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Abstract

Let C be a symmetric convex body of volume 1 in Rn. We provide general
estimates for the volume and the radius of C ∩ U(C) where U is a random
orthogonal transformation of Rn. In particular, we consider the case where
C is in the isotropic position or C is the volume normalized Lq-centroid body
Zq(µ) of an isotropic log-concave measure µ on Rn.

1 Introduction

A well-known principle in the asymptotic theory of convex bodies asserts that local
statements describing the structure of lower dimensional sections and projections of
a symmetric convex body C in Rn can be “translated” to global statements about
properties of C and its orthogonal images U(C). A number of results, including the
global form of Dvoretzky theorem proved by V. Milman and Schechtman in [26],
illustrate this point of view. The volume ratio theorem is another classical example
of the parallelism between the global and the local asymptotic theory. Szarek and
Tomczak-Jaegermann [32], generalizing previous work of Kashin [12] for the unit
ball of `n1 , proved that if C is a symmetric convex body in Rn such that Bn2 ⊆ C
and |C| = αn|Bn2 | for some α > 1 then, for every 1 6 k 6 n, a random subspace
F ∈ Gn,k satisfies with probability greater than 1− e−n

Bn2 ∩ F ⊆ C ∩ F ⊆ (cα)
n
n−kBn2 ∩ F,

where c > 0 is an absolute constant. The global analogue of this statement is that,
under the same hypothesis, there exists U ∈ O(n) with the property

Bn2 ⊂ C ∩ U(C) ⊂ cα2Bn2 ,

where c > 0 is an absolute constant. In a few words, the fact that most of the n/2-
dimensional sections of C are α2-equivalent to a Euclidean ball can be translated
to the global statement that intersecting C with a random rotation U(C) we obtain
a convex body which is α2-equivalent to Bn2 .

In this note we consider the intersection of a symmetric convex body C with
U(C), where U ∈ O(n) is a random orthogonal transformation of Rn, and we are
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mainly interested in the expectation of the volume and the radius R(C ∩U(C)) :=
max{‖x‖2 : x ∈ C ∩ U(C)} of C ∩ U(C). One motivation for this work was to
understand the way these two quantities depend on classical parameters of the
body C; a second motivation was to understand better the regularity properties of
the Lq-centroid bodies of isotropic log-concave measures. Naturally, our results are
directed to these two questions. We write ‖ · ‖C for the norm induced by C on Rn
and we denote by M := M(C) and by w(C) the expectation of this norm on the
unit sphere and the mean width of C respectively.

Starting with the volume, it is clear that |C ∩ U(C)| 6 1 for all U , and the
example of the Euclidean ball Bn2 of volume 1 shows that, in full generality, one
cannot expect anything better than this trivial upper bound. However, we will see
that, under some natural condition on C, one can provide subexponential upper
bounds for the expectation

EU |C ∩ U(C)| =
∫
O(n)

|C ∩ U(C)| dν(U)

where ν is the Haar measure on O(n). Our starting point is a simple formula for
this expectation; one has

(1.1)

∫
O(n)

|C ∩ U(C)| dν(U) =

∫
C

σ
(
Sn−1 ∩ 1

‖x‖2
C
)
dx,

where σ is the rotationally invariant probability measure on the unit sphere Sn−1.
Therefore, one has to understand the behaviour of σ(Sn−1 ∩ tC) for small values
of t or, equivalently, the behaviour of γn(αC) for α ' 1 (see Lemma 4.1 below).
A parameter which plays a key role in small ball probability estimates and is very
much related to this question was introduced by Klartag and Vershynin in [18]:
they defined d(C) as follows:

d(C) := min

{
− log σ

({
x ∈ Sn−1 : ‖x‖C 6

M(C)

2

})
, n

}
.

Using the B-theorem of Cordero-Erausquin, Fradelizi and Maurey [5], in Section 4
we obtain the following estimate.

Theorem 1.1. There exists an absolute constant B0 > 0 such that if C is a sym-
metric convex body of volume 1 in Rn with

√
nM(C) > B0 then

(1.2)

∫
O(n)

|C ∩ U(C)| dν(U) 6 e−cd(C),

where c > 0 is an absolute constant.

The condition
√
nM(C) > B0 in Theorem 1.1 is rather natural; observe that

if we express the volume of C as an integral in polar coordinates and use Hölder’s
inequality then we get

(1.3) vrad(C)M(C) > 1
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with equality if C is a Euclidean ball. If |C| = 1 then vrad(C) := (|C|/|Bn2 |)1/n '√
n and hence the bodies for which vrad(C)M(C) 6 B0 form a rather restricted

class.
The proof of Theorem 1.1 is given in Section 4. The general upper bound in

(1.2) depends on the order of d(C). We give some concrete applications in the
case where C is a (normalized) `np -ball. We also discuss some classical positions of
the body C from this point of view. A case of interest is when the body is in the
isotropic position (see Section 2 for the definition and background information).
In this case, using the thin shell estimate (see e.g. [11]) we obtain an alternative
bound.

Theorem 1.2. Let K be an isotropic convex body in Rn. Then, either LK 6 1 or

(1.4)

∫
O(n)

|K ∩ U(K)| dν(U) 6 c1e
−c2
√
n,

where c1, c2 > 0 are absolute constants.

In fact, one can obtain a similar sub-exponential estimate in Theorem 1.2 under
the assumption LK > t, for any t >

√
2/π; this would only affect the constant c2

(see Proposition 4.8 for a precise statement). Note also that the condition that
is used in Theorem 1.2 is different from the one in Theorem 1.1; here, we require
that the isotropic constant LK of K is large enough: LK > 1. It is a major open
problem whether there exists an absolute constant c0 > 0 such that LK 6 c0 for all
isotropic convex bodies in any dimension; if this is true, and in particular if c0 < 1,
then the statement of Theorem 1.2 does not provide significant information.

In order to give lower bounds for |C ∩ U(C)| we use simple entropy estimates.
In fact, our bounds are valid for every U ∈ O(n). In Section 3 we show that, for
every % > 0 and any U ∈ O(n), one has

(1.5) |C ∩ U(C)| >
[

min{(4%)n/2N(C, %Bn2 ), (4/%)n/2N(%Bn2 , C)}
]−2

,

where N(A,B) is the covering number of A by B, i.e. the least number of translates
of B needed to cover A. Then, using known results on covering numbers, we obtain
the following.

Theorem 1.3. Let C be a symmetric convex body of volume 1 in Rn. For any
U ∈ O(n) we have

(1.6) |C ∩ U(C)| > e−cnmin{w2(C)/n,nM2(C)},

where c > 0 is an absolute constant. In particular, for any 1 6 p 6 ∞ and any
U ∈ O(n) we have

(1.7) |Bnp ∩ U(Bnp )| > e−cn,

where c > 0 is an absolute constant and Bnp is the “normalized” `np -ball.
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The dependence on M(C) and w(C) in Theorem 1.3 indicates that in order to
obtain some non trivial information, we should consider some “good position” of
the body C. We provide a number of results of this type: If C is in M -position
with constant β then, for any U ∈ O(n) we have |C∩U(C)| > e−2(β+1)n. Similarly,
if K is an isotropic symmetric convex body in Rn then

(1.8) |K ∩ U(K)| > (cLK)−n

for every U ∈ O(n), where c > 4 is an absolute constant.
In Section 5 we recall some known results from the local theory of normed spaces

which lead to upper bounds for the radius of C ∩ U(C). It is well understood that
if one has an upper bound for the radius of a random k-dimensional section C ∩ F
of C where k > (1 − c0)n (for some small absolute constant c0 ∈ (0, 1)) then the
same bound holds true for the radius of a random intersection C∩U(C). There are
several versions of this statement; we review the strongest and most recent ones (see
[8], [33], [20]). In particular, combining these results with the low M∗-estimate, one
gets the next very general fact, in the spirit of [26, Theorem 2.2] and most probably
known to experts: a random U ∈ O(n) satisfies

R(C ∩ U(C)) 6 cw(C)

with probability greater than 1− e−n, where c > 0 is an absolute constant.
In the last section of this article we apply the previous results to the Lq-centroid

bodies Zq(µ) of an isotropic log-concave measure µ on Rn. Recall that, if µ is a
log-concave probability measure on Rn and q > 1 then the Lq-centroid body Zq(µ)
of µ is the symmetric convex body with support function

(1.9) hZq(µ)(y) :=

(∫
Rn
|〈x, y〉|qdµ(x)

)1/q

.

The study of random rotations of Zq(µ) proved to be useful in recent works on the
thin shell conjecture. The following fact plays a key role in the article of Klartag
and E. Milman [17] which introduces a regularization step for the study of this
problem and strengthens the small ball estimates of [11]: if 2 6 q 6

√
n then a

random U ∈ O(n) satisfies

Zq(µ) + U(Zq(µ)) ⊇ c√q Bn2
with probability greater than 1− e−cn. Using the results of Section 5 and the esti-
mates of [9] on the inradius of random proportional projections of Zq(µ) we provide
a second proof. In a similar way one can prove an analogous inner regularization
result for the polar body Z◦q (µ); this is actually simpler. The precise statement, in
the spirit of this note, is as follows.

Theorem 1.4. Let µ be an isotropic log-concave measure on Rn. For any q 6
√
n,

a random U ∈ O(n) satisfies

Z◦q (µ) ∩ U(Z◦q (µ)) ⊆ c
√
nBn2 and Zq(µ) ∩ U(Zq(µ)) ⊆ c

√
nBn2

with probability greater than 1− 2e−n.
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In the case of Zq(µ), Theorem 1.1 leads to the following estimate: Let µ be an
isotropic log-concave measure on Rn and let 2 6 q 6

√
n. If

√
qM(Zq(µ)) > B1

then

(1.10)

∫
O(n)

|Zq(µ) ∩ U(Zq(µ))| dν(U) 6 e−c1n/q,

where B1, c1 > 0 are absolute constants. The question to give an upper bound for
M(Zq(µ)) is naturally related to the necessary condition for (1.10). This was one
of the main objects of study in [9], where a partial non-trivial upper bound was
obtained: for every 1 6 q 6 n3/7 one has M

(
Zq(µ)

)
6 C(log q)5/6/ 6

√
q.

2 Notation and background material

We work in Rn, which is equipped with a Euclidean structure 〈·, ·〉. We denote
the corresponding Euclidean norm by ‖ · ‖2, and write Bn2 for the Euclidean unit
ball, and Sn−1 for the unit sphere. Volume is denoted by | · |. The volume ωn of

Bn2 is equal to πn/2/Γ
(
n
2 + 1

)
; from Stirling’s formula we see that ω

1/n
n ' 1/

√
n.

We write σ for the rotationally invariant probability measure on Sn−1 and denote
the Haar measure on O(n) by ν. The Grassmann manifold Gn,k of k-dimensional
subspaces of Rn is equipped with the Haar probability measure νn,k. Let 1 6 k 6 n
and F ∈ Gn,k. We will denote the orthogonal projection from Rn onto F by PF .
We also define BF := Bn2 ∩ F and SF := Sn−1 ∩ F .

The letters c, c′, c1, c2 etc. denote absolute positive constants whose value may
change from line to line. Whenever we write a ' b, we mean that there exist
absolute constants c1, c2 > 0 such that c1a 6 b 6 c2a.

Basic references for the theory of convex bodies and the asymptotic theory of
finite dimensional normed spaces are the classical books of Schneider [31], Milman
and Schechtman [25] and Pisier [30].

Symmetric convex bodies. A convex body in Rn is a compact convex set C ⊂ Rn
with non-empty interior. In this article we discuss symmetric convex bodies, namely
convex bodies C with the property that x ∈ C if and only if −x ∈ C. The volume

radius of C is the quantity vrad(C) = (|C|/|Bn2 |)
1/n

. The support function of C is
defined by hC(y) := max

{
〈x, y〉 : x ∈ C

}
, and the mean width of C is the average

(2.1) w(C) :=

∫
Sn−1

hC(θ) dσ(θ)

of hC on Sn−1. The radius R(C) of C is the smallest R > 0 such that C ⊆ RBn2
and the inradius r(C) of C is the largest r > 0 for which rBn2 ⊆ C.

The polar body C◦ of a symmetric convex body C in Rn is defined by

(2.2) C◦ :=
{
y ∈ Rn : 〈x, y〉 6 1 for all x ∈ C

}
.

The Blaschke-Santaló inequality states that |C||C◦| 6 ω2
n, with equality if and only

if C is an ellipsoid. The reverse Santaló inequality of Bourgain and V. Milman [3]
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states that there exists an absolute constant c > 0 such that, conversely,

(2.3) (|C||C◦|)1/n > c/n,

where c > 0 is an absolute constant.
Every symmetric convex body C ⊂ Rn induces a norm to Rn, given by ‖x‖C =

min{t > 0 : x ∈ tC}. Then, the dual norm ‖ · ‖∗ of ‖ · ‖, defined by

‖y‖∗ = max{|〈x, y〉| : ‖x‖C 6 1},

is the norm induced by C◦ to Rn: we have

hC(x) = ‖x‖C◦ = ‖x‖∗

for all x ∈ Rn. We also write b := b(C) for the smallest positive constant for which
‖x‖C 6 b‖x‖2 for all x ∈ Rn. Note that b(C) = r(C)−1.

We will use some basic facts from the asymptotic theory of finite dimensional
normed spaces. A parameter that plays a central role in the theory, and in this
article, is the average

(2.4) M(C) :=

∫
Sn−1

‖θ‖Cdσ(θ)

of ‖ · ‖C on Sn−1. Note that M(C) = w(C◦) and that

(2.5) M(C)−1 6 vrad(C) 6 w(C) = M(C◦);

the left hand side inequality is easily checked if we express the volume of C as an
integral in polar coordinates and use Hölder’s inequality, while the right hand side
inequality is the classical Urysohn’s inequality.

The critical dimension k(C) of a symmetric convex body C in Rn is the largest
positive integer k 6 n with the property that the measure νn,k of F ∈ Gn,k for which
we have 1

2M(C)BF ⊆ C ∩ F ⊆ 2
M(C)BF is greater than n

n+k . This parameter was

studied in [26] where it is shown that it is completely determined by the dimension,
the parameter M(C) and the inradius of C: one always has

(2.6) c1n
M(C)2

b(C)2
6 k(C) 6 c2n

M(C)2

b(C)2
,

where c1, c2 > 0 are absolute constants. We also define k∗(C) = k(C◦). Note

that k∗(C) ' nw(C)2

R(C)2 . Generalizing the definition of d(C) which was given in the

introduction, for every r > 1 we define

dr(C) = min

{
− log σ

({
x ∈ Sn−1 : ‖x‖C 6

M(C)

r

})
, n

}
.

Note that d(C) = d2(C). One can check (see [18]) that d(C) > ck(C), where c > 0
is an absolute constant.
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Finally, we will need Milman’s low M∗-estimate which states that there exists
a function λ : (1,∞)→ R+ such that if C is a symmetric convex body in Rn, then
a subspace F ∈ Gn,k satisfies

(2.7) R(C ∩ F ) 6 λ
(

n
n−k

)
w(C)

with probability greater than 1 − exp(−c2(n − k)), where c1, c2 > 0 are absolute
constants. Milman’s first proof of (2.7) appears in [21], and a second proof from
[22] establishes (2.7) with λ(t) = ct. Pajor and Tomczak-Jaegermann proved in [27]
that the same statement holds true with λ(t) = c

√
t, which is the asymptotically

best possible behavior. Finally, Gordon [10] proved a sharp form of the latter
result; in particular, he showed that the value of the constant c can be assumed
asymptotically equal to 1.

Given two convex bodies C,L ⊆ Rn, we will write C ' L if there exist absolute
constants c1, c2 > 0 such that c1C ⊆ L ⊆ c2C. For notational convenience we
write C for the homothetic image of volume 1 of a convex body C ⊆ Rn, i.e.
C := |C|−1/nC.

Log-concave probability measures. We denote by Pn the class of all Borel
probability measures on Rn which are absolutely continuous with respect to the
Lebesgue measure. The density of µ ∈ Pn is denoted by fµ. We say that µ ∈ Pn is
centered and we write bar(µ) = 0 if, for all θ ∈ Sn−1,

(2.8)

∫
Rn
〈x, θ〉dµ(x) =

∫
Rn
〈x, θ〉fµ(x)dx = 0.

A measure µ on Rn is called log-concave if µ(λA+ (1− λ)B) > µ(A)λµ(B)1−λ for
all compact subsets A and B of Rn and all λ ∈ (0, 1). A function f : Rn → [0,∞)
is called log-concave if its support {f > 0} is a convex set and the restriction of
log f to it is concave. Borell has proved in [1] that if a probability measure µ is
log-concave and µ(H) < 1 for every hyperplane H, then µ ∈ Pn and its density fµ
is log-concave. Note that if K is a convex body in Rn then the Brunn-Minkowski
inequality implies that 1K is the density of a log-concave measure.

If µ is a log-concave measure on Rn with density fµ, we define the isotropic
constant of µ by

(2.9) Lµ :=

(
supx∈Rn fµ(x)∫

Rn fµ(x)dx

) 1
n

[det Cov(µ)]
1
2n ,

where Cov(µ) is the covariance matrix of µ with entries

(2.10) Cov(µ)ij :=

∫
Rn xixjfµ(x) dx∫

Rn fµ(x) dx
−
∫
Rn xifµ(x) dx∫
Rn fµ(x) dx

∫
Rn xjfµ(x) dx∫
Rn fµ(x) dx

.

Note that Lµ is an affine invariant of µ and does not depend on the choice of the
Euclidean structure. We say that a log-concave probability measure µ on Rn is
isotropic if bar(µ) = 0 and Cov(µ) is the identity matrix.

7



A convex body K in Rn is called isotropic if it has volume 1, it is centered,
i.e. its barycenter is at the origin, and if its inertia matrix is a multiple of the
identity matrix: there exists a constant LK > 0 such that

(2.11)

∫
K

〈x, θ〉2dx = L2
K

for every θ in the Euclidean unit sphere Sn−1. Note that a centered convex body
K of volume 1 in Rn is isotropic, i.e. it satisfies (2.11), if and only if the log-
concave probability measure µK with density x 7→ LnK1K/LK (x) is isotropic. The
hyperplane conjecture asks if there exists an absolute constant C > 0 such that

(2.12) Ln := max{LK : K is isotropic in Rn} 6 C

for all n > 1. Bourgain proved in [2] that Ln 6 c 4
√
n logn, while Klartag [13]

obtained the bound Ln 6 c 4
√
n. A second proof of Klartag’s bound appears in [16].

Let µ ∈ Pn. For every 1 6 k 6 n− 1 and every E ∈ Gn,k, the marginal πEµ of
µ with respect to E is the probability measure with density

(2.13) fπEµ(x) =

∫
x+E⊥

fµ(y)dy.

It is easily checked that if µ is centered, isotropic or log-concave, then πEµ is also
centered, isotropic or log-concave, respectively.

Recall that, if µ is a log-concave probability measure on Rn and q > 1 then the
Lq-centroid body Zq(µ) of µ is the symmetric convex body with support function

(2.14) hZq(µ)(y) :=

(∫
Rn
|〈x, y〉|qdµ(x)

)1/q

.

Observe that µ is isotropic if and only if it is centered and Z2(µ) = Bn2 . From
Hölder’s inequality it follows that Z1(µ) ⊆ Zp(µ) ⊆ Zq(µ) for all 1 6 p 6 q < ∞.
Conversely, using Borell’s lemma (see [25, Appendix III]), one can check that

(2.15) Zq(µ) ⊆ cq
p
Zp(µ)

for all 1 6 p < q. In particular, if µ is isotropic, then R(Zq(µ)) 6 cq. From [28]
and [29] one knows that the “q-moments”

(2.16) Iq(µ) :=

(∫
Rn
‖x‖q2dx

)1/q

, q ∈ (−n,+∞) \ {0},

of the Euclidean norm with respect to an isotropic log-concave probability measure
µ on Rn are equivalent to I2(µ) =

√
n as long as |q| 6

√
n. Also, Paouris has proved

in [28] that

(2.17) w
(
Zq(µ)

)
' √q
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for all q 6
√
n and

(2.18) |Zq(µ)|1/n 6 c2
√
q/n

for all 2 6 q 6 n. On the other hand, in [16] Klartag and Milman prove that

(2.19)
∣∣Zq(µ)

∣∣1/n > c3
√
q/n

for all q 6
√
n, where c3 > 0 is an absolute constant. This determines the volume

radius of Zq(µ) for all q 6
√
n.

Finally, let us recall the thin-shell estimate, first obtained by Klartag in [14]
and [15] (see also [7] and [6]). The currently best known result is due to Guédon
and E. Milman [11]: If µ is an isotropic log-concave measure on Rn then

(2.20) µ
(
{x ∈ Rn : | ‖x‖2 −

√
n | > t

√
n}
)
6 c1 exp(−c2

√
nmin(t3, t))

for all t > 0, and (see [17])

(2.21) µ({x ∈ Rn : ‖x‖2 6 ε
√
n}) 6 (Cε)c2

√
n

for all 0 6 ε 6 1/c1, where c1, c2 > 0 are absolute constants.

3 Lower bounds for the volume

For the lower bound we use a simple argument which is based on entropy estimates.
Recall that the covering number N(A,B) of a body A by a second body B is the
least integer N for which there exist N translates of B whose union covers A.
We need some standard estimates on covering numbers, that can be found e.g. in
Pisier’s book [30, Chapter 7]:

Fact 3.1. (i) If C is a convex body and L is a symmetric convex body in Rn, then

(3.1) 2−n
|C + L|
|L|

≤ N(C,L) ≤ 2n
|C + L|
|L|

.

(ii) If both C and L are symmetric, then

(3.2) |C| ≤ N(C,L)|C ∩ L|.

Let C be a symmetric convex body in Rn. Using Fact 3.1 we can give a lower
bound for |C ∩ U(C)| which is actually valid for every U ∈ O(n). From (3.2) it
follows that

(3.3) 1 = |C| 6 N(C,U(C)) |C ∩ U(C)|.

In order to estimate N(C,U(C)), for every % > 0 we write

(3.4) N(C,U(C)) 6 N(C, %Bn2 )N(%Bn2 , U(C)) = N(C, %Bn2 )N(%Bn2 , C).
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On the other hand,

(3.5) N(%Bn2 , C) 6 2n|%Bn2 + C| 6 (4%)nN(C, %Bn2 ),

using (3.1) and the fact that |C| = |Bn2 | = 1. It follows that

(3.6) N(C,U(C)) 6 (4%)n
[
N(C, %Bn2 )

]2
,

and in a similar way we check that

(3.7) N(C,U(C)) 6 (4/%)n
[
N(%Bn2 , C)

]2
,

Putting these estimates together, we get:

Lemma 3.2. Let C be a symmetric convex body of volume 1 in Rn. For every
% > 0 and any U ∈ O(n) one has

(3.8) |C ∩ U(C)| >
[

min{(4%)n/2N(C, %Bn2 ), (4/%)n/2N(%Bn2 , C)}
]−2

.

One can estimate the covering numbers N(C, %Bn2 ) and N(%Bn2 , C) using Su-
dakov’s inequality and its dual (see e.g. [30]). Recall that Bn2 '

√
nBn2 and hence

N(C, %Bn2 ) 6 exp(c1w
2(C)/%2) and N(%Bn2 , C) 6 exp(c1%

2n2M2(C)),

where c1 > 0 is an absolute constant. Choosing % = 1 in Lemma 3.2, we get

(3.9) |C ∩ U(C)| > 1

4n exp(min{2c2w2(C), 2c1n2M2(C)})
.

Taking into account the fact that min{w(C)/
√
n,
√
nM(C)} > c3 (which implies

that 4n 6 exp(c4nmin{w2(C)/n, nM2(C)}), we conclude the following.

Theorem 3.3. Let C be a symmetric convex body of volume 1 in Rn. For any
U ∈ O(n) we have

(3.10) |C ∩ U(C)| > e−cnmin{w2(C)/n,nM2(C)},

where c > 0 is an absolute constant.

We may apply Theorem 3.3 to the normalized balls Bnp , 1 6 p 6∞. The known

estimates for |Bnp | imply that if 1 6 p 6 2 then Bnp ' n1/pBnp . On the other hand,

‖x‖p 6 n
1
p−

1
2 ‖x‖2 and hence M(Bnp ) 6 n

1
p−

1
2 . Therefore,

M(Bnp ) 6 cn−
1
pM(Bnp ) 6 c/

√
n.

Moreover, if 2 6 p 6∞ and if q is the conjugate exponent of p, then Bnp ' n1/pBnp
and hence

w(Bnp ) 6 cn
1
pw(Bnp ) = cn

1
pM(Bnq ) 6 cn

1
pn

1
q−

1
2 = c

√
n.

Combining the above, we see that

min{w2(Bnp )/n, nM2(Bnp )} 6 c

for all 1 6 p 6∞, where c > 0 is an absolute constant. Theorem 3.3 gives:
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Proposition 3.4. For any 1 6 p 6∞ and any U ∈ O(n) we have

(3.11) |Bnp ∩ U(Bnp )| > e−cn,

where c > 0 is an absolute constant.

A second application of Lemma 3.2 can be given in the case where C is in M -
position. Milman (see e.g. [23]) proved that there exists an absolute constant β > 0
such that every symmetric convex body C in Rn has a linear image C̃ of volume 1
which satisfies

(3.12) max
{
N(C̃, Bn2 ), N(Bn2 , C̃)

}
6 exp(βn).

We say that a convex body C which satisfies this estimate is in M -position with
constant β. Applying Lemma 3.2 we get:

Proposition 3.5. Let C be a symmetric convex body of volume 1 in Rn. If C is
in M -position with constant β then, for any U ∈ O(n) we have

(3.13) |C ∩ U(C)| > e−2(β+1)n.

Next, assume that K is in the isotropic position. We use the following lemma
(see [4, Section 3.2]): If K is an isotropic convex body in Rn then, for every t > 0,

(3.14) N(K, tBn2 ) 6 exp

(
cnLK
t

)
,

where c > 0 is an absolute constant. In particular,

(3.15) N(K,LK B
n

2 ) 6 ecn.

But then, from (3.6) we have

(3.16) N(K,U(K)) 6 (4LKe
2c)n

and Lemma 3.2 implies the following:

Proposition 3.6. Let K be an isotropic symmetric convex body in Rn. Then,

(3.17) |K ∩ U(K)| > (c1LK)−n

for every U ∈ O(n), where c1 > 4 is an absolute constant.

4 Upper bounds for the volume

Our upper bounds for EU |C∩U(C)| will be based on Lemma 4.2. This follows from
Fubini’s theorem and the next fact (see e.g. [18]; in fact, both statements hold true
for any star body C in Rn).

11



Lemma 4.1. If A is a symmetric convex body in Rn, then

1
2 σ
(
Sn−1 ∩ 1

2A
)
6 γn(

√
nA) 6 σ(Sn−1 ∩ 2A) + e−cn.

Lemma 4.2. Let C be a symmetric convex body in Rn. Then,

(4.1)

∫
O(n)

|C ∩ U(C)| dν(U) 6 2

∫
C

γn

(
2
√
n

‖x‖2
C

)
dx.

Proof. Using basic properties of the Haar measure ν on O(n) we may express the
expectation of |C ∩ U(C)| as follows:∫

O(n)

|C ∩ U(C)| dν(U) =

∫
O(n)

∫
Rn
χC(x)χC(Ux) dx dν(U)(3.8)

=

∫
Rn
χC(x)

∫
O(n)

χC(Ux) dν(U) dx

=

∫
C

ν({U ∈ O(n) : Ux ∈ C}) dx

=

∫
C

ν({U ∈ O(n) : ‖x‖2U(x/‖x‖2) ∈ C}) dx

=

∫
C

σ
({
θ ∈ Sn−1 : θ ∈ 1

‖x‖2C
})

dx

=

∫
C

σ
(
Sn−1 ∩ 1

‖x‖2C
)
dx.

From Lemma 4.1 we get

(4.2) σ
(
Sn−1 ∩ 1

‖x‖2C
)
6 2γn

(
2
√
n

‖x‖2
C

)
and the lemma follows. 2

A simple consequence of Lemma 4.2 is the next fact.

Proposition 4.3. There exists an absolute constant α0 > 0 such that if C is a
symmetric convex body of volume 1 in Rn then

(4.3)

∫
O(n)

|C ∩ U(C)| dν(U) 6 γn(α0C) + e−n.

Proof. Let ρn = e−1ω
−1/n
n . Then, we have∫

C∩ρnBn2
γn

(
2
√
n

‖x‖2
C

)
dx 6 |C ∩ ρnBn2 | 6 |ρnBn2 | = e−n.

On the other hand, if x ∈ C \ ρnBn2 then

2
√
n

‖x‖2
6

2
√
n

ρn
= 2e

√
nω1/n

n .

12



Therefore, ∫
C\ρnBn2

γn

(
2
√
n

‖x‖2
C

)
dx 6 γn(α0C),

where α0 = sup
n

2e
√
nω

1/n
n ∼ 2e

√
2πe. 2

In view of Proposition 4.3 we need to control γn(tC), t > 0. One way is to use
the parameter dr(C). Recall that, for any r > 1, we set

dr(C) = min

{
− log σ

({
x ∈ Sn−1 : ‖x‖C 6

M(C)

r

})
, n

}
.

One of the main results in [18] is the following small ball probability estimate:

Theorem 4.4. For every r > 1 and every 0 < ε < 1
32r2 we have

(4.4) γn(ε
√
nM(C)C) 6 (c1ε)

c2(r)dr(C) 6 (c1ε)
c3(r)k(C),

where c1 > 0 is an absolute constant and c2(r), c3(r) ' 1
log(8r) .

For completeness we sketch the proof of Theorem 4.4. The main tool is the
B-theorem of Cordero-Erausquin, Fradelizi and Maurey [5]: if C is a symmetric
convex body in Rn then the function

t 7→ γn(etC)

is log-concave on R. This implies that γn(aλb1−λC) > γn(aC)λγn(bC)1−λ for all
a, b > 0 and λ ∈ (0, 1). We use this fact in the following way. Let m = med(‖ · ‖C)
denote the median (or Lévy mean) of ‖ · ‖C on Sn−1. Markov’s inequality shows
that

m

2
6
∫
{θ:‖θ‖C>m}

‖θ‖C dσ(θ) 6M(C).

It is also known that, conversely, M(C) 6 c0m for some absolute constant c0 > 0,
a fact that will be used in the end of the proof.

We set D = m
√
nC. According to Lemma 4.1 we have

(4.5) γn(2D) >
1

2
σ(Sn−1 ∩mC) >

1

4
,

by the definition of the median. On the other hand, using Lemma 4.1 again, we
have

γn( 1
4rD) 6 σ

(
Sn−1 ∩ m

2r
C
)

+ e−cn(4.6)

= σ
({
θ ∈ Sn−1 : ‖θ‖C 6

m

2r

})
+ e−cn

6 σ

({
θ ∈ Sn−1 : ‖θ‖C 6

M(C)

r

})
+ e−cn

6 2e−c1dr(C),
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where c1 > 0 is a suitable absolute constant. We may assume that 0 < ε < 1
32r2

and then we apply the B-theorem for the body D, with a = ε, b = 2 and λ =
log(8r)/ log 2

ε . This gives

(4.7) γn(εD)
log(8r)
log(2/ε) γn(2D)1−

log(8r)
log(2/ε) 6 γn( 1

4rD).

Note that log(8r)
log(2/ε) <

1
2 , and hence γn(2D)1−

log(8r)
log(2/ε) > 1

2 . Combining (4.5), (4.6) and

(4.7) we see that

(4.8) γn(εD) 6
(

4e−c1dr(C)
) log(2/ε)

log(8r)

6 (c2ε)
c3(r)dr(C),

where c3(r) = c3
log(8r) for some absolute constant c3 > 0. This proves (4.4). 2

Next, we combine Proposition 4.3 with Theorem 4.4.

Proposition 4.5. There exists an absolute constant B0 > 0 such that if r > 1 and
C is a symmetric convex body of volume 1 in Rn with

√
nM(C) > B0r

2 then

(4.9)

∫
O(n)

|C ∩ U(C)| dν(U) 6 e−
c

log(8r)
dr(C)

for all r > 1, where c > 0 is an absolute constant.

Proof. From Theorem 4.4 we know that if 0 < ε < 1
c2r2

then

γn(εM(C)
√
nC) 6 (c1ε)

c2(r)dr(C).

Let ε = α0√
nM(C)

. If
√
nM(C) > max{c1e, c2r2}α0 then we get

γn(α0C) 6 e−
c3

log(8r)
dr(C).

The result follows from Proposition 4.3. 2

Remark 4.6. An alternative estimate can be given in terms of the inradius r

r(C) = sup{r > 0 : rBn2 ⊆ C}

of the body C. One can use the next small ball probability estimate which is due
to Lata la and Oleszkiewicz [19] (the proof is based again on the B-theorem): Let
A be a symmetric convex body in Rn with inradius r = r(A) and γn(A) 6 1/2. For
any 0 6 ε 6 1 we have

(4.10) γn(εA) 6 (2ε)r(A)2/4γn(D).

We use this result as follows: assume that C is a symmetric convex body of volume

1 in Rn with
√
nM(C) > B0 and d(C) > B0. We check that A = m

√
n

8 C satisfies
γn(A) 6 1

2 , and hence, applying (4.10) for A, we see that if 0 < ε < 1
2e then

14



γn(εA) 6 2e−r
2(A)/4. Note that εm

√
n

8 = α0 if we choose ε = 8α0√
nm

. If
√
nm > 16eα0

then we get

γn(α0C) 6 2e−r
2(A)/4 = 2e−nm

2r2(C).

From Proposition 4.3 we get EU |C∩U(C)| 6 exp(−cnm2(C)r2(C)). However, note
that nm2(C)r2(C) 6 4nM2(C)r2(C) ' k(C) 6 c′d(C).

Remark 4.7. Recall that for every symmetric convex body C of volume 1 in Rn
one has

√
nM(C) >

√
n

(
|Bn2 |
|C|

)1/n

=
√
nω1/n

n ∼
√

2πe.

So, the condition
√
nM(C) > B0 is not satisfied by those bodies for which

M(C)vrad(C) ' 1.

An example is given by the Euclidean ball Bn2 of volume 1. However, in this case
one has |Bn2 ∩ U(Bn2 )| = 1 for all U ∈ O(n). In other words, if one asks for a
non-trivial (exponentially small) upper bound for the expectation of |C ∩ U(C)|
then some condition is required. Thus, the condition

√
nM(C) > B0 seems very

natural.
In the example of the cube Qn =

[
− 1

2 ,
1
2

]n
one has

√
nM(Qn) '

√
log n and

hence Proposition 4.5 applies. However, it is easier to compute γn(α0Qn) directly

and then to apply Proposition 4.3. If Φ(t) = 1√
2π

∫ t
−∞ e−s

2/2ds is the distribution

function of a standard normal random variable then one has

γn(α0Qn) = (2Φ(α0/2)− 1)n = e−δ0n,

where δ0(α0) > 0 is defined by the equation 2Φ(α0/2) − 1 = e−δ0 . In [18] it is

checked that c1n
1−c1r−2

6 dr(Qn) 6 c2n
1−c2r−2

for all r > 1. Therefore, using
Proposition 4.5 with r ' 4

√
log n, one would obtain the estimate

EU (Qn ∩ U(Qn)) 6 e−cn
1−δ

for any δ > 0 and any n > n0(δ). An analogous situation appears for any 2 <
q < ∞; one has dcq (B

n
q ) > Cqn for some constants cq, Cq > 0 depending only on

q. This leads to an upper bound for EU |Bnq ∩ U(Bnq )| of the form exp(−n1−δ) for
any 0 < δ < 1, at least when q and n are large enough. These bounds should be
compared with the lower bound from Fact 3.4.

In the last section of this article we apply Proposition 4.5 to the centroid bodies
Zq(µ) of an isotropic log-concave measure µ on Rn. The next proposition provides
an alternative argument leading to an upper bound for EU |K ∩ U(K)| in the case
where K is an isotropic convex body in Rn.

Proposition 4.8. Let K be an isotropic convex body in Rn. Assume that LK =
(1 + δ)

√
2/π for some δ > 0. Then,

(4.11)

∫
O(n)

|K ∩ U(K)| dν(U) 6 c1e
−c2(δ)

√
n,
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where c1 > 0 is an absolute constant and c2(δ) ' min{1, δ3}.

Proof. Assume that LK >
√

2/π, and write LK = (1+δ)
√

2/π for some δ > 0. Let
ε ∈ (0, 1) that will be suitably chosen depending on δ. From the thin-shell estimate
(2.20) we know that if

(4.12) A :=
{
x ∈ K :

∣∣ ‖x‖2 −√nLK ∣∣ 6 ε
√
nLK

}
,

then

(4.13) |A| > 1− C1 exp(−c2ε3
√
n),

provided n is large enough. Let ρ = ε
√
nLK . If Kρ = K ∩ ρBn2 , from (4.13) we

know that |Kρ| 6 C1 exp(−c2ε3
√
n). Then,

(4.14)

∫
Kρ

γn

(
2
√
n

‖x‖2
K

)
dx 6 |Kρ| 6 C1 exp(−c2ε3

√
n).

On the other hand,

(4.15)

∫
K\Kρ

γn

(
2
√
n

‖x‖2
K

)
dx 6 |K \Kρ| γn

(
2

(1− ε)LK
K

)
,

and

(4.16) γn(aK) 6

(
a√
2π

)n
|K|

for every a > 0, so∫
K\Kρ

γn

(
2
√
n

‖x‖2
K

)
dx 6

(
2

(1− ε)
√

2πLK

)n
(4.17)

=

(
1

(1− ε)(1 + δ)

)n
6 C2e

−c3 min{1,δ}n,

if we choose ε < min{1, δ}/3. It follows that

(4.18)

∫
O(n)

|K ∩ U(K)| dν(U) 6 c1e
−c4(δ)

√
n

with c4(δ) ' [min{1, δ}]3. 2

5 Upper bounds for the radius

Let C be a symmetric convex body of volume 1 in Rn. In this Section we briefly
recall known arguments leading to an upper bound for the radius R(C ∩ U(C)) of
the intersection of C with its random rotations U(C).
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Proposition 5.1. If R(C ∩ E) 6 r for all E in a subset of Gn,n/2 of measure

greater than 1/2 then there exists U ∈ O(n) such that R(C ∩ U(C)) 6
√

2 r.

Proof. We use a standard argument which goes back to Krivine (see [30] or [24]).
From the assumption we know that there exists E ∈ Gn,n/2 such that

(5.1) ‖y‖C >
1

r
‖y‖2

for all y ∈ E and all y ∈ E⊥. We write P1 = PE and P2 = PE⊥ . Then, we write
I = P1 +P2 and we define U = P1−P2 ∈ O(n). Let x ∈ Rn. We write x = x1 +x2,
where x1 = P1(x) and x2 = P2(x). Then,

‖x1 + x2‖C + ‖x1 − x2‖C > 2 max{‖x1‖C , ‖x2‖C} >
2

r
max{‖x1‖2, ‖x2‖2}

>

√
2

r

√
‖x1‖22 + ‖x2‖22 =

√
2

r
‖x‖2.

This means that

(5.2) ‖x‖C + ‖x‖U−1(C) >

√
2

r
‖x‖2,

or equivalently, since U = U∗,

(5.3) 2conv(C◦ ∪ U(C◦)) ⊇ C◦ + U(C◦) ⊇
√

2

r
Bn2 .

Taking polars we conclude the proof. 2

The next observation is that the existence of one e.g. 3n/4-dimensional section
with radius r implies that random n/2-dimensional sections have radius of the same
order. Then, we may apply Proposition 5.1 to find U ∈ O(n) with R(C ∩U(C)) 6
c3r.

Theorem 5.2. If R(C ∩ F ) 6 r for some F ∈ Gn,3n/4 then a random subspace
E ∈ Gn,n/2 satisfies

R(C ∩ E) 6 c1r

with probability greater than 1− e−c2n.

Proof. This fact has been observed in [8], [33] and soon after, in a sharper form,
in [20] where it was proved that if C is a symmetric convex body in Rn, and if
1 6 k < m < n and µ = n−k

n−m , then assuming that R(C ∩ F ) 6 r for some
F ∈ Gn,m we have that a random subspace E ∈ Gn,k satisfies

R(C ∩ E) 6 r
(
c2
√

n
n−m

) µ
µ−1

with probability greater than 1− 2e−(n−k)/2, where c2 > 0 is an absolute constant.
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Assume that R(C ∩ F ) 6 r for some F ∈ Gn,m, where m = 3n/4. Applying
the above with k = n/2 (and µ = 2) we conclude the proof. 2

We can actually prove an analogue of Proposition 5.1 for a random U ∈ O(n)
using the next result of Vershynin and Rudelson [33]: There exist absolute constants
c0, c1 > 0 with the following property: if C and D are two symmetric convex
bodies in Rn which have sections of dimensions at least k and n− c0k whose radius
is bounded by 1, then a random U ∈ O(n) satisfies R(C ∩ U(D)) 6 c

n/k
1 with

probability greater than 1− e−n. We set D = C and k = n/2 to get the following.

Theorem 5.3. If

rC := min{R(C ∩ F ) : dim(F ) = d(1− c0/2)ne}

then R(C ∩ U(C)) 6 c2rC with probability greater than 1 − e−n with respect to
U ∈ O(n).

An immediate application of Theorem 5.3 is an estimate for R(C ∩ U(C)) in
terms of the mean width w(C). By the low M∗-estimate (2.7) we know that rC 6
c3w(C). Thus, we have:

Proposition 5.4. Let C be a symmetric convex body in Rn. A random U ∈ O(n)
satisfies

R(C ∩ U(C)) 6 cw(C)

with probability greater than 1− e−n, where c > 0 is an absolute constant.

6 Applications to centroid bodies of log-concave
measures

As an application of the results of the previous sections, we discuss the case of the
centroid bodies Zq(µ) of an isotropic log-concave measure µ on Rn.

Starting with the volume, and in view of Proposition 4.5, we need a lower bound
for d(Zq(µ)). We will use the fact that

d(Zq(µ)) > c1k(Zq(µ)) = c1k∗(Z
◦
q (µ)).

Assuming that 2 6 q 6 q∗(µ) we have

w(Z◦q (µ)) = M(Zq(µ)) >

(
|Bn2 |
|Zq(µ)|

)1/n

>
c2√
q
,

while the inclusion Bn2 = Z2(µ) ⊆ Zq(µ) implies that R
(
Z◦q (µ)

)
6 1. It follows that

(6.1) d(Zq(µ)) > c1k∗
(
Z◦q (µ)

)
> c4n

w2
(
Z◦q (µ)

)
R2
(
Z◦q (µ)

) >
c5n

q
.
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It is convenient to normalize the volume, and consider Zq(µ) instead of Zq(µ).

Recall from Section 2 that if q 6
√
n then |Zq(µ)|1/n '

√
q/n, and hence

Zq(µ) '
√
n/q Zq(µ).

Then,

(6.2) M(Zq(µ)) '
√
q/nM(Zq(µ)).

We can now apply Proposition 4.5.

Proposition 6.1. Let µ be an isotropic log-concave measure on Rn and let 2 6
q 6
√
n. If

√
qM(Zq(µ)) > B1 then

(6.3)

∫
O(n)

|Zq(µ) ∩ U(Zq(µ))| dν(U) 6 e−c1n/q,

where B1, c1 > 0 are absolute constants. 2

On the other hand, from 2.17 we see that w(Zq(µ)) '
√
n/qw(Zq(µ)) '

√
n.

Therefore, Theorem 3.3 gives:

Proposition 6.2. Let µ be an isotropic log-concave measure on Rn and let 2 6
q 6
√
n. For any U ∈ O(n) one has

(6.4) |Zq(µ) ∩ U(Zq(µ))| > e−c2n,

where c2 > 0 is an absolute constant. 2

Next, we discuss the radius of Zq(µ)∩U(Zq(µ)). Our main tool is a (simplified
version of a) result from [9] about proportional projections of the centroid bodies.

Theorem 6.3. Let µ be an isotropic log-concave measure on Rn. For every 0 <
ε < 1 and any q 6

√
εn we may find k > (1− ε)n and F ∈ Gn,k such that

(6.5) PF
(
Zq(µ)

)
⊇ c1ε2

√
q BF ,

where c1 > 0 is an absolute constant.

Now, we can use Theorem 5.3 to give a lower bound for the radius of Zq(µ) ∩
U(Zq(µ)) or Z◦q (µ) ∩ U(Z◦q (µ)) for a random U ∈ O(n). Since the mean width
of Zq(µ), 2 6 q 6

√
n, is known to be of the order of

√
q, we can use the low

M∗-estimate to get that if ε ∈ (0, 1) and k = (1 − ε)n, then a subspace F ∈ Gn,k
satisfies

(6.6) R(Zq(µ) ∩ F ) 6
c2
√
q

√
ε

with probability greater than 1 − exp(−c2εn), where c1, c2 > 0 are absolute con-
stants. Applying this fact with k = n/2 we see that the bodies C = D = c3√

qZq(µ)
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have sections of dimensions at least n/2 and (1 − c0/2)n whose radius is bounded
by 1 (it suffices to choose c3 > 0 small enough). Then, from Theorem 5.3 we get
R(Zq(µ) ∩ U(Zq(µ))) 6 c4

√
q with probability greater than 1− e−n.

Similarly, from Theorem 6.3 we know that

R(Z◦q (µ) ∩ F ) 6
c2

ε2
√
q

for a random F ∈ Gn,(1−ε)n. Applying this fact with k = n/2 we see that the bodies
C = D = c3

√
qZ◦q (µ) have sections of dimensions at least n/2 and (1 − c0/2)n

whose radius is bounded by 1 (it suffices to choose c3 > 0 small enough). Then,
from Theorem 5.3 we get R(Z◦q (µ) ∩ U(Z◦q (µ))) 6 c4/

√
q with probability greater

than 1− e−n.
We summarize in the next theorem.

Theorem 6.4. Let µ be an isotropic log-concave measure on Rn. For any 2 6 q 6√
n, a random U ∈ O(n) satisfies

Zq(µ) + U(Zq(µ)) ⊇ c1
√
qBn2 and Z◦q (µ) + U(Z◦q (µ)) ⊇ c1√

q
Bn2 ,

or equivalently,

Z◦q (µ) ∩ U(Z◦q (µ)) ⊆ c2
√
nBn2 and Zq(µ) ∩ U(Zq(µ)) ⊆ c2

√
nBn2

with probability greater than 1− 2e−n.
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