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Abstract

We establish a small ball probability inequality for isotropic log-concave
probability measures: there exist absolute constants c1, c2 > 0 such that if X
is an isotropic log-concave random vector in Rn with ψ2 constant bounded
by b and if A is a non-zero n × n matrix, then for every ε ∈ (0, c1) and
y ∈ Rn,

P (‖Ax− y‖2 6 ε‖A‖HS) 6 ε

(
c2
b
‖A‖HS
‖A‖op

)2

,

where c1, c2 > 0 are absolute constants.

1 Introduction

Recently, there is an increasing interest in extending results for independent random
variables, which are known from probability theory, to the setting of log-concave
probability measures. A Central Limit Theorem for isotropic log-concave measures
was established by B. Klartag in [12] for these measures (see also [2] for an alterna-
tive proof and [13], [7] for related developments). A “large deviation inequality” for
isotropic log-concave measures was proved in [27]. In all these questions the main
effort is put in trying to replace the notion of independence by the “geometry” of
convex bodies, since a log-concave measure should be considered as the measure-
theoretic equivalent of a convex body. Most of these recent results make heavy use
of tools from the asymptotic theory of finite-dimensional normed spaces.

The purpose of this paper is to add a “small ball probability” estimate in this
setting. The motivation for us was a question of N. Tomczak-Jaegermann initiated
by results in [16]. In this paper the authors, motivated by questions on random
polytopes, proved the following “small ball probability” estimate.

Theorem 1.1 ([16]). Let A be a non-zero n × n matrix and let X = (ξ1, . . . , ξn)
be a random vector, where ξi are independent subgaussian random variables with
Var(ξi) > 1 and subgaussian constants bounded by β. Then, for any y ∈ Rn, one
has

P
(
‖AX − y‖2 6

‖A‖HS

2

)
6 2 exp

(
− c0
β4

(
‖A‖HS

‖A‖op

)2
)
,
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where c0 > 0 is a universal constant.

It is pointed out in [16] that, in the special case where the ξi’s are independent
standard Gaussian random variables, one can obtain the following stronger result.

Theorem 1.2 ([16]). Let A be a non-zero n×n matrix and let X = (ξ1, . . . , ξn) be a
random vector, where the ξi’s are independent standard Gaussian random variables.
Then, for any ε ∈ (0, c1) and any y ∈ Rn, one has

P (‖AX − y‖2 6 ε‖A‖HS) 6 ε

(
c2

‖A‖HS
‖A‖op

)2

,

where c1, c2 > 0 are universal constants.

The proof of Theorem 1.2 makes use of the affirmative answer to the B-
conjecture by Cordero-Erausquin, Fradelizi and Maurey (see [6]). The “B-Theorem”
has been already applied for small ball probability estimates in [15] and [14].

The main result of this paper extends the previously mentioned results to the
setting of log-concave probability measures, answering a question posed to us by
N. Tomczak-Jaegermann.

Theorem 1.3. Let X be an isotropic log-concave random vector in Rn, which has
subgaussian constant b. Let A be a non-zero n × n matrix. For any y ∈ Rn and
ε ∈ (0, c1), one has

P (‖Ax− y‖2 6 ε‖A‖HS) 6 ε

(
c2
b

‖A‖HS
‖A‖op

)2

,

where c1, c2 > 0 are universal constants.

Theorem 1.3 depends on a reverse Hölder inequality for the negative moments
of the Euclidean norm with respect to a log-concave probability measure µ with
density f . Let −n < p < ∞, p 6= 0 and Ip(f) :=

(∫
Rn ‖x‖p

2f(x)dx
) 1

p . A result of
O. Guédon (see [9]) implies that for p ∈ (−1, 0) one has

Ip(f) > cpI2(f),

where the constant cp depends only on p.
Actually, Guédon’s result is more general and holds even if we replace the

Euclidean norm by any other norm. Moreover, the result is sharp and can be
achieved for a 1-dimensional density.

In order to reveal the role of the dimension we introduce the quantity q∗(µ):

q∗(f) := max{k > 1 : k∗(Zk(f)) > k},

where k∗(Zk(f)) is the Dvoretzky number of the Lk-centroid body of f (see Section
2 for precise definitions). Then, one can show the following.
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Theorem 1.4. Let f a log-concave density in Rn with center of mass at the origin.
Then for every k 6 c1q∗(f) one has

I−k(f) > c2I2(f) ,

where c1, c2 > 0 are absolute constants.

The paper is organized as follows. In §2 we gather some background material
needed in the rest of the paper. In the next section we study a family of convex
bodies associated to a log-concave measure. This family was introduced by K.
Ball in [1]. In §4 we establish a volumetric relation between any marginal of a
log-concave measure and the corresponding projection of its associated generalized
centroid body. Precisely, we prove an Lq-version of the Rogers-Shephard inequality.
This is one of the main steps towards the proof of Theorem 1.4. In §5 we give an
exact formula (Proposition 5.4 in the main text) relating the negative moments of
the norm of the polar Lq centroid body on the sphere with the negative moments
of the Euclidean norm with respect to the measure. This can be seen as a transfer
principle permitting the use of known concentration results on the sphere. We
stress the fact that all the results up to §5 are valid for an arbitrary log-concave
measure and not just merely for an isotropic one. This special class of measures is
treated in §6. The proof of Theorem 1.3 is completed in §7, where we discuss the
sharpness of the estimate in Theorem 1.3 and its connections with the well-known
“Hyperplane Conjecture” in Convex Geometry.

Acknowledgment. I would like to thank Apostolos Giannopoulos and Assaf Naor
for many interesting discussions.

2 Background material

We work in Rn, which is equipped with a Euclidean structure 〈·, ·〉. We denote
by ‖ · ‖2 the corresponding Euclidean norm, and write Bn

2 for the Euclidean unit
ball, and Sn−1 for the unit sphere. Volume is denoted by | · |. We write ωn for the
volume of Bn

2 and σ for the rotationally invariant probability measure on Sn−1.
The Grassmann manifold Gn,k of k-dimensional subspaces of Rn is equipped with
the Haar probability measure µn,k. We write PF for the orthogonal projection onto
the subspace F . We also write Ã for the homothetic image of volume 1 of a compact
set A ⊆ Rn, i.e. Ã := A

|A|1/n .

A convex body is a compact convex subset C of Rn with non-empty interior.
We say that C is symmetric if −x ∈ C whenever x ∈ C. We say that C has center
of mass at the origin if

∫
C
〈x, θ〉dx = 0 for every θ ∈ Sn−1. The support function

hC : Rn → R of C is defined by hC(x) = max{〈x, y〉 : y ∈ C}. The mean width of
C is defined by

w(C) =
∫

Sn−1
hC(θ)σ(dθ).
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The radius of C is the quantity R(C) = max{‖x‖2 : x ∈ C}, and the polar body
C◦ of C is

C◦ := {y ∈ Rn : 〈x, y〉 6 1 for all x ∈ C}.

Whenever we write a ' b, we mean that there exist universal constants c1, c2 > 0
such that c1a 6 b 6 c2a. The letters c, c′, c1, c2 > 0 etc. denote universal positive
constants which may change from line to line. Also, if K,L ⊆ Rn we will write
K ' L if there exist universal constants c1, c2 > 0 such that c1K ⊆ L ⊆ c2K.

Let A = (ai,j)16i,j6n be a n × n matrix. We write ‖A‖HS for the Hilbert-
Schmidt norm of A:

‖A‖2
HS :=

∑
i,j

a2
i,j ,

and ‖A‖op for the operator norm of A:

‖A‖op := max
θ∈Sn−1

‖Aθ‖2.

Let f : Rn → R+ be an integrable function. We say that f has center of mass
at the origin if ∫

Rn

〈x, y〉f(x)dx = 0 for all y ∈ Rn. (1)

Given f and y ∈ Rn we write fy for the function fy(x) := f(x+ y).
Let f : Rn → R+ be an integrable function with

∫
Rn f(x)dx = 1. For every

0 < p 6 ∞ and θ ∈ Sn−1 we consider the quantities

hZp(f)(θ) :=
(∫

Rn

|〈x, θ〉|pf(x)dx
)1/p

(2)

If hZp(f)(θ) <∞ for every θ ∈ Sn−1, we define the Lp-centroid body Zp(f) of f to
be the centrally symmetric convex body that has support function hZp(f).

Lp-centroid bodies were introduced in [18] (see also [19]), where a generalization
of Santaló’s inequality was proved. In [18] and [19] a different normalization (and
notation) was used. Here, we follow the normalization (and notation) that appeared
in [25], since it fits better in a probabilistic setting. These bodies played a crucial
role in [27] and [2].

Note that for 0 < p 6 q 6 ∞ one has Zp(f) ⊆ Zq(f). If f := 1A for some
compact set A ⊆ Rn, then Z∞(f) = co{A,−A}. Note that if T ∈ SLn then for all
p > 0 one has

Zp(f ◦ T−1) = TZp(f). (3)

We refer to [27] for additional information on Zp-bodies.
A random variable ξ is called subgaussian if there exists a constant 0 < β <∞

such that
‖ξ‖2k 6 β‖γ‖2k k = 1, 2, . . . ,

where γ is a standard Gaussian random variable.
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Let µ be a probability measure in Rn with density f > 0 and let α > 1. We
say that µ (or f) is ψα with constant bα if for every p > α one has

Zp(f) ⊆ bαp
1/αZα(f),

or, equivalently, if for every θ ∈ Sn−1 and t > 0,

µ

({
x ∈ Rn : |〈x, θ〉| > t

(∫
Rn

|〈x, θ〉|αf(x)dx
)1/α

})
6 2 exp

(
− t

ba

)α

.

For −n < p 6 ∞ we define the quantities Ip(f) as

Ip(f) :=
(∫

Rn

‖x‖p
2f(x)dx

)1/p

. (4)

We say that a function f : Rn → [0,∞] is log-concave if, for every x, y ∈ Rn and
λ ∈ (0, 1),

f(λx+ (1− λ)y) > f(x)λf(y)1−λ.

Note that if f is log-concave and finite then, Ip(f) < ∞ for −n < p < ∞ and(∫
Rn |〈x, θ〉|pf(x)dx

)1/p
<∞ for p > 0.

It is well known that the level sets of a log-concave function are convex sets.
Also, if K ⊆ Rn is a convex body, the Brunn-Minkowski inequality implies that the
measure µ with dµ := 1 K

|K|1/n
(x)dx is a log-concave probability measure in Rn.

We refer to the books [31], [23] and [28] for basic facts from the Brunn-
Minkowski theory and the asymptotic theory of finite dimensional normed spaces.

3 Keith Ball’s Bodies

K. Ball introduced a way to “pass” from a log-concave function to a convex body
(see [1]). In this section we focus on the interaction between K. Ball’s bodies Kp(f)
of some function f and the Lq-centroid bodies Zq(f) of this function.

Let f be an integrable function in Rn and let p > 0. We define a set Kp(f) by

Kp(f) :=
{
x ∈ Rn : p

∫ ∞

0

f(rx)rp−1dr > f(0)
}
. (5)

Kp(f) is a star shaped body and we can write

‖x‖Kp(f) :=
(

p

f(0)

∫ ∞

0

f(rx)rp−1dr

)−1/p

. (6)

Indeed, for any λ > 0 and x ∈ Rn we have

‖λx‖−p
Kp(f) =

p

f(0)

∫ ∞

0

f(rλx)rp−1dr =
p

λpf(0)

∫ ∞

0

f(rx)rp−1dr =
1
λp
‖x‖−p

Kp(f).
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Note that if f is even, then Kp(f) is symmetric for all p > 0.
Integrating in polar coordinates we see that, for any θ ∈ Sn−1,∫

Kn+1(f)

〈x, θ〉dx = nωn

∫
Sn−1

〈φ, θ〉
∫ 1/‖φ‖Kn+1 (f)

0

rndrdσ(φ)

=
nωn

f(0)

∫
Sn−1

〈φ, θ〉
∫ ∞

0

rnf(rθ)drdσ(φ)

=
1

f(0)

∫
Rn

〈x, θ〉f(x)dx.

So, if f has center of mass at the origin then Kn+1(f) has also center of mass at
the origin.

The same argument shows that, for every p > 0 and θ ∈ Sn−1,∫
Kn+p(f)

|〈x, θ〉|pdx = nωn

∫
Sn−1

|〈φ, θ〉|p
∫ 1/‖φ‖Kn+p

(f)

0

rn+p−1drdσ(φ)

=
nωn

f(0)

∫
Sn−1

|〈φ, θ〉|p
∫ ∞

0

rn+p−1f(rθ)drdσ(φ)

=
1

f(0)

∫
Rn

|〈x, θ〉|pf(x)dx.

We also have ∫
Kn+p(f)

|〈x, θ〉|pdx = |Kn+p|1+
p
n

∫
˜Kn+p(f)

|〈x, θ〉|pdx.

So, we conclude that

Zp( ˜Kn+p(f))|Kn+p(f)|
1
p + 1

n f(0)1/p = Zp(f). (7)

Let V be a star-shaped body in Rn and let ‖x‖V be the gauge function of V .
Working in the same manner we see that for −n < p 6 ∞,∫

Kn+p(f)

‖x‖p
V dx = nωn

∫
Sn−1

‖φ‖p
V

∫ 1/‖φ‖Kn+p
(f)

0

rn+p−1drdσ(φ)

=
nωn

f(0)

∫
Sn−1

‖φ‖p
V

∫ ∞

0

rn+p−1f(rθ)drdσ(φ)

=
1

f(0)

∫
Rn

‖x‖p
V f(x)dx.

Setting V = Bn
2 we get

Ip( ˜Kn+p(f))|Kn+p(f)|
1
p + 1

n f(0)1/p = Ip(f). (8)

The family of bodies Kp was introduced by K. Ball in [1], where the following
theorem was proved:
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Theorem 3.1. If f is a log-concave function then Kp(f) is a convex set for all
p > 0.

We will use the following standard lemma:

Lemma 3.2. Let f : [0,∞) → [0,∞) be a log-concave function. Then, for all
1 < p 6 q we have(

p

‖f‖∞

∫ ∞

0

tp−1f(t)dt
)1/p

6

(
q

‖f‖∞

∫ ∞

0

tq−1f(t)dt
)1/q

(9)

and(
q

Γ(q + 1)f(0)

∫ ∞

0

tq−1f(t)dt
)1/q

6

(
p

Γ(p+ 1)f(0)

∫ ∞

0

tp−1f(t)dt
)1/p

. (10)

Comment. The proof of both facts is well-known to specialists and can be found
in [21]. The first claim can be derived from Lemma 2.1 in [21, page 76], whereas
the second claim can be derived from Corollary 2.7 in [21, page 81]. Both facts are
also corollaries of a result of Borell (see [5]).

If f is log-concave and even, then ‖f‖∞ = f(0). If f is log-concave and has
center of mass at the origin then the quantities ‖f‖∞ and f(0) are comparable.
More precisely, we have the following theorem of M. Fradelizi (see [8]).

Theorem 3.3. Let f : Rn → [0,∞] be a log-concave function with center of mass
at the origin. Then,

‖f‖∞ 6 enf(0). (11)

Using (9), (10) and (5) we see that if f is log-concave then

‖x‖Kp(f) 6
Γ(q + 1)1/q

Γ(p+ 1)1/p
‖x‖Kq(f) (12)

and

‖x‖Kq(f) 6

(
‖f‖∞
f(0)

) 1
p−

1
q

‖x‖Kp(f). (13)

Moreover, if f has center of mass at the origin, then (13) becomes

‖x‖Kq(f) 6 e
n
p−

n
q ‖x‖Kp(f). (14)

So, if f is log-concave and has center of mass at the origin, we get the following
volumetric estimates for 1 < p 6 q:

e
n2
q −n2

p |Kp(f)| 6 |Kq(f)| 6
(

Γ(q + 1)1/q

Γ(p+ 1)1/p

)n

|Kp(f)|. (15)

Once again, integrating in polar coordinates we get

|Kn(f)| = 1
f(0)

∫
Rn

f(x)dx. (16)
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So, if f is a log-concave function with center of mass at the origin and
∫

Rn f(x)dx =
1 then, combining (16) and (15) we get that, for p > 0,

e−
np

n+p

f(0)
6 |Kn+p(f)| 6 ((n+ p)!)

n
n+p

1
n!f(0)

,

and hence,
1
e

6 f(0)
1
n + 1

p |Kn+p(f)|
1
n + 1

p 6
((n+ p)!)1/p

(n!)
n+p
np

.

Using the bounds

((n+ p)!)1/p

(n!)
n+p
np

6 (n+ p)
(n!)1/p

(n!)
n+p
np

=
n+ p

(n!)1/n
6 e

n+ p

n
,

we conclude that
1
e

6 f(0)
1
n + 1

p |Kn+p(f)|
1
n + 1

p 6 e
n+ p

n
. (17)

Working in the same way for −(n− 1) < p 6 0, we get

e−
np

n−p |Kn−p(f)| 6 1
f(0)

6
n!

((n− p)!)
n

n−p
|Kn−p(f)|,

and hence,
1
e

6 f(0)
1
n−

1
p |Kn−p(f)|

1
n−

1
p 6

((n!))
n−p
np

((n− p)!)1/p
.

Using the bounds

((n!))
n−p
np

((n− p)!)1/p
6 n

n−p
n

((n− p)!)
n−p
np

((n− p)!)1/p
6 e

n

n− p
,

we conclude that
1
e

6 f(0)
1
n−

1
p |Kn−p(f)|

1
n−

1
p 6 e

n

n− p
. (18)

So, combining (17), (18) and (7), (8) we get the following:

Proposition 3.4. Let f : Rn → [0,∞] be a log-concave function with center of
mass at the origin and

∫
Rn f(x)dx = 1. Then, for p > 0 one has

1
e
Zp( ˜Kn+p(f)) ⊆ f(0)1/nZp(f) ⊆ e

n+ p

n
Zp( ˜Kn+p(f)). (19)

Moreover, for −(n− 1) < p 6 ∞,

1
e
Ip( ˜Kn+p(f)) 6 f(0)1/nIp(f) 6 e

n+ p

n
Ip( ˜Kn+p(f)). (20)

Note that if f is even then the constant on the left hand side in the previous two
inclusions can be chosen to be 1 instead of 1

e .
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Working in the same spirit we can also compare the symmetric convex bodies
Zq( ˜Kn+r1(f)) and Zq( ˜Kn+r2(f)) for −(n − 1) < r1 6 r2 6 ∞ and q > 1. Indeed,
for every θ ∈ Sn−1 we have

hq

Zq( ˜Kn+r1 (f))
(θ)

hq

Zq( ˜Kn+r2 (f))
(θ)

=
(
|Kn+r2 |
|Kn+r1 |

)1+ q
n

∫
kn+r1

|〈x, θ〉|qdx∫
kn+r2

|〈x, θ〉|qdx

=
(
|Kn+r2 |
|Kn+r1 |

)1+ q
n

nωn

n+q

∫
Sn−1 |〈φ, θ〉|q‖φ‖−(n+q)

Kn+r1
dσ(φ)

nωn

n+q

∫
Sn−1 |〈φ, θ〉|q‖φ‖−(n+q)

Kn+r2
dσ(φ)

.

Using (13) and (14) we get

(Γ(n+ r1))
n+q

n+r1

(Γ(n+ r2))
n+q

n+r2

6
‖φ‖−(n+q)

Kn+r1 (f)

‖φ‖−(n+q)
Kn+r2 (f)

6 e
n

(r2−r1)(n+q)
(n+r1)(n+r2) .

Also, (15) implies that

e
−n2 r2−r1

(n+r1)(n+r2) 6
|Kn+r2 |
|Kn+r1 |

6
(Γ(n+ r2))

n
n+r2

(Γ(n+ r1))
n

n+r1

.

So,

e
−n(r2−r1)(n+q)

q(n+r1)(n+r2)
(Γ(n+ r1))

n+q
q(n+r1)

(Γ(n+ r2))
n+q

q(n+r2)

6
h

Zq( ˜Kn+r1 (f))
(θ)

h
Zq( ˜Kn+r2 (f))

(θ)

6 e
n(r2−r1)(n+q)
q(n+r1)(n+r2)

(Γ(n+ r2))
n+q

q(n+r2)

(Γ(n+ r1))
n+q

q(n+r1)

.

For n ∈ N, q > 0 and −n < r1 6 r2 6 ∞ we define

An,q,r1,r2 := e
n(r2−r1)(n+q)
q(n+r1)(n+r2)

(Γ(n+ r2))
n+q

q(n+r2)

(Γ(n+ r1))
n+q

q(n+r1)

. (21)

So, we have shown that if f is a log-concave function in Rn with center of mass
at the origin, then for every q > 1, for every −(n − 1) < r1 6 r2 6 ∞ and for all
θ ∈ Sn−1, one has

A−1
q,r1,r2,n 6

h
Zq( ˜Kn+r1 (f))

(θ)

h
Zq( ˜Kn+r2 (f))

(θ)
6 Aq,r1,r2,n, (22)

or equivalently

A−1
q,r1,r2,nZq( ˜Kn+r2(f)) ⊆ Zq( ˜Kn+r1(f)) ⊆ Aq,r1,r2,nZq( ˜Kn+r2(f)). (23)
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We are interested in the case where r2 = q and r1 = 1 or r2 = 2. We have that

An,q,1,q = e
n(q−1)
q(n+1)

(Γ(n+ q))
1
q

(Γ(n+ 1))
n+q

q(n+1)

=

(
e

n(q−1)
n+1 (n+ 1) . . . (n+ q − 1)

(n!)
q−1
n+1

) 1
q

6

(
e2

n(q−1)
n+1

(n+ q − 1)q−1

nq−1

) 1
q

6 e2
n+ q

n
.

A similar computation shows that An,q,2,q 6 e2 n+q
n . So, we get that that for r = 1

or r = 2,

n

e2(n+ q)
Zq(K̃n+q(f)) ⊆ Zq(K̃n+r(f)) ⊆ e2

n+ q

n
Zq(K̃n+q(f)). (24)

Then, for q 6 n, using (19), (23) we get the following.

Proposition 3.5. Let f : Rn → [0,∞) be a log-concave function with center of
mass at the origin and

∫
Rn f(x)dx = 1. Then, for every 1 6 q 6 n, one has

c1f(0)1/nZq(f) ⊆ Zq( ˜Kn+1(f)) ⊆ c2f(0)1/nZq(f) (25)

and
c3f(0)1/nZq(f) ⊆ Zq( ˜Kn+2(f)) ⊆ c4f(0)1/nZq(f), (26)

where c1, c2, c3, c4 > 0 are universal constants.

We will also use the following:

Lemma 3.6. Let K be a convex body in Rn with volume one and center of mass
at the origin. Then, for every p > n,

Zp(K) ⊇ c1 co{K,−K} (27)

and
c1 6 |Zp(K)|1/n 6 c2 (28)

where c1, c2 > 0 are universal constants.

Proof. Under our assumptions, one can prove that for every θ ∈ Sn−1,

hZp(K)(θ) >

(
Γ(p+ 1)Γ(n)

2eΓ(n+ p+ 1)

)1/p

max{hK(θ), hK(−θ)}.

For a proof of this well-known fact see [25]. It follows that if p > n then hZp(K) >
c1 max{hK(θ), hK(−θ)}, which proves (3.6).
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This in turn means that |Zp(K)|1/n > c1|co{K,−K}|1/n > c1|K| > c1. Taking
into account the fact that Zp(K) ⊆ co{K,−K} and using an inequality due to
Rogers and Shephard (see [30]) we readily see that |co{K,−K}| 6 2n|K|. This
proves (28). 2

Recall that if f has center of mass at the origin then Kn+1(f) has also its
center of mass at the origin. So, combining the previous Lemma with (25) we get
the following:

Proposition 3.7. Let f : Rn → [0,∞) be a log-concave function with center of
mass at the origin and

∫
Rn f(x)dx = 1. Then,

c1
f(0)1/n

6 |Zn(f)|1/n 6
c2

f(0)1/n
, (29)

where c1, c2 > 0 are universal constants.

4 Marginals and Projections

Let f : Rn → [0,∞) be an integrable function. Let 1 6 k < n be an integer and let
F ∈ Gn,k. We define the marginal πF (f) : F → R+ of f with respect to F by

πF (f)(x) :=
∫

x+F⊥
f(y)dy. (30)

Note that, by Fubini’s theorem,∫
F

πF (f)(x)dx =
∫

Rn

f(x)dx (31)

and, for every θ ∈ SF ,∫
F

〈x, θ〉πF (f)(x)dx =
∫

Rn

〈x, θ〉f(x)dx. (32)

In particular, if f has center of mass at the origin then for every F ∈ Gn,k, πF (f)
has the same property.

The same argument gives that, for every p > 0 and θ ∈ SF ,∫
Rn

|〈x, θ〉|pf(x)dx =
∫

F

|〈x, θ〉|pπF (f)(x)dx

and, for every −k < p 6 ∞,∫
Rn

‖PFx‖p
2f(x)dx =

∫
F

‖x‖p
2πF (f)(x)dx.

We will use the notation

Ip(f, F ) :=
(∫

Rn

‖PFx‖p
2f(x)dx

)1/p

.

So, we have the following:

11



Proposition 4.1. Let f : Rn → [0,∞) be an integrable function with
∫

Rn f(x)dx =
1. Then, for 1 6 k 6 n, F ∈ Gn,k and p > 0, one has

PF (Zp(f)) = Zp(πF (f)). (33)

Also, for any −k < p 6 ∞,

Ip(f, F ) = Ip(πF (f)). (34)

Let f be a log-concave function with center of mass at the origin and
∫

Rn f(x)dx =
1. Then, for every F ∈ Gn,k, the same holds true for πF (f). So, we may apply
Proposition 2.7 to get

c1
πF (f)(0)1/k

6 |Zk(πF (f))|1/k 6
c2

πF (f)(0)1/k
.

This last fact, combined with (33), proves the following.

Proposition 4.2. Let f be a log-concave function with center of mass at the origin
and

∫
Rn f(x)dx = 1. Then, for any 1 6 k < n and F ∈ Gn,k, one has

c1 6 πF (f)(0)1/k|PFZp(f)|1/k 6 c2, (35)

where c1, c2 > 0 are universal constants.

Consider the special case where K is a convex body of volume 1 and has center
of mass at the origin and f := 1K . Observe that πF (f)(0) = |K ∩ F⊥|. Then, the
previous proposition can be viewed as an “Lq-version” of the following inequality
due to Rogers-Shephard [29] (see [32] or [22] for the lower bound).

Theorem 4.3. Let K be a convex body of volume 1 in Rn. Let 1 6 k 6 n and let
F ∈ Gn,k. Then,

|PF (K)||K ∩ F⊥| 6
(
n

k

)
.

If K has center of mass at the origin, then

1 6 |PF (K)||K ∩ F⊥|.

The term “Rogers-Shephard inequality” is usually used for the upper bound. A
more general inequality can be easily obtained by the following formula for mixed
volumes, which is due to Fedotov (see [4] or [31]): Let F ∈ Gn,k, let K1, . . .Kk be
convex bodies in Rn and let Li, . . . , Ln−k be compact convex subsets of F⊥. Then,(

n

k

)
V (K1, . . .Kk, L1, . . . Ln−k) = V (PFK1, . . . , PFKk)V (L1, . . . , Ln−k). (36)

In the special case where L1 = Ln−k = K ∩ F⊥, (36) implies that(
n

k

)
V (K1, . . .Kk,K ∩ F⊥ . . .K ∩ F⊥) = V (PFK1, . . . , PFKk)|K ∩ F⊥|.

12



The Rogers-Shephard inequality follows if we take K1 = Kk = K and use the
monotonicity property of mixed volumes.

Note that one can rewrite the inequality in the following form:

1 6
(
|PF (K)||K ∩ F⊥|

)1/k
6 e

n

k
.

In the special case where K is an ellipsoid of volume 1 one actually has

c1

√
n

k
6
(
|PF (K)||K ∩ F⊥|

)1/k
6 c2

√
n

k
,

where c1, c2 > 0 are universal constants.
The following direct consequence of Proposition 4.2 can be viewed as an “Lq

version of the Rogers-Shephard inequality”:

Theorem 4.4. Let K be a convex body in Rn with center of mass at the origin and
volume 1. Then, for every F ∈ Gn,k one has

c1 6 |K ∩ F⊥|1/k|PF (Zk(K)|1/k 6 c2, (37)

where c1, c2 > 0 are universal constants.

The inequality of Theorem 4.4 is sharp up to a universal constant. A disad-
vantage is that the constants are not optimal (in contrast, the equality cases in the
classical Rogers-Shephard inequality are known).

The Lq-version of the Rogers-Shephard inequality played an important role in
[27]. In that paper, our approach was based on the bodies Bp(K,F ) which had
appeared already in the classical paper of Milman and Pajor [21]. Our approach in
the present paper is a little more general. We will recall the definition in order to
provide a unified setting for our results.

Let us first recall the definition of isotropicity for convex bodies: Let K be a
convex body in Rn with center of mass at the origin and volume 1. We define the
isotropic constant of K as follows:

LK :=
(
|Z2(K)|
|Dn|

)1/n

.

We will say that K is isotropic if Z2(K) = LKDn.
Next, let K be a convex body of volume 1 in Rn, let 1 6 k < n, F ∈ Gn,k and

p > 0. We define a convex body Bp(K,F ) in F by

Bp(K,F ) := Kp+1(πF ((1K)) .

Then, we have the following:

Theorem 4.5. Let K be a convex body of volume 1 in Rn and let 1 6 k < n,
F ∈ Gn,k and p > 0. Then,

13



(i) If K has center of mass at the origin, then Bk(K,F ) has also center of mass at
the origin.
(ii) If K is symmetric, then Bp(K,F ) is also symmetric. Moreover, if K is sym-
metric and isotropic, then B̃k+1(K,F ) is also isotropic.
(iii) If K has center of mass at the origin then, for any q 6 k we have

Zq(B̃k+1(K,F )) ' |K ∩ F⊥| 1kPF (Zq(K)) ' Zq(B̃k(K,F )).

(iv) If K is isotropic, then

|K ∩ F⊥| '
L

B̃k+1(K,F )

LK
.

Moreover, if K has center of mass at the origin, then L
B̃k+1(K,F )

' L
B̃k(K,F )

.

Proof. (i) Recall that if 1K has center of mass at the origin, then πF (1K) has center
of mass at the origin. This implies that Kk+1(πF (1K)) has center of mass at the
origin.
(ii) Since 1K is an even function, the same is true for πF (1K). This implies that
Kp(πF (1K)) is symmetric. We also have that if K is isotropic then, for every
F ∈ Gn,k, LKBF = PFZ2(1K) = Z2(πF (1K)), where we have also used (33).
Moreover, (7) implies that if Z2(πF (1K)) is homothetic to Bn

2 then the same holds
true for Z2(Kk+2(πF (1K)). So, ifK is also symmetric, then B̃k+1(K,F ) is isotropic.
(iii) Note that |K ∩ F⊥| = πF (1K)(0). Using (25) and (33) we get

Zq

(
(K̃k+1(πF ((1K)))

)
' πF (1K)(0)1/kZq(πF (1K)) ' |K ∩ F⊥|1/kPF (Zq(1K)).

We work similarly for K̃k+2(πF (1K)), this time using (26) instead of (25).
(iv) It follows immediately from (ii) and (iii). 2

Statement (iv) in the previous theorem can be found explicitly in [21]. Note
that the body Bp(K,F ) that we have defined here is homothetic to the one defined
in [21] or [27]. On the other hand, the assertions of the previous theorem are
independent of homothety.

Let f : Rn → R+ and y ∈ Rn. Then, for every F ∈ Gn,k,

πF (fy)(x) =
∫

x+F⊥
fy(z)dz =

∫
x+F⊥

f(z + PF y + PF⊥y)dz

=
∫

x+F⊥
f(z + PF y)dz =

∫
x+PF y+F⊥

f(z)dz = πF (f)(x+ PF y).

In particular, if f : Rn → R+ is a log-concave function with center of mass at the
origin and if y ∈ Rn, using Theorem 2.3 we get

πF (fy)(0) 6 ‖πF (f)‖∞ 6 ekπF (f)(0). (38)
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Also, for any integrable f and 1 6 m < n we have that∫
Gn,n−m

πF (f)(0)dµf =
∫

Gn,m

πF⊥(f)(0)dµ(F ) =
∫

Gn,m

∫
F

f(z)dzdµ(F )

=
∫

Gn,m

mωm

∫
SF

∫ ∞

0

rk−1f(rθ)drdσF (θ)dµ(F )

=
mωm

nωn
nωn

∫
Sn−1

∫ ∞

0

rk−1f(rθ)drdσ(θ)

=
mωm

nωn

∫
Rn

f(x)
‖x‖n−m

2

dx =
mωm

nωn
I
−(n−m)
−(n−m) (f).

Equivalently, we may write that, for every integer k < n,

I−k(f) = cn,k

(∫
Gn,k

πF (f)(0)dµ(F )

)−1/k

, (39)

where cn,k =
(

(n−k)ωn−k

nωn

)1/k

'
√
n.

Let f : Rn → R+ be a log-concave function with center of mass at the origin
and let y ∈ Rn. Using (38) we get that, for every integer k < n,

I−k(fy) = cn,k

(∫
Gn,k

πF (fy)(0)dµ(F )

)−1/k

>
cn,k

e

(∫
Gn,k

πF (f)(0)dµ(F )

)−1/k

=
1
e
I−k(f).

In summary:

Proposition 4.6. Let f be an integrable function on Rn and let k < n be a positive
integer. Then,

I−k(f) = cn,k

(∫
Gn,k

πF (f)(0)dµ(F )

)−1/k

, (40)

where cn,k =
(

(n−k)ωn−k

nωn

)1/k

'
√
n. Moreover, if f is also log-concave and has

center of mass at the origin then, for every y ∈ Rn,

I−k(fy) >
1
e
I−k(f). (41)

The following argument is a variation of an argument of Milman and Pajor (see
[21]). Let K be a subset of Rn of volume 1. Let V be a star shaped body and write
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‖x‖V for the gauge function of V . Then, for every −n 6 p 6 ∞, p 6= 0, one has(∫
K

‖x‖p
V dx

)1/p

=

(∫
K∩Ṽ

‖x‖p
V dx+

∫
K\Ṽ

‖x‖p
V dx

)1/p

>

(∫
K∩Ṽ

‖x‖p
V dx+

∫
Ṽ \K

‖x‖p
V dx

)1/p

=
(∫

Ṽ

‖x‖p
V dx

)1/p

=
(

n

n+ p

) 1
p

|V |− 1
n .

If we choose V = Bn
2 we get:

Proposition 4.7. Let K be a compact set of volume 1 in Rn. Then, if −(n− 1) 6
p 6 ∞, p 6= 0,

Ip(K) > Ip(B̃n
2 ) '

√
n. (42)

Note that for −(n− 1) 6 p 6 ∞, p 6= 0, we have Ip(B̃n
2 ) '

√
n.

Let f : Rn → R+ be a log-concave function with
∫

Rn f(x)dx = 1. Then, using (20)
and (42) we see that

f(0)1/nIp(f) >
1
e
Ip( ˜Kn+p(f)) >

1
e
Ip(B̃n

2 ) > c
√
n,

where c > 0 is a universal constant. So, we have proved the following proposition

Proposition 4.8. Let f : Rn → R+ be a log-concave function with center of mass
at the origin and

∫
Rn f(x)dx = 1. For every y ∈ Rn,

I−k(fy) >
c
√
n

f(0)1/n
, (43)

where c > 0 is a universal constant.

5 Constant behavior of moments

Let C be a symmetric convex body in Rn and let −∞ 6 p 6 ∞, p 6= 0. We define

Wp(C) :=
(∫

Sn−1
hC(θ)dσ(θ)

)1/p

. (44)

Also, we denote by k∗(C) the “Dvoretzky number” of C: roughly speaking, this is
the maximum dimension such that a random projection of C is 4-Euclidean, i.e.

1
2
W (C)BF ⊆ PFC ⊆ 2W (C)BF .
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A remarkable formula due to V. D. Milman (see [20]) states that the Dvoretzky
number of C is determined from “global” parameters of C (see also [24]):

k∗(C) ' n

(
W (C)
R(C)

)2

. (45)

The following theorem was proved in [17]:

Theorem 5.1. Let C be a symmetric convex body in Rn. Then,
(i) If 1 6 q 6 k∗(C) then W (C) 6 Wq(C) 6 c1W (C).
(ii) If k∗(C) 6 q 6 n then c2

√
q/nR(C) 6 Wq(C) 6 c3

√
q/nR(C).

(iii) If k∗(C) > n then c2R(C) 6 Wq(C) 6 R(C).
In the statements above, c1, c2 > 0 are universal constants.

In particular, we see that we have almost constant behavior of the moments
wq(C) until q becomes of the order of k∗(C). The same phenomenon occurs also
for negative moments: we have the following theorem (see [15] and [14]):

Theorem 5.2. Let C be a symmetric convex body. Then, for p 6 c1k∗(C),

W−p(C) > c2W (C),

where c1, c2 > 0 are universal constants.

Combining Theorems 5.1 and 5.2, and adjusting the constants, we get:

Proposition 5.3. Let C be a symmetric convex body in Rn. Then, Wp(C) '
W−p(C) if and only if p 6 k ' k∗(C).

Remark. To be more precise, Theorem 5.1 implies that if for some δ > 1 one has
that W−p(C) > 1

δWp(C) then p 6 cδ2k∗(C), where c > 0 is an universal constant.
The Santaló inequality asserts that, for every symmetric convex body K in Rn,

|K||K◦| 6 ω2
n.

The reverse Santaló inequality proved by Bourgain and Milman (see [3]) asserts
that

|K||K◦| > cnω2
n,

where c > 0 is a universal constant. Combining the two results we may write

c 6

(
|K||K◦|
|Bn

2 |2

)1/n

6 1, (46)

where c > 0 is a universal constant.
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Using (46) we can express negative moments of the support function of a convex
body as an average of volumes of projections. Indeed, for 1 6 k 6 n and any
symmetric convex body C in Rn,

W−1
−k (C) =

(∫
Sn−1

1
hk

C(θ)
dσ(θ)

)1/k

=

(
1
ωk

∫
Gn,k

ωk

∫
SF

1
‖θ‖k

(PF C)◦
dσ(θ)dµ(F )

)1/k

=

(∫
Gn,k

|(PF (C))◦|
|Bk

2 |
dµ(F )

)1/k

'

(∫
Gn,k

|Bk
2 |

|PF (C)|
dµ(F )

)1/k

,

and hence,

W−k(C) '
√
k

(∫
Gn,k

|PFC|−1dµ(F )

)− 1
k

. (47)

Now, let f : Rn → R+ be a log-concave function with center of mass at the origin
and

∫
Rn f(x)dx = 1. Consider an integer k < n and let F ∈ Gn,k. Recall that

(from 35)
1

|PFZk(f)|1/k
' πF (f)(0)1/k.

Then, (47) and (40) imply the following:

Proposition 5.4. Let f : Rn → R+ be a log-concave function with center of mass
at the origin and

∫
Rn f(x)dx = 1. For every integer k < n,

W−k(Zk(f)) '
√
k

(∫
Gn,k

πF (f)(0)dµ(F )

)− 1
k

(48)

and

I−k(f) '
√
n

k
W−k(Zk(f)). (49)

We will use the following simple fact (see e.g. [25]): For any x ∈ Rn and any p > 1
one has (∫

Sn−1
|〈x, θ〉|pdσ(θ)

)1/p

'
√

p

n+ p
‖x‖2. (50)
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So, if f is an integrable function in Rn, by Fubini’s theorem we have that for every
p > 1,

Wp(Zp(f)) =
(∫

Sn−1

∫
Rn

|〈x, θ〉|pf(x)dxdσ(θ)
)1/p

=
(∫

Rn

∫
Sn−1

|〈x, θ〉|pdσ(θ)f(x)dx
)1/p

'
√

p

n+ p

(∫
Rn

‖x‖p
2f(x)dx

)1/p

'
√

p

n+ p
Ip(f).

This proves the following.

Proposition 5.5. Let f be an integrable function on Rn and let p > 1. Then,

Wp(Zp(f)) '
√

p

n+ p
Ip(f). (51)

The formulae (51) and (49) lead us to the following definition (in the case
of convex bodies it first appeared in [26]): Let f be an integrable function with∫

Rn f(x)dx = 1 and δ > 0. We define

q∗(f) := max{k 6 n : k∗(Zk(f)) > k}, (52)

and
q∗(f, δ) := max{k 6 n : k∗(Zk(f)) >

k

δ2
}.

Combining (49) and (51) with Proposition 5.3 we get:

Theorem 5.6. Let f : Rn → R+ be a log-concave function with center of mass at
the origin and

∫
Rn f(x)dx = 1. For any integer k < n we have I−k(f) ' Ik(f) if

and only if k 6 q ' q∗(f).

In particular, from the previous theorem we see that for all k 6 q∗(f) one has
Ik(f) 6 CI2(f), where C > 0 is a universal constant. This was the main result of
[27]. Moreover note that Theorem 5.6 implies Theorem 1.3.

Remark. To be more precise, if for some δ > 1 and some integer k one has that
I−k(f) > 1

δ Ik(f), then k 6 q∗(f, cδ), where c > 0 is an universal constant.
The following bound for the quantity q∗(f) was proved in [27]:

Proposition 5.7. Let f be an integrable function on Rn with
∫

Rn f(x)dx = 1.
Assume that f is ψα with constant bα for some α > 1. Then,

q∗(f) >
c

bαα
(k∗(Z2(f))

α
2 , (53)

where c > 0 is a universal constant.
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It is well known that there exists a universal constant C > 0 such that every
log-concave function f is ψ1 with constant C. Note that (33) implies that if f is a
ψα function with constant bα for some α > 1, then the same is true for πF (f), for
every F ∈ Gn,k.
We conclude this section with the following fact.

Proposition 5.8. Let f be an integrable function on Rn with
∫

Rn f(x)dx = 1.
Assume that f is ψα with constant bα for some α > 1. Then, for every F ∈ Gn,k,

q∗(πF (f)) >
c

bαα
(k∗(Z2(πF (f)))

α
2 , (54)

where c > 0 is a universal constant.

6 Isotropicity

Let f : Rn → R+ be an integrable function with
∫

Rn f(x)dx = 1. We say that f is
isotropic if f has center of mass at the origin and Z2(f) = Bn

2 . Equivalently if, for
every θ ∈ Sn−1, ∫

Rn

|〈x, θ〉|2f(x)dx = 1. (55)

Note that if f is isotropic then I2(f) =
√
n.

It is known that given any f one can find T ∈ SLn such that f ◦T−1 is isotropic.
Also, the isotropic condition (55) is known to be equivalent with the following:∫

Rn

〈x,Ax〉f(x)dx = tr(A) (56)

for every n× n matrix A. In particular, one has that, if f is isotropic then∫
Rn

‖Ax‖2
2f(x)dx = ‖A‖2

HS. (57)

Let f be isotropic and let T ∈ SLn. Then,

Z2(f ◦ T−1) = T (Z2(f)) = T (Bn
2 ).

Note that W (T (Bn
2 )) = ‖T‖HS√

n
and R(T (Bn

2 )) = ‖T‖op. So, using (45), we have
that

k∗(Z2(f ◦ T−1) '
(
‖T‖HS

‖T‖op

)2

. (58)

Also, if F ∈ Gn,k then Z2(πF (f ◦ T−1)) = PF (Z2(f ◦ T−1)) = PF (T (Bn
2 )). There-

fore,

k?(Z2(πF (f ◦ T−1)) '
(
‖PFT‖HS

‖PFT‖op

)2

. (59)
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A major open question in Convex Geometry is the Hyperplane Conjecture: Let K
be a convex body of volume 1, with center of mass at the origin. Then, there exists
θ ∈ Sn−1 such that

|K ∩ θ⊥| > c,

where c > 0 is an universal constant.
An equivalent formulation of the problem is the following: There exists a uni-

versal constant C > 0 such that LK 6 C for every convex body K with center of
mass at the origin.

It is well known (it also follows from Proposition 3.5) that the previous state-
ment is equivalent to the following:
Hyperplane Conjecture: There exists a universal constant C > 0 such that, for
every isotropic log-concave function f on Rn,

f(0)1/n 6 C. (60)

The best known bound is due to B. Klartag: f(0)1/n 6 Cn1/4 (see [11]). For more
informations on isotropicity and the Hyperplane Conjecture we refer to [21] or [10].

7 Small ball probability

Let α > 1 and let f be an isotropic log-concave function on Rn, which is ψα with
constant bα.

Let T ∈ SLn and y ∈ Rn. We set

m :=
c

bαα

(
‖T‖HS

‖T‖op

)α

.

We have chosen c > 0 such that m ∈ N and (see (58) and (54) ),

m 6
C

bαα

(
‖T‖HS

‖T‖op

)α

6
C1

bαα

(
k∗(Z2(f ◦ T−1))

)α
2 6 q∗(f ◦ T−1).

Note that m < n. Then, Theorem 5.6 implies that

I−m(f ◦ T−1) > cI2(f ◦ T−1).

Using (41), (57) we get∫
Rn

‖Tx− y‖−m
2 f(x)dx 6 em

∫
Rn

‖x‖−m
2 f(T−1x)dx

= I−m
−m (f ◦ T−1)

6 cm1 I
−m
2 (f ◦ T−1)

= cm1

(∫
Rn

‖Tx‖2
2f(x)dx

)−m
2

= (c1‖T‖HS)−m
.
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Then, from Markov’s inequality we get that for every ε ∈ (0, 1),

P (‖Tx− y‖2 6 εc1‖T‖HS) 6 εm = ε
c

bα
α

(
‖T‖HS
‖T‖op

)α

. (61)

Given S ∈ GLn, let T := |detS|−1/nS; then, T ∈ SLn. Observe that (61) holds
for every y ∈ Rn and is homogeneous in T . So we have the following:

Proposition 7.1. Let α > 1 and let f be an isotropic log-concave function on Rn,
which is ψα with constant bα. Let S ∈ GLn and y ∈ Rn. Then,

P (‖Sx− y‖2 6 εc1‖S‖HS) 6 ε
c

bα
α

(
‖S‖HS
‖S‖op

)α

. (62)

Now, let A be a non-zero n × n matrix. Let 1 6 k := rmrank(A) < n. There
exist F ∈ Gn,k (F := Im(A)) and B1 ∈ GLn such that A = (detB1)PF (B), where
B = (detB1)−1B1 ∈ SLn.

Let m := c
bα

α

(
‖A‖HS
‖A‖op

)α

. We have chosen c > 0 so that m ∈ N and (see (59) and
(54) ),

m 6
C

bαα

(
‖PFB‖HS

‖PFB‖op

)α

6
C1

bαα

(
k∗(Z2(πF (f ◦B−1)))

)α
2 6 q∗(πF (f ◦B−1)).

Note that m < k. Then, Theorem 5.6 implies that

I−m(πF (f ◦B−1)) > cI2(πF (f ◦B−1)).

Then, for every y ∈ Rn we have∫
Rn

‖Ax− y‖−m
2 f(x)dx 6 em

∫
Rn

‖Ax‖−m
2 f(x)dx

=
(

e

detB1

)m ∫
Rn

‖PFx‖−m
2 f(B−1x)dx

=
(

e

detB1

)m

I−m
−m (f ◦B−1, F )

=
(

e

detB1

)m

I−m
−m (πF (f ◦B−1))

6

(
c1

detB1

)m (
I2((πF (f ◦B−1))

)−m

=
(

c1
detB1

)m (
I2(F ◦B−1, F )

)−m

=
(

c1
detB1

)m(∫
Rn

‖PFBx‖2
2f(x)dx

)−m
2

= cm1

(∫
Rn

‖Ax‖2
2f(x)dx

)−m
2

= cm1 ‖A‖−m
HS ,
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where we have also used (34) and (57).
So, from Markov’s inequality again, we get that for every ε ∈ (0, 1),

P (‖Ax− y‖2 6 εc1‖A‖HS) 6 εm = ε
c

bα
α

(
‖A‖HS
‖A‖op

)α

. (63)

In summary:

Theorem 7.2. Let X be an isotropic log-concave random vector in Rn which is
ψα with constant bα for some α > 1. Let A be a non-zero n× n matrix, let y ∈ Rn

and ε ∈ (0, c1). Then, one has

P (‖Ax− y‖2 6 ε‖A‖HS) 6 ε
c2
bα
α

(
‖A‖HS
‖A‖op

)α

, (64)

where c1, c2 > 0 are absolute constants.

In the special case where a = 2, the previous theorem implies Theorem 1.3:

Remark. Note that the dependence in Theorem 1.3 is better that the one in
Theorem 1.1, although it is not clear if it is the right one.

Let A be a projection matrix and let F := Im(A) and k = rank(A) = dim(F ).
Note that ‖A‖HS =

√
k and ‖A‖op = 1. Assume that the Hyperplane Conjecture

is true. Then, by Proposition 4.7 we have that, for every y ∈ Rn,∫
Rn

‖Ax− y‖−(k−1)
2 f(x)dx 6

(
c
πF (f)(0)1/k

√
k

)k−1

6

(
c1√
k

)k−1

.

So, from Markov’s inequality, we get that for every ε ∈ (0, 1),

P (‖Ax− y‖2 6 εC‖A‖HS) 6 εk−1.

This means that in this case we have no dependence on the ψα constant! In fact,
the Hyperplane Conjecture is closely related to the question of the dependence in
the ψα constant in Theorem 7.2. To fully reveal this connection we need different
tools; we will present this connection elsewhere.
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