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Abstract

For any x = (x1, . . . , xN ) ∈ ⊕N
i=1Rn we denote by Tx = [x1 · · ·xN ] the n×N matrix whose columns are

the vectors xi. Paouris and Pivovarov showed that if N > n and f1, . . . , fN are probability densities on
Rn with ‖fi‖∞ 6 1 then, for any centrally symmetric convex body K in RN , the expected volume

FK(f1, . . . , fN ) =

∫
Rn

· · ·
∫
Rn

(
voln(Tx(K))

) N∏
i=1

fi(xi) dxN · · · dx1

of Tx(K) is minimized when each fi is the indicator function of the Euclidean ball Dn of volume 1 in
Rn. We discuss upper and lower bounds for FK(f1, . . . , fN ) in the case where fi are isotropic densities.
In the second part of this note, given N,n > 1 and r > 0, we discuss upper and lower bounds for
the expected volume E

[
voln

(
∩N

i=1B(xi, r)
)]

of random ball polyhedra defined by an N -tuple of i.i.d.
random points x1, . . . , xN in Rn whose density f satisfies ‖f‖∞ 6 1.

1 Introduction

The purpose of this note is to provide estimates on the expected volume of two classes of random convex
sets. Both of them were studied by Paouris and Pivovarov in [18] and [20].

Let K be a centrally symmetric convex body in RN . For any N > n and x = (x1, . . . , xN ) ∈ ⊕Ni=1Rn
we denote by Tx = [x1 · · ·xN ] the n × N matrix whose columns are the vectors xi. Then, we consider the
convex set

Tx(K) =
{ N∑
i=1

tixi : t = (t1, . . . , tN ) ∈ K
}
.

Two examples of obvious geometric interest are obtained if we choose K = BN1 or K = BN∞. Note that

Tx(BN1 ) = conv{±x1, . . . ,±xN} is the absolute convex hull of x1, . . . , xN , and Tx(BN∞) =
∑N
i=1[−xi, xi] is

the zonotope defined as the Minkowski sum of the line segments [−xi, xi]. Now, let µ1, . . . , µN be probability
measures on Rn with densities f1, . . . , fN , respectively. Consider the random convex set Tx(K), where xi
has distribution µi for 1 6 i 6 N . The next theorem from [18] asserts that if ‖fi‖∞ 6 1 then the expected
volume of Tx(K) is minimized when each µi is the uniform measure on the Euclidean ball Dn of volume 1
in Rn.

Theorem 1.1 (Paouris-Pivovarov). Let p > 0, N > n and µ1, . . . , µN be probability measures on Rn
with densities f1, . . . , fN , respectively, with respect to the Lebesgue measure on Rn, that satisfy ‖fi‖∞ 6 1.
Consider a centrally symmetric convex body K in RN and define

FK(f1, . . . , fN ) =

∫
Rn

· · ·
∫
Rn

(
voln(Tx(K))

)p
dµN (xN ) · · · dµ1(x1).

Then,
FK(f1, . . . , fN ) > FK(1Dn , . . . ,1Dn).
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In the first part of this note, our aim is to obtain upper and lower bounds for the expected volume of
the random convex set Tx(K) under the assumption that µ1 = · · · = µN = µ is an isotropic log-concave
probability measure in Rn. We say that µ is isotropic if the barycenter of µ is at the origin, the density f of
µ satisfies ‖f‖∞ = 1, and the covariance matrix of µ is Cov(µ) = L2

µIn, where Lµ is the isotropic constant
of µ. Our starting point is the formula

voln(Tx(K)) =
√

det(TxT ∗x ) voln(PEx(K)),

where Ex = ker(Tx)⊥ = Range(T ∗x ), and A∗ is the transpose of a matrix A. First we show that if x1, . . . , xN
are independent random vectors distributed according to an isotropic log-concave probability measure µ on
Rn, then

c1Lµ
√
N 6

∫
Rn

· · ·
∫
Rn

(
det(TxT

∗
x )
) 1

2n dµN (x) 6 Lµ
√
N,

where c1 > 0 is an absolute constant. Using this result we can give lower and upper bounds for the expected
value ∫

O(N)

(∫
Rn

· · ·
∫
Rn

(
voln(Tx(U(K)))

)
dµN (x)

)
dνN (U)

with respect to U ∈ O(N), which indicates what might be a “good estimate” for the volume of the random
convex set Tx(K): If µ is an isotropic log-concave probability measure on Rn then for every N > n and
every centrally symmetric convex body K in RN we have that

c1Lµ
√
N/n vrad(K) 6

(∫
O(N)

EµN

(
voln(Tx(K)

)
dνN (U)

) 1
n

6 c2Lµ
√
N/nw(K)

where c1, c2 > 0 are absolute constants and vrad(K) := (volN (K)/volN (BN2 ))1/N is the volume radius of K.
Then, we study the basic examples K = BN1 and K = BN∞. Using, additionally, known results of

Bobkov and Nazarov which describe the geometry of an isotropic unconditional convex body in RN we
obtain estimates for the problem in this case. For example, in the range n 6 N 6 exp(

√
n) we have:

Theorem 1.2. Let µ be an isotropic log-concave probability measure on Rn. For any n 6 N 6 exp(
√
n)

and any unconditional isotropic convex body K in RN we have

c1
√
N/n vrad(K) 6 EµN

(
voln(Tx(K))

1
n

)
6 c2Lµ

√
N/n (log n)2vrad(K),

where c1, c2 > 0 are absolute constants.

In the case K = B
N

q , 2 6 q 6∞, we can give more precise asymptotic estimates for the expected value

of the volume of Tx(B
N

q ) (see Theorem 3.11). For every N > n and every 2 6 q 6∞ we have

c1
√
N/n vrad(B

N

q ) 6
(
EµN voln(Tx(B

N

q ))
)1/n

6 c2Lµ
√
N/n vrad(B

N

q ),

where c1, c2 > 0 are absolute constants.
We also provide a general upper bound under the assumption that both µ and K are isotropic.

Theorem 1.3. Let µ be an isotropic log-concave probability measure on Rn. For any N > n and any
isotropic convex body K in RN we have

c2Lµ
Ln

vrad(K) 6 EµN

(
voln(Tx(K))

1
n

)
6
c1LµN

n
LKvrad(K),

where c1, c2 > 0 are absolute constants.
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In the statement above, Ln := max{LC : C is an isotropic convex body in Rn} (see the next section for
more information and the known upper bounds for Ln).

In the second part of this note we provide estimates for the expected volume of random ball-polyhedra.
Let f be a probability density on Rn with ‖f‖∞ 6 1, fix N > 1 and an N -tuple r = (r1, . . . , rN ) of positive
real numbers. Consider a sequence x1, . . . , xN of independent random points in Rn distributed according to
f , and define the random ball-polyhedron

B(x, r) :=

N⋂
i=1

B(xi, ri)

which is the intersection of the Euclidean balls B(xi, ri). Paouris and Pivovarov proved in [20] that the
expected volume of this random ball polyhedron is maximized when f = 1Dn

, the density of the uniform
measure on Dn.

Theorem 1.4 (Paouris-Pivovarov). Let N,n > 1 and r1, . . . , rN ∈ (0,∞). Consider independent random
points x1, . . . , xN and x∗1, . . . , x

∗
N so that xi has density fi with ‖fi‖∞ 6 1, and x∗i has density 1Dn

, i =
1, . . . , N . Then, for any r1, . . . , rN > 0,

Eµ1⊗···⊗µN

(
voln

( N⋂
i=1

B(xi, ri)
))

6 EµN
Dn

(
voln

( N⋂
i=1

B(x∗i , ri)
))
.

Let K be a centrally symmetric convex body of volume 1 in Rn. Our first observation is that in the case
r1 = · · · = rN = r one has a very simple formula for the expectation

EµN
K

(
voln

( N⋂
i=1

B(xi, r)
))
.

Namely,

EµN
K

(
voln

( N⋂
i=1

B(xi, r)
))

=

∫
K+rBn

2

voln((K − y) ∩ rBn2 )N dy.

In fact, one may replace Euclidean balls by r-homethets of any centrally symmetric convex body C in Rn;
the corresponding formula is

EµN
K

(
voln

( N⋂
i=1

(xi + rC)
))

=

∫
K+rC

voln((K − y) ∩ rC)N dy.

Using an argument, based on the Brunn-Minkowski inequality, that goes back to Rogers and Shephard, we
obtain the next lower bound, which is valid for all r > 0.

Theorem 1.5. Let K be a centrally symmetric convex body of volume 1 in Rn and x1, . . . , xN be independent
random points uniformly distributed in K. Then, for any centrally symmetric convex body C in Rn we have
that(
nN + n

n

)−1
voln(K ∩ rC)Nvoln(K + rC) 6 EµN

K

(
voln

( N⋂
i=1

(xi + rC)
))

6 voln(K ∩ rC)Nvoln(K + rC).

An interesting question is to determine the best constants in the inequality of Theorem 1.5. Note that
the behavior of EµN

K

(
voln

(
∩Ni=1(xi + rC)

))
is different for small and large values of r. One has

lim
r→∞

1

voln(rC)
EµN

K

(
voln

( N⋂
i=1

(xi + rC)
))

= 1 and lim
r→0+

1

voln(rC)N
EµN

K

(
voln

( N⋂
i=1

(xi + rC)
))

= 1.
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2 Notation and backgound information

In this section we introduce notation and terminology that we use throughout this work, and provide back-
ground information on isotropic convex bodies and log-concave probability measures in Rn. We write 〈·, ·〉
for the standard inner product in Rn and denote the Euclidean norm by ‖ · ‖2. In what follows, Bn2 is the
Euclidean unit ball and Sn−1 is the unit sphere in Rn, and σ is the unique rotationally invariant probability
measure on Sn−1. The Lebesgue measure in Rn is denoted by voln. The letters c, c′, cj , c

′
j etc. denote

absolute positive constants whose value may change from line to line. Sometimes we relax our notation:
a ≈ b will mean “c1a 6 b 6 c2a” for some absolute constants ci > 0. We write ωn for the volume of Bn2 ;

direct computation shows that ω
1
n
n ≈ 1/

√
n.

A convex body in Rn is a compact convex set C ⊂ Rn with non-empty interior. For notational convenience
we write C for the homothetic image of volume 1 of a convex body C ⊆ Rn, i.e. C := voln(C)−1/nC. We
say that C is centrally symmetric if −C = C. We say that C is unconditional with respect to the standard
orthonormal basis {e1, . . . , en} of Rn if x = (x1, . . . , xn) ∈ C implies that (ε1x1, . . . , εnxn) ∈ C for any choice

of signs εj ∈ {−1, 1}, j = 1, . . . , n. The volume radius of C is the quantity vrad(C) = (voln(C)/voln(Bn2 ))
1/n

.
The support function of C is defined by hC(y) := max

{
〈x, y〉 : x ∈ C

}
, and the mean width of C is the

average

w(C) :=

∫
Sn−1

hC(ξ) dσ(ξ)

of hC on Sn−1.
A convex body C in Rn is called isotropic if it has volume 1, it is centered, i.e. its barycenter is at the

origin, and its inertia matrix is a multiple of the identity matrix: there exists a constant LC > 0 such that

‖〈·, ξ〉‖2L2(C) :=

∫
C

〈x, ξ〉2dx = L2
C

for all ξ ∈ Sn−1. The hyperplane conjecture asks whether there exists an absolute constant A > 0 such that

Ln := max{LC : C is an isotropic convex body in Rn} 6 A

for all n > 1. Bourgain proved in [4] that Ln 6 c 4
√
n logn; later, Klartag, in [11], improved this bound to

Ln 6 c 4
√
n. Very recently, in a breakthrough work, Chen [7] proved that for any ε > 0 there exists n0(ε) ∈ N

such that Ln 6 nε for every n > n0(ε).
A Borel measure µ on Rn is called log-concave if µ(λA + (1 − λ)B) > µ(A)λµ(B)1−λ for any compact

subsets A and B of Rn and any λ ∈ (0, 1). A function f : Rn → [0,∞) is called log-concave if its support
{f > 0} is a convex set in Rn and the restriction of log f to it is concave. It is known that if a probability
measure µ is log-concave and µ(H) < 1 for every hyperplane H in Rn, then µ has a log-concave density fµ.
Note that if C is a convex body in Rn then the Brunn-Minkowski inequality implies that 1C is the density
of a log-concave measure, the uniform measure on C.

If µ is a log-concave measure on Rn with density fµ, we define the isotropic constant of µ by

Lµ :=

(
supx∈Rn fµ(x)∫

Rn fµ(x)dx

) 1
n

[det Cov(µ)]
1
2n ,

where Cov(µ) is the covariance matrix of µ with entries

Cov(µ)ij :=

∫
Rn xixjfµ(x) dx∫

Rn fµ(x) dx
−
∫
Rn xifµ(x) dx∫
Rn fµ(x) dx

∫
Rn xjfµ(x) dx∫
Rn fµ(x) dx

.

We say that a log-concave probability measure µ on Rn is isotropic if it is centered, i.e. if∫
Rn

〈x, ξ〉dµ(x) =

∫
Rn

〈x, ξ〉fµ(x)dx = 0
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for all ξ ∈ Sn−1, ‖fµ‖∞ = 1 and Cov(µ) = L2
µIn, where In is the identity n× n matrix.

For every q > 1 and every y ∈ Rn we set

hZq(µ)(y) =

(∫
Rn

|〈x, y〉|qdµ(x)

)1/q

.

The Lq-centroid body Zq(µ) of µ is the centrally symmetric convex body with support function hZq(µ). Note
that µ is isotropic if and only if it is centered and Z2(µ) = LµB

n
2 . It was shown by Paouris [17] that if

1 6 q 6
√
n then w

(
Zq(µ)

)
' √qLµ, and that for all 1 6 q 6 n one has vrad(Zq(µ)) 6 c1

√
qLµ. Conversely,

it was shown by B. Klartag and E. Milman in [12] that if 1 6 q 6
√
n then vrad(Zq(µ)) > c2

√
qLµ. This

determines the volume radius of Zq(µ) for all 1 6 q 6
√
n. For larger values of q one can still use the lower

bound: vrad(Zq(µ)) > c2
√
q, obtained by Lutwak, Yang and Zhang in [14] for convex bodies and extended

by Paouris and Pivovarov in [18] to the class of log-concave probability measures.
For every 1 6 k 6 n − 1 and every E ∈ Gn,k, the marginal of the measure µ with respect to E is the

probability measure πE(µ) on E, with density

fπE(µ)(x) =

∫
x+E⊥

fµ(y)dy.

It is easily checked that if µ is centered, isotropic or log-concave, then πE(µ) is also centered, isotropic or
log-concave, respectively.

We refer the reader to the book [6] for an updated exposition of isotropic log-concave measures and more
information on the hyperplane conjecture.

We close this section with a rough description of the main ideas behind the proof of Theorem 1.1 and
Theorem 1.4. The approach of Paouris and Pivovarov is based on rearrangement inequalities; in particular,
on the Brascamp-Lieb-Luttinger inequality. Let H : ⊕Ni=1Rn → R+ be a non-negative measurable function
and consider the multilinear operator FH defined by

FH(f1, . . . , fN ) =

∫
Rn

· · ·
∫
Rn

H(x1, . . . , xN )f1(x1) · · · fN (xN ) dx1 · · · dxN ,

where f1, . . . , fN : Rn → R+ are integrable functions. Assume that the function H : ⊗Ni=1Rn → R+ has the
following property: for any z ∈ Sn−1 and any Y = {y1, . . . , yN} ⊂ z⊥, the function HY : RN → R+ which
is defined by

HY (t) = H(y1 + t1z, . . . , yN + tNz)

is even and quasi-convex. Then,

FH(f1, . . . , fN ) > FH(f∗1 , . . . , f
∗
N ),

where f∗ is the symmetric decreasing rearrangement of f . Moreover, if ‖fi‖∞ 6 1 for all i = 1, . . . , N , then

FH(f1, . . . , fN ) > FH(f∗1 , . . . , f
∗
N ) > FH(1Dn

, . . . ,1Dn
),

where Dn is the Euclidean ball of volume 1 in Rn. On the other hand, if for every z ∈ Sn−1 and any
Y = {y1, . . . , yN} ⊂ z⊥ the function HY is even and quasi-concave then the above inequalities are reversed.

Theorem 1.1 is a consequence of this general result. Define

H(x1, . . . , xN ) =
(
voln(Tx(K))

)p
=
(
voln([x1 · · ·xN ]K)

)p
.

One can show that for any ξ ∈ Sn−1 and y1, . . . , yN ∈ z⊥, if we set Y = {y1, . . . , yN} and define TY (t) :=
[y1 + t1ξ, . . . , yN + tNξ] then the function HY : RN → R+ defined by HY (t) = voln(TY (t)(K))p is even and
quasi-convex. Theorem 1.4 is again a consequence of this approach. Given r1, . . . , rN > 0, define

H(x1, . . . , xN ) = voln

( N⋂
i=1

B(xi, ri)
)
.
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Then, H is even and quasi-concave on its support. Moreover, for any z ∈ Sn−1 and y1, . . . , yN ∈ z⊥ the
function Hz,Y : RN → [0,∞) defined by Hz,Y (t) = voln

(
∩Ni=1B(yi + tiz, ri)

)
is even and quasi-concave on

its support. The reader will find more information in the survey article [21] of Paouris and Pivovarov.

3 Estimates for the expected volume of Tx(K)

Let µ be an isotropic log-concave probability measure on Rn. For any N > n and any centered convex body
K of volume 1 in RN we want to give upper and lower bounds for the quantity

EµN

((
voln(Tx(K)

) 1
n

)
:=

∫
Rn

· · ·
∫
Rn

(
voln(Tx(K)

) 1
n dµN (x),

where Tx is the random n×N matrix with columns N independent random vectors x1, . . . , xN distributed
according to µ. Our starting point is the formula (see for example [19, Proposition 2.1])

(3.1) voln(Tx(K)) =
√

det(TxT ∗x ) voln(PEx(K)),

where Ex = ker(Tx)⊥ = Range(T ∗x ), and A∗ denotes the transpose of a matrix A. We start with some
preliminary observations regarding the expectation of

√
det(TxT ∗x ).

3.1 Preliminary estimates

It is known that
√

det(TxT ∗x ) is equal to the volume of the n-dimensional parallelotope spanned in RN by

the rows y1, . . . , yn of Tx. The next lemma provides some estimates for EµN

(
det(TxT

∗
x )

1
2n

)
. Note that the

assumption that µ is log-concave is needed only for the lower bound.

Lemma 3.1. Let x1, . . . , xN be independent random points which are distributed according to an isotropic
log-concave probability measure µ on Rn. Then,

(3.2) c1Lµ
√
N 6

∫
Rn

· · ·
∫
Rn

(
det(TxT

∗
x )
) 1

2n dµN (x) 6 Lµ
√
N,

where c1 > 0 is an absolute constant.

Proof. We use the Cauchy-Binet formula: For any S = {i1, . . . , in} ⊆ [N ] with |S| = n we denote by Tx|S
the n× n matrix whose columns are xi1 , . . . , xin . Then,

(3.3) det(TxT
∗
x ) =

∑
|S|=n

det((Tx|S)(Tx|S)∗).

From a well-known formula that goes back to Blaschke (see [6, Proposition 3.5.5] for a proof) we see that

(3.4) EµS

(
det((Tx|S)(Tx|S)∗)

)
= n! det(Cov(µ)),

where µS := ⊗i∈Sµ. Note that this identity holds true for any centered probability measure µ on Rn.
Assuming that µ is isotropic, we have det(Cov(µ)) = L2n

µ and it follows that

(3.5)

∫
Rn

· · ·
∫
Rn

det(TxT
∗
x ) dµN (x) =

(
N

n

)
n! det(Cov(µ)) 6 Nn det(Cov(µ)) = NnL2n

µ .

Applying Hölder’s inequality we obtain the upper bound in (3.2).
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For the lower bound, using first the concavity of the function x 7→ xp for p ∈ (0, 1), we write∫
Rn

· · ·
∫
Rn

(
det(TxT

∗
x )
) 1

2n dµN (x) =

∫
Rn

· · ·
∫
Rn

( ∑
|S|=n

det((Tx|S)(Tx|S)∗)
) 1

2n

dµN (x)

>

(
N

n

) 1
2n 1(

N
n

) ∑
|S|=n

∫
Rn

· · ·
∫
Rn

det((Tx|S)(Tx|S)∗)
1
2n dµN (x).

From [22, Corollary 1] (see also [16, Section 3.7]) we see that, for any S ⊂ [N ] with |S| = n, one has
det((Tx|S)(Tx|S)∗) > (c2n)nL2n

µ for some absolute constant c2 > 0, with probability greater than 1 − e−n.
It follows that ∫

Rn

· · ·
∫
Rn

det((Tx|S)(Tx|S)∗)
1
2n dµN (x) > c3Lµ

√
n

for some absolute constant c3 > 0. Therefore,∫
Rn

· · ·
∫
Rn

det(TxT
∗
x )

1
2n dµN (x) > c3Lµ

√
n

(
N

n

) 1
2n

> c1Lµ
√
N

for some absolute constant c1 > 0.

Remark 3.2. From the proof of Lemma 3.1 one may easily check that, for any isotropic log-concave prob-
ability measure µ on Rn and any N > n, the estimate

(3.6) c1Lµ
√
N 6

(∫
Rn

· · ·
∫
Rn

(
det(TxT

∗
x )
)p
dµN (x)

) 1
2pn

6 Lµ
√
N

holds true for all p ∈ [e−n, 1].

The next proposition gives an upper and a lower bound for the average(∫
O(N)

(∫
Rn

· · ·
∫
Rn

voln(Tx(U(K))) dµN (x)
)
dνN (U)

) 1
n

over all U ∈ O(N) in terms of the mean width and the volume radius of K respectively, and shows what one
should expect as a reasonable estimate for the expected volume radius of Tx(K).

Proposition 3.3. Let µ be an log-concave isotropic probability measure on Rn. For any N > n and any
centrally symmetric convex body K in RN we have

c1Lµ
√
N/n vrad(K) 6

(∫
O(N)

EµN

(
voln(Tx(K)

)
dνN (U)

) 1
n

6 c2Lµ
√
N/nw(K)

where c1, c2 > 0 are absolute constants.

Proof. Our starting point is (3.1). Let U ∈ O(N) be independent from x and distributed according to the
Haar probability measure νN on O(N). Since det((TxU)(U∗T ∗x )) = det(TxT

∗
x ) and PEx ◦ U = PU∗(Ex), we

see that
voln(TxU(K)) =

√
det(TxT ∗x ) voln(PU∗Ex(K)),
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where Ex = ker(Tx)⊥ = Range(T ∗x ). Note that Ex is n-dimensional with probability 1, therefore the
distribution of U∗(Ex) is the Haar probability measure νN,n on GN,n for almost all x. It follows that∫

O(N)

EµN

(
voln(Tx(U(K)))

)
dνN (U)(3.7)

=

∫
Rn

· · ·
∫
Rn

(∫
O(N)

voln(Tx(U(K))) dνN (U)
)
dµN (x)

=

∫
Rn

· · ·
∫
Rn

(
det(TxT

∗
x )1/2

∫
O(n)

voln(PU∗Ex(K)dνN (U))
)
dµN (x)

=
(∫

Rn

· · ·
∫
Rn

det(TxT
∗
x )1/2dµN (x)

)(∫
GN,n

voln(PE(K)) dνN,n(E)
)
.

From Lemma 3.1 we get

(cLµ)nN
n
2

∫
GN,n

voln(PE(K)) dνN,n(E) 6
∫
O(N)

EµN

(
voln(Tx(U(K)))

)
dνN (U)

6 LnµN
n
2

∫
GN,n

voln(PE(K)) dνN,n(E)

for an absolute constant c > 0. From Aleksandrov’s inequalities we know that

vrad(K) 6
( 1

ωn

∫
GN,n

voln(PE(K)) dνN,n(E)
) 1

n

6
1

ω1

∫
GN,1

vol1(PE(K)) dνN,1(E) = w(K),

and hence,

cLµ
√
Nω1/n

n vrad(K) 6
(∫

O(N)

EµN

(
voln(Tx(U(K)))

)
dνN (U)

) 1
n

6 Lµ
√
Nω1/n

n w(K).

Taking into account the fact that ω
1/n
n ≈ 1/

√
n, we obtain the result.

3.2 Two basic examples

There are two main examples of convex bodies K for which the expected volume of Tx(K) is well studied.

The first one is K = BN∞; then, Tx(BN∞) =
∑N
i=1[−xi, xi] is the zonotope defined as the Minkowski sum of

the line segments [−xi, xi].

Proposition 3.4. Let B
N

∞ denote the cube of volume 1 in RN . Then,

EµN
Dn

(
voln(Tx(B

N

∞))
1
n

)
≈
√
N/n vrad(B

N

∞).

Proof. Let

Ip(Dn;m) :=

∫
Dn

· · ·
∫
Dn

voln

( m∑
i=1

[−xi, xi]
)p
dxm · · · dx1.

Note that
I1/n(Dn;N) = EµN

Dn

(
voln(Tx(B

N

∞))
1
n

)
.

A direct computation based on the Blashcke-Petkantschin formula (see [24, Theorem 8.2.2]) shows that

1

voln(Bn2 )n

∫
Bn

2

· · ·
∫
Bn

2

voln

( n∑
i=1

[0, xi]
)p
dxn · · · dx1 =

ωnn+p
ωnn

n−1∏
j=0

(n− j)ωn−j
(n+ p− j)ωn+p−j

,

8



where ωk = volk(Bk2 ). It follows that

Ip(Dn;n) :=

∫
Dn

· · ·
∫
Dn

voln

( n∑
i=1

[0, xi]
)p
dxn · · · dx1 =

ωnn+p

ωn+pn

n−1∏
j=0

(n− j)ωn−j
(n+ p− j)ωn+p−j

.

Choosing p = 1/n one may check that

c1
√
n 6 I1/n(Dn;n) 6 c2

√
n

where c1, c2 > 0 are absolute constants. Note that

voln

( N∑
i=1

[−xi, xi]
)

= 2n
∑

I⊂[N ],|I|=n

voln

(∑
j∈I

[0, xj ]
)
.

Using the inequalities (
N

n

)p
1(
N
n

) ∑
I⊂[N ],|I|=n

tpI 6
( ∑
I⊂[N ],|I|=n

tI

)p
6

∑
I⊂[N ],|I|=n

tpI

with tI = Eµn
Dn

(
voln

(∑
j∈I [0, xj ]

))
we see that

c1
√
n

(
N

n

)1/n

6

(
N

n

)1/n

I1/n(Dn;n) 6
1

2
I1/n(Dn;N) 6

(
N

n

)1/n

I1/n(Dn;n) 6 c2
√
n

(
N

n

)1/n

.

Since
(
N
n

)1/n ≈ N
n and vrad(BN∞) ≈

√
N , we obtain the result.

As an immediate corollary of Theorem 1.1 we have the following.

Proposition 3.5. Let N > n and µ1, . . . , µN be probability measures on Rn with densities fi, respectively,
with respect to the Lebesgue measure, that satisfy ‖fi‖∞ 6 1. Then,

E⊗N
i=1µi

(
voln(Tx(B

N

∞))
1
n

)
> c
√
N/n vrad(B

N

∞),

where c > 0 is an absolute constant.

The second well-studied example is when K = B
N

1 . Note that Tx(BN1 ) = conv{±x1, . . . ,±xN} for all
x = (x1, . . . , xN ).

Proposition 3.6. Let B
N

1 denote the multiple of the cross-polytope BN1 of volume 1 in RN . Then, for any
isotropic log-concave probability measure µ on Rn we have that

c1Lµ
√
N/n

√
log(2N/n)vrad(B

N

1 ) 6 EµN

(
voln(Tx(B

N

1 ))
1
n

)
(3.8)

6 c2Lµ
√
N/n

√
logNvrad(B

N

1 )

if n 6 N 6 exp(
√
n), and

c1
√
N/n

√
log(2N/n)vrad(B

N

1 ) 6 EµN

(
voln(Tx(B

N

1 ))
1
n

)
(3.9)

6 c2Lµ
√
N/n

√
logN(log logN)2vrad(B

N

1 )

if exp(
√
n) 6 N 6 exp(n).

9



Proof. Observe that B
N

1 ≈ NBN1 , which implies that Tx(B
N

1 ) ≈ N conv{±x1, . . . ,±xN}. Therefore,

EµN

(
voln(Tx(B

N

1 ))
1
n

)
≈ N EµN

(
voln(conv{±x1, . . . ,±xN})

1
n

)
.

It is proved in [8] that

EµN

(
voln(conv{±x1, . . . ,±xN})

) 1
n

6
c1w(ZlogN (µ))√

n

for all N 6 en, where Zq(µ) is the Lq-centroid body of µ. Since vrad(B
N

1 ) ≈
√
N , this implies that

EµN

(
voln(Tx(B

N

1 ))
1
n

)
6 c2

√
N/n vrad(B

N

1 )w(ZlogN (µ)).

Then, the upper bounds in (3.8) and (3.9) follow from the known upper bounds for w(Zq(µ)), where µ is an
isotropic log-concave probability measure on Rn. Recall that if 1 6 q 6

√
n then w(Zq(µ)) 6 c

√
qLµ. On

the other hand, E. Milman has proved in [15] that for all
√
n 6 q 6 n,

w(Zq(µ)) 6 cLµ log(1 + min{q, n}) max
{q log(1 + q)√

n
,
√
q
}

for some absolute constant c > 0. Note that this quantity is always bounded by cLµ
√
n(log n)2.

For the lower bound we use the fact, proved in [8] that if µ is an isotropic log-concave probability
measure on Rn and if x1, . . . , xN are independent random points which are distributed according to µ, then
for n 6 N 6 e

√
n one has

(3.10) voln(conv{±x1, . . . ,±xN})1/n > c1Lµ

√
log(2N/n)√

n

with probability greater than 1− exp(−c2
√
N), while in the range e

√
n 6 N 6 en one has

(3.11) voln(conv{±x1, . . . ,±xN})1/n > c1

√
log(2N/n)√

n
,

again with probability exponentially close to 1. This shows that

EµN

(
voln(Tx(B

N

1 ))
1
n

)
> c
√
N/nLµ

√
log(2N/n)vrad(B

N

1 )

in the range n 6 N 6 exp(
√
n), and the lower bound of (3.9) follows in the same way from (3.11).

3.3 Some general estimates

We can give some general estimates using the following bounds for the volume radius of an n-dimensional
projection of a convex body in RN .

Lemma 3.7. Let K be a centrally symmetric convex body in RN . For any 1 6 n < N and any E ∈ GN,n
we have that

c1
√
n/N

1√
nM(K)

6 voln(PE(K))1/n 6 c2
√
N/n

w(K)√
n
,

where c1, c2 > 0 are absolute constants.
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Proof. Let N(A,B) denote the covering number of A by B, i.e. the least number of translates of B
whose union covers A. The classical Sudakov inequality (see [1, Chapter 4]) states that N(K, tBN2 ) 6
exp(c3Nw

2(K)/t2) for all t > 0. Since N(PE(K), tPE(BN2 )) 6 N(K, tBN2 ) for all E ∈ GN,n, it follows that

voln(PE(K))1/n 6 exp(c3Nw
2(K)/(t2n))voln(tPE(BN2 ))1/n

for all t > 0, and choosing t =
√
N/nw(K) we get

voln(PE(K))1/n 6 c4
√
N/nw(K)voln(BE)1/n,

where BE = PE(BN2 ) = BN2 ∩E, and hence voln(BE)1/n ≈ 1/
√
n. This proves the right hand side inequality.

For the lower bound we use a similar argument, this time employing the dual Sudakov inequality (see [1,
Chapter 4]) N(BN2 , tK) 6 exp(c3NM

2(K)/t2), which implies that

voln(PE(BN2 ))1/n 6 exp(c3NM
2(K)/(t2n))voln(tPE(K))1/n

for all t > 0, and then choose t =
√
N/nM(K).

Taking into account Lemma 3.1 and Lemma 3.7 we have the next general estimates.

Theorem 3.8. Let µ be an isotropic log-concave probability measure on Rn. For any N > n and any
centrally symmetric convex body K in RN we have

c1Lµ
M(K)

6
(
EµN voln(Tx(K))

1
n

)
6
c2LµN

n
w(K),

where c1, c2 > 0 are absolute constants.

Proof. We may write

EµN

(
voln(Tx(K))

)
= EµN

(√
det(TxT ∗x ) voln(PEx(K))

)
6 LnµN

n/2 max
E∈GN,n

voln(PE(K)),

by the proof of Lemma 3.1, and then the upper bound from Proposition 3.7 implies that

EµN

(
voln(Tx(K))

1
n

)
6 Lµ

√
N · c2

√
N/n

w(K)√
n

=
c2LµN

n
w(K).

On the other hand, a similar argument shows that

EµN

((
voln(Tx(K))

) 1
n

)
= Ex

(
(det(TxT

∗
x ))

1
2n voln(PEx(K))

1
n

)
> min
E∈GN,n

voln(PE(K))
1
n EµN

(
(det(TxT

∗
x ))

1
2n

)
,

and combining the lower bounds from Lemma 3.1 and Lemma 3.7 we get

EµN

( (
voln(Tx(K))

) 1
n

)
> c3Lµ

√
N · c4

√
n/N

1√
nM(K)

=
c5Lµ
M(K)

,

as claimed.

Our next result gives a general upper bound under the assumption that both µ and K are isotropic.
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Theorem 3.9. Let µ be an isotropic log-concave probability measure on Rn. For any N > n and any
isotropic convex body K in RN we have

c2Lµ
Ln

vrad(K) 6 EµN

(
voln(Tx(K))

1
n

)
6
c1LµN

n
LKvrad(K),

where c1, c2 > 0 are absolute constants.

Proof. Starting from (3.1) and using the Cauchy-Schwarz inequality we get

EµN

(
voln(Tx(K))

1
n

)
6
(
EµN

(
det(TxT

∗
x )

1
n

)) 1
2
(
EµN

(
voln(PEx(K))

2
n

)) 1
2

6 Lµ
√
N
(
EµN

(
voln(PEx(K))

2
n

)) 1
2

taking into account Lemma 3.1. From a classical inequality of Rogers and Shephard (see [1, Lemma 1.5.6])
we also know that

voln(K ∩ E⊥x )−1 6 voln(PEx(K)) 6

(
N

n

)
voln(K ∩ E⊥x )−1

for all x. Assuming that K is also isotropic, we have that

voln(K ∩ E⊥x )1/n ≈
LKn+1(πEx (µK))

LK
>

c2
LK

where πEx(µK) is the marginal of K with respect to Ex (see [6] for the definition of the family of convex bodies
{Kp(ν)}p>0 associated with a log-concave probability measure ν and, in particular, [6, Proposition 5.1.15]
for this statement). Combining the above, we finally get

EµN

(
voln(Tx(K))

1
n

)
6 Lµ

√
N

(
N

n

) 1
n

· 1

c2
LK ,

and the result follows from the fact that volN (K) = 1 and hence vrad(K) ≈
√
N . For the lower bound we

recall that
EµN

(
voln(Tx(K))

1
n

)
= EµN

(
det(TxT

∗
x )

1
2n voln(PEx(K))

1
n

)
by (3.1). Then, we observe that

voln(PEx(K))1/n > voln(K ∩ E⊥x )−1/n ≈ LK
LKn+1(πEx (µK))

>
c1
Ln

and conclude that

EµN

(
voln(Tx(K))

1
n

)
>

c1
Ln

EµN

(
det(TxT

∗
x )

1
2n

)
>
c2Lµ
Ln

vrad(K),

where the last inequality follows from Lemma 3.1.

In the next theorem we assume that K is an unconditional isotropic convex body in RN and using
Theorem 3.8 and Theorem 3.9 we obtain a better estimate.

Theorem 3.10. Let µ be an isotropic log-concave probability measure on Rn. For any n 6 N 6 exp(
√
n)

and any unconditional isotropic convex body K in RN we have

c1
√
N/n vrad(K) 6 EµN

(
voln(Tx(K))

1
n

)
6 c2Lµ

√
N/n (log n)2vrad(K),

where c1, c2 > 0 are absolute constants.
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Proof. By a result of Bobkov and Nazarov from [3] we know that c1B
N

∞ ⊆ K ⊆ c2B
N

1 for some absolute

constants c1, c2 > 0. It follows that Tx(K) ⊆ c2Tx(B
N

1 ) for any x = (x1, . . . , xN ), and hence

EµN

(
voln(Tx(K))

1
n

)
6 c2EµN

[
voln(Tx(B

N

1 ))
1
n

)
.

Using Proposition 3.5 and Proposition 3.6 we conclude the proof.

Note that combining Proposition 3.5 and Proposition 3.6 one can obtain an analogous result for the

range exp(
√
n) 6 N 6 exp(n). Our last result concerns the case K = B

N

q , 2 6 q 6 ∞; we can obtain a
sharp asymptotic estimate for the expected volume of Tx(K).

Theorem 3.11. Let µ be an isotropic probability measure on Rn. For any N > n and any 2 6 q 6 ∞ we
have

c1
√
N/n vrad(B

N

q ) 6 EµN

(
voln(Tx(B

N

q ))
1
n

)
6 c2Lµ

√
N/n vrad(B

N

q ),

where c1, c2 > 0 are absolute constants

Proof. In the proof of Theorem 3.8 we observed the general inequality

(3.12) EµN

(
voln(Tx(K))

)
6 LnµN

n/2 EµN

(
voln(PEx(K))2

) 1
2

where Ex = ker(Tx)⊥ = Range(T ∗x ), which holds for any centrally symmetric convex body K in RN .

Note that if 2 6 q 6∞ then R(BNq ) ≈ N
1
2−

1
q and voln(BNq )1/N ≈ N−

1
q . Therefore, B

N

q ⊆ c
√
NBN2 . It

follows that
voln(PEx(B

N

q ))1/n 6 c1voln(PEx(
√
NBN2 ))1/n 6 c2

√
N/n

for all x = (x1, . . . , xN ), where c2 > 0 is an absolute constant. Taking into account (3.12) we see that

Eµn

(
voln(Tx(B

N

q ))
1
n

)
6 c3Lµ

√
N
√
N/n 6 c4Lµ

√
N/n vrad(B

N

q ).

because vrad(B
N

q ) ≈
√
N . For the lower bound we may apply Theorem 3.10, since B

N

q is 1-unconditional
and isotropic.

Remark 3.12. Note that the property of BNq that was really used in the previous argument is that BNq is

contained in a ball αBN2 such that
(
volN (αBN2 )/volN (BNq )

)1/N
6 C, for a constant C > 0 that does not

depend on N or q. In other words, we can also state the next result: Let µ be an isotropic probability
measure on Rn and K be a centrally symmetric convex body in RN . If K ⊆ αBN2 and(

volN (αBN2 )/voln(K)
)1/N

6 β

then for any N > n we have

Eµn

(
voln(Tx(K))

1
n

)
6 c1βLµ

√
N/n vrad(K),

where c1 > 0 is an absolute constant.
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4 Random ball polyhedra

In this section we prove Theorem 1.5. Our argument works in the following more general setting. We consider
two centrally symmetric convex bodies K and C in Rn; for any N > 1, r1, . . . , rN > 0 and x1, . . . , xN ∈ K
we consider the convex body

N⋂
i=1

(xi + riC).

The next result provides upper and lower bounds for the expectation of voln

(⋂N
i=1(xi + riC)

)
with respect

to the uniform measure µK(A) = voln(K∩A)
voln(K) on K.

Theorem 4.1. Let K,C be centrally symmetric convex bodies in Rn and x1, . . . , xN be independent random
points uniformly distributed in K. Then, for any r1, . . . , rN > 0,(

nN + n

n

)−1
voln(K + rC)

∏N
i=1 voln(K ∩ riC)

voln(K)N

6 EµN
K

(
voln

( N⋂
i=1

(xi + riC)
))

6
voln(K + rC)

∏N
i=1 voln(K ∩ riC)

voln(K)N
,

where r = min{r1, . . . , rN}.

The proof is based on the next simple formula for the expectation.

Lemma 4.2. Let K,C be centrally symmetric convex bodies in Rn. For any r1, . . . , rN > 0,

EµN
K

(
voln

( N⋂
i=1

(xi + riC)
))

=
1

voln(K)N

∫
K+rC

N∏
i=1

voln((K − y) ∩ riC)) dy,

where r = min{r1, . . . , rN}.

Proof. Let r1, . . . , rN > 0. We write

voln(K)N · EµN
K

(
voln

( N⋂
i=1

(xi + riC)
))

=

∫
K

· · ·
∫
K

∫
Rn

1⋂N
i=1(xi+riC)(y) dy dxN · · · dx1 =

∫
K

· · ·
∫
K

∫
Rn

N∏
i=1

1xi+riC(y) dy dxN · · · dx1

=

∫
Rn

∫
K

· · ·
∫
K

N∏
i=1

1y+riC(xi) dxN · · · dx1 dy =

∫
Rn

N∏
i=1

(∫
K

1y+riC(xi) dxi

)
dy

=

∫
Rn

N∏
i=1

voln(K ∩ (y + riC)) dy.

The lemma follows from the fact that voln(K ∩ (y+ riC)) = voln((K − y)∩ riC) and that (K − y)∩ riC = ∅
for some 1 6 i 6 N if and only if y /∈ K + rC.

Proof of Theorem 4.1. For each i = 1, . . . , N consider the function ui : K + rC → [0,∞) with ui(y) =
voln((K − y) ∩ riC)1/n. Using the Brunn-Minkowski inequality and the convexity of K and C we easily
check that ui is an even concave function. Note that

max(ui) = ui(0) = voln(K ∩ riC)1/n
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for every i = 1, . . . , N , which gives immediately the upper bound: we have

1

voln(K)N

∫
K+rC

N∏
i=1

voln((K − y) ∩ riC)) dy =
1

voln(K)N

∫
K+rC

N∏
i=1

ui(y)n dy

6
voln(K + rC)

voln(K)N

N∏
i=1

uni (0) =
voln(K + rC)

∏N
i=1 voln(K ∩ riC)

voln(K)N
.

For the lower bound, let % denote the radial function of K + rC on Sn−1. Then,

voln(K)N · EµN
K

(
voln

( N⋂
i=1

(xi + rC)
))

= nωn

∫
Sn−1

∫ %(ξ)

0

tn−1
N∏
i=1

uni (tξ) dt dσ(ξ).

Since each ui is concave, we have

ui(tξ) > (1− t/%(ξ))ui(0) + (t/%(ξ))ui(%(ξ)ξ) > (1− t/%(ξ))ui(0),

therefore

voln(K)N · EµN
K

(
voln

( N⋂
i=1

(xi + rC)
))

> nωn

N∏
i=1

uni (0)

∫
Sn−1

∫ %(ξ)

0

tn−1
(

1− t

%(ξ)

)nN
dt dσ(ξ)

= nωn

N∏
i=1

voln(K ∩ riC)

∫
Sn−1

∫ 1

0

%n(ξ)sn−1(1− s)nN ds dσ(ξ)

= n

N∏
i=1

voln(K ∩ riC) · ωn
∫
Sn−1

%n(ξ) dσ(ξ) ·
∫ 1

0

sn−1(1− s)nN ds

= nB(n, nN + 1)voln(K + rC)

N∏
i=1

voln(K ∩ riC)

=

(
nN + n

n

)−1
voln(K + rC)

N∏
i=1

voln(K ∩ riC),

and the result follows.

Remark 4.3. Note that in the case N = 1 we have voln(x + rC) = voln(rC) for every x ∈ Rn, and hence
Theorem 4.1 takes the following form: If K,C are centrally symmetric convex bodies in Rn then, for any
r > 0, (

2n

n

)−1
voln(K + rC)voln(K ∩ rC) 6 voln(rC)voln(K) 6 voln(K + rC)voln(K ∩ rC),

which is a well-known inequality of Rogers and Shephard (see [1, Chapter 4]). The constant
(
2n
n

)
is optimal.

Remark 4.4. An interesting question is to determine the best constants in the inequality of Theorem 4.1.
The behavior of EµN

K

(
voln

(
∩Ni=1(xi + rC)

))
is of course different for small and large values of r. In the case

C = Bn2 , Gorbovickis has proved in [10] that for any n > 2 and any x1, . . . , xN ∈ Rn one has

voln

( N⋂
i=1

B(xi, r)
)

= voln(rBn2 )− nωnw(conv(x1, . . . , xN ))rn−1 + o(rn−1)

as r →∞. The next natural analogue of this result is not hard to check:
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Proposition 4.5. Let K,C be centrally symmetric convex bodies in Rn. Then,

lim
r→∞

1

voln(rC)
EµN

K

(
voln

( N⋂
i=1

(xi + rC)
))

= 1.

Proof. A classical theorem of Minkowski states that the function voln(K+rC) is a polynomial in r ∈ [0,∞);
one has

voln(K + rC) =

n∑
j=0

(
n

j

)
Vj(K,C) rj ,

where Vj(K,C) = V (K;n − j, C; j) is the j-th mixed volume of K and C (we use the notation C; j for
C, . . . , C j-times). One has Vn(K,C) = voln(C). From Lemma 4.2 we see that

EµN
K

(
voln

( N⋂
i=1

(xi + rC)
))

=
1

voln(K)N

∫
K+rC

(
voln(K ∩ (y + rC))

)N
dy 6 voln(K + rC).

It follows that

lim sup
r→∞

1

voln(rC)
EµN

K

(
voln

( N⋂
i=1

(xi + rC)
))

6 lim
r→∞

1

rnvoln(C)

n∑
j=0

(
n

j

)
Vj(K,C) rj = 1.

On the other hand, let r0 = min{t > 0 : K ⊆ tC}. Then, if r > r0 and y ∈ (r − r0)C we easily check that
K ⊆ r0C ⊆ y + rC. It follows that

EµN
K

(
voln

( N⋂
i=1

(xi + rC)
))

=
1

voln(K)N

∫
K+rC

(
voln(K ∩ (y + rC))

)N
dy > voln((r − r0)C)

for all r > r0, and hence

lim inf
r→∞

1

voln(rC)
EµN

K

(
voln

( N⋂
i=1

(xi + rC)
))

> lim
r→∞

(r − r0)nvoln(C)

rnvoln(C)
= 1.

This completes the proof.

It is also not hard to check that the dependence on r is different as r → 0:

Proposition 4.6. Let K,C be centrally symmetric convex bodies in Rn. Then,

lim
r→0+

voln(K)N−1

voln(rC)N
EµN

K

(
voln

( N⋂
i=1

(xi + rC)
))

= 1.

Proof. From Lemma 4.2 we see that

EµN
K

(
voln

( N⋂
i=1

(xi + rC)
))

=
1

voln(K)N

∫
K+rC

(
voln((K − y) ∩ rC)

)N
dy 6

voln(K + rC)voln(rC)N

voln(K)N
.

It follows that

lim sup
r→0+

voln(K)N−1

voln(rC)N
EµN

K

(
voln

( N⋂
i=1

(xi + rC)
))

6 lim
r→0+

voln(K + rC)

voln(K)
= 1.
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On the other hand, let t0 = max{t > 0 : C ⊆ 1
tK}. Then, if 0 < r < t0 and y ∈

(
1− r

t0

)
K we easily check

that y + rC ⊆
(

1− r
t0

)
K + r

t0
K = K. It follows that

voln(K)N−1

voln(rC)N
EµN

K

(
voln

( N⋂
i=1

(xi + rC)
))

=
1

voln(rC)Nvoln(K)

∫
K+rC

(
voln(K ∩ (y + rC))

)N
dy

>
voln

((
1− r

t0
K
))

voln(K)
=
(

1− r

t0

)n
,

for all 0 < r < t0, and hence

lim inf
r→0+

voln(K)N−1

voln(rC)N
EµN

K

(
voln

( N⋂
i=1

(xi + rC)
))

> lim
r→0+

(
1− r

t0

)n
= 1.

This completes the proof.
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