(1)
≃ n−1−2/p,

as well as
1

|Kp,Mn(F)|

∫

Kp,Mn(F)

‖s(T )‖44 dT ≃ d−4/p
n

Mp

(

‖x‖44
)

Mp(1)
≃ n

n4/p
.

This implies that

∫

Kp,Mn(F)

‖s(T )‖44 dT ≃ n3 ·
(

∫

Kp,Mn(F)

|a1,1|2 dT
)2

.

But by Lemmas 21 and 23, we know that

∫

Kp,Mn(F)

‖s(T )‖44 dT = n2 ·
∫

Kp,Mn(F)

|a1,1|4 dT + 2n2(n− 1) ·
∫

Kp,Mn(F)

|a1,1|2|a1,2|2 dT

+ n2(n− 1)2 ·
∫

Kp,Mn(F)

a1,1a2,1a2,2a1,2 > n2(n− 1)2 ·
∫

Kp,Mn(F)

a1,1a2,1a2,2a1,2.

Moreover, since
∫

Kp,Mn(F)
‖s(T )‖44 dT > 0, we also have that

−n2(n− 1)2 ·
∫

Kp,Mn(F)

a1,1a2,1a2,2a1,2 < n2 ·
∫

Kp,Mn(F)

|a1,1|4 dT + 2n2(n− 1) ·
∫

Kp,Mn(F)

|a1,1|2|a1,2|2 dT

6 Cn2(2n− 1) ·
(

∫

Kp,Mn(F)

|a1,1|2 dT
)2

,

where the last inequality is a consequence of the Cauchy-Schwarz inequality and of standard
properties of convex bodies (see e.g. [8, Theorem 2.4.6]). Inequality (42) follows.

To also establish (43), we recall that

σ2
Kp,Mn(F)

· dn ≃ VarKp,E

(

‖T‖2HS

)

= n2 ·
∫

Kp,Mn(F)

|a1,1|4 dT + 2n2(n− 1) ·
∫

Kp,Mn(F)

|a1,1|2|a1,2|2 dT

+ n2(n− 1)2 ·
∫

Kp,Mn(F)

|a1,1|2|a2,2|2 dT − n4 ·
(

∫

Kp,Mn(F)

|a1,1|2 dT
)2

.

Since by [5] we know that σ2
Kp,Mn(F)

= O(n) for all p > 1, we can infer that

∣

∣

∣

∣

∣

∫

Kp,Mn(F)

|a1,1|2|a2,2|2 dT −
(

∫

Kp,Mn(F)

|a1,1|2 dT
)2 ∣
∣

∣

∣

∣

= O

(

1

n

)

(

∫

Kp,Mn(F)

|a1,1|2 dT
)2

.
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Furthermore, combining this with Proposition 24 and (42), we get the same conclusion for the

difference

∫

Kp,Mn(F)

|a1,1|2|a1,2|2 dT −
(

∫

Kp,Mn(F)

|a1,1|2 dT
)2

, as claimed.

We are finally in a position to establish a type of negative correlation property for the
original, uniform measures on Kp,Mn(F) as well: this can be done for p for which the estimate
in (8) is accurate, or close to it.

Theorem 26. Let p be such that

M2,β,β−1,p

(

x41
)

M2,β,β−1,p(1)
< (2 + o(1))

(

M2,β,β−1,p

(

x21
)

M2,β,β−1,p(1)

)2

, (44)

where β = 1 if F = R, β = 2 if F = C, and β = 4 if F = H, and suppose in addition that

Kp,Mn(F) satisfies the thin-shell conjecture, or at least that σ2
Kp,Mn(F)

= o(n). Then for every

i, j, k ∈ {1, . . . , n}, j 6= k, we have

∫

Kp,Mn(F)

|ai,j|2|ai,k|2 dT =

∫

Kp,Mn(F)

|aj,i|2|ak,i|2 dT

<

(

∫

Kp,Mn(F)

|ai,j |2 dT
)(

∫

Kp,Mn(F)

|ai,k|2 dT
)

= β2L4
Kp,Mn(F)

.

Proof. Let us write

M2,β,β−1,p

(

x41
)

M2,β,β−1,p(1)
= c4

(

M2,β,β−1,p

(

x21
)

M2,β,β−1,p(1)

)2

(45)

where, by Section 4 and the assumption of the theorem, we know that
3

2
+ o(1) 6 c4 < 2+ o(1).

We start by recalling that

Mp

(

x41
)

Mp(1)
=

1

n
·
Γ
(

1 + dn+4
p

)

Γ
(

1 + dn
p

)

1

|Kp,Mn(F)|

∫

Kp,Mn(F)

‖s(T )‖44 dT,

and that

(

Mp

(

x21
)

Mp(1)

)2

=
1

n2
·





Γ
(

1 + dn+2
p

)

Γ
(

1 + dn
p

)





2
(

1

|Kp,Mn(F)|

∫

Kp,Mn(F)

‖s(T )‖22 dT
)2

= n2 ·





Γ
(

1 + dn+2
p

)

Γ
(

1 + dn
p

)





2
(

1

|Kp,Mn(F)|

∫

Kp,Mn(F)

|a1,1|2 dT
)2

.

Similarly,

Mp

(

x21x
2
2

)

Mp(1)
=

1

n(n− 1)
·
Γ
(

1 + dn+4
p

)

Γ
(

1 + dn
p

)

1

|Kp,Mn(F)|

∫

Kp,Mn(F)

∑

i 6=j

s2i s
2
j dT. (46)
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We now combine these identities with Proposition 24, identities (35)-(36), and the assumptions
that c4 < 2 + o(1) and σ2

Kp,Mn(F)
= o(n): we first see that, because of (45), we must have

n ·
∫

Kp

|a1,1|4 dT + 2n(n− 1) ·
∫

Kp

|a1,1|2|a1,2|2 dT + n(n− 1)2 ·
∫

Kp

a1,1a2,1a2,2a1,2

=
(

c4 +O
(

1/n2
))

n2 ·
(

∫

Kp

|a1,1|2 dT
)2

.

Given that

∫

Kp

|a1,1|2|a1,2|2 dT =
(

1 +O(1/n)
)

(

∫

Kp

|a1,1|2 dT
)2

, it follows that

∫

Kp

a1,1a2,1a2,2a1,2 dT 6

(

c4 − 2

n
+O

(

1

n2

))

·
(

∫

Kp

|a1,1|2 dT
)2

. (47)

But now recall that, because of Proposition 8, the assumption σ2
Kp,Mn(F)

= o(n) implies that

Mp

(

x21x
2
2

)

Mp(1)
6

(

1− c4 − 1

n
+ o

(

1

n

))

(

Mp

(

x21
)

Mp(1)

)2

(where o(1/n) is at least O(1/n2) here, but may be larger if Kp,Mn(F) does not satisfy the
thin-shell conjecture). This, through Proposition 24, and equations (36) and (46), translates
into

n(n− 1)

(

∫

Kp

|a1,1|2|a1,2|2 dT −
(

1 + 2/β
)

∫

Kp

a1,1a2,1a2,2a1,2

)

= n(n− 1)

(

∫

Kp

|a1,1|2|a2,2|2 dT −
∫

Kp

a1,1a2,1a2,2a1,2

)

6

(

1 +
1− c4
n

+ o

(

1

n

))

n2 ·
(

∫

Kp

|a1,1|2 dT
)2

,

which combined with (47) (and Lemma 23) implies the claim of the theorem.

Here are some concluding remarks concerning this theorem:

• Note that this negative correlation property is again a necessary condition for the thin-
shell conjecture to be true for p for which (44) is true. These include all p & log n (in fact,
it is not difficult to see that c4 can be as close to 3/2 + o(1) in these cases if the implied
absolute constant in the latter inequality is sufficiently large). We should clarify however
that we cannot expect (44) to be true for all p: for example, for the Euclidean ball (p = 2)
we know that all cross terms are equal, that is

∫

K2,Mn(F)

|a1,1|2|a1,2|2 dT =

∫

K2,Mn(F)

|a1,1|2|a2,1|2 dT =

∫

K2,Mn(F)

|a1,1|2|a2,2|2 dT ;

then, by Proposition 24, we see that

∫

K2,Mn(F)

a1,1a2,1a2,2a1,2 dT = 0, and hence

M2,β,β−1,2

(

x41
)

M2,β,β−1,2(1)
= (2 + o(1))

(

M2,β,β−1,2

(

x21
)

M2,β,β−1,2(1)

)2

.
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Recall that for the Euclidean ball we know that all cross terms are

<

(

∫

K2,Mn(F)

|a1,1|2 dT
)2

,

simply because σ2
K2,Mn(F)

= O(1/n2), and not O(1).

Another case for which (44) is not true is the case of p = 1: we have that

M1

(

x41
)

M1(1)
>

(

17

8
+ o(1)

)

(

M1

(

x21
)

M1(1)

)2

,

which moreover implies that in this case it is the cross terms
∫

K1
|ai,j|2|al,k|2 dT with i 6= l,

j 6= k, which are the smallest ones.

• The assumption σ2
Kp,Mn(F)

= o(n) can be relaxed a little, and replaced by the assumption

σ2
Kp,Mn(F)

6 c0n (with a constant that may be smaller than the one guaranteed by [5]

however): for example, we can have the same conclusion to the theorem if we take c0 to
be sufficiently small and we also assume

M2,β,β−1,p

(

x41
)

M2,β,β−1,p(1)
6

(

9

5
+ o(1)

)

(

M2,β,β−1,p

(

x21
)

M2,β,β−1,p(1)

)2

(48)

say. Since the latter estimate is satisfied anyway when p > c1n log n, and since we also
saw in Section 4 that σ2

Kp,Mn(F)
. n for such p (and the implied constant can be made

as small as we want as long as c1 is sufficiently large), this gives us the range of p for
which we already know that the theorem can be applied, and that the stated negative
correlation property holds true anyway.

• As mentioned earlier, this negative correlation property is a necessary condition for the
thin-shell conjecture to be true for some of the balls Kp,Mn(F), but does not appear to be
a sufficient one too. In fact, our arguments do not seem to allow us to distinguish between
the cases

∫

Kp

|a1,1|2|a2,2|2 dT <

(

∫

Kp

|a1,1|2 dT
)2

or

∫

Kp

|a1,1|2|a2,2|2 dT =
(

1 +
c

n2

)

(

∫

Kp

|a1,1|2 dT
)2

.

Nevertheless it still seems like a question of independent interest to study for which other
indices p, if any, we have some sort of negative correlation property as above, or even
to try to re-establish the property for the known cases in a more direct manner, that is,
without having to go through estimates for σKp (if the latter turns out to be possible, it
would immediately give us one more proof of the estimate σ2

Kp
= O(n) from [5] as well).
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