Small ball probability estimates for log-concave measures

Grigoris Paouris

Abstract

We establish a small ball probability inequality for isotropic log-concave probability measures: there exist absolute constants $c_1, c_2 > 0$ such that if Xis an isotropic log-concave random vector in \mathbb{R}^n with ψ_2 constant bounded by b and if A is a non-zero $n \times n$ matrix, then for every $\varepsilon \in (0, c_1)$ and $y \in \mathbb{R}^n$,

$$\mathbb{P}\left(\|Ax - y\|_2 \leqslant \varepsilon \|A\|_{\mathrm{HS}}\right) \leqslant \varepsilon^{\left(\frac{c_2}{b} \|A\|_{\mathrm{HS}}\right)^{-}},$$

where $c_1, c_2 > 0$ are absolute constants.

1 Introduction

Recently, there is an increasing interest in extending results for independent random variables, which are known from probability theory, to the setting of log-concave probability measures. A Central Limit Theorem for isotropic log-concave measures was established by B. Klartag in [12] for these measures (see also [2] for an alternative proof and [13], [7] for related developments). A "large deviation inequality" for isotropic log-concave measures was proved in [27]. In all these questions the main effort is put in trying to replace the notion of independence by the "geometry" of convex bodies, since a log-concave measure should be considered as the measure-theoretic equivalent of a convex body. Most of these recent results make heavy use of tools from the asymptotic theory of finite-dimensional normed spaces.

The purpose of this paper is to add a "small ball probability" estimate in this setting. The motivation for us was a question of N. Tomczak-Jaegermann initiated by results in [16]. In this paper the authors, motivated by questions on random polytopes, proved the following "small ball probability" estimate.

Theorem 1.1 ([16]). Let A be a non-zero $n \times n$ matrix and let $X = (\xi_1, \ldots, \xi_n)$ be a random vector, where ξ_i are independent subgaussian random variables with $\operatorname{Var}(\xi_i) \geq 1$ and subgaussian constants bounded by β . Then, for any $y \in \mathbb{R}^n$, one has

$$\mathbb{P}\left(\|AX - y\|_2 \leqslant \frac{\|A\|_{\mathrm{HS}}}{2}\right) \leqslant 2 \exp\left(-\frac{c_0}{\beta^4} \left(\frac{\|A\|_{\mathrm{HS}}}{\|A\|_{\mathrm{op}}}\right)^2\right),$$

where $c_0 > 0$ is a universal constant.

It is pointed out in [16] that, in the special case where the ξ_i 's are independent standard Gaussian random variables, one can obtain the following stronger result.

Theorem 1.2 ([16]). Let A be a non-zero $n \times n$ matrix and let $X = (\xi_1, \ldots, \xi_n)$ be a random vector, where the ξ_i 's are independent standard Gaussian random variables. Then, for any $\varepsilon \in (0, c_1)$ and any $y \in \mathbb{R}^n$, one has

$$\mathbb{P}\left(\|AX - y\|_2 \leqslant \varepsilon \|A\|_{\mathrm{HS}}\right) \leqslant \varepsilon^{\left(c_2 \frac{\|A\|_{\mathrm{HS}}}{\|A\|_{\mathrm{lop}}}\right)^2},$$

where $c_1, c_2 > 0$ are universal constants.

The proof of Theorem 1.2 makes use of the affirmative answer to the *B*-conjecture by Cordero-Erausquin, Fradelizi and Maurey (see [6]). The "B-Theorem" has been already applied for small ball probability estimates in [15] and [14].

The main result of this paper extends the previously mentioned results to the setting of log-concave probability measures, answering a question posed to us by N. Tomczak-Jaegermann.

Theorem 1.3. Let X be an isotropic log-concave random vector in \mathbb{R}^n , which has subgaussian constant b. Let A be a non-zero $n \times n$ matrix. For any $y \in \mathbb{R}^n$ and $\varepsilon \in (0, c_1)$, one has

$$\mathbb{P}\left(\|Ax - y\|_2 \leqslant \varepsilon \|A\|_{\mathrm{HS}}\right) \leqslant \varepsilon^{\left(\frac{c_2}{b} \frac{\|A\|_{\mathrm{HS}}}{\|A\|_{\mathrm{op}}}\right)^2},$$

where $c_1, c_2 > 0$ are universal constants.

Theorem 1.3 depends on a reverse Hölder inequality for the negative moments of the Euclidean norm with respect to a log-concave probability measure μ with density f. Let $-n , <math>p \neq 0$ and $I_p(f) := \left(\int_{\mathbb{R}^n} \|x\|_2^p f(x) dx\right)^{\frac{1}{p}}$. A result of O. Guédon (see [9]) implies that for $p \in (-1, 0)$ one has

$$I_p(f) \geqslant c_p I_2(f),$$

where the constant c_p depends only on p.

Actually, Guédon's result is more general and holds even if we replace the Euclidean norm by any other norm. Moreover, the result is sharp and can be achieved for a 1-dimensional density.

In order to reveal the role of the dimension we introduce the quantity $q_*(\mu)$:

$$q_*(f) := \max\{k \ge 1 : k_*(Z_k(f)) \ge k\},\$$

where $k_*(Z_k(f))$ is the Dvoretzky number of the L_k -centroid body of f (see Section 2 for precise definitions). Then, one can show the following.

Theorem 1.4. Let f a log-concave density in \mathbb{R}^n with center of mass at the origin. Then for every $k \leq c_1q_*(f)$ one has

$$I_{-k}(f) \geqslant c_2 I_2(f)$$

where $c_1, c_2 > 0$ are absolute constants.

The paper is organized as follows. In §2 we gather some background material needed in the rest of the paper. In the next section we study a family of convex bodies associated to a log-concave measure. This family was introduced by K. Ball in [1]. In §4 we establish a volumetric relation between any marginal of a log-concave measure and the corresponding projection of its associated generalized centroid body. Precisely, we prove an L_q -version of the Rogers-Shephard inequality. This is one of the main steps towards the proof of Theorem 1.4. In §5 we give an exact formula (Proposition 5.4 in the main text) relating the negative moments of the norm of the polar L_q centroid body on the sphere with the negative moments of the Euclidean norm with respect to the measure. This can be seen as a transfer principle permitting the use of known concentration results on the sphere. We stress the fact that all the results up to §5 are valid for an arbitrary log-concave measure and not just merely for an isotropic one. This special class of measures is treated in $\S6$. The proof of Theorem 1.3 is completed in $\S7$, where we discuss the sharpness of the estimate in Theorem 1.3 and its connections with the well-known "Hyperplane Conjecture" in Convex Geometry.

Acknowledgment. I would like to thank Apostolos Giannopoulos and Assaf Naor for many interesting discussions.

2 Background material

We work in \mathbb{R}^n , which is equipped with a Euclidean structure $\langle \cdot, \cdot \rangle$. We denote by $\|\cdot\|_2$ the corresponding Euclidean norm, and write B_2^n for the Euclidean unit ball, and S^{n-1} for the unit sphere. Volume is denoted by $|\cdot|$. We write ω_n for the volume of B_2^n and σ for the rotationally invariant probability measure on S^{n-1} . The Grassmann manifold $G_{n,k}$ of k-dimensional subspaces of \mathbb{R}^n is equipped with the Haar probability measure $\mu_{n,k}$. We write P_F for the orthogonal projection onto the subspace F. We also write \tilde{A} for the homothetic image of volume 1 of a compact set $A \subseteq \mathbb{R}^n$, i.e. $\tilde{A} := \frac{A}{|A|^{1/n}}$.

A convex body is a compact convex subset C of \mathbb{R}^n with non-empty interior. We say that C is symmetric if $-x \in C$ whenever $x \in C$. We say that C has center of mass at the origin if $\int_C \langle x, \theta \rangle dx = 0$ for every $\theta \in S^{n-1}$. The support function $h_C : \mathbb{R}^n \to \mathbb{R}$ of C is defined by $h_C(x) = \max\{\langle x, y \rangle : y \in C\}$. The mean width of C is defined by

$$w(C) = \int_{S^{n-1}} h_C(\theta) \sigma(d\theta).$$

The radius of C is the quantity $R(C) = \max\{||x||_2 : x \in C\}$, and the polar body C° of C is

$$C^{\circ} := \{ y \in \mathbb{R}^n : \langle x, y \rangle \leq 1 \text{ for all } x \in C \}.$$

Whenever we write $a \simeq b$, we mean that there exist universal constants $c_1, c_2 > 0$ such that $c_1a \leq b \leq c_2a$. The letters $c, c', c_1, c_2 > 0$ etc. denote universal positive constants which may change from line to line. Also, if $K, L \subseteq \mathbb{R}^n$ we will write $K \simeq L$ if there exist universal constants $c_1, c_2 > 0$ such that $c_1K \subseteq L \subseteq c_2K$.

Let $A = (a_{i,j})_{1 \le i,j \le n}$ be a $n \times n$ matrix. We write $||A||_{\text{HS}}$ for the Hilbert-Schmidt norm of A:

$$\|A\|_{\rm HS}^2 := \sum_{i,j} a_{i,j}^2$$

and $||A||_{op}$ for the operator norm of A:

$$||A||_{\text{op}} := \max_{\theta \in S^{n-1}} ||A\theta||_2.$$

Let $f:\mathbb{R}^n\to\mathbb{R}_+$ be an integrable function. We say that f has center of mass at the origin if

$$\int_{\mathbb{R}^n} \langle x, y \rangle f(x) dx = 0 \quad \text{for all } y \in \mathbb{R}^n.$$
(1)

Given f and $y \in \mathbb{R}^n$ we write f_y for the function $f_y(x) := f(x+y)$.

Let $f : \mathbb{R}^n \to \mathbb{R}_+$ be an integrable function with $\int_{\mathbb{R}^n} f(x) dx = 1$. For every $0 and <math>\theta \in S^{n-1}$ we consider the quantities

$$h_{Z_p(f)}(\theta) := \left(\int_{\mathbb{R}^n} |\langle x, \theta \rangle|^p f(x) dx \right)^{1/p}$$
(2)

If $h_{Z_p(f)}(\theta) < \infty$ for every $\theta \in S^{n-1}$, we define the L_p -centroid body $Z_p(f)$ of f to be the centrally symmetric convex body that has support function $h_{Z_p(f)}$.

 L_p -centroid bodies were introduced in [18] (see also [19]), where a generalization of Santaló's inequality was proved. In [18] and [19] a different normalization (and notation) was used. Here, we follow the normalization (and notation) that appeared in [25], since it fits better in a probabilistic setting. These bodies played a crucial role in [27] and [2].

Note that for $0 one has <math>Z_p(f) \subseteq Z_q(f)$. If $f := \mathbf{1}_A$ for some compact set $A \subseteq \mathbb{R}^n$, then $Z_{\infty}(f) = \operatorname{co}\{A, -A\}$. Note that if $T \in SL_n$ then for all p > 0 one has

$$Z_p(f \circ T^{-1}) = TZ_p(f). \tag{3}$$

We refer to [27] for additional information on Z_p -bodies.

A random variable ξ is called subgaussian if there exists a constant $0<\beta<\infty$ such that

 $\|\xi\|_{2k} \leq \beta \|\gamma\|_{2k} \ k = 1, 2, \dots,$

where γ is a standard Gaussian random variable.

Let μ be a probability measure in \mathbb{R}^n with density $f \ge 0$ and let $\alpha \ge 1$. We say that μ (or f) is ψ_{α} with constant b_{α} if for every $p \ge \alpha$ one has

$$Z_p(f) \subseteq b_{\alpha} p^{1/\alpha} Z_{\alpha}(f).$$

or, equivalently, if for every $\theta \in S^{n-1}$ and t > 0,

$$\mu\left(\left\{x\in\mathbb{R}^n:|\langle x,\theta\rangle|\geqslant t\left(\int_{\mathbb{R}^n}|\langle x,\theta\rangle|^\alpha f(x)dx\right)^{1/\alpha}\right\}\right)\leqslant 2\exp\left(-\frac{t}{b_a}\right)^\alpha.$$

For $-n we define the quantities <math>I_p(f)$ as

$$I_p(f) := \left(\int_{\mathbb{R}^n} \|x\|_2^p f(x) dx \right)^{1/p}.$$
 (4)

We say that a function $f : \mathbb{R}^n \to [0, \infty]$ is log-concave if, for every $x, y \in \mathbb{R}^n$ and $\lambda \in (0, 1)$,

$$f(\lambda x + (1 - \lambda)y) \ge f(x)^{\lambda} f(y)^{1-\lambda}$$

Note that if f is log-concave and finite then, $I_p(f) < \infty$ for $-n and <math>\left(\int_{\mathbb{R}^n} |\langle x, \theta \rangle|^p f(x) dx\right)^{1/p} < \infty$ for p > 0. It is well known that the level sets of a log-concave function are convex sets.

It is well known that the level sets of a log-concave function are convex sets. Also, if $K \subseteq \mathbb{R}^n$ is a convex body, the Brunn-Minkowski inequality implies that the measure μ with $d\mu := \mathbf{1}_{\frac{K}{|K|^{1/n}}}(x)dx$ is a log-concave probability measure in \mathbb{R}^n .

We refer to the books [31], [23] and [28] for basic facts from the Brunn-Minkowski theory and the asymptotic theory of finite dimensional normed spaces.

3 Keith Ball's Bodies

K. Ball introduced a way to "pass" from a log-concave function to a convex body (see [1]). In this section we focus on the interaction between K. Ball's bodies $K_p(f)$ of some function f and the L_q -centroid bodies $Z_q(f)$ of this function.

Let f be an integrable function in \mathbb{R}^n and let p > 0. We define a set $K_p(f)$ by

$$K_p(f) := \left\{ x \in \mathbb{R}^n : p \int_0^\infty f(rx) r^{p-1} dr \ge f(0) \right\}.$$
 (5)

 $K_p(f)$ is a star shaped body and we can write

$$\|x\|_{K_p(f)} := \left(\frac{p}{f(0)} \int_0^\infty f(rx) r^{p-1} dr\right)^{-1/p}.$$
 (6)

Indeed, for any $\lambda > 0$ and $x \in \mathbb{R}^n$ we have

$$\|\lambda x\|_{K_p(f)}^{-p} = \frac{p}{f(0)} \int_0^\infty f(r\lambda x) r^{p-1} dr = \frac{p}{\lambda^p f(0)} \int_0^\infty f(rx) r^{p-1} dr = \frac{1}{\lambda^p} \|x\|_{K_p(f)}^{-p}.$$

Note that if f is even, then $K_p(f)$ is symmetric for all p > 0.

Integrating in polar coordinates we see that, for any $\theta \in S^{n-1}$,

$$\begin{split} \int_{K_{n+1}(f)} \langle x, \theta \rangle dx &= n\omega_n \int_{S^{n-1}} \langle \phi, \theta \rangle \int_0^{1/\|\phi\|_{K_{n+1}}(f)} r^n dr d\sigma(\phi) \\ &= \frac{n\omega_n}{f(0)} \int_{S^{n-1}} \langle \phi, \theta \rangle \int_0^\infty r^n f(r\theta) dr d\sigma(\phi) \\ &= \frac{1}{f(0)} \int_{\mathbb{R}^n} \langle x, \theta \rangle f(x) dx. \end{split}$$

So, if f has center of mass at the origin then $K_{n+1}(f)$ has also center of mass at the origin.

The same argument shows that, for every p > 0 and $\theta \in S^{n-1}$,

$$\begin{split} \int_{K_{n+p}(f)} |\langle x,\theta\rangle|^p dx &= n\omega_n \int_{S^{n-1}} |\langle \phi,\theta\rangle|^p \int_0^{1/||\phi||_{K_{n+p}}(f)} r^{n+p-1} dr d\sigma(\phi) \\ &= \frac{n\omega_n}{f(0)} \int_{S^{n-1}} |\langle \phi,\theta\rangle|^p \int_0^\infty r^{n+p-1} f(r\theta) dr d\sigma(\phi) \\ &= \frac{1}{f(0)} \int_{\mathbb{R}^n} |\langle x,\theta\rangle|^p f(x) dx. \end{split}$$

We also have

$$\int_{K_{n+p}(f)} |\langle x, \theta \rangle|^p dx = |K_{n+p}|^{1+\frac{p}{n}} \int_{\widetilde{K_{n+p}(f)}} |\langle x, \theta \rangle|^p dx.$$

So, we conclude that

$$Z_p(\widetilde{K_{n+p}(f)})|K_{n+p}(f)|^{\frac{1}{p}+\frac{1}{n}}f(0)^{1/p} = Z_p(f).$$
(7)

Let V be a star-shaped body in \mathbb{R}^n and let $||x||_V$ be the gauge function of V. Working in the same manner we see that for -n ,

$$\begin{split} \int_{K_{n+p}(f)} \|x\|_{V}^{p} dx &= n\omega_{n} \int_{S^{n-1}} \|\phi\|_{V}^{p} \int_{0}^{1/\|\phi\|_{K_{n+p}}(f)} r^{n+p-1} dr d\sigma(\phi) \\ &= \frac{n\omega_{n}}{f(0)} \int_{S^{n-1}} \|\phi\|_{V}^{p} \int_{0}^{\infty} r^{n+p-1} f(r\theta) dr d\sigma(\phi) \\ &= \frac{1}{f(0)} \int_{\mathbb{R}^{n}} \|x\|_{V}^{p} f(x) dx. \end{split}$$

Setting $V = B_2^n$ we get

$$\widetilde{I_p(K_{n+p}(f))}|K_{n+p}(f)|^{\frac{1}{p}+\frac{1}{n}}f(0)^{1/p} = I_p(f).$$
(8)

The family of bodies K_p was introduced by K. Ball in [1], where the following theorem was proved:

Theorem 3.1. If f is a log-concave function then $K_p(f)$ is a convex set for all p > 0.

We will use the following standard lemma:

Lemma 3.2. Let $f : [0, \infty) \to [0, \infty)$ be a log-concave function. Then, for all 1 we have

$$\left(\frac{p}{\|f\|_{\infty}}\int_0^\infty t^{p-1}f(t)dt\right)^{1/p} \leqslant \left(\frac{q}{\|f\|_{\infty}}\int_0^\infty t^{q-1}f(t)dt\right)^{1/q} \tag{9}$$

and

$$\left(\frac{q}{\Gamma(q+1)f(0)}\int_0^\infty t^{q-1}f(t)dt\right)^{1/q} \le \left(\frac{p}{\Gamma(p+1)f(0)}\int_0^\infty t^{p-1}f(t)dt\right)^{1/p}.$$
 (10)

Comment. The proof of both facts is well-known to specialists and can be found in [21]. The first claim can be derived from Lemma 2.1 in [21, page 76], whereas the second claim can be derived from Corollary 2.7 in [21, page 81]. Both facts are also corollaries of a result of Borell (see [5]).

If f is log-concave and even, then $||f||_{\infty} = f(0)$. If f is log-concave and has center of mass at the origin then the quantities $||f||_{\infty}$ and f(0) are comparable. More precisely, we have the following theorem of M. Fradelizi (see [8]).

Theorem 3.3. Let $f : \mathbb{R}^n \to [0, \infty]$ be a log-concave function with center of mass at the origin. Then,

$$\|f\|_{\infty} \leqslant e^n f(0). \tag{11}$$

Using (9), (10) and (5) we see that if f is log-concave then

$$\|x\|_{K_p(f)} \leqslant \frac{\Gamma(q+1)^{1/q}}{\Gamma(p+1)^{1/p}} \|x\|_{K_q(f)}$$
(12)

and

$$\|x\|_{K_q(f)} \leqslant \left(\frac{\|f\|_{\infty}}{f(0)}\right)^{\frac{1}{p} - \frac{1}{q}} \|x\|_{K_p(f)}.$$
(13)

Moreover, if f has center of mass at the origin, then (13) becomes

$$\|x\|_{K_q(f)} \leqslant e^{\frac{n}{p} - \frac{n}{q}} \|x\|_{K_p(f)}.$$
(14)

So, if f is log-concave and has center of mass at the origin, we get the following volumetric estimates for 1 :

$$e^{\frac{n^2}{q} - \frac{n^2}{p}} |K_p(f)| \leq |K_q(f)| \leq \left(\frac{\Gamma(q+1)^{1/q}}{\Gamma(p+1)^{1/p}}\right)^n |K_p(f)|.$$
(15)

Once again, integrating in polar coordinates we get

$$|K_n(f)| = \frac{1}{f(0)} \int_{\mathbb{R}^n} f(x) dx.$$
 (16)

So, if f is a log-concave function with center of mass at the origin and $\int_{\mathbb{R}^n} f(x) dx = 1$ then, combining (16) and (15) we get that, for p > 0,

$$\frac{e^{-\frac{np}{n+p}}}{f(0)} \le |K_{n+p}(f)| \le ((n+p)!)^{\frac{n}{n+p}} \frac{1}{n!f(0)},$$

and hence,

$$\frac{1}{e} \leqslant f(0)^{\frac{1}{n} + \frac{1}{p}} |K_{n+p}(f)|^{\frac{1}{n} + \frac{1}{p}} \leqslant \frac{((n+p)!)^{1/p}}{(n!)^{\frac{n+p}{np}}}.$$

Using the bounds

$$\frac{((n+p)!)^{1/p}}{(n!)^{\frac{n+p}{np}}} \leqslant (n+p)\frac{(n!)^{1/p}}{(n!)^{\frac{n+p}{np}}} = \frac{n+p}{(n!)^{1/n}} \leqslant e\frac{n+p}{n},$$

we conclude that

$$\frac{1}{e} \leqslant f(0)^{\frac{1}{n} + \frac{1}{p}} |K_{n+p}(f)|^{\frac{1}{n} + \frac{1}{p}} \leqslant e^{\frac{n+p}{n}}.$$
(17)

Working in the same way for -(n-1) , we get

$$e^{-\frac{np}{n-p}}|K_{n-p}(f)| \leq \frac{1}{f(0)} \leq \frac{n!}{((n-p)!)^{\frac{n}{n-p}}}|K_{n-p}(f)|$$

and hence,

$$\frac{1}{e} \leqslant f(0)^{\frac{1}{n} - \frac{1}{p}} |K_{n-p}(f)|^{\frac{1}{n} - \frac{1}{p}} \leqslant \frac{((n!))^{\frac{n-p}{np}}}{((n-p)!)^{1/p}}.$$

Using the bounds

$$\frac{((n!))^{\frac{n-p}{np}}}{((n-p)!)^{1/p}} \leqslant n^{\frac{n-p}{n}} \frac{((n-p)!)^{\frac{n-p}{np}}}{((n-p)!)^{1/p}} \leqslant e \frac{n}{n-p},$$

we conclude that

$$\frac{1}{e} \leqslant f(0)^{\frac{1}{n} - \frac{1}{p}} |K_{n-p}(f)|^{\frac{1}{n} - \frac{1}{p}} \leqslant e \frac{n}{n-p}.$$
(18)

So, combining (17), (18) and (7), (8) we get the following:

Proposition 3.4. Let $f : \mathbb{R}^n \to [0,\infty]$ be a log-concave function with center of mass at the origin and $\int_{\mathbb{R}^n} f(x) dx = 1$. Then, for $p \ge 0$ one has

$$\frac{1}{e} Z_p(\widetilde{K_{n+p}(f)}) \subseteq f(0)^{1/n} Z_p(f) \subseteq e \frac{n+p}{n} Z_p(\widetilde{K_{n+p}(f)}).$$
(19)

Moreover, for -(n-1) ,

$$\frac{1}{e}I_p(\widetilde{K_{n+p}(f)}) \leqslant f(0)^{1/n}I_p(f) \leqslant e\frac{n+p}{n}I_p(\widetilde{K_{n+p}(f)}).$$

$$\tag{20}$$

Note that if f is even then the constant on the left hand side in the previous two inclusions can be chosen to be 1 instead of $\frac{1}{e}$.

Working in the same spirit we can also compare the symmetric convex bodies $Z_q(\widetilde{K_{n+r_1}(f)})$ and $Z_q(\widetilde{K_{n+r_2}(f)})$ for $-(n-1) < r_1 \leq r_2 \leq \infty$ and $q \geq 1$. Indeed, for every $\theta \in S^{n-1}$ we have

$$\begin{split} \stackrel{h^{q}}{\underset{Z_{q}(K_{n+r_{1}}(f))}{\overset{(\theta)}{\underset{Z_{q}(K_{n+r_{2}}(f))}{\overset{(\theta)}{\underset{Z_{q}(K_{n+r_{2}}(f))}{\overset{(\theta)}{\underset{Z_{q}(K_{n+r_{2}}(f))}{\overset{(\theta)}{\underset{Z_{q}(K_{n+r_{2}}(f))}{\overset{(\theta)}{\underset{Z_{q}(K_{n+r_{2}}(f))}{\overset{(\theta)}{\underset{Z_{q}(K_{n+r_{2}}(f))}{\overset{(\theta)}{\underset{Z_{n+r_{1}}}}}} = \left(\frac{|K_{n+r_{1}}|}{|K_{n+r_{1}}|}\right)^{1+\frac{q}{n}} \frac{\frac{n\omega_{n}}{n+q} \int_{S^{n-1}} |\langle \phi, \theta \rangle|^{q} \|\phi\|_{K_{n+r_{1}}}^{-(n+q)} d\sigma(\phi)}{\frac{n\omega_{n}}{n+q} \int_{S^{n-1}} |\langle \phi, \theta \rangle|^{q} \|\phi\|_{K_{n+r_{2}}}^{-(n+q)} d\sigma(\phi)}. \end{split}$$

Using (13) and (14) we get

$$\frac{(\Gamma(n+r_1))^{\frac{n+q}{n+r_1}}}{(\Gamma(n+r_2))^{\frac{n+q}{n+r_2}}} \leqslant \frac{\|\phi\|_{K_{n+r_1}(f)}^{-(n+q)}}{\|\phi\|_{K_{n+r_2}(f)}^{-(n+q)}} \leqslant e^{n\frac{(r_2-r_1)(n+q)}{(n+r_1)(n+r_2)}}.$$

Also, (15) implies that

$$e^{-n^2 \frac{r_2 - r_1}{(n+r_1)(n+r_2)}} \leqslant \frac{|K_{n+r_2}|}{|K_{n+r_1}|} \leqslant \frac{(\Gamma(n+r_2))^{\frac{n}{n+r_2}}}{(\Gamma(n+r_1))^{\frac{n}{n+r_1}}}$$

So,

$$\begin{split} e^{-\frac{n(r_2-r_1)(n+q)}{q(n+r_1)(n+r_2)}} \frac{(\Gamma(n+r_1))^{\frac{n+q}{q(n+r_1)}}}{(\Gamma(n+r_2))^{\frac{n+q}{q(n+r_2)}}} &\leqslant \quad \frac{h_{Z_q(\widetilde{K_{n+r_1}(f)})}(\theta)}{h_{Z_q(\widetilde{K_{n+r_2}(f)})}(\theta)} \\ &\leqslant \quad e^{\frac{n(r_2-r_1)(n+q)}{q(n+r_1)(n+r_2)}} \frac{(\Gamma(n+r_2))^{\frac{n+q}{q(n+r_1)}}}{(\Gamma(n+r_1))^{\frac{n+q}{q(n+r_1)}}}. \end{split}$$

For $n \in \mathbb{N}$, q > 0 and $-n < r_1 \leq r_2 \leq \infty$ we define

$$A_{n,q,r_1,r_2} := e^{\frac{n(r_2-r_1)(n+q)}{q(n+r_1)(n+r_2)}} \frac{(\Gamma(n+r_2))^{\frac{n+q}{q(n+r_2)}}}{(\Gamma(n+r_1))^{\frac{n+q}{q(n+r_1)}}}.$$
(21)

So, we have shown that if f is a log-concave function in \mathbb{R}^n with center of mass at the origin, then for every $q \ge 1$, for every $-(n-1) < r_1 \le r_2 \le \infty$ and for all $\theta \in S^{n-1}$, one has

$$A_{q,r_1,r_2,n}^{-1} \leqslant \frac{h_{Z_q(\widetilde{K_{n+r_1}(f)})}(\theta)}{h_{Z_q(\widetilde{K_{n+r_2}(f)})}(\theta)} \leqslant A_{q,r_1,r_2,n},$$
(22)

or equivalently

$$A_{q,r_1,r_2,n}^{-1} Z_q(\widetilde{K_{n+r_2}(f)}) \subseteq Z_q(\widetilde{K_{n+r_1}(f)}) \subseteq A_{q,r_1,r_2,n} Z_q(\widetilde{K_{n+r_2}(f)}).$$
(23)

We are interested in the case where $r_2 = q$ and $r_1 = 1$ or $r_2 = 2$. We have that

$$\begin{aligned} A_{n,q,1,q} &= e^{\frac{n(q-1)}{q(n+1)}} \frac{(\Gamma(n+q))^{\frac{1}{q}}}{(\Gamma(n+1))^{\frac{n+q}{q(n+1)}}} \\ &= \left(\frac{e^{\frac{n(q-1)}{n+1}}(n+1)\dots(n+q-1)}{(n!)^{\frac{q-1}{n+1}}}\right)^{\frac{1}{q}} \\ &\leqslant \left(e^{2\frac{n(q-1)}{n+1}}\frac{(n+q-1)^{q-1}}{n^{q-1}}\right)^{\frac{1}{q}} \\ &\leqslant e^{2}\frac{n+q}{n}. \end{aligned}$$

A similar computation shows that $A_{n,q,2,q} \leq e^{2} \frac{n+q}{n}$. So, we get that that for r = 1 or r = 2,

$$\frac{n}{e^2(n+q)}Z_q(\widetilde{K_{n+q}(f)}) \subseteq Z_q(\widetilde{K_{n+r}(f)}) \subseteq e^2\frac{n+q}{n}Z_q(\widetilde{K_{n+q}(f)}).$$
(24)

Then, for $q \leq n$, using (19), (23) we get the following.

Proposition 3.5. Let $f : \mathbb{R}^n \to [0, \infty)$ be a log-concave function with center of mass at the origin and $\int_{\mathbb{R}^n} f(x) dx = 1$. Then, for every $1 \leq q \leq n$, one has

$$c_1 f(0)^{1/n} Z_q(f) \subseteq Z_q(\widetilde{K_{n+1}(f)}) \subseteq c_2 f(0)^{1/n} Z_q(f)$$
 (25)

and

$$c_3 f(0)^{1/n} Z_q(f) \subseteq Z_q(\widetilde{K_{n+2}(f)}) \subseteq c_4 f(0)^{1/n} Z_q(f),$$
 (26)

where $c_1, c_2, c_3, c_4 > 0$ are universal constants.

We will also use the following:

Lemma 3.6. Let K be a convex body in \mathbb{R}^n with volume one and center of mass at the origin. Then, for every $p \ge n$,

$$Z_p(K) \supseteq c_1 \operatorname{co}\{K, -K\}$$
(27)

and

$$c_1 \leqslant |Z_p(K)|^{1/n} \leqslant c_2 \tag{28}$$

where $c_1, c_2 > 0$ are universal constants.

Proof. Under our assumptions, one can prove that for every $\theta \in S^{n-1}$,

$$h_{Z_p(K)}(\theta) \ge \left(\frac{\Gamma(p+1)\Gamma(n)}{2e\Gamma(n+p+1)}\right)^{1/p} \max\{h_K(\theta), h_K(-\theta)\}.$$

For a proof of this well-known fact see [25]. It follows that if $p \ge n$ then $h_{Z_p(K)} \ge c_1 \max\{h_K(\theta), h_K(-\theta)\}$, which proves (3.6).

This in turn means that $|Z_p(K)|^{1/n} \ge c_1 |\operatorname{co}\{K, -K\}|^{1/n} \ge c_1 |K| \ge c_1$. Taking into account the fact that $Z_p(K) \subseteq \operatorname{co}\{K, -K\}$ and using an inequality due to Rogers and Shephard (see [30]) we readily see that $|\operatorname{co}\{K, -K\}| \le 2^n |K|$. This proves (28).

Recall that if f has center of mass at the origin then $K_{n+1}(f)$ has also its center of mass at the origin. So, combining the previous Lemma with (25) we get the following:

Proposition 3.7. Let $f : \mathbb{R}^n \to [0, \infty)$ be a log-concave function with center of mass at the origin and $\int_{\mathbb{R}^n} f(x) dx = 1$. Then,

$$\frac{c_1}{f(0)^{1/n}} \leqslant |Z_n(f)|^{1/n} \leqslant \frac{c_2}{f(0)^{1/n}},\tag{29}$$

where $c_1, c_2 > 0$ are universal constants.

4 Marginals and Projections

Let $f : \mathbb{R}^n \to [0, \infty)$ be an integrable function. Let $1 \leq k < n$ be an integer and let $F \in G_{n,k}$. We define the marginal $\pi_F(f) : F \to \mathbb{R}_+$ of f with respect to F by

$$\pi_F(f)(x) := \int_{x+F^\perp} f(y)dy.$$
(30)

Note that, by Fubini's theorem,

$$\int_{F} \pi_{F}(f)(x)dx = \int_{\mathbb{R}^{n}} f(x)dx$$
(31)

and, for every $\theta \in S_F$,

$$\int_{F} \langle x, \theta \rangle \pi_{F}(f)(x) dx = \int_{\mathbb{R}^{n}} \langle x, \theta \rangle f(x) dx.$$
(32)

In particular, if f has center of mass at the origin then for every $F \in G_{n,k}$, $\pi_F(f)$ has the same property.

The same argument gives that, for every p > 0 and $\theta \in S_F$,

$$\int_{\mathbb{R}^n} |\langle x, \theta \rangle|^p f(x) dx = \int_F |\langle x, \theta \rangle|^p \pi_F(f)(x) dx$$

and, for every -k ,

$$\int_{\mathbb{R}^n} \|P_F x\|_2^p f(x) dx = \int_F \|x\|_2^p \pi_F(f)(x) dx.$$

We will use the notation

$$I_p(f,F) := \left(\int_{\mathbb{R}^n} \|P_F x\|_2^p f(x) dx \right)^{1/p}.$$

So, we have the following:

Proposition 4.1. Let $f : \mathbb{R}^n \to [0, \infty)$ be an integrable function with $\int_{\mathbb{R}^n} f(x) dx = 1$. Then, for $1 \leq k \leq n$, $F \in G_{n,k}$ and p > 0, one has

$$P_F(Z_p(f)) = Z_p(\pi_F(f)).$$
(33)

Also, for any -k ,

$$I_p(f,F) = I_p(\pi_F(f)).$$
 (34)

Let f be a log-concave function with center of mass at the origin and $\int_{\mathbb{R}^n} f(x)dx = 1$. Then, for every $F \in G_{n,k}$, the same holds true for $\pi_F(f)$. So, we may apply Proposition 2.7 to get

$$\frac{c_1}{\pi_F(f)(0)^{1/k}} \leqslant |Z_k(\pi_F(f))|^{1/k} \leqslant \frac{c_2}{\pi_F(f)(0)^{1/k}}.$$

This last fact, combined with (33), proves the following.

Proposition 4.2. Let f be a log-concave function with center of mass at the origin and $\int_{\mathbb{R}^n} f(x) dx = 1$. Then, for any $1 \leq k < n$ and $F \in G_{n,k}$, one has

$$c_1 \leqslant \pi_F(f)(0)^{1/k} |P_F Z_p(f)|^{1/k} \leqslant c_2,$$
(35)

where $c_1, c_2 > 0$ are universal constants.

Consider the special case where K is a convex body of volume 1 and has center of mass at the origin and $f := \mathbf{1}_K$. Observe that $\pi_F(f)(0) = |K \cap F^{\perp}|$. Then, the previous proposition can be viewed as an " L_q -version" of the following inequality due to Rogers-Shephard [29] (see [32] or [22] for the lower bound).

Theorem 4.3. Let K be a convex body of volume 1 in \mathbb{R}^n . Let $1 \leq k \leq n$ and let $F \in G_{n,k}$. Then,

$$|P_F(K)||K \cap F^{\perp}| \leq \binom{n}{k}.$$

If K has center of mass at the origin, then

$$1 \leq |P_F(K)|| K \cap F^{\perp}|.$$

The term "Rogers-Shephard inequality" is usually used for the upper bound. A more general inequality can be easily obtained by the following formula for mixed volumes, which is due to Fedotov (see [4] or [31]): Let $F \in G_{n,k}$, let K_1, \ldots, K_k be convex bodies in \mathbb{R}^n and let L_i, \ldots, L_{n-k} be compact convex subsets of F^{\perp} . Then,

$$\binom{n}{k}V(K_1, \dots, K_k, L_1, \dots, L_{n-k}) = V(P_F K_1, \dots, P_F K_k)V(L_1, \dots, L_{n-k}).$$
 (36)

In the special case where $L_1 = L_{n-k} = K \cap F^{\perp}$, (36) implies that

$$\binom{n}{k}V(K_1,\ldots,K_k,K\cap F^{\perp}\ldots,K\cap F^{\perp})=V(P_FK_1,\ldots,P_FK_k)|K\cap F^{\perp}|.$$

The Rogers-Shephard inequality follows if we take $K_1 = K_k = K$ and use the monotonicity property of mixed volumes.

Note that one can rewrite the inequality in the following form:

$$1 \leqslant \left(|P_F(K)| |K \cap F^{\perp}| \right)^{1/k} \leqslant e \frac{n}{k}.$$

In the special case where K is an ellipsoid of volume 1 one actually has

$$c_1\sqrt{\frac{n}{k}} \leqslant \left(|P_F(K)||K \cap F^{\perp}|\right)^{1/k} \leqslant c_2\sqrt{\frac{n}{k}},$$

where $c_1, c_2 > 0$ are universal constants.

The following direct consequence of Proposition 4.2 can be viewed as an " L_q version of the Rogers-Shephard inequality":

Theorem 4.4. Let K be a convex body in \mathbb{R}^n with center of mass at the origin and volume 1. Then, for every $F \in G_{n,k}$ one has

$$c_1 \leq |K \cap F^{\perp}|^{1/k} |P_F(Z_k(K))|^{1/k} \leq c_2,$$
(37)

where $c_1, c_2 > 0$ are universal constants.

The inequality of Theorem 4.4 is sharp up to a universal constant. A disadvantage is that the constants are not optimal (in contrast, the equality cases in the classical Rogers-Shephard inequality are known).

The L_q -version of the Rogers-Shephard inequality played an important role in [27]. In that paper, our approach was based on the bodies $B_p(K, F)$ which had appeared already in the classical paper of Milman and Pajor [21]. Our approach in the present paper is a little more general. We will recall the definition in order to provide a unified setting for our results.

Let us first recall the definition of isotropicity for convex bodies: Let K be a convex body in \mathbb{R}^n with center of mass at the origin and volume 1. We define the isotropic constant of K as follows:

$$L_K := \left(\frac{|Z_2(K)|}{|D_n|}\right)^{1/n}.$$

We will say that K is isotropic if $Z_2(K) = L_K D_n$.

Next, let K be a convex body of volume 1 in \mathbb{R}^n , let $1 \leq k < n, F \in G_{n,k}$ and p > 0. We define a convex body $B_p(K, F)$ in F by

$$B_p(K,F) := K_{p+1}(\pi_F((\mathbf{1}_K))).$$

Then, we have the following:

Theorem 4.5. Let K be a convex body of volume 1 in \mathbb{R}^n and let $1 \leq k < n$, $F \in G_{n,k}$ and p > 0. Then,

(i) If K has center of mass at the origin, then $B_k(K, F)$ has also center of mass at the origin.

(ii) If K is symmetric, then $B_p(K, F)$ is also symmetric. Moreover, if K is symmetric and isotropic, then $\widetilde{B_{k+1}(K, F)}$ is also isotropic.

(iii) If K has center of mass at the origin then, for any $q \leq k$ we have

$$Z_q(\widetilde{B_{k+1}}(K,F)) \simeq |K \cap F^{\perp}|^{\frac{1}{k}} P_F(Z_q(K)) \simeq Z_q(\widetilde{B_k}(K,F)).$$

(iv) If K is isotropic, then

$$|K \cap F^{\perp}| \simeq \frac{L_{\widetilde{B_{k+1}}(K,F)}}{L_K}.$$

Moreover, if K has center of mass at the origin, then $L_{\widetilde{B_{k+1}(K_F)}} \simeq L_{\widetilde{B_k}(K,F)}$.

Proof. (i) Recall that if $\mathbf{1}_K$ has center of mass at the origin, then $\pi_F(\mathbf{1}_K)$ has center of mass at the origin. This implies that $K_{k+1}(\pi_F(\mathbf{1}_K))$ has center of mass at the origin.

(ii) Since $\mathbf{1}_K$ is an even function, the same is true for $\pi_F(\mathbf{1}_K)$. This implies that $K_p(\pi_F(\mathbf{1}_K))$ is symmetric. We also have that if K is isotropic then, for every $F \in G_{n,k}, L_K B_F = P_F Z_2(\mathbf{1}_K) = Z_2(\pi_F(\mathbf{1}_K))$, where we have also used (33). Moreover, (7) implies that if $Z_2(\pi_F(\mathbf{1}_K))$ is homothetic to B_2^n then the same holds true for $Z_2(K_{k+2}(\pi_F(\mathbf{1}_K)))$. So, if K is also symmetric, then $\widetilde{B_{k+1}}(K, F)$ is isotropic. (iii) Note that $|K \cap F^{\perp}| = \pi_F(\mathbf{1}_K)(0)$. Using (25) and (33) we get

$$Z_q\left((\widetilde{K_{k+1}}(\pi_F((\mathbf{1}_K))))\right) \simeq \pi_F(\mathbf{1}_K)(0)^{1/k} Z_q(\pi_F(\mathbf{1}_K)) \simeq |K \cap F^{\perp}|^{1/k} P_F(Z_q(\mathbf{1}_K)).$$

We work similarly for $\widetilde{K_{k+2}}(\pi_F(\mathbf{1}_K))$, this time using (26) instead of (25). (iv) It follows immediately from (ii) and (iii).

Statement (iv) in the previous theorem can be found explicitly in [21]. Note that the body $B_p(K, F)$ that we have defined here is homothetic to the one defined in [21] or [27]. On the other hand, the assertions of the previous theorem are independent of homothety.

Let $f : \mathbb{R}^n \to R_+$ and $y \in \mathbb{R}^n$. Then, for every $F \in G_{n,k}$,

$$\begin{aligned} \pi_F(f_y)(x) &= \int_{x+F^{\perp}} f_y(z) dz = \int_{x+F^{\perp}} f(z+P_F y+P_{F^{\perp}} y) dz \\ &= \int_{x+F^{\perp}} f(z+P_F y) dz = \int_{x+P_F y+F^{\perp}} f(z) dz = \pi_F(f)(x+P_F y). \end{aligned}$$

In particular, if $f : \mathbb{R}^n \to R_+$ is a log-concave function with center of mass at the origin and if $y \in \mathbb{R}^n$, using Theorem 2.3 we get

$$\pi_F(f_y)(0) \le \|\pi_F(f)\|_{\infty} \le e^k \pi_F(f)(0).$$
 (38)

Also, for any integrable f and $1 \leq m < n$ we have that

$$\begin{split} \int_{G_{n,n-m}} \pi_F(f)(0) d\mu_f &= \int_{G_{n,m}} \pi_{F^{\perp}}(f)(0) d\mu(F) = \int_{G_{n,m}} \int_F f(z) dz d\mu(F) \\ &= \int_{G_{n,m}} m\omega_m \int_{S_F} \int_0^\infty r^{k-1} f(r\theta) dr d\sigma_F(\theta) d\mu(F) \\ &= \frac{m\omega_m}{n\omega_n} n\omega_n \int_{S^{n-1}} \int_0^\infty r^{k-1} f(r\theta) dr d\sigma(\theta) \\ &= \frac{m\omega_m}{n\omega_n} \int_{\mathbb{R}^n} \frac{f(x)}{\|x\|_2^{n-m}} dx = \frac{m\omega_m}{n\omega_n} I_{-(n-m)}^{-(n-m)}(f). \end{split}$$

Equivalently, we may write that, for every integer k < n,

$$I_{-k}(f) = c_{n,k} \left(\int_{G_{n,k}} \pi_F(f)(0) d\mu(F) \right)^{-1/k},$$
(39)

where $c_{n,k} = \left(\frac{(n-k)\omega_{n-k}}{n\omega_n}\right)^{1/k} \simeq \sqrt{n}$. Let $f : \mathbb{R}^n \to R_+$ be a log-concave function with center of mass at the origin and let $y \in \mathbb{R}^n$. Using (38) we get that, for every integer k < n,

$$\begin{split} I_{-k}(f_y) &= c_{n,k} \left(\int_{G_{n,k}} \pi_F(f_y)(0) d\mu(F) \right)^{-1/k} \geqslant \frac{c_{n,k}}{e} \left(\int_{G_{n,k}} \pi_F(f)(0) d\mu(F) \right)^{-1/k} \\ &= \frac{1}{e} I_{-k}(f). \end{split}$$

In summary:

Proposition 4.6. Let f be an integrable function on \mathbb{R}^n and let k < n be a positive integer. Then,

$$I_{-k}(f) = c_{n,k} \left(\int_{G_{n,k}} \pi_F(f)(0) d\mu(F) \right)^{-1/k},$$
(40)

where $c_{n,k} = \left(\frac{(n-k)\omega_{n-k}}{n\omega_n}\right)^{1/k} \simeq \sqrt{n}$. Moreover, if f is also log-concave and has center of mass at the origin then, for every $y \in \mathbb{R}^n$,

$$I_{-k}(f_y) \ge \frac{1}{e} I_{-k}(f). \tag{41}$$

The following argument is a variation of an argument of Milman and Pajor (see [21]). Let K be a subset of \mathbb{R}^n of volume 1. Let V be a star shaped body and write

 $||x||_V$ for the gauge function of V. Then, for every $-n \leq p \leq \infty$, $p \neq 0$, one has

$$\begin{split} \left(\int_{K} \|x\|_{V}^{p} dx\right)^{1/p} &= \left(\int_{K \cap \widetilde{V}} \|x\|_{V}^{p} dx + \int_{K \setminus \widetilde{V}} \|x\|_{V}^{p} dx\right)^{1/p} \\ &\geqslant \left(\int_{K \cap \widetilde{V}} \|x\|_{V}^{p} dx + \int_{\widetilde{V} \setminus K} \|x\|_{V}^{p} dx\right)^{1/p} \\ &= \left(\int_{\widetilde{V}} \|x\|_{V}^{p} dx\right)^{1/p} \\ &= \left(\frac{n}{n+p}\right)^{\frac{1}{p}} |V|^{-\frac{1}{n}}. \end{split}$$

If we choose $V = B_2^n$ we get:

Proposition 4.7. Let K be a compact set of volume 1 in \mathbb{R}^n . Then, if $-(n-1) \leq p \leq \infty$, $p \neq 0$,

$$I_p(K) \ge I_p(B_2^n) \simeq \sqrt{n}.$$
(42)

Note that for $-(n-1) \leq p \leq \infty$, $p \neq 0$, we have $I_p(\widetilde{B_2^n}) \simeq \sqrt{n}$. Let $f : \mathbb{R}^n \to B$, be a log-concave function with $\int_{\mathbb{R}^n} f(x) dx = 1$.

Let $f : \mathbb{R}^n \to R_+$ be a log-concave function with $\int_{\mathbb{R}^n} f(x) dx = 1$. Then, using (20) and (42) we see that

$$f(0)^{1/n}I_p(f) \ge \frac{1}{e}I_p(\widetilde{K_{n+p}(f)}) \ge \frac{1}{e}I_p(\widetilde{B_2^n}) \ge c\sqrt{n},$$

where c > 0 is a universal constant. So, we have proved the following proposition

Proposition 4.8. Let $f : \mathbb{R}^n \to R_+$ be a log-concave function with center of mass at the origin and $\int_{\mathbb{R}^n} f(x) dx = 1$. For every $y \in \mathbb{R}^n$,

$$I_{-k}(f_y) \geqslant \frac{c\sqrt{n}}{f(0)^{1/n}},\tag{43}$$

where c > 0 is a universal constant.

5 Constant behavior of moments

Let C be a symmetric convex body in \mathbb{R}^n and let $-\infty \leq p \leq \infty$, $p \neq 0$. We define

$$W_p(C) := \left(\int_{S^{n-1}} h_C(\theta) d\sigma(\theta) \right)^{1/p}.$$
(44)

Also, we denote by $k_*(C)$ the "Dvoretzky number" of C: roughly speaking, this is the maximum dimension such that a random projection of C is 4-Euclidean, i.e.

$$\frac{1}{2}W(C)B_F \subseteq P_FC \subseteq 2W(C)B_F.$$

A remarkable formula due to V. D. Milman (see [20]) states that the Dvoretzky number of C is determined from "global" parameters of C (see also [24]):

$$k_*(C) \simeq n \left(\frac{W(C)}{R(C)}\right)^2.$$
(45)

The following theorem was proved in [17]:

Theorem 5.1. Let C be a symmetric convex body in \mathbb{R}^n . Then,

- (i) If $1 \leq q \leq k_*(C)$ then $W(C) \leq W_q(C) \leq c_1 W(C)$.
- (ii) If $k_*(C) \leq q \leq n$ then $c_2\sqrt{q/n} R(C) \leq W_q(C) \leq c_3\sqrt{q/n} R(C)$. (iii) If $k_*(C) \geq n$ then $c_2 R(C) \leq W_q(C) \leq R(C)$.

In the statements above, $c_1, c_2 > 0$ are universal constants.

In particular, we see that we have almost constant behavior of the moments $w_q(C)$ until q becomes of the order of $k_*(C)$. The same phenomenon occurs also for negative moments: we have the following theorem (see [15] and [14]):

Theorem 5.2. Let C be a symmetric convex body. Then, for $p \leq c_1 k_*(C)$,

$$W_{-p}(C) \ge c_2 W(C)$$

where $c_1, c_2 > 0$ are universal constants.

Combining Theorems 5.1 and 5.2, and adjusting the constants, we get:

Proposition 5.3. Let C be a symmetric convex body in \mathbb{R}^n . Then, $W_p(C) \simeq W_{-p}(C)$ if and only if $p \leq k \simeq k_*(C)$.

Remark. To be more precise, Theorem 5.1 implies that if for some $\delta \ge 1$ one has that $W_{-p}(C) \ge \frac{1}{\delta}W_p(C)$ then $p \le c\delta^2 k_*(C)$, where c > 0 is an universal constant.

The Santaló inequality asserts that, for every symmetric convex body K in \mathbb{R}^n ,

$$|K||K^{\circ}| \leqslant \omega_n^2.$$

The reverse Santaló inequality proved by Bourgain and Milman (see [3]) asserts that

$$|K||K^{\circ}| \geqslant c^n \omega_n^2,$$

where c > 0 is a universal constant. Combining the two results we may write

$$c \leqslant \left(\frac{|K||K^{\circ}|}{|B_2^n|^2}\right)^{1/n} \leqslant 1, \tag{46}$$

where c > 0 is a universal constant.

Using (46) we can express negative moments of the support function of a convex body as an average of volumes of projections. Indeed, for $1 \leq k \leq n$ and any symmetric convex body C in \mathbb{R}^n ,

$$\begin{split} W_{-k}^{-1}(C) &= \left(\int_{S^{n-1}} \frac{1}{h_C^k(\theta)} d\sigma(\theta)\right)^{1/k} \\ &= \left(\frac{1}{\omega_k} \int_{G_{n,k}} \omega_k \int_{S_F} \frac{1}{\|\theta\|_{(P_FC)^\circ}^k} d\sigma(\theta) d\mu(F)\right)^{1/k} \\ &= \left(\int_{G_{n,k}} \frac{|(P_F(C))^\circ|}{|B_2^k|} d\mu(F)\right)^{1/k} \\ &\simeq \left(\int_{G_{n,k}} \frac{|B_2^k|}{|P_F(C)|} d\mu(F)\right)^{1/k}, \end{split}$$

and hence,

$$W_{-k}(C) \simeq \sqrt{k} \left(\int_{G_{n,k}} |P_F C|^{-1} d\mu(F) \right)^{-\frac{1}{k}}.$$
 (47)

Now, let $f : \mathbb{R}^n \to R_+$ be a log-concave function with center of mass at the origin and $\int_{\mathbb{R}^n} f(x) dx = 1$. Consider an integer k < n and let $F \in G_{n,k}$. Recall that (from 35)

$$\frac{1}{|P_F Z_k(f)|^{1/k}} \simeq \pi_F(f)(0)^{1/k}.$$

Then, (47) and (40) imply the following:

Proposition 5.4. Let $f : \mathbb{R}^n \to R_+$ be a log-concave function with center of mass at the origin and $\int_{\mathbb{R}^n} f(x) dx = 1$. For every integer k < n,

$$W_{-k}(Z_k(f)) \simeq \sqrt{k} \left(\int_{G_{n,k}} \pi_F(f)(0) d\mu(F) \right)^{-\frac{1}{k}}$$

$$\tag{48}$$

and

$$I_{-k}(f) \simeq \sqrt{\frac{n}{k}} W_{-k}(Z_k(f)). \tag{49}$$

We will use the following simple fact (see e.g. [25]): For any $x \in \mathbb{R}^n$ and any $p \ge 1$ one has

$$\left(\int_{S^{n-1}} |\langle x, \theta \rangle|^p d\sigma(\theta)\right)^{1/p} \simeq \sqrt{\frac{p}{n+p}} \|x\|_2.$$
(50)

So, if f is an integrable function in \mathbb{R}^n , by Fubini's theorem we have that for every $p \ge 1$,

$$W_p(Z_p(f)) = \left(\int_{S^{n-1}} \int_{\mathbb{R}^n} |\langle x, \theta \rangle|^p f(x) dx d\sigma(\theta) \right)^{1/p}$$

$$= \left(\int_{\mathbb{R}^n} \int_{S^{n-1}} |\langle x, \theta \rangle|^p d\sigma(\theta) f(x) dx \right)^{1/p}$$

$$\simeq \sqrt{\frac{p}{n+p}} \left(\int_{\mathbb{R}^n} ||x||_2^p f(x) dx \right)^{1/p}$$

$$\simeq \sqrt{\frac{p}{n+p}} I_p(f).$$

This proves the following.

Proposition 5.5. Let f be an integrable function on \mathbb{R}^n and let $p \ge 1$. Then,

$$W_p(Z_p(f)) \simeq \sqrt{\frac{p}{n+p}} I_p(f).$$
(51)

The formulae (51) and (49) lead us to the following definition (in the case of convex bodies it first appeared in [26]): Let f be an integrable function with $\int_{\mathbb{R}^n} f(x) dx = 1$ and $\delta > 0$. We define

$$q_*(f) := \max\{k \leqslant n : k_*(Z_k(f)) \geqslant k\},\tag{52}$$

and

$$q_*(f,\delta) := \max\{k \leqslant n : k_*(Z_k(f)) \geqslant \frac{k}{\delta^2}\}.$$

Combining (49) and (51) with Proposition 5.3 we get:

Theorem 5.6. Let $f : \mathbb{R}^n \to R_+$ be a log-concave function with center of mass at the origin and $\int_{\mathbb{R}^n} f(x) dx = 1$. For any integer k < n we have $I_{-k}(f) \simeq I_k(f)$ if and only if $k \leq q \simeq q_*(f)$.

In particular, from the previous theorem we see that for all $k \leq q_*(f)$ one has $I_k(f) \leq CI_2(f)$, where C > 0 is a universal constant. This was the main result of [27]. Moreover note that Theorem 5.6 implies Theorem 1.3.

Remark. To be more precise, if for some $\delta \ge 1$ and some integer k one has that $I_{-k}(f) \ge \frac{1}{\delta}I_k(f)$, then $k \le q_*(f, c\delta)$, where c > 0 is an universal constant.

The following bound for the quantity $q_*(f)$ was proved in [27]:

Proposition 5.7. Let f be an integrable function on \mathbb{R}^n with $\int_{\mathbb{R}^n} f(x) dx = 1$. Assume that f is ψ_{α} with constant b_{α} for some $\alpha \ge 1$. Then,

$$q_*(f) \ge \frac{c}{b_{\alpha}^{\alpha}} \left(k_*(Z_2(f))^{\frac{\alpha}{2}}\right),$$
 (53)

where c > 0 is a universal constant.

It is well known that there exists a universal constant C > 0 such that every log-concave function f is ψ_1 with constant C. Note that (33) implies that if f is a ψ_{α} function with constant b_{α} for some $\alpha \ge 1$, then the same is true for $\pi_F(f)$, for every $F \in G_{n,k}$.

We conclude this section with the following fact.

Proposition 5.8. Let f be an integrable function on \mathbb{R}^n with $\int_{\mathbb{R}^n} f(x)dx = 1$. Assume that f is ψ_{α} with constant b_{α} for some $\alpha \ge 1$. Then, for every $F \in G_{n,k}$,

$$q_*(\pi_F(f)) \ge \frac{c}{b_{\alpha}^{\alpha}} \left(k_*(Z_2(\pi_F(f)))^{\frac{\alpha}{2}}\right),$$
 (54)

where c > 0 is a universal constant.

6 Isotropicity

Let $f : \mathbb{R}^n \to \mathbb{R}_+$ be an integrable function with $\int_{\mathbb{R}^n} f(x) dx = 1$. We say that f is isotropic if f has center of mass at the origin and $Z_2(f) = B_2^n$. Equivalently if, for every $\theta \in S^{n-1}$,

$$\int_{\mathbb{R}^n} |\langle x, \theta \rangle|^2 f(x) dx = 1.$$
(55)

Note that if f is isotropic then $I_2(f) = \sqrt{n}$.

It is known that given any f one can find $T \in SL_n$ such that $f \circ T^{-1}$ is isotropic. Also, the isotropic condition (55) is known to be equivalent with the following:

$$\int_{\mathbb{R}^n} \langle x, Ax \rangle f(x) dx = \operatorname{tr}(A)$$
(56)

for every $n \times n$ matrix A. In particular, one has that, if f is isotropic then

$$\int_{\mathbb{R}^n} \|Ax\|_2^2 f(x) dx = \|A\|_{\mathrm{HS}}^2.$$
(57)

Let f be isotropic and let $T \in SL_n$. Then,

$$Z_2(f \circ T^{-1}) = T(Z_2(f)) = T(B_2^n).$$

Note that $W(T(B_2^n)) = \frac{\|T\|_{\text{HS}}}{\sqrt{n}}$ and $R(T(B_2^n)) = \|T\|_{\text{op}}$. So, using (45), we have that

$$k_*(Z_2(f \circ T^{-1}) \simeq \left(\frac{\|T\|_{\mathrm{HS}}}{\|T\|_{\mathrm{op}}}\right)^2.$$
 (58)

Also, if $F \in G_{n,k}$ then $Z_2(\pi_F(f \circ T^{-1})) = P_F(Z_2(f \circ T^{-1})) = P_F(T(B_2^n))$. Therefore,

$$k_{\star}(Z_2(\pi_F(f \circ T^{-1}))) \simeq \left(\frac{\|P_F T\|_{\mathrm{HS}}}{\|P_F T\|_{\mathrm{op}}}\right)^2.$$
 (59)

A major open question in Convex Geometry is the Hyperplane Conjecture: Let K be a convex body of volume 1, with center of mass at the origin. Then, there exists $\theta \in S^{n-1}$ such that

$$|K \cap \theta^{\perp}| \ge c,$$

where c > 0 is an universal constant.

An equivalent formulation of the problem is the following: There exists a universal constant C > 0 such that $L_K \leq C$ for every convex body K with center of mass at the origin.

It is well known (it also follows from Proposition 3.5) that the previous statement is equivalent to the following:

Hyperplane Conjecture: There exists a universal constant C > 0 such that, for every isotropic log-concave function f on \mathbb{R}^n ,

$$f(0)^{1/n} \leqslant C. \tag{60}$$

The best known bound is due to B. Klartag: $f(0)^{1/n} \leq Cn^{1/4}$ (see [11]). For more informations on isotropicity and the Hyperplane Conjecture we refer to [21] or [10].

7 Small ball probability

Let $\alpha \ge 1$ and let f be an isotropic log-concave function on \mathbb{R}^n , which is ψ_{α} with constant b_{α} .

Let $T \in SL_n$ and $y \in \mathbb{R}^n$. We set

$$m := \frac{c}{b_{\alpha}^{\alpha}} \left(\frac{\|T\|_{\mathrm{HS}}}{\|T\|_{\mathrm{op}}} \right)^{\alpha}.$$

We have chosen c > 0 such that $m \in \mathbb{N}$ and (see (58) and (54)),

$$m \leqslant \frac{C}{b_{\alpha}^{\alpha}} \left(\frac{\|T\|_{\mathrm{HS}}}{\|T\|_{\mathrm{op}}}\right)^{\alpha} \leqslant \frac{C_{1}}{b_{\alpha}^{\alpha}} \left(k_{*}(Z_{2}(f \circ T^{-1}))\right)^{\frac{\alpha}{2}} \leqslant q_{*}(f \circ T^{-1})$$

Note that m < n. Then, Theorem 5.6 implies that

$$I_{-m}(f \circ T^{-1}) \ge cI_2(f \circ T^{-1}).$$

Using (41), (57) we get

$$\begin{aligned} \int_{\mathbb{R}^n} \|Tx - y\|_2^{-m} f(x) dx &\leqslant e^m \int_{\mathbb{R}^n} \|x\|_2^{-m} f(T^{-1}x) dx \\ &= I_{-m}^{-m} (f \circ T^{-1}) \\ &\leqslant c_1^m I_2^{-m} (f \circ T^{-1}) \\ &= c_1^m \left(\int_{\mathbb{R}^n} \|Tx\|_2^2 f(x) dx \right)^{-\frac{m}{2}} \\ &= (c_1 \|T\|_{\mathrm{HS}})^{-m}. \end{aligned}$$

Then, from Markov's inequality we get that for every $\varepsilon \in (0, 1)$,

$$\mathbb{P}\left(\|Tx - y\|_{2} \leqslant \varepsilon c_{1}\|T\|_{\mathrm{HS}}\right) \leqslant \varepsilon^{m} = \varepsilon^{\frac{c}{b_{\alpha}^{\alpha}} \left(\frac{\|T\|_{\mathrm{HS}}}{\|T\|_{\mathrm{Op}}}\right)^{\alpha}}.$$
(61)

Given $S \in GL_n$, let $T := |\det S|^{-1/n}S$; then, $T \in SL_n$. Observe that (61) holds for every $y \in \mathbb{R}^n$ and is homogeneous in T. So we have the following:

Proposition 7.1. Let $\alpha \ge 1$ and let f be an isotropic log-concave function on \mathbb{R}^n , which is ψ_{α} with constant b_{α} . Let $S \in GL_n$ and $y \in \mathbb{R}^n$. Then,

$$\mathbb{P}\left(\|Sx - y\|_{2} \leqslant \varepsilon c_{1}\|S\|_{\mathrm{HS}}\right) \leqslant \varepsilon^{\frac{c}{b_{\alpha}^{c}}\left(\frac{\|S\|_{\mathrm{HS}}}{\|S\|_{\mathrm{op}}}\right)^{\alpha}}.$$
(62)

Now, let A be a non-zero $n \times n$ matrix. Let $1 \leq k := rmrank(A) < n$. There exist $F \in G_{n,k}$ (F := Im(A)) and $B_1 \in GL_n$ such that $A = (\det B_1)P_F(B)$, where $B = (\det B_1)^{-1}B_1 \in SL_n$. Let $m := \frac{c}{b_{\alpha}^{\alpha}} \left(\frac{\|A\|_{\text{HS}}}{\|A\|_{\text{op}}}\right)^{\alpha}$. We have chosen c > 0 so that $m \in \mathbb{N}$ and (see (59) and (54)),

$$m \leqslant \frac{C}{b_{\alpha}^{\alpha}} \left(\frac{\|P_F B\|_{\mathrm{HS}}}{\|P_F B\|_{\mathrm{op}}} \right)^{\alpha} \leqslant \frac{C_1}{b_{\alpha}^{\alpha}} \left(k_* (Z_2(\pi_F(f \circ B^{-1}))) \right)^{\frac{\alpha}{2}} \leqslant q_*(\pi_F(f \circ B^{-1})).$$

Note that m < k. Then, Theorem 5.6 implies that

$$I_{-m}(\pi_F(f \circ B^{-1})) \ge cI_2(\pi_F(f \circ B^{-1})).$$

Then, for every $y \in \mathbb{R}^n$ we have

$$\begin{split} \int_{\mathbb{R}^{n}} \|Ax - y\|_{2}^{-m} f(x) dx &\leq e^{m} \int_{\mathbb{R}^{n}} \|Ax\|_{2}^{-m} f(x) dx \\ &= \left(\frac{e}{\det B_{1}}\right)^{m} \int_{\mathbb{R}^{n}} \|P_{F}x\|_{2}^{-m} f(B^{-1}x) dx \\ &= \left(\frac{e}{\det B_{1}}\right)^{m} I_{-m}^{-m} (f \circ B^{-1}, F) \\ &= \left(\frac{e}{\det B_{1}}\right)^{m} I_{-m}^{-m} (\pi_{F}(f \circ B^{-1})) \\ &\leqslant \left(\frac{c_{1}}{\det B_{1}}\right)^{m} \left(I_{2}((\pi_{F}(f \circ B^{-1})))^{-m} \\ &= \left(\frac{c_{1}}{\det B_{1}}\right)^{m} \left(I_{2}(F \circ B^{-1}, F)\right)^{-m} \\ &= \left(\frac{c_{1}}{\det B_{1}}\right)^{m} \left(\int_{\mathbb{R}^{n}} \|P_{F}Bx\|_{2}^{2} f(x) dx\right)^{-\frac{m}{2}} \\ &= c_{1}^{m} \left(\int_{\mathbb{R}^{n}} \|Ax\|_{\mathrm{HS}}^{2} f(x) dx\right)^{-\frac{m}{2}} \\ &= c_{1}^{m} \|A\|_{\mathrm{HS}}^{-m}, \end{split}$$

where we have also used (34) and (57).

So, from Markov's inequality again, we get that for every $\varepsilon \in (0, 1)$,

$$\mathbb{P}\left(\|Ax - y\|_{2} \leqslant \varepsilon c_{1} \|A\|_{\mathrm{HS}}\right) \leqslant \varepsilon^{m} = \varepsilon^{\frac{c_{\alpha}}{b_{\alpha}} \left(\frac{\|A\|_{\mathrm{HS}}}{\|A\|_{\mathrm{op}}}\right)^{\alpha}}.$$
(63)

In summary:

Theorem 7.2. Let X be an isotropic log-concave random vector in \mathbb{R}^n which is ψ_{α} with constant b_{α} for some $\alpha \ge 1$. Let A be a non-zero $n \times n$ matrix, let $y \in \mathbb{R}^n$ and $\varepsilon \in (0, c_1)$. Then, one has

$$\mathbb{P}\left(\|Ax - y\|_{2} \leqslant \varepsilon \|A\|_{\mathrm{HS}}\right) \leqslant \varepsilon^{\frac{c_{2}}{b_{\alpha}^{\alpha}} \left(\frac{\|A\|_{\mathrm{HS}}}{\|A\|_{\mathrm{op}}}\right)^{\alpha}},\tag{64}$$

where $c_1, c_2 > 0$ are absolute constants.

In the special case where a = 2, the previous theorem implies Theorem 1.3:

Remark. Note that the dependence in Theorem 1.3 is better that the one in Theorem 1.1, although it is not clear if it is the right one.

Let A be a projection matrix and let F := Im(A) and $k = \text{rank}(A) = \dim(F)$. Note that $||A||_{\text{HS}} = \sqrt{k}$ and $||A||_{\text{op}} = 1$. Assume that the Hyperplane Conjecture is true. Then, by Proposition 4.7 we have that, for every $y \in \mathbb{R}^n$,

$$\int_{\mathbb{R}^n} \|Ax - y\|_2^{-(k-1)} f(x) dx \le \left(c \frac{\pi_F(f)(0)^{1/k}}{\sqrt{k}} \right)^{k-1} \le \left(\frac{c_1}{\sqrt{k}} \right)^{k-1}.$$

So, from Markov's inequality, we get that for every $\varepsilon \in (0, 1)$,

$$\mathbb{P}\left(\|Ax - y\|_2 \leqslant \varepsilon C \|A\|_{\mathrm{HS}}\right) \leqslant \varepsilon^{k-1}$$

This means that in this case we have no dependence on the ψ_{α} constant! In fact, the Hyperplane Conjecture is closely related to the question of the dependence in the ψ_{α} constant in Theorem 7.2. To fully reveal this connection we need different tools; we will present this connection elsewhere.

References

- K. M. Ball, Logarithmically concave functions and sections of convex sets in Rⁿ, Studia Math. 88 (1988), 69–84.
- [2] B. Fleury, O. Guédon and G. Paouris, A stability result for mean width of L_p centroid bodies, Advances in Mathematics, **214** (2007) 865–877.
- [3] J. Bourgain, V. D. Milman, New volume ratio properties for convex symmetric bodies in Rⁿ, Invent. Math. 88, no. 2, (1987), 319-340.
- [4] Y. D. Burago and V. A. Zalgaller, Geometric Inequalities, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin-New York (1988).

- [5] C. Borell, Complements of Lyapunov's inequality, Math. Ann. 205 (1973), 323-331.
- [6] D. Cordero-Erausquin, M. Fradelizi, B. Maurey, The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems, J. Funct. Anal., 214 (2004), no.2, 410–427.
- [7] R. Eldan and B. Klartag, Pointwise Estimates for Marginals of Convex Bodies, J. Funct. Anal., 254, Issue 8, (2008), 2275–2293.
- [8] M. Fradelizi, Sections of convex bodies through their centroid, Arch. Math. 69 (1997), 515–522.
- [9] O. Guédon, Kahane-Khinchine type inequalities for negative exponent, Mathematika 46 (1999), 165–173.
- [10] A. Giannopoulos, Notes on isotropic convex bodies, Warsaw University Notes (2003).
- [11] B. Klartag, On convex perturbations with a bounded isotropic constant, Geom. and Funct. Anal. (GAFA) 16 (2006) 1274–1290.
- [12] B. Klartag, A central limit theorem for convex sets, Invent. Math. 168 (2007), 91–131.
- [13] B. Klartag, Power-law estimates for the central limit theorem for convex sets, J. Funct. Analysis 245 (2007), 284–310.
- [14] B. Klartag and R. Vershynin, Small ball probability and Dvoretzky Theorem, Israel J. Math. 157 (2007), no. 1, 193–207.
- [15] R. Latala, K. Oleszkiewicz, Small ball probability estimates in terms of width, Studia Math. 169 (2005), 305=-314.
- [16] R. Latala, P Mankiewicz, K Oleszkiewicz, N. Tomczak-Jaegermann, Banach-Mazur distances and projections on random subgaussian polytopes, Discrete & Computational Geometry 38, No1, (2007), 29–50.
- [17] A. Litvak, V. D. Milman and G. Schechtman, Averages of norms and quasi-norms, Math. Ann. **312** (1998), 95–124.
- [18] E. Lutwak and G. Zhang, Blaschke-Santaló inequalities, J. Differential Geom. 47 (1997), 1–16.
- [19] E. Lutwak, D. Yang and G. Zhang, L^p affine isoperimetric inequalities, J. Differential Geom. 56 (2000), 111–132.
- [20] V. D. Milman, A new proof of A. Dvoretzky's theorem in cross-sections of convex bodies, (Russian), Funkcional. Anal. i Prilozen. 5 (1971), no.4, 28–37.
- [21] V. D. Milman and A. Pajor, Isotropic positions and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space, GAFA Seminar 87-89, Springer Lecture Notes in Math. 1376 (1989), pp. 64–104.
- [22] V. D. Milman, A. Pajor, Entropy and Asymptotic Geometry of Non-Symmetric Convex Bodies, Advances in Mathematics 152, 2, (2000), 314–335.
- [23] V. D. Milman and G. Schechtman, Asymptotic Theory of Finite Dimensional Normed Spaces, Lecture Notes in Math. 1200 (1986), Springer, Berlin.
- [24] V. D. Milman and G. Schechtman, Global versus Local asymptotic theories of finitedimensional normed spaces, Duke Math. Journal 90 (1997), 73–93.

- [25] G. Paouris, Ψ_2 estimates for linear functionals on zonoids, Geom. Aspects of Funct. Analysis, Lecture Notes in Math. **1807** (2003), 211–222.
- [26] G. Paouris, On the Ψ_2 -behavior of linear functionals on isotropic convex bodies, Studia Math. **168** (2005), no. 3, 285–299.
- [27] G. Paouris, Concentration of mass on convex bodies, Geom. Funct. Anal. 16 (2006), 1021–1049.
- [28] G. Pisier, The Volume of Convex Bodies and Banach Space Geometry, Cambridge Tracts in Mathematics 94 (1989).
- [29] C. A. Rogers and G. C. Shephard, The difference body of a convex body, Arch. Math. 8 (1957), 220–233.
- [30] C. A. Rogers and G. C. Shephard, Convex bodies associated with a given convex body, J. London Soc. 33 (1958), 270–281.
- [31] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications 44, Cambridge University Press, Cambridge (1993).
- [32] J. Spingarn, An inequality for sections and projections of a convex set, Proc. Amer. Math. Soc. 118, 4, (1993), 1219–1224.

GRIGORIS PAOURIS DEPARTMENT OF MATHEMATICS TEXAS A & M UNIVERSITY COLLEGE STATION, TX 77843 U.S.A. *E-mail:* grigoris_paouris@yahoo.co.uk