
On the isotropic constant of marginals

Grigoris Paouris∗

Abstract

Let 1 6 p < ∞ and n > 1. We write µB,p,n for the probability measure
in Rn with density 1Bn

p
, where Bn

p := {x ∈ Rn : ‖x‖p 6 bp,n} and |Bn
p | = 1.

Let µ1, · · · , µk1 be one-dimensional log-concave measures, let pj ∈ [1,∞]
and let nj , 1 6 j 6 k2 be positive integers with k1 +

∑k2
j=1 nj = N > n. We

show that, for every F ∈ GN,n,

L
πF

((
⊗k1

i=1µi

)
⊗

(
⊗k2

j=1µB,pj,nj

)) 6 C,

where C > 0 is an absolute constant, Lµ stands for the isotropic constant of
µ and πF (µ) denotes the marginal of µ on F .

1 Introduction

A famous open problem in convex geometry is the hyperplane conjecture (HC)
asking if there exists a constant c > 0 such that for every n > 1 and any symmetric
convex body K of volume 1 in Rn there exists θ ∈ Sn−1 such that

(1.1) |K ∩ θ⊥| > c.

The question was posed in this form by J. Bourgain in [6]. A classical reference
on the subject is the paper of V. D. Milman and A. Pajor [23] (see also [12]). It
this paper we will consider an equivalent formulation of the hyperplane conjecture,
given by K. Ball [1]. Let µ be an isotropic log-concave probability measure on Rn

(i.e. the density fµ of µ is of the form fµ(x) = e−V (x), where V : Rn → [0,∞] is a
convex function). Then, the question is whether

(1.2) Lµ := fµ(0)
1
n 6 C,

where C > 0 is an absolute constant. The best known bound is due to B. Klartag
[17] who proved that Lµ 6 Cn

1
4 (see also [7] and [18]).

Another famous conjecture – which at first sight seems unrelated to the hyper-
plane conjecture – was proposed by Kannan, Lovász and Simonovits [15]. We will
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use the abbreviation (KLS). In equivalent form, (KLS) asks if for any isotropic
log-concave probability measure µ on Rn and any smooth function g : Rn → R,

(1.3) varµ(g) := E|g − E(g)|2 6 CE‖∇g‖2
2,

where C > 0 is an absolute constant (see [22] for other equivalent formulations
of the question). Recently, Eldan and Klartag ([10]) showed that if (KLS) has
a positive answer (for all isotropic log-concave measures) then (HC) is also true
(for all isotropic log-concave measures). More precisely, they showed that a weaker
version of the (KLS) conjecture (the so-called variance conjecture) is sufficient.
We refer to [14] for the best known bound and more information related to the
latter problem. The validity of (HC) has been verified in many cases (see e.g. the
references in [27]); on the contrary, (KLS) has been established in some very special
cases only (1-dimensional log-concave probability measures [4] and indicators of Bn

p

[30]). However, it is known that if µ1, µ2 are two probability measures satisfying
(1.3) with the same constant, then so does their product µ1 ⊗ µ2 (see e.g. [19, pp.
98]). Moreover, if µ satisfies (1.3) with some constant D, then any marginal πF (µ)
of µ also satisfies (1.3) with the same constant. So, combining these two operators
one can construct a rich family of isotropic log-concave probability measures which
satisfy (KLS). For example, if µ1, · · · , µk are 1-dimensional log-concave probability
measures and µB,pj ,nj

:= 1
apj,nj

B
nj
pj

, j = 1, · · · ,m, (where pj ∈ [1,∞] and apj ,nj

is chosen so that µB,pj ,nj is isotropic) then, for any F ∈ GN,n, where n < N :=

k +
m∑

j=1

nj , any isotropic log-concave probability measure of the form

(1.4) µ := πF

((
⊗k

i=1µi

)
⊗
(
⊗m

j=1µB,pj ,nj

))
satisfies (1.3) for some absolute constant C > 0.

Our aim is to investigate the isotropic constant of measures of the form (1.4). It
is well known that the isotropic constant of the product of two measures is bounded
by the maximum of the corresponding isotropic constants (see, for example, [12,
Lemma 1.6.6]). So, the difficulty arises on the marginal operator. It is not known
if given an isotropic log-concave probability measure µ on RN and a subspace
F ∈ GN,n one has

(1.5) LπF (µ) 6 CLµ.

Actually (1.5) is another equivalent formulation of (HC) – see the end of §4 for the
details.

Our main result states that probability measures of the form (1.4) satisfy the
(HC).

Theorem 1.1. There exists an absolute constant C > 0 such that for any log-
concave probability measure µ of the form (1.4),

(1.6) Lµ 6 C.

Acknowledgments. I would like to thank Apostolos Giannopoulos and Emanuel
Milman for many interesting discussions.
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2 Preliminaries

2.1 Basic notation. We work in Rn, which is equipped with a Euclidean structure
〈·, ·〉. We denote by ‖ · ‖2 the corresponding Euclidean norm, and write Bn

2 for the
Euclidean unit ball, and Sn−1 for the unit sphere. Volume is denoted by | · |. We
write Dn for the Euclidean ball of volume 1 and σ for the rotationally invariant
probability measure on Sn−1. The Grassmann manifold Gn,k of k-dimensional
subspaces of Rn is equipped with the Haar probability measure µn,k. Let 1 6 k 6 n
and F ∈ Gn,k. We will denote by PF the orthogonal projection from Rn onto F .

The letters c, c′, c1, c2 etc. denote absolute positive constants which may change
from line to line. Whenever we write a ' b, we mean that there exist absolute
constants c1, c2 > 0 such that c1a 6 b 6 c2a. If A ⊆ Rn with |A| > 0, we write
Ã := |A|− 1

nA.
2.2 Probability measures. We denote by P[n] the class of all probability measures
in Rn which are absolutely continuous with respect to the Lebesgue measure. We
write An for the Borel σ-algebra in Rn. The density of µ ∈ P[n] is denoted by fµ.

The subclass SP [n] consists of all symmetric measures µ ∈ P[n]; µ is called
symmetric if fµ is an even function on Rn.

The subclass CP [n] consists of all µ ∈ P[n] that have center of mass at the
origin; so, µ ∈ CP [n] if

(2.1)
∫

Rn

〈x, θ〉dµ(x) = 0

for all θ ∈ Sn−1.
Let µ ∈ P[n]. For every 1 6 k 6 n− 1 and F ∈ Gn,k, we define the F -marginal

πF (µ) of µ as follows: for every A ∈ AF ,

(2.2) πF (µ)(A) := µ(P−1
F (A)).

It is clear that πF (µ) ∈ P[dim F ]. Note that, by the definition, for every Borel
measurable function f : Rn → [0,∞) we have

(2.3)
∫

F

f(x) dπF (µ)(x) =
∫

Rn

f(PF (x)) dµ(x).

The density of πF (µ) is the function

(2.4) fπF (µ)(x) = πF (fµ)(x) =
∫

x+F⊥
fµ(y) dy.

Let µ1 ∈ P[n1] and µ2 ∈ P[n2]. We will write µ1 ⊗ µ2 for the measure in P[n1+n2]

which satisfies

(2.5) (µ1 ⊗ µ2)(A1 ×A2) = µ1(A1)µ2(A2)

for all A1 ∈ An1 and A2 ∈ An2 . It is easily checked that fµ1⊗µ2 = fµ1fµ2 .
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Moreover the marginal operator and the product operator “commute”: Let
µ1 ∈ PN1 , µ2 ∈ PN2 , F1 := PRN1 (F ) and F2 := PRN2 (F ). Then.

(2.6) πF1(µ1)⊗ πF2(µ2) = πF (µ1 ⊗ µ2),

where F := F1 ⊕ F2.
Let µ ∈ P[n] and λ > 0. We define µ(λ) ∈ P[n] as the measure that has density

fµ(λ)(x) := λnfµ(λx). Moreover if T ∈ SL(n) we define µ◦T ∈ P[n] as the measure
with density fµ◦T (x) := fµ(T−1x).

If µi ∈ P we write µi ⇒ µ for the weak convergence of µi to µ.
2.3 Log-concave measures. We denote by L[n] the class of all log-concave probability
measures on Rn. A measure µ on Rn is called log-concave if for any A,B ∈ An and
any λ ∈ (0, 1),

µ(λA+ (1− λ)B) > µ(A)λµ(B)1−λ.

A function f : Rn → [0,∞) is called log-concave if log f is concave.
It is known that if µ ∈ L[n] and µ(H) < 1 for every hyperplane H, then µ ∈ P[n]

and its density fµ is log-concave (see [5]). As an application of the Prékopa-Leindler
inequality one can check that if f is log-concave then, for every k 6 n − 1 and
F ∈ Gn,k, πF (f) is also log-concave. As before, we write CL[n] or SL[n] for the
classes of centered or symmetric non degenerate µ ∈ L[n] respectively.

If µ1, µ2 ∈ L[n] we define their convolution µ1 ∗ µ2 as the measure with density
fµ1∗µ2(x) :=

∫
Rn fµ1(y)fµ2(x−y)dy. It follows from the Prékopa-Leindler inequality

that µ1 ∗ µ2 is well defined and belongs to L[n]. In the notation given above, one
can check that

(2.7) (µ1 ∗ µ2)(√2) = πF (µ1 ⊗ µ2),

where F := {(x, y) ∈ R2n : x = y}.
2.4 Convex bodies. A convex body in Rn is a compact convex subset C of Rn with
non-empty interior. We say that C is symmetric if x ∈ C implies that −x ∈ C. We
say that C is centered if

∫
C
〈x, θ〉 dx = 0 for every θ ∈ Sn−1. The support function

hC : Rn → R of C is defined by hC(x) = max{〈x, y〉 : y ∈ C}. Note that if K is a
convex body in Rn then the Brunn-Minkowski inequality implies that 1K̃ ∈ L[n].

We denote by K[n] the class of convex bodies in Rn and by K̃[n] the subclass
of bodies of volume 1. Also, CK[n] is the class of centered convex bodies (bodies
with center of mass at the origin) and SK[n] is the class of origin symmetric convex
bodies in Rn.
2.5 Lq–centroid bodies. Let µ ∈ P[n]. For every q > 1 and θ ∈ Sn−1 we define

hZq(µ)(θ) :=
(∫

Rn

|〈x, θ〉|qfµ(x) dx
)1/q

,

where fµ is the density of µ. If µ is log-concave then hZq(µ)(θ) <∞ for every q > 1
and every θ ∈ Sn−1. We define the Lq-centroid body Zq(µ) of µ to be the centrally
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symmetric convex set with support function hZq(µ). One can check that for any
T ∈ SL(n) and λ > 0,

(2.8) Zp((µ ◦ T )(λ)) =
1
λ
T (Zp(µ)).

Note that (2.3) implies that

(2.9) PF (Zp(µ)) = Zp(πF (µ)).

Lq–centroid bodies were introduced, with a different normalization, in [20] (see
also [21] where an Lq affine isoperimetric inequality was proved). Here we follow
the normalization (and notation) that appeared in [25]. The original definition
concerned the class of densities 1K where K is a convex body of volume 1. In this
case, we also write Zq(K) instead of Zq(1K).

If K is a compact set in Rn and |K| = 1, it is easy to check that Z1(K) ⊆
Zp(K) ⊆ Zq(K) ⊆ Z∞(K) for all 1 6 p 6 q 6 ∞, where Z∞(K) = conv({K,−K}).
Note that if T ∈ SL(n) then Zp(T (K)) = T (Zp(K)). Moreover it was proved in
[26, Theorem 4.4] that, for all 1 6 n < N , K ∈ CK[N ] and F ∈ GN,n,

(2.10) |PF (Zn(K))| 1n |K ∩ F⊥| 1n ' 1.

For additional information on Lq–centroid bodies, we refer to [25] and [26].

2.5 Isotropic probability measures. Let µ be a centered measure in P[n]. We say that
µ is isotropic if Z2(µ) = Bn

2 . Note that if µ ∈ CL[n], then there exist T ∈ SL(n)
and λ > 0 such that (µ ◦ T )(λ) is isotropic. We write µiso for an “isotropic image”
of µ. Note that µiso is unique up to orthogonal transformations. If µ ∈ CL[n] then
we define the isotropic constant of µ by Lµ := fµiso(0)

1
n . We denote by IL the

class of isotropic log-concave measures.
It is known (see [26, Proposition 3.7]) that if µ ∈ IL[n], then

(2.11)
1
Lµ

' |Zn(µ)| 1n .

We say that a centered convex body K is isotropic if Z2(K) is a multiple of the
Euclidean ball. We define the isotropic constant of K by

(2.12) LK :=
(
|Z2(K)|
|Bn

2 |

)1/n

.

So, K is isotropic if and only if Z2(K) = LKB
n
2 . Let K ∈ CK[n] and a > 0. We

write µK,a := an1K
a
. Note that K is isotropic if and only if µK,LK

= Ln
K1 K

LK

is
isotropic as a measure.

We refer to [23], [12] for additional information on isotropic convex bodies and
to the books [29], [24] and [28] for basic facts from the Brunn-Minkowski theory
and the asymptotic theory of finite dimensional normed spaces.
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3 Coherent classes of measures

We start with the definition of coherent classes of measures – see [9].

Definition 3.1. Let C ⊆ P be a class of probability measures. Then, C is called
coherent if

1. For every n1, n2 and µ1 ∈ C[n1], µ2 ∈ C[n2] one has that µ1 ⊗ µ2 ∈ C[n1+n2].

2. For every n, 1 6 k 6 n− 1, F ∈ Gn,k and µ ∈ C[n] one has that πF (µ) ∈ C[k].

3. If µi ∈ C[n], i = 1, 2, · · · and µi ⇒ µ, then µ ∈ C.
We will say that C is τ -coherent if instead of 3. it satisfies the following

4. If µ ∈ C, λ > 0 and T ∈ SL(n), then (µ ◦ T )(λ) ∈ C.

We also agree that the null class is coherent. Note that if U1 and U2 are τ -coherent
then U1 ∩ U2 is also τ -coherent. Known results show that the classes SP, CP and
L are τ -coherent. Also, I is coherent – see [9].

Let A ⊆ P be a family of probability measures. We define

(3.1) A :=
⋂
{U ⊆ P : U coherent and A ⊆ U}.

It is clear that if A1 ⊆ A2 then A1 ⊆ A2.
Note that the class K :=

⋃∞
n=1{µ ∈ P[n] : µ = 1K̃ ; K ∈ K[n]} is not coherent.

However, it is not difficult to check that K = L.
Let A ⊆ CL. Then, we define

(3.2) LA := sup{Lµ : µ ∈ A}.

We will need the following fact (the proof is based on [31, Proposition 2.11]).

Proposition 3.2. Let A ⊆ IL be a family of probability measures and set C := A.
Then, for every n > 1, for every µ ∈ C[n] and ε > 0, there exist k ∈ N, µi ∈ Ani ,
i 6 k with

∑k
i=1 ni = N and F ∈ GN,n such that

(3.3) |Lµ − Lν | 6 ε, where ν := πF

(
⊗k

i=1µi

)
.

Proof. Let U ⊆ IL be the smallest class which is closed under products and
marginals and contains A. Then, it is proved in [31, Proposition 2.11] that C is the
closure of U with respect to the Lévy metric. So, in order to finish the proof, it is
enough to observe that Lµ is continuous with respect to the Lévy metric and use
(2.6). 2

The next proposition follows from the definition of a τ -coherent class and (2.6).

Proposition 3.3. Let C ⊆ CL be a τ -coherent class and let µ1, µ2 ∈ C[n]. Then,
µ1 ∗ µ2 ∈ C[n].
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The next proposition allows us to work only with symmetric isotropic log-concave
measures. The proof follows an argument of B. Klartag [16].

Proposition 3.4. Let C ⊆ CL be a τ -coherent class of measures and set SC :=
SL ∩ C. Then,

LC 6 e
√

2LSC .

Proof. Let µ ∈ C[n] and let µ̄ the measure with density fµ̄(x) = fµ(−x). Since C is
τ -coherent µ̄ ∈ C. Also, by Proposition 3.3, µs := µ∗ µ̄ ∈ C and it is straightforward
to check that µs is also symmetric. Note that Lµ = Lµ̄. In order to finish the proof
it is enough to show that for every µ1, µ2 ∈ CL,

(3.4) Lµ1∗µ2 6 e
√

2 min{Lµ1 , Lµ2}.

We may assume that µ1, µ2 are isotropic. Then, one can check that

(µ1 ∗ µ2)(√2) = (µ1)(√2) ∗ (µ1)(√2)

is also isotropic. So,

Ln
µ1∗µ2

:= f(µ1∗µ2)(
√

2)
(0) =

∫
Rn

(fµ1)(√2)(y)(fµ2)(√2)(−y)dy

6 ‖(fµ2)(√2)‖∞ 6 en(fµ2)(√2)(0)

=
(
e
√

2
)n

fµ2(0) 6
(
e
√

2Lµ2

)n

,

where we have also used a theorem of M. Fradelizi [11] stating that, for any centered
log-concave density f in Rn one has ‖f‖∞ 6 enf(0). We work in the same way to
get that Ln

µ1∗µ2
6
(
e
√

2Lµ1

)n
. This proves (3.4). 2

Let µi ∈ IL[n1], i 6 m and N :=
∑m

i=1 ni. Then

(3.5) Lµ1⊗···⊗µm
=

m∏
i=1

L
ni
N
µi 6 max{Lµi

, i 6 m}.

Indeed, it follows from the definition that

(3.6) LN
µ1⊗···⊗µm

= fµ1⊗···⊗µm
(0) =

m∏
i=1

fµi
(0) =

m∏
i=1

Lni
µi
.

We have the following:

Proposition 3.5. Let Ci ⊆ IL, i ∈ I a family of coherent classes. Then

(3.7) L{Ci,i∈I} 6 sup{LCi
, i ∈ I}.
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Proof. We may assume that I is finite. Let m := cardI. Let C := {Ci, i ∈ I}. In
the proof of Proposition 3.2 we have shown that the class C0 which is closed under
products and marginals and contains {Ci, i ∈ I} is dense in C in the Lévy metric. So
it is enough to bound LC0 . Let µ ∈ C0. Then since the marginal operator commutes
with the product operator and any marginal of a measure in Ci belongs also to Ci

by definition, we have that µ is of the form

µ := µ1 ⊗ · · · ⊗ µm,

where µi ∈ Ci. The result follows from (3.5). 2

In the introduction, for every p ∈ [1,∞] and n > 1, we defined the measure
µB,p,n := µBn

p ,ap,n
, where Bn

p := {x ∈ Rn : ‖x‖p 6 1} and ap,n is chosen so that
µB,p,n is isotropic. For all p1 6 p2 ∈ [1,∞] we define

(3.8) L[p1,p2] := {µB,p,n; p ∈ [p1, p2], n > 1}.

Let G be the class of standard Gaussian measures. By the central limit theorem
and the definition of a coherent class, for any non-empty C ⊆ IP which is coherent
we have G ⊆ C.

We also define, for every k > 1,

(3.9) IL[k] := {µ ∈ CL : µ is k − dimensional}.

J. Wojtaszczyk showed in [31] that if µ = 1K,a ∈ IL[1] then, necessarily, K = Bn
∞.

This shows that IL[1] is strictly contained in IL.
With the notation introduced above, Theorem 1.1 would follow from the fol-

lowing.

Theorem 3.6. There exists C > 0 such that

(3.10) L{L[1,∞],IL[1]} 6 C.

4 Supergaussian and Subgaussian measures

Let µ ∈ IL[n] and θ ∈ Sn−1. The subgaussian constant of µ in the direction of θ is
defined by

(4.1) ψ̃2,µ(θ) := sup
λ>0

(
log
∫

K

eλ〈x,θ〉dµ(x)
) 1

2

.

We define the subgaussian constant of µ by

(4.2) β2,µ := sup
θ∈Sn−1

ψ̃2,µ(θ).

The usual definition of the subgaussian constant is different:

(4.3) ψ2,µ(θ) := inf
{
λ > 0 :

∫
Rn

e
|〈x,θ〉|2

λ2 dµ(x) 6 2
}
.

8



Our modification is justified by the next proposition (see [9, Propositions 4.5 and
4.9]).

Proposition 4.1. Let µ ∈ SIL[n]. Then, for every θ ∈ Sn−1,

(4.4) ψ2,µ(θ) ' ψ̃2,µ(θ).

Moreover, if for some b > 0 and for all n > 1 we define

(4.5) SBG(b)[n] := {µ ∈ IL[n] : β2,µ 6 b} and SBG(b) :=
∞⋃

n=1

SBG(b)[n],

then SBG(b) is a coherent class.

Let γn denote the standard Gaussian distribution. Then there exists a universal
constant cγ such that γn ∈ SBG(cγ)[n].

The fact that if µ is subgaussian with constant b then Lµ is bounded by a
constant c(b) depending only on b was first established by J. Bourgain in [8]. His
estimate c(b) 6 cb log b has been slightly improved in [9]. The best known estimate
is due to B. Klartag and E. Milman [18]:

Theorem 4.2. There exists c > 0 such that for any b > cγ ,

(4.6) LSBG(b) 6 cb.

The assumption that b > cγ is only to guarantee that the class SBG(b) is not
empty. We will need the following consequence of Theorem 4.2.

Proposition 4.3. Let K be an isotropic convex body in RN which is subgaussian
with constant b. Then, for any F ∈ GN,n,

(4.7) |K ∩ F⊥| 1n 6 cb,

where c > 0 is an absolute constant.

Proof. Note that µK,LK
is isotropic (as a measure) and πF (µK,LK

) is also subgaus-
sian with constant b. So, using Theorem 4.2, we have that

(cb)n > πµF (K,LK
)(0) = LN

K

∣∣∣ K
LK

∩ F⊥
∣∣∣ = Ln

K |K ∩ F⊥| > cn0 |K ∩ F⊥|.

This completes the proof. 2

The next result has been proved by F. Barthe and A. Koldobsky in [2, §6.2] (see
also [3]).

Theorem 4.4. There exists c > 0 such that

L[2,∞] ⊆ SBG(c).
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Let µ ∈ IL[n]. We say that µ is supergaussian with constant a > LD1 = 1
2
√

3
if, for

all p > 1,

(4.8) Zp(µ) ⊇ Zp(1Dn,a).

An equivalent way to describe (4.8) is to say that, for every 1 6 p 6 n and θ ∈ Sn−1,

hZp(µ)(θ) >
√
p

ca
.

It is not difficult to show the following (see [27, Proposition 5.1]).

Proposition 4.5. Let µ ∈ IL be supergaussian with constant a > 1
2
√

3
. Then,

Lµ 6 ca,

where c > 0 is an absolute constant.

It follows from the definition and (2.8) that if µ is supergaussian with constant
a, then πF (µ) is also supergaussian with constant a. However, the class of su-
pergaussian measures (with constant lass than a) is not a coherent class, because
the product of two supergaussian measures fails (in general) to be supergaussian.
Assuming that a > LD1 we have that the class of supergaussian measures with
constant less than a is non-empty. So, for a > LD1 we define

SPG(a)[n] := {µ ∈ IL[n] : µ supergaussian with constant a}

and

SPG(a) :=
∞⋃

n=1

SPG(a)[n].

Let us emphasize that the class SPG contains probability measures that are not
necessarily “supergaussian”.
We will prove the following.

Theorem 4.6. There exists c > 0 such that for all a > LD1 ,

LSPG(a) 6 ca.

Proof. We write µa,n := 1Dn,a. Let µ ∈ IL[n] be symmetric and supergaussian
with constant a. Then, for every t ∈ R, for every even integer p > 2 and for all
y ∈ Rn,

(4.9)
∫

Rn

|〈x, y〉+ t|pdµ(x) >
∫

Rn

|〈x, y〉+ t|pdµa,n(x).
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Indeed, since µ, µa,n are symmetric,∫
Rn

|〈x, y〉+ t|pdµ(x) =
p∑

i=0

(
p

i

)∫
Rn

ti〈x, y〉p−idµ(x)

=
p∑

i=0,i even

(
p

i

)∫
Rn

ti〈x, y〉p−idµ(x)

=

p
2∑

k=0

(
p

2k

)
|t|2k

∫
Rn

|〈x, y〉|p−2kdµ(x)

>

p
2∑

k=0

(
p

2k

)
|t|2k

∫
Rn

|〈x, y〉|p−2kdµa,n(x)

=
∫

Rn

|〈x, y〉+ t|pdµa,n(x).

Let n1, · · · , nk ∈ N and let N :=
∑k

i=1 ni. Let µ1 ∈ SILn1 , · · · , µk ∈ SILnk
be

supergaussian measures with constant a. Let µN := µ1⊗· · ·⊗µk and µ̄a := µn1,a⊗
· · · ⊗ µnk,a. Then, for every even integer p > 2 and every ȳ := (y1, · · · , yk) ∈ RN ,
applying k times (4.9) and using Fubini’s theorem, we have that∫

RN

|〈x̄, ȳ〉|pdµN (x̄) =
∫

Rn1

· · ·
∫

Rnk

|
k∑

i=1

〈xi, yi〉|pdµk(xk) · · · dµ1(x1)

>
∫

Rn1

· · ·
∫

Rnk

|
k∑

i=1

〈xi, yi〉|pdµnk,a(xk) · · · dµn1,a(x1)

=
∫

RN

|〈x̄, ȳ〉|pdµ̄a(x̄).

So, we have shown that

(4.10) Zp(µN ) ⊇ Zp(µ̄a).

Let n > 1 and F ∈ GN,n. Let D := Dn1 × · · · ×Dnk
. Then D is isotropic (in the

convex body sense) and subgaussian with some absolute constant c > 0. Then, by
Proposition 4.3, we have that

(4.11) |D ∩ F⊥| 1n ' 1.

Moreover, for any p > 0,

(4.12) Zp(µ̄a) =
1
a
Zp(D).

Let n > 1 and F ∈ GN,n. Then, using (2.9), (4.10) and (4.12) we get

(4.13) Zp(πF (µN )) = PF (Zp(µN )) ⊇ PF (Zp(µ̄a)) =
1
a
PF (Zp(D)).

11



So, for p = n, using (2.11), (4.13), (2.10) and (4.11) we see that

1
LπF (µN )

' |Zn(πF (µN ))| 1n >
c

a
|PF (Zn(D))| 1n >

c′

a

1
|D ∩ F⊥| 1n

>
c′′

a
.

In other words,

(4.14) LπF (µN ) 6 c′′′a.

The result follows from Propositions 3.2 and 3.4. 2

The class SPG is quite rich as the following two propositions show.

Proposition 4.7. There exists c > 0 such that

IL[1,2] ⊆ SPG(c).

Proof. Given a > 0, let γn, 1
a

be the centered Gaussian measure in Rn with variance
1
a . Let B(a)[n] the class of all measures satisfying Zp(µ) ⊇ Zp(γn, 1

a
) for all p > 1.

Then, if µi ∈ Bni , 1 6 i 6 k, and if N :=
∑k

i=1 ni, working as in the proof of (4.10)
we have that

(4.15) Zp

(
⊗k

i=1µi

)
⊇ Zp(γN, 1

a
) ⊇ Zp(1Dn,ca),

for all p > 1, where c > 0 is an absolute constant. The first inclusion combined with
(2.8) shows that B(a) :=

⋃∞
n=1 B(a)[n] is a coherent class and the second inclusion

implies that

(4.16) B(a) ⊆ SPG(ca),

for some c > 0. Let p ∈ [1, 2] and write µp,n for the isotropic log-concave probability
measure with density fµp,n

(x) = ap,ne
−‖x‖p

p . It is a straightforward computation to
check that µp,1 ∈ B(c1) for some c1 > 0. So (4.15) implies that µn,p ∈ B(c1). Let
K be a symmetric convex body in Rn, let ‖ · ‖K the corresponding norm to K and
let r > 0. We define a probability density gK,r on Rn by

gK,r(x) :=
1

|K||Γ(n+r
r )

e−‖x‖
r
K .

Then (see [13, Lemma 4.3]), for any q > 0,

(4.17) Zq(gK,r) =

(
Γ(n+q+r

r )
Γ(n+r

r )

) 1
q

Zq(K̃).

Since gBn
p ,p = µp,n, it is not hard to check that, for all q 6 n,

(4.18) Zq(B̃n
p ) ' Zq(µp,n).

12



This shows that, for all q 6 n,

Zq(µB,p,n) ⊇ c′Zq(B̃p) ⊇ c′′Zq(µp,n) ⊇ c′′′
√
qBn

2 ,

and the proof is complete. 2

Note that, if µ is a k-dimensional isotropic log-concave probability measure,
then it is “supergaussian” with constant c

√
k (see [27] Proposition 3.2). This means

that IL[k] ⊆ SPG(c
√
k). In particular, we have the following:

Proposition 4.8. There exists c > 0 such that

IL[1] ⊆ SPG(c).

Proposition 3.5 and Theorems 4.2 and 4.6 imply the following.

Corollary 4.9. There exists c > 0 such that, for any a, b > cγ ,

L{SPG(a),SBG(b)} 6 cmax{a, b}.

Proof of Theorem 3.6 (and 1.1). Theorem 4.4 and Propositions 4.7 and
4.8 imply that {L[1,∞],L[1]} ⊆ {SPG(c1),SBG(c2)} for some universal constants
c1, c2 > 0. The result follows from Corollary 4.9. 2

It was mentioned in the introduction that the main difficulty we had to overpass
in this work is that is not known if there exists an absolute constant a > 0 such
that

(4.10) LπF (µ) 6 aLµ

for all µ ∈ IL[n] and F ∈ Gn,k. In fact, (4.19) is just another equivalent formulation
of (HC). Indeed, if (HC) is true then clearly (4.19) is also true. The other direction
follows from the next Proposition.

Proposition 4.10. Let C ⊆ IL be a non-empty coherent class. Assume that there
exists a > 0 such that, for any µ ∈ C, (4.10) holds. Then,

(4.11) LC 6 a.

Proof. Let µ ∈ C[n] satisfy Lµ = LC . Since C is non-empty, we have γN ∈ C for all
N > 1. We define µ1 := µ⊗γN . Note that, if F = Rn then πF (µ1) = µ. Moreover,
if N is large enough we have that

(4.12) Lµ1 = fµ1(0)
1

n+N = (fµ(0)fγN
(0))

1
n+N 6 (

√
n)

n
n+N

(
1√
2π

) N
n+N

6 1.

Applying (4.10) for πF (µ1) = µ, we get (4.11). 2
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