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Riemann integral

Recall from Calculus

f : [0,1]→ R is Riemann integrable with the integral equal to a
number xf if for all ε > 0 there exists δ > 0 such that all Riemann sums
satisfy ∣∣∣ N∑

i=1

f (si)(ti − ti−1)− xf

∣∣∣ < ε

where 0 = t0 < t1 < . . . < tN = 1 is a partition of [0,1] with tags
si ∈ [ti−1, ti ] and max1≤i≤N(ti − ti−1) < δ.



Riemann integral in Banach spaces

Let X be a Banach space.

f : [0,1]→ X is Riemann integrable with the integral equal to a vector
xf if for all ε > 0 there exists δ > 0 such that all Riemann sums satisfy

∥∥∥ N∑
i=1

f (si)(ti − ti−1)− xf

∥∥∥ < ε

where 0 = t0 < t1 < . . . < tN = 1 is a partition of [0,1] with tags
si ∈ [ti−1, ti ] and max1≤i≤N(ti − ti−1) < δ.



Equivalent definition via dyadic partitions

f : [0,1]→ X is Riemann integrable with the integral equal to a vector
xf if for all ε > 0 there exists n = n(ε) such that for all m ≥ n the
Riemann sums over dyadic partitions with interior tags satisfy

∥∥∥ 1
2m

2m∑
i=1

f (si)− xf

∥∥∥ < ε

where si ∈ ( i−1
2m ,

i
2m ).



Lebesgue criterion for Riemann integrability

Recall from intro. Analysis class

A bounded f : [0,1]→ R is Riemann integrable iff the set of
discontinuities of f has Lebesgue measure zero.



Lebesgue criterion fails for Banach spaces

Example

Let (ei) be the unit vector basis of c0 or of `p, 1 < p <∞. Consider the
Dirichlet function f : [0,1]→ c0, `p defined by

f (t) =

{
ei t = ri

0 t 6= ri

where (ri) is the set of rationals. The function is discontinuous
everywhere but it is integrable with integral is zero: The Riemann sums

1
2m

∥∥∥ 2m∑
i=1

f (si)
∥∥∥ ≤ 1

2m (in c0) and
(2m)1/p

2m (in `p)→ 0.



Checking Lebesgue property

Haydon-Odell, unpublished, 83. If X does not have the Lebesgue
property then there exists a normalized basic (block) sequence (xj) in
X so that the Dirichlet function

f (t) =

{
xj t = dj

0 t 6= dj

where (di) is the set of dyadic rationals (ordered in natural way) is
Riemann integrable, that is,

1
2n sup

tj∈In
j

∥∥∥ 2n−1∑
j=0

f (tj)
∥∥∥→ 0

where In
j = ( j

2n ,
j+1
2n ) is the j ′th dyadic interval at level n.



Examples

In `1, Tsirelson space T or more generally in asymptotic-`1
spaces, the above expression is > 0 for every normalized block
sequence. Thus they satisfy the Lebesgue property.

Pelczynski, da Roch Filho (80’s, unpublished) Every spreading
model of X with the Lebesgue property is isomorphic to `1.
Pelczynski, da Roch Filho. For X ⊂ L1, the following are
equivalent:
i) all spreading models of X are isomorphic to `1
ii) X has Schur property
iii) X has the Lebesgue property.
Haydon, 83. Replace L1 in above by stable X with uniformly
separable types.
Haydon, 83, Naralenkov, 08 (Talagrand’s example, 84) There
are examples of stable spaces X with Schur property but fail the
Lebesgue property.
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So Banach spaces with the Lebesgue property have some proximity to
`1. We like to pinpoint exactly what it is.

Characterization of the Lebesgue property is based on partitions of N
that mimic the structure of the dyadic rationals in [0,1)
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Haar systems of partitions of N

The dyadic rationals as the dyadic tree D
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Haar systems of partitions of N

A collection (An
j )

2n−1
j=0,n∈N of infinite subsets of N is said to be a Haar

system of partitions of N if:
1 for every n ∈ N,

⋃2n−1
j=0 An

j = N and An
j ∩ An

j ′ = ∅ if j 6= j ′

2 for every n ∈ N and 0 ≤ j < 2n − 1, An
j = An+1

2j ∪ An+1
2j+1



Haar systems of partitions of N
N
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Characterization of Lebesgue property

Definition
We say that a normalized basic sequence (ei) in a Banach space X is
Haar-`+1 sequence if for every Haar system of partitions (An

j )
2n−1
j=0,n∈N of

N, there exists a constant C ≥ 1 such that

1
C
≤ lim

n→∞
sup

 1
2m

∥∥∥∥∥∥
2m−1∑
j=0

eij

∥∥∥∥∥∥ : m ≥ n and 2m ≤ ij ∈ Am
j

 .

Theorem
A Banach space X has the Lebesgue property if and only if every
normalized basic sequence (ei) in X is a Haar-`+1 sequence.
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Sequential asymptotic property

The Haar-`+1 condition is a sequential asymptotic property.

Equivalent formulation

For every collection (xλ)λ∈D of norm-one vectors in X , there exists a
constant θ > 0 such that, for every n ∈ N and for every λ ∈ {0,1}n,
there exist some collection of nodes (µλ)λ∈{0,1}n with µλ ≥ λ so that

1
2n

∥∥∥ ∑
λ∈{0,1}n

xµλ
∥∥∥ ≥ θ.
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Comparing with other sequential asymptotic notions

1 If every normalized basic sequence in X is Haar-`+1 , then every
spreading model of X is (not necessarily uniformly) equivalent to
the unit vector basis `1.

2 Let (ei) be a normalized basic sequence in X . If every asymptotic
model generated by an array of normalized block bases of (ei) is
equivalent to the unit vector basis of `1, then (ei) is a Haar-`+1
sequence. In particular, X has the Lebesgue property if every
asymptotic model of X is equivalent to the unit vector basis of `1.

3 Converses to both (1) and (2) are false.
4 (Tsirelson sum) Let {Xi}∞i=1 be a collection of Banach spaces

such that Xi has the Lebesgue property for each i ∈ N. Then,
X = (

∑∞
i=1 Xi)T has the Lebesgue property.

Not all asymptotic models of (T ⊕ T ⊕ . . .)T is isomorphic to `1.
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Complete separation of sequential asymptotic
structures

So we have the picture

all asymptotic models isomorphic to `1ww� 6⇑
Lebesgue propertyww� 6⇑

all spreading models isomorphic to `1

Can we get the reverse implications on a subspace?
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Argyros-Motakis space Xiw

Passing to subspaces doesn’t necessarily improve the Lebesgue
property.

1 Argyros-Motakis space Xiw has remarkable property that while all
spreading models are uniformly equivalent to the unit vector
basis of `1, every subspace admits c0 asymptotic model!

2 Xiw has the Lebesgue property.
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The space XD

Theorem (Gaebler, Motakis, S., ’24)
There exists a reflexive Banach space XD with an unconditional basis
such that all spreading models of XD are uniformly equivalent to the
unit vector basis of `1, yet every infinite-dimensional closed subspace
of XD fails the Lebesgue property.

The construction is based on Xiw space construction with additional
metric constraints.
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Thank you!


