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Abstract

Given a probability measure µ on Rn, Tukey’s half-space depth is defined for any x ∈ Rn by
ϕµ(x) = inf{µ(H) : H ∈ H(x)}, where H(x) is the set of all half-spaces H of Rn containing x. We show
that if µ is a non-degenerate log-concave probability measure on Rn then

e−c1n 6
∫
Rn
ϕµ(x) dµ(x) 6 e−c2n/L

2
µ

where Lµ is the isotropic constant of µ and c1, c2 > 0 are absolute constants. The proofs combine
large deviations techniques with a number of facts from the theory of Lq-centroid bodies of log-concave
probability measures. The same ideas lead to general estimates for the expected measure of random
polytopes whose vertices have a log-concave distribution.

1 Introduction

Let µ be a probability measure on Rn. For any x ∈ Rn we denote by H(x) the set of all half-spaces H of Rn
containing x. The function

ϕµ(x) = inf{µ(H) : H ∈ H(x)}

is called Tukey’s half-space depth. The first work in statistics where some form of the half-space depth
appears is an article of Hodges [18] from 1955. Tukey introduced the half-space depth for data sets in [27] as
a tool that enables efficient visualization of random samples in the plane. The term “depth” also comes from
Tukey’s article. A formal definition of the half-space depth as a way to distinguish points that fit the overall
pattern of a multivariable probability distribution and to obtain an efficient description, visualization, and
nonparametric statistical inference for multivariable data, was given by Donoho and Gasko in [11] (see also
[26]). We refer the reader to the survey article of Nagy, Schütt and Werner [23] for an overview of this topic,
with an emphasis on its connections with convex geometry, and many references.

In the first part of this article we study the expectation of the half-space depth in the context of log-
concave probability measures. In what follows, these are the Borel probability measures µ on Rn that satisfy
µ(λA + (1 − λ)B) > µ(A)λµ(B)1−λ for any compact subsets A,B ⊆ Rn and any λ ∈ (0, 1), as well as the
non-degeneracy condition µ(H) < 1 for every hyperplane H in Rn. The question whether there exists an
absolute constant c ∈ (0, 1) such that

(1.1) Eµ(ϕµ) :=

∫
Rn
ϕµ(x) dµ(x) 6 cn

for all n > 1 and all log-concave probability measures µ on Rn was asked in [1] in connection with stochastic
separability and applications to machine learning and error-correction mechanisms in artificial intelligence
systems; for the origin of the question we refer to [16] and to the references therein. In the context of
asymptotic geometric analysis, the validity of (1.1) implies that if m 6 Cn, where C > 1 is an absolute
constant, then a set of m independent random points with a log-concave distribution has, with probability
close to 1, the property that every point in the set can be separated from all others by a hyperplane.

Our first result shows that (1.1) holds true modulo the isotropic constant Lµ of µ, defined in (2.3).
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Theorem 1.1. Let µ be a log-concave probability measure on Rn, n > n0. Then, Eµ(ϕµ) 6 exp
(
−cn/L2

µ

)
where Lµ is the isotropic constant of µ and c > 0, n0 ∈ N are absolute constants.

Background information on isotropic log-concave probability measures and the isotropic constant is
provided in Section 2. The well-known hyperplane conjecture asks whether there exists an absolute constant
C > 0 such that Ln 6 C for every n > 2, where

Ln = sup{Lµ : µ is an isotropic log-concave probability measure on Rn}.

The best known upper bound, due to Klartag [21], asserts that Ln 6 C
√

lnn for some absolute constant
C > 0, therefore Theorem 1.1 shows that

Eµ(ϕµ) 6 exp (−cn/ lnn)

provided that n is large enough. The quantity Eµ(ϕµ) is affinely invariant and hence for the proof of
Theorem 1.1 we may assume that µ is isotropic. Actually, we obtain Theorem 1.1 as a special case of a more
general result which is presented in Section 3.

Theorem 1.2. Let µ and ν be two isotropic log-concave probability measures on Rn, n > n0. Then,

Eν(ϕµ) :=

∫
Rn
ϕµ(x) dν(x) 6 exp

(
−cn/L2

ν

)
,

where c > 0, n0 ∈ N are absolute constants.

The proof of Theorem 1.2 starts with the known estimate ϕµ(x) 6 exp(−Λ∗µ(x)) where Λ∗µ is the Cramér
transform of µ (defined in Section 2), and actually establishes the stronger inequality

(1.2)

∫
Rn
e−Λ∗

µ(x)dν(x) 6 exp
(
−cn/L2

ν

)
,

exploiting upper bounds for the volume of the sets Bt(µ) = {x ∈ Rn : Λ∗µ(x) 6 t}. The assumption that
both µ and ν are isotropic is not necessary. One can consider a different type of normalization. We discuss
this matter in Section 2 and we state another version of Theorem 1.2 that might be useful (see Theorem 3.2).
In any case, setting ν = µ we obtain Theorem 1.1 as an immediate consequence of any of these statements.

In Section 4 we show that, apart from the value of the isotropic constant Lµ, the exponential estimate
provided by Theorem 1.1 is sharp.

Theorem 1.3. Let µ be a log-concave probability measure on Rn. Then,∫
Rn
ϕµ(x)dµ(x) > e−cn,

where c > 0 is an absolute constant.

The proof of Theorem 1.3 makes use of several facts about isotropic log-concave probability measures.
In the case where µ is the uniform measure on a convex body K of volume 1 in Rn, one can show that
ϕµ(x) > e−c1n for all x ∈ 1

2K and then simply apply Markov’s inequality and use the fact that
∣∣ 1

2K
∣∣ = 2−n.

When µ is an arbitrary log-concave probability measure on Rn, in order to obtain the same exponential in
the dimension lower bound we have to exploit the family of the one-sided Lt-centroid bodies of µ. More
precisely, we use the fact that in order to have the lower bound ϕµ(x) > e−c1n we may use, instead of 1

2K,

the convex body 1
2Z

+
t (µ) with e.g. t = 5n, where Z+

t (µ) is the one-sided Lt-centroid body of µ, and we

establish an appropriate lower bound for µ
(

1
2Z

+
5n(µ)

)
. This last estimate requires the use of some other

families of convex sets that are associated with a log-concave probability measure; these are introduced in
the next section as well as in Section 4. For the reader’s convenience we present first the proof of Theorem 1.3
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in the simpler case where µ is the uniform measure on a convex body K in Rn and then in the general case
of an arbitrary log-concave probability measure.

In the second part of this article we consider the question to obtain uniform upper and lower thresholds
for the expected measure of a random polytope defined as the convex hull of independent random points with
a log-concave distribution. The general formulation of the problem is the following. Given a log-concave
probability measure µ on Rn we consider independent random points X1, X2, . . . in Rn distributed according
to µ and for any N > n we consider the random polytope

KN = conv{X1, . . . , XN}

and the expectation EµN [µ(KN )]. Tukey’s half-space depth plays a crucial role in the study of these random
polytopes and of their threshold behavior, starting with the classical work of Dyer, Füredi and McDiarmid
who established in [13] a sharp threshold for the expected volume of random polytopes with vertices uniformly
distributed in the discrete cube En2 = {−1, 1}n or in the solid cube Bn∞ = [−1, 1]n. They proved that in the
first case, if κ = ln 2− 1

2 then for every ε ∈ (0, κ) one has the upper threshold

(1.3) lim
n→∞

sup
{

2−nE|KN | : N 6 exp((κ− ε)n)
}

= 0

and the lower threshold

(1.4) lim
n→∞

inf
{

2−nE|KN | : N > exp((κ+ ε)n)
}

= 1.

A similar result holds true for the expected volume of random polytopes with vertices uniformly distributed
in the cube Bn∞; the corresponding value of the constant κ is κ = ln(2π)−γ− 1

2 , where γ is Euler’s constant.
Half-space depth plays a key role in the proof of these results: the starting point for the proof of the
upper and lower threshold are variants of Lemma 5.2 and Lemma 5.7 respectively. Further sharp thresholds
(meaning that there exists some constant κ = κµ such that the expected volume of KN changes behavior
around N = exp(κµn)) have been given in a number of other special cases; see [15] for the case where Xi

have independent identically distributed coordinates supported on a bounded interval, and the articles [24]
and [3], [4] for a number of cases where Xi have rotationally invariant densities. All these works follow
the same strategy and use estimates for the half-space depth. Non-sharp, both of them exponential in the
dimension, upper and lower thresholds are obtained in [14] for the case where Xi are uniformly distributed
in a simplex. All these results suggest that, at least in the case where µ = µK is the uniform measure on a
high-dimensional convex body, the expectation EµN [µ(KN )] of the measure of KN exhibits a threshold with
constant κµ = 1

nEµ(Λ∗µ), where Λ∗µ is the Cramér transform of µ, in the sense that the following statement

might be true: given δ ∈
(
0, 1

2

)
, there exists n0(δ, ε) ∈ N such that if n > n0 and K is a convex body in Rn

then
sup

{
EµN [µ(KN )] : N 6 exp((κµ − ε)n)

}
6 δ

and
inf
{
EµN [µ(KN )] : N > exp((κµ + ε)n)

}
> 1− δ

for some ε = c(n, δ)κµ with lim
n→∞

c(n, δ) = 0. Some steps in this direction have been made in [7]. Note that

by (1.2) and Jensen’s inequality one has that κµ > c/L2
n for every log-concave probability measure µ on Rn.

Here, we are interested in uniform upper and lower thresholds for the class of all log-concave probability
measures. The question that we study is to find a constant N1(n), depending only on n and as large as
possible, so that

sup
µ

(
sup

{
EµN [µ(KN )] : N 6 N1(n)

})
−→ 0

as n→∞ and a second constant N2(n), depending only on n and as small as possible, so that

inf
µ

(
inf
{
EµN [µ(KN )] : N > N2(n)

})
−→ 0
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as n → ∞, where the supremum and the infimum are over all log-concave probability measures. We shall
call the first type of result a “uniform upper threshold” and the second type a “uniform lower threshold”.

Such uniform upper and lower thresholds were obtained recently by Chakraborti, Tkocz and Vritsiou
in [9] for some families of distributions. They showed that if µ is an even log-concave probability measure
supported on a convex body K in Rn and if X1, X2, . . . are independent random points distributed according
to µ, then for any n < N 6 exp(c1n/L

2
µ) we have that

(1.5)
EµN (|KN |)
|K|

6 exp
(
−c2n/L2

µ

)
,

where c1, c2 > 0 are absolute constants. We obtain an upper threshold for a pair of log-concave measures µ
and ν, if they can be simultaneously put in the isotropic position.

Theorem 1.4. Let µ and ν be isotropic log-concave probability measures on Rn. Let X1, X2, . . . be inde-
pendent random points in Rn distributed according to µ and for any N > n consider the random polytope
KN = conv{X1, . . . , XN}. Then, for any N 6 exp(c1n/L

2
ν) we have that

EµN (ν(KN )) 6 2 exp
(
−c2n/L2

ν

)
,

where c1, c2 > 0 are absolute constants.

As a corollary of Theorem 1.4 we get:

Corollary 1.5. There exists an absolute constant c > 0 such that if N1(n) = exp(cn/L2
n) then

sup
µ

(
sup

{
EµN [µ(KN )] : N 6 N1(n)

})
−→ 0

as n→∞, where the first supremum is over all log-concave probability measures µ on Rn.

The proof of Theorem 1.4 exploits some of the ideas that are used for the proof of (1.5) in [9]: Lemma 5.2
is a variant of a known idea which is often used for upper thresholds and is based again on the inequality
ϕµ(x) 6 exp(−Λ∗µ(x)). Then, one has to use upper bounds for the volume of the sets Bt(µ). The assumption
that both µ and ν are isotropic may be replaced by different types of normalization. We discuss other versions
of Theorem 1.4 in Section 5 and we show that one can recover (1.5) from these.

The uniform lower threshold which is established in [9] concerns the case where µ is an even κ-concave
measure on Rn with 0 < κ < 1/n, supported on a convex body K in Rn. If X1, X2, . . . are independent
random points in Rn distributed according to µ and KN = conv{X1, . . . , XN} as before, then for any M > C
and any N > exp

(
1
κ (lnn+ 2 lnM)

)
we have that

(1.6)
EµN (|KN |)
|K|

> 1− 1

M
,

where C > 0 is an absolute constant.
Since the family of log-concave probability measures corresponds to the case κ = 0, it is natural to ask

for analogues of this result for 0-concave, i.e. log-concave, probability measures. We obtain a uniform lower
threshold for the class of log-concave probability measures.

Theorem 1.6. Let δ ∈ (0, 1). Then,

inf
µ

(
inf
{
EµN

[
µ((1 + δ)KN )

]
: N > exp

(
Cδ−1 ln (2/δ)n lnn

)})
−→ 1

as n → ∞, where the first infimum is over all log-concave probability measures µ on Rn with barycenter at
the origin, and C > 0 is an absolute constant.
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The proof of Theorem 1.6 exploits the half-space depth as follows. By a known fact, Lemma 5.7, roughly
speaking it suffices to have a good lower bound for ϕµ(x) on a set A ⊂ Rn of measure close to 1. We show
that if µ has its barycenter at the origin then, as in the proof of Theorem 1.3, the role of A can be played by
(1 + δ)Z+

t (µ) where, this time, t > Cδn lnn and Cδ = Cδ−1 ln (2/δ). Theorem 1.6 provides a weak threshold
in the sense that we estimate the expectation EµN

(
µ(1 + δ)KN ) (for an arbitrarily small but positive value

of δ) while we would like to have a similar result for EµN
[
µ(KN )]. One can “remove the δ-term”, however

the dependence on n becomes worse. More precisely, we show in Theorem 5.8 that there exists an absolute
constant C > 0 such that

inf
µ

(
inf
{
EµN

[
µ(KN )

]
: N > exp(C(n lnn)2u(n))

})
−→ 1

as n → ∞, where the first infimum is over all log-concave probability measures µ on Rn and u(n) is any
function with u(n)→∞ as n→∞.

It should be noted that an exponential in the dimension lower threshold is not possible in full generality.
For example, in the case where Xi are uniformly distributed in the Euclidean ball the sharp threshold for
the problem is

exp
(
(1± ε) 1

2n lnn
)
, ε > 0.

See [12] where a related estimate first appears, and [24],[3] for sharp estimates; one more proof is given in
[7].

2 Notation and background information

In this section we introduce notation and terminology that we use throughout this work, and provide back-
ground information on isotropic convex bodies and log-concave probability measures. We write 〈·, ·〉 for the
standard inner product in Rn and denote the Euclidean norm by | · |. In what follows, Bn2 is the Euclidean
unit ball, Sn−1 is the unit sphere, and σ is the rotationally invariant probability measure on Sn−1. Lebesgue
measure in Rn is denoted by | · |. The letters c, c′, cj , c

′
j etc. denote absolute positive constants whose value

may change from line to line. Whenever we write a ≈ b, we mean that there exist absolute constants c1, c2 > 0
such that c1a 6 b 6 c2a. Similarly, if A,B are sets, then A ≈ B will state that c1A ⊆ B ⊆ c2A for some
absolute constants c1, c2 > 0. We refer to Schneider’s book [25] for basic facts from the Brunn-Minkowski
theory and to the book [2] for basic facts from asymptotic convex geometry. We also refer to [8] for more
information on isotropic convex bodies and log-concave probability measures.

2.1. Convex bodies. A convex body in Rn is a compact convex set K ⊂ Rn with non-empty interior. In
this work we often consider bounded convex sets K in Rn with 0 ∈ int(K); since their closure is a convex
body, we shall call these sets convex bodies too. We say that K is centrally symmetric if −K = K and that
K is centered if the barycenter bar(K) = 1

|K|
∫
K
x dx of K is at the origin. We shall use the fact that if K

is a centered convex body in Rn then

(2.1) max
y∈Rn

|K ∩ (y + ξ⊥)|n−1 6 e |K ∩ ξ⊥|n−1

for all ξ ∈ Sn−1, where ξ⊥ = {x ∈ Rn : 〈x, ξ〉 = 0} and | · |n−1 denotes (n− 1)-dimensional volume. This is a
result of Fradelizi; for a proof see [8, Proposition 6.1.9]. The radial function %K of K is defined for all x 6= 0
by %K(x) = sup{λ > 0 : λx ∈ K} and the support function of K is given by hK(x) = sup{〈x, y〉 : y ∈ K}
for all x ∈ Rn. The polar body K◦ of a convex body K in Rn with 0 ∈ int(K) is the convex body

K◦ :=
{
y ∈ Rn : 〈x, y〉 6 1 for all x ∈ K

}
.

A convex body K in Rn is called isotropic if it has volume 1, it is centered, and its inertia matrix is a multiple
of the identity matrix: there exists a constant LK > 0, the isotropic constant of K, such that

‖〈·, ξ〉‖2L2(K) :=

∫
K

〈x, ξ〉2dx = L2
K
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for all ξ ∈ Sn−1.

2.2. Log-concave probability measures. In this article, a Borel measure µ on Rn is called log-concave if
µ(H) < 1 for every hyperplane H in Rn and µ(λA+(1−λ)B) > µ(A)λµ(B)1−λ for any compact subsets A,B
of Rn and any λ ∈ (0, 1). A theorem of Borell [5] shows that under these assumptions, µ has a log-concave
density fµ. A function f : Rn → [0,∞) is called log-concave if its support {f > 0} is a convex set in Rn and
the restriction of ln f to it is concave. If f has finite positive integral then there exist constants A,B > 0
such that f(x) 6 Ae−B|x| for all x ∈ Rn (see [8, Lemma 2.2.1]). In particular, f has finite moments of all
orders. We say that µ is even if µ(−B) = µ(B) for every Borel subset B of Rn and that µ is centered if∫

Rn
〈x, ξ〉dµ(x) =

∫
Rn
〈x, ξ〉fµ(x)dx = 0

for all ξ ∈ Sn−1. We shall use the fact that if µ is a centered log-concave probability measure on Rn then

(2.2) ‖fµ‖∞ 6 enfµ(0).

This is a result of Fradelizi; for a proof see [8, Theorem 2.2.2]. Note that if K is a convex body in Rn then
the Brunn-Minkowski inequality implies that the indicator function 1K of K is the density of a log-concave
measure, the Lebesgue measure on K.

If µ is a log-concave measure on Rn with density fµ, we define the isotropic constant of µ by

(2.3) Lµ :=

(
supx∈Rn fµ(x)∫

Rn fµ(x)dx

) 1
n

[det Cov(µ)]
1
2n ,

where Cov(µ) is the covariance matrix of µ with entries

Cov(µ)ij :=

∫
Rn xixjfµ(x) dx∫

Rn fµ(x) dx
−
∫
Rn xifµ(x) dx∫
Rn fµ(x) dx

∫
Rn xjfµ(x) dx∫
Rn fµ(x) dx

.

We say that a log-concave probability measure µ on Rn is isotropic if it is centered and Cov(µ) = In, where

In is the identity n×n matrix. In this case, Lµ = ‖fµ‖1/n∞ . For every µ there exists an affine transformation
T such that T∗µ is isotropic, where T∗µ is the push-forward of µ defined by T∗µ(A) = µ(T−1(A)). Note that
a convex body K of volume 1 is isotropic if and only if the log-concave probability measure with density
LnK1K/LK is isotropic. The hyperplane conjecture asks if there exists an absolute constant C > 0 such that

Ln := max{Lµ : µ is an isotropic log-concave probability measure on Rn} 6 C

for all n > 1. Bourgain [6] established the upper bound Ln 6 c 4
√
n lnn; later, Klartag, in [19], improved this

estimate to Ln 6 c 4
√
n. In a breakthrough work, Chen [10] proved that for any ε > 0 there exists n0(ε) ∈ N

such that Ln 6 nε for every n > n0(ε). Subsequently, Klartag and Lehec [22] showed that Ln 6 c(lnn)4,
and very recently Klartag [21] achieved the best known bound Ln 6 c

√
lnn.

2.3. Centroid bodies. Let µ be a log-concave probability measure on Rn. For any t > 1 we define the
Lt-centroid body Zt(µ) of µ as the centrally symmetric convex body whose support function is

hZt(µ)(y) :=

(∫
Rn
|〈x, y〉|tfµ(x)dx

)1/t

, y ∈ Rn.

Note that Zt(µ) is always centrally symmetric, and Zt(T∗µ) = T (Zt(µ)) for every T ∈ GL(n) and t > 1.
Note also that a centered log-concave probability measure µ is isotropic if and only if Z2(µ) = Bn2 . The next
result of Paouris (see [8, Theorem 5.1.17]) provides upper bounds for the volume of the Lt-centroid bodies
of isotropic log-concave probability measures.
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Theorem 2.1. If µ is a centered log-concave probability measure on Rn, then for every 2 6 t 6 n we have
that

|Zt(µ)|1/n 6 c
√
t/n[det Cov(µ)]

1
2n ,

where c > 0 is an absolute constant. In particular, if µ is isotropic then |Zt(µ)|1/n 6 c
√
t/n for all 2 6 t 6 n.

A variant of the Lt-centroid bodies of µ is defined as follows. For every t > 1 we consider the convex
body Z+

t (µ) with support function

hZ+
t (µ)(y) =

(∫
Rn
〈x, y〉t+fµ(x)dx

)1/t

, y ∈ Rn,

where a+ = max{a, 0}. When fµ is even, we have that Z+
t (µ) = 2−1/tZt(µ). In any case, we easily verify

that
Z+
t (µ) ⊆ Zt(µ).

Moreover, if µ is isotropic then Z+
2 (µ) ⊇ cBn2 for an absolute constant c > 0. One can also check that if

1 6 t < s then (
4

e

) 1
t−

1
s

Z+
t (µ) ⊆ Z+

s (µ) ⊆ c1
(

4(e− 1)

e

) 1
t−

1
s s

t
Z+
t (µ).

The right-hand side inequality gives

(2.4)

∫
Rn
〈x, ξ〉2t+fµ(x)dx = [hZ+

2t(µ)(ξ)]
2t 6 C2t[hZ+

t (µ)(ξ)]
2t = C2t

(∫
Rn
〈x, ξ〉t+fµ(x)dx

)2

,

for all ξ ∈ Sn−1, where C > 1 is an absolute constant. For a proof of all these claims see [17], where
the family of bodies Z̃+

t (µ) = 21/tZ+
t (µ) is considered. We have made the necessary adjustments in the

inclusions that we use.

2.4. The bodies Bt(µ). Let µ be a probability measure on Rn. We define

Mµ(v) :=

∫
Rn
e〈v,x〉dµ(x) = exp(Λµ(v))

where

Λµ(v) = ln

(∫
Rn
e〈v,x〉dµ(x)

)
is the logarithmic Laplace transform of µ. We also define

Λ∗µ(v) := L(Λµ)(v) = sup
u∈Rn

{
〈v, u〉 − ln

∫
Rn
e〈u,x〉dµ(x)

}
,

where, given a convex function g : Rn → (−∞,∞], the Legendre transform L(g) of g is defined by

L(g)(x) := sup
y∈Rn
{〈x, y〉 − g(y)}.

The function Λ∗µ is called the Cramér transform of µ and plays a crucial role in the theory of large deviations.
For every t > 1 we define

Mt(µ) :=

{
v ∈ Rn :

∫
Rn
|〈v, x〉|tdµ(x) 6 1

}
.

Note that

Zt(µ) := (Mt(µ))◦ =

{
x ∈ Rn : |〈v, x〉|t 6

∫
Rn
|〈v, y〉|tdµ(y) for all v ∈ Rn

}
.
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For every t > 0 we also set
Bt(µ) := {v ∈ Rn : Λ∗µ(v) 6 t}.

We say that a measure µ on Rn is α-regular if for any s > t > 2 and every v ∈ Rn,(∫
Rn
|〈v, x〉|sdµ(x)

)1/s

6 α
s

t

(∫
Rn
|〈v, x〉|tdµ(x)

)1/t

.

For all s > t we have Ms(µ) ⊆ Mt(µ) and Zt(µ) ⊆ Zs(µ). If the measure µ is α-regular, then Mt(µ) ⊆
α stMs(µ) and Zs(µ) ⊆ α stZt(µ) for all s > t > 2. Moreover, for every centered probability measure µ we
have Λ∗µ(0) = 0 by Jensen’s inequality, and the convexity of Λ∗µ implies that Bt(µ) ⊆ Bs(µ) ⊆ s

tBt(µ) for all
s > t > 0.

Recall that, by Borell’s lemma, every log-concave probability measure is c-regular (see [8, Theorem 2.4.6]
for a proof).

Proposition 2.2. Every log-concave probability measure is c-regular, where c > 1 is an absolute constant.

The next proposition compares Bt(µ) with Zt(µ) when µ is α-regular.

Proposition 2.3. If µ is α-regular for some α > 1, then for any t > 2 we have

Bt(µ) ⊆ 4eαZt(µ).

Proof. We first check that if u ∈Mt(µ) then

Λµ

(
tu

2eα

)
6 t.

We fix u ∈Mt(µ) and set ũ := tu
2eα . Then,(∫

Rn
|〈ũ, x〉|kdµ(x)

)1/k

=
t

2eα

(∫
Rn
|〈u, x〉|kdµ(x)

)1/k

,

which is bounded by t
2eα if k 6 t and by k

2e if k > t. It follows that∫
Rn
e〈ũ,x〉dµ(x) 6

∫
Rn
e|〈ũ,x〉|dµ(x) =

∞∑
k=0

1

k!

∫
Rn
|〈ũ, x〉|kdµ(x)

6
∑
k6t

1

k!

∣∣∣∣ t

2eα

∣∣∣∣k +
∑
k>t

1

k!

∣∣∣∣ k2e
∣∣∣∣k 6 e

t
2eα + 1 6 et

and the claim follows.
Now, let v /∈ 4eαZt(µ). We can find u ∈Mt(µ) such that 〈v, u〉 > 4eα and then

Λ∗µ(v) >
〈
v,

tu

2eα

〉
− Λµ

(
tu

2eα

)
>

t

2eα
4eα− t = t.

Therefore, v /∈ Bt(µ).

By Proposition 2.2, we have that Proposition 2.3 holds true (with an absolute constant in place of 4eα)
for every log-concave probability measure.

2.5. Ball’s bodies Kt(µ). If µ is a log-concave probability measure on Rn then, for every t > 0, we define

Kt(µ) := Kt(fµ) =

{
x ∈ Rn :

∫ ∞
0

rt−1fµ(rx) dr >
fµ(0)

t

}
.
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From the definition it follows that the radial function of Kt(µ) is given by

(2.5) %Kt(µ)(x) =

(
1

fµ(0)

∫ ∞
0

trt−1fµ(rx) dr

)1/t

for x 6= 0. The bodies Kt(µ) were introduced by K. Ball who also established their convexity. If µ is also
centered then, for every 0 < t 6 s,

(2.6)
Γ(t+ 1)

1
t

Γ(s+ 1)
1
s

Ks(µ) ⊆ Kt(µ) ⊆ ent −nsKs(µ).

A proof is given in [8, Proposition 2.5.7]. It is easily checked that

(2.7) |Kn(f)| fµ(0) =

∫
Rn
fµ(x)dx = 1

(see e.g. [8, Lemma 2.5.6]) and then we can use the inclusions (2.6) in order to estimate the volume of Kt(µ).
For every t > 0 we have

(2.8) e−1 6 fµ(0)
1
n+ 1

t |Kn+t(µ)| 1n+ 1
t 6 e

n+ t

n
.

We are mainly interested in the convex body Kn+1(µ). We shall use the fact that Kn+1(µ) is centered (see
[8, Proposition 2.5.3 (v)]) and that

(2.9) fµ(0)|Kn+1(µ)| ≈ 1.

The last estimate follows immediately from (2.7) and (2.8).

3 Upper bound for the expected value of the half-space depth

Let µ and ν be two log-concave probability measures on Rn with the same barycenter. If T : Rn → Rn is an
invertible affine transformation and T∗µ is the push-forward of µ defined by T∗µ(A) = µ(T−1(A)) then we
observe that ϕT∗µ(x) = ϕµ(T−1(x)) for all x ∈ Rn, and hence∫

Rn
ϕT∗µ(x)dT∗ν(x) =

∫
Rn
ϕµ(T−1(x))dT∗ν(x) =

∫
Rn
ϕµ(x)dν(x).

Therefore, Theorem 1.1 is a consequence of Theorem 1.2. Starting with a log-concave probability measure
µ on Rn, we consider an affine transformation T such that T∗µ is isotropic and then apply Theorem 1.2 to
the measures T∗µ and ν = T∗µ.

Proof of Theorem 1.2. Consider two isotropic log-concave probability measures µ, ν on Rn. We will show
that ∫

Rn
ϕµ(x) dν(x) 6 e−cn/L

2
ν

for some absolute constant c > 0. We start with the observation that for any v ∈ Rn the half-space
{z : 〈z, v〉 > 〈x, v〉} is in H(x), therefore

ϕµ(x) 6 µ({z : 〈z, v〉 > 〈x, v〉}) 6 e−〈x,v〉Eµ
(
e〈z,v〉

)
= exp

(
− [〈x, v〉 − Λµ(v)]

)
,

and taking the infimum over all v ∈ Rn we see that

ϕµ(x) 6 exp(−Λ∗µ(x)).
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Then we write ∫
Rn
ϕµ(x) dν(x) 6

∫
Rn
e−Λ∗

µ(x)fν(x) dx =

∫
Rn

(∫ ∞
Λ∗
µ(x)

e−tdt

)
fν(x)dx

=

∫ ∞
0

e−t
∫
Rn

1Bt(µ)(x)fν(x)dx dt =

∫ ∞
0

e−tν(Bt(µ)) dt.

Fix b ∈ (2/n, 1/2] which will be chosen appropriately. Since ν(Bt(µ)) 6 1 and also ν(Bt(µ)) 6 ‖fν‖∞|Bt(µ)|
for all t > 0, we may write∫

Rn
ϕµ(x) dν(x) 6

∫ ∞
bn

e−tν(Bt(µ))dt+ ‖fν‖∞
∫ bn

0

e−t|Bt(µ)| dt

6
∫ ∞
bn

e−t dt+ Lnν

∫ 2

0

e−t|Bt(µ)| dt+ Lnν

∫ bn

2

e−t|Bt(µ)| dt

6 e−bn + Lnν |B2(µ)|+ Lnν

∫ bn

2

e−t|Bt(µ)| dt.

Applying Proposition 2.3 and Theorem 2.1 we get

|Bt(µ)|1/n 6 c1|Zt(µ)|1/n 6 c2
√
t/n

for all 2 6 t 6 n, where c1, c2 > 0 are absolute constants. It is also known that Lν > c3 where c3 > 0 is an
absolute constant (see [8, Proposition 2.3.12] for a proof). So, we may assume that c2Lν >

√
2. Choosing

b0 := 1/(c2Lν)2 6 1/2 we write

Lnν

∫ b0n

2

e−t|Bt(µ)| dt 6 cn2L
n
ν

∫ b0n

2

(t/n)n/2e−tdt = (c2Lν)n
∫ b0n

2

(t/n)n/2e−tdt,

and since b0n 6 n/2 and the function t 7→ tn/2e−t is increasing on [0, n/2], we get

(c2Lν)n
∫ b0n

2

e−t|Bt(µ)| dt 6 (b0n− 2) · (c2Lν)nb
n/2
0 e−b0n = (b0n− 2)e−b0n.

Moreover, |B2(µ)|1/n 6 c2
√

2/n, therefore

Lnν |B2(µ)| 6 (c4L
2
ν/n)n/2 6 e−b0n,

because c4L
2
ν/n 6 e−2 if n > n0. Combining the above we get∫

Rn
ϕµ(x) dν(x) 6 e−b0n + e−b0n + (b0n− 2)e−b0n,

and hence ∫
Rn
ϕµ(x) dν(x) 6 n exp

(
−n/(c2Lν)2

)
which implies the result.

Remark 3.1. In the introduction we have already mentioned that the assumption that both µ and ν are
isotropic is not necessary. One may consider different situations, where µ and ν are centered and ‖fν‖∞ is
comparable with ‖fµ‖∞. For example, the next result can be obtained with the ideas that were used in the
proof of Theorem 1.2.

10



Theorem 3.2. Let µ and ν be two centered log-concave probability measures on Rn, n > n0, such that
‖fµ‖∞ = ‖fν‖∞. Then,

Eν(ϕµ) :=

∫
Rn
ϕµ(x) dν(x) 6 exp

(
−cn/L2

µ

)
,

where c > 0, n0 ∈ N are absolute constants.

The proof of Theorem 3.2 is quite similar to the one of Theorem 1.2. We fix b ∈ (2/n, 1/2] and write∫
Rn
ϕµ(x) dν(x) 6

∫
Rn
e−Λ∗

µ(x)fν(x) dx =

∫ ∞
0

e−tν(Bt(µ)) dt

6 e−bn + ‖fν‖∞|B2(µ)|+ ‖fν‖∞
∫ bn

2

e−t|Bt(µ)| dt.

Then, we use the upper bound

|Bt(µ)|1/n 6 c1|Zt(µ)|1/n 6 c2
√
t/n[det Cov(µ)]

1
2n ,

observe that
‖fν‖∞[det Cov(µ)]

1
2 = ‖fµ‖∞[det Cov(µ)]

1
2 = Lnµ.

and continue as in the proof of Theorem 1.2.

4 Lower bound for the expected value of the half-space depth

In this section we show that the exponential estimate of Theorem 1.1 is sharp. As explained in the intro-
duction, for the reader’s convenience we consider first the simpler case where µ is the uniform measure on a
convex body K in Rn and then present the more technical tools and computations that are required for the
case of an arbitrary log-concave probability measure µ on Rn.

4.1 Uniform measure on a convex body

The next proposition provides an exponential lower bound for EµK (ϕµK ), where µK is the uniform measure
on K.

Proposition 4.1. Let K be a convex body of volume 1 in Rn. Then,∫
K

ϕµK (x)dx > e−cn,

where c > 0 is an absolute constant.

Proof. By translation invariance we may assume that the barycenter of K is at the origin. Let x ∈ 1
2K. We

will show that ϕµK (x) > 1
e2n ·

1
2n . It suffices to show that

(4.1) inf |{z ∈ K : 〈z, ξ〉 > 〈x, ξ〉}| > 1

e2n
· 1

2n
,

where the infimum is over all ξ ∈ Sn−1, because by the definition of ϕµK (x) we only have to check the
half-spaces H ∈ H(x) for which x is a boundary point. Moreover, we may consider only those ξ ∈ Sn−1 that
satisfy 〈x, ξ〉 > 0, because if 〈x, ξ〉 < 0 then

|{z ∈ K : 〈z, ξ〉 > 〈x, ξ〉}| > |{z ∈ K : 〈z, ξ〉 > 0}| > 1/e
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by Grünbaum’s lemma (see [8, Lemma 2.2.6]). Fix ξ ∈ Sn−1 with 〈x, ξ〉 > 0 and set m = hK(ξ) =
max{〈z, ξ〉 : z ∈ K}. Since 〈x, ξ〉 6 m/2, it is enough to show that

(4.2) |{z ∈ K : 〈z, ξ〉 > m/2}| > 1

e2n
· 1

2n
.

Consider the function g(t) = |K(ξ, t)|n−1, where K(ξ, t) = {z ∈ K : 〈z, ξ〉 = t}, t ∈ [0,m] and | · |n−1 denotes

(n − 1)-dimensional volume. The Brunn-Minkowski inequality implies that g
1

n−1 is concave. Therefore, for
every r ∈ [0,m] we have that

g(r) >
(

1− r

m

)n−1

g(0).

We write

|{z ∈ K : 〈z, ξ〉 > m/2}| =
∫ m

m/2

g(r) dr > g(0)

∫ m

m/2

(
1− r

m

)n−1

dr

= g(0)m

∫ 1

1/2

(1− s)n−1ds =
1

n2n
g(0)m.

Since K is centered, we know that ‖g‖∞ 6 e |K ∩ ξ⊥|n−1 = eg(0) from (2.1). Then, using also Grünbaum’s
lemma, we see that

1

e
6
∫ m

0

g(r) dr 6 ‖g‖∞m 6 eg(0)m,

and (4.2) follows. It is now clear that∫
K

ϕµK (x)dx >
∫

1
2K

ϕµK (x)dx >
∣∣∣1
2
K
∣∣∣ · 1

e2n
· 1

2n
=

1

e2n
· 1

4n
> e−cn

for some absolute constant c > 0.

4.2 Log-concave probability measures

Next, we assume that µ is a log-concave probability measure on Rn. Our aim is to prove the next theorem.

Theorem 4.2. Let µ be a log-concave probability measure on Rn. Then,∫
Rn
ϕµ(x)dµ(x) > e−cn,

where c > 0 is an absolute constant.

By the affine invariance of Eµ(ϕµ) we may assume that µ is centered. The proof is based on a number of
observations. The first one is a consequence of the Paley-Zygmund inequality; we just adapt here the proof
of [8, Lemma 11.3.3] to give a lower bound for ϕµ(x) when x ∈ δZ+

t (µ) for some δ ∈ (0, 1).

Lemma 4.3. Let t > 1 and δ ∈ (0, 1). For every x ∈ δZ+
t (µ) one has

ϕµ(x) >
(1− δt)2

Ct1
,

where C1 > 1 is an absolute constant.

Proof. Let x ∈ δZ+
t (µ). As in the proof of Proposition 4.1, using Grünbaum’s lemma we see that it is enough

to show that

(4.3) inf µ({z ∈ Rn : 〈z, ξ〉 > 〈x, ξ}) > (1− δt)2

Ct1
,
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where the infimum is over all ξ ∈ Sn−1 with 〈x, ξ〉 > 0.
Since x ∈ δZ+

t (µ), we have 〈x, ξ〉 6 δhZ+
t (µ)(ξ) for any such ξ ∈ Sn−1, so it is enough to show that

(4.4) µ({z ∈ Rn : 〈z, ξ〉 > δhZ+
t (µ)(ξ)}) >

(1− δt)2

Ct1
.

We apply the Paley-Zygmund inequality

µ({z : g(z) > δtEµ(g)}) > (1− δt)2 [Eµ(g)]2

Eµ(g2)

for the function g(z) = 〈z, ξ〉t+. From (2.4) we see that

Eµ(g2) 6 Ct1 [Eµ(g)]2

for some absolute constant C1 > 0, and the lemma follows.

Definition 4.4. For every t > 1 we consider the convex set

Rt(µ) = {x ∈ Rn : fµ(x) > e−tfµ(0)}.

The convexity of Rt(µ) is an immediate consequence of the log-concavity of fµ. Note that Rt(µ) is bounded
and 0 ∈ int(Rt(µ)).

Lemma 4.5. For every t > 5n we have Rt(µ) ⊇ c0Kn+1(µ), where c0 > 0 is an absolute constant.

Proof. Let t > 5n. Given any ξ ∈ Sn−1 consider the log-concave function h : [0,∞) → [0,∞) defined by
h(t) = fµ(tξ). From [20, Lemma 5.2] we know that∫ %Rt(µ)(ξ)

0

rn−1h(r)dr > (1− e−t/8)

∫ ∞
0

rn−1h(r)dr.

By the definition of Kn(µ) we have∫ ∞
0

rn−1h(r)dr =
fµ(0)

n
[%Kn(µ)(ξ)]

n.

On the other hand,∫ %Rt(µ)(ξ)

0

rn−1h(r)dr 6 ‖f‖∞
∫ %Rt(µ)(ξ)

0

rn−1dr =
‖f‖∞
n

[%Rt(µ)(ξ)]
n.

Using also the fact that ‖f‖∞ 6 enfµ(0) from (2.2), we get

en[%Rt(µ)(ξ)]
n > (1− e−t/8)[%Kn(µ)(ξ)]

n.

This shows that Rt(µ) ⊇ c0Kn(µ), where c0 > 0 is an absolute constant. From (2.6) we know that Kn(µ) ≈
Kn+1(µ), and this completes the proof.

Our final lemma compares Z+
t (µ) with Kn+1(µ) when t > 5n.

Lemma 4.6. For every t > 5n we have that Z+
t (µ) ⊇ c′0Kn+1(µ), where c′0 > 0 is an absolute constant.
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Proof. From Lemma 4.5 we know that c0Kn+1(µ) ⊆ Rt(µ) for all t > 5n, where c0 > 0 is an absolute
constant. Let ξ ∈ Sn−1 and set m := hc0Kn+1(µ)(ξ) = c0hKn+1(µ)(ξ). Define

Aξ = c0Kn+1(µ) ∩ {x : 〈x, ξ〉 > m/2}.

Since Kn+1(µ) is centered, the proof of Proposition 4.1 shows that

|Aξ| >
|c0Kn+1(µ)|
e2n · 2n

>
|c0Kn+1(µ)|

Cn

for some absolute constant C > c0. Moreover, if x ∈ Aξ then x ∈ Rt(µ) and hence fµ(x) > e−tfµ(0). We
write ∫

Rn
〈x, ξ〉t+dµ(x) >

∫
Aξ

〈x, ξ〉t+dµ(x)

>
(m

2

)t
e−tfµ(0)|Aξ| >

(m
2e

)t (c0
C

)n
fµ(0)|Kn+1(µ)|.

Using also the fact that (c0/C)n > (c0/C)t because t > 5n, we get∫
Rn
〈x, ξ〉t+dµ(x) > (c1m)tfµ(0)|Kn+1(µ)|,

where c1 > 0 is an absolute constant. Finally, fµ(0)|Kn+1(µ)| ≈ 1 by (2.9), which implies that

hZ+
t (µ)(ξ) > c2m = c′0hKn+1(µ)(ξ),

where c′0 = c2c0, and the lemma is proved.

Proof of Theorem 4.2. Combining Lemma 4.5 and Lemma 4.6 we see that

R5n(µ) ∩ Z+
5n(µ) ⊇ c1Kn+1(µ)

for some absolute constant c1 > 0. We apply Lemma 4.3 with t = 5n and δ = 1
2 . For every x ∈ 1

2Z
+
5n(µ) we

have
ϕµ(x) > C−n1

for some absolute constant C1 > 1. It follows that∫
Rn
ϕµ(x) dµ(x) > C−n1 µ

(
1
2Z

+
5n(µ)

)
.

Then, by Lemma 4.6 we have 1
2Z

+
5n(µ) ⊇ c1

2 Kn+1(µ). Since c1
2 Kn+1(µ) ⊆ R5n(µ), we know that fµ(x) >

e−5nfµ(0) for all x ∈ c1
2 Kn+1(µ). Using also (2.9), we get

µ
(

1
2Z

+
5n(µ)

)
> µ

(c1
2
Kn+1(µ)

)
=

∫
c1
2 Kn+1(µ)

fµ(x) dx > e−5nfµ(0)
∣∣∣c1

2
Kn+1(µ)

∣∣∣
= e−5n(c1/2)nfµ(0)|Kn+1(µ)| > e−5ncn2 .

Combining the above we conclude that∫
Rn
ϕµ(x) dµ(x) > C−n1 e−5ncn2 > e−cn,

for some absolute constant c > 0.
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5 Bounds for the expected measure of random polytopes

Let µ be a log-concave probability measure on Rn. Let X1, X2, . . . be independent random points in Rn
distributed according to µ and for any N > n consider the random polytope KN = conv{X1, . . . , XN}. Given
a second log-concave probability measure ν on Rn with the same barycenter as µ, consider the expectation
EµN [ν(KN )] of the ν-measure of KN . Note that if T : Rn → Rn is an invertible affine transformation and
T∗µ is the push-forward of µ defined by T∗µ(A) = µ(T−1(A)) then

E(T∗µ)N [(T∗ν)(KN )] = EµN [ν(KN )].

So, we may assume that µ is isotropic and ν is centered. In the next theorem we actually assume that both
µ and ν are isotropic.

Theorem 5.1. Let µ and ν be isotropic log-concave probability measures on Rn, n > n0. For any N 6
exp(c1n/L

2
ν) we have that

EµN (ν(KN )) 6 2 exp
(
−c2n/L2

ν

)
,

where c1, c2 > 0 and n0 ∈ N are absolute constants.

The proof of Theorem 5.1 will exploit the same tools that were used in the previous section, combined
with a variant of the standard lemma that is used in order to establish upper thresholds. Recall that
Bt(µ) = {v ∈ Rn : Λ∗µ(v) 6 t}, where Λ∗µ is the Cramér transform of µ. A version of the next lemma
appeared originally in [13].

Lemma 5.2. Let t > 0. For every N > n we have

EµN (ν(KN )) 6 ν(Bt(µ)) +N exp(−t).

Proof. We write

EµN (ν(KN )) = EµN (ν(KN ∩Bt(µ))) + EµN (ν(KN \Bt(µ)))

6 ν(Bt(µ)) + EµN (ν(KN \Bt(µ))).

Observe that if H is a closed half-space containing x, and if x ∈ KN , then there exists i 6 N such that
Xi ∈ H (otherwise we would have x ∈ KN ⊆ H ′, where H ′ is the complementary half-space). It follows that

µN
(
x ∈ KN

)
6 Nϕµ(x).

Then, Fubini’s theorem shows that

EµN (ν(KN \Bt(µ))) =

∫
Rn\Bt(µ)

µN (x ∈ KN ) dν(x) 6
∫
Rn\Bt(µ)

Nϕµ(x) dν(x) 6 N e−t

because ϕµ(x) 6 exp(−Λ∗µ(x)) 6 e−t for all x /∈ Bt(µ).

Proof of Theorem 5.1. Using the estimate ν(Bt(µ)) 6 ‖fν‖∞|Bt(µ)|, Proposition 2.3 and Theorem 2.1, from
Lemma 5.2 we get

EµN (ν(KN )) 6
(
c1‖fν‖1/n∞

√
t/n
)n

+N exp(−t)

for every N > n and 2 6 t 6 n. Recall that ν is isotropic, therefore ‖fν‖2/n∞ = L2
ν = O(

√
n); in fact,

Klartag’s estimate for Ln gives much more. Then, if n > n0 where n0 ∈ N is an absolute constant, the choice

t := (c1e)
−2n/‖fν‖2/n∞ satisfies 2 6 t 6 n and gives(

c1‖fν‖1/n∞
√
t/n
)n

6 e−n.
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Therefore,
EµN (ν(KN )) 6 e−n +N exp(−c2n/‖fν‖2/n∞ ),

where c2 = (c1e)
−2. It follows that if N 6 exp(c3n/‖fν‖2/n∞ ) where c3 = c2/2, then we have

EµN (ν(KN )) 6 e−n + exp(−c3n/‖fν‖2/n∞ )

and the result follows from the fact that ‖fν‖2/n∞ = L2
ν > c.

Remark 5.3. Let µ be isotropic. For the proof of Theorem 5.1, what we actually need about ν is that ν is

centered and that ‖fν‖1/n∞ = on(
√
n). Then the argument of the previous proof gives

EµN (ν(KN )) 6 exp(−c2n/max{1, ‖fν‖2/n∞ })

if N 6 exp(c1n/‖fν‖2/n∞ ). Note that the proof of (1.5) in [9] exploits the same ideas. The role of ν is played
by the uniform measure on a convex body K, therefore ‖fν‖∞ = 1

|K| . On the other hand, µ is isotropic and

supported on K, and hence

|K| · Lnµ >
∫
K

fµ(x)dx = µ(K) = 1.

This shows that ‖fν‖∞ 6 Lnµ, therefore n/‖fν‖
2
n∞ > n/L2

µ, which (combined with the above) proves (1.5).
A second possible normalization is to assume that µ and ν are simply centered and that ‖fµ‖∞ = ‖fν‖∞.

Then, starting the computation as in the proof of Theorem 5.1 we get

EµN (ν(KN )) 6
(
c1‖fν‖1/n∞ [det Cov(µ)]

1
2n

√
t/n
)n

+N exp(−t)

=
(
c1‖fµ‖1/n∞ [det Cov(µ)]

1
2n

√
t/n
)n

+N exp(−t) =
(
c1Lµ

√
t/n
)n

+N exp(−t).

Choosing t = (c1e)
−2n/L2

µ and continuing as above, we get:

Theorem 5.4. Let µ and ν be two centered log-concave probability measures on Rn with ‖fµ‖∞ = ‖fν‖∞.
For any N 6 exp(c1n/L

2
µ) we have that

EµN (ν(KN )) 6 2 exp
(
−c2n/L2

µ

)
,

where c1, c2 > 0 are absolute constants.

We pass now to the lower threshold. It is useful to observe that in the case where X1, X2, . . . are uniformly
distributed in the Euclidean unit ball the sharp threshold for the problem (see [24] and [3]) is

exp
(
(1± ε) 1

2n lnn
)
, ε > 0.

We concentrate in the case ν = µ of our problem, in which case we shall establish a weak lower threshold of
this order. The precise formulation of our result is the following.

Theorem 5.5. Let δ ∈ (0, 1). Then,

inf
µ

(
inf
{
EµN

[
µ((1 + δ)KN )

]
: N > exp

(
Cδ−1 ln (2/δ)n lnn

)})
−→ 1

as n→∞, where the first infimum is over all centered log-concave probability measures µ on Rn and C > 0
is an absolute constant.

This is a weak threshold in the sense that we consider the expected measure of (1+δ)KN instead of KN ,
where δ > 0 is arbitrarily small. The reason for this is the dependence on δ in the next technical proposition.
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Proposition 5.6. Let µ be an isotropic log-concave probability measure on Rn. For any δ ∈ (0, 1) and any
t > Cδn lnn we have that

µ((1 + δ)Z+
t (µ)) > 1− e−cδt

where Cδ = Cδ−1 ln (2/δ) and cδ = cδ are positive constants depending only on δ.

Proof. Let δ ∈ (0, 1) and set ε = δ/5. Fix t > n which will be determined. Recall that b1B
n
2 ⊆ Z+

t (µ) ⊆
b2tB

n
2 for some absolute constants b1, b2 > 0. This implies that if v, w ∈ Sn−1 and |v − w| 6 b1ε

b2t
then

hZ+
t (µ)(v − w) 6 b2t|v − w| and b1 6 min{hZ+

t (µ)(v), hZ+
t (µ)(w)},

therefore

(5.1) hZ+
t (µ)(v − w) 6 b2t|v − w| 6 εmin{hZ+

t (µ)(v), hZ+
t (µ)(w)}.

Set b := b2/b1 and consider a ε
bt -net N of the Euclidean unit sphere Sn−1 with cardinality |N | 6 (1+2bt/ε)n 6

(3bt/ε)n; for a proof of the estimate on the cardinality of N see e.g. [2, Lemma 5.2.5]. We define

W =
⋂
ξ∈N

{
x : 〈x, ξ〉+ 6

1

1 + ε
hZ+

t (µ)(ξ)

}
.

Let x ∈ W . Then, 〈x, ξ〉+ 6 1
1+εhZ+

t (µ)(ξ) for all ξ ∈ N . We will show that (1− ε)〈x,w〉+ 6 hZ+
t (µ)(w) for

all w ∈ Sn−1, which is equivalent to (1− ε)x ∈ Z+
t (µ). We set

αµ(x) := max

{
〈x,w〉+
hZ+

t (µ)(w)
: w ∈ Sn−1

}
and consider v ∈ Sn−1 such that 〈x, v〉+ = αµ(x) · hZ+

t (µ)(v). There exists ξ ∈ N such that |ξ − v| 6 ε
bt .

Using the fact that 〈x, v − ξ〉+ 6 αµ(x)hZ+
t (µ)(v − ξ), we write

〈x, v〉+ 6 〈x, ξ〉+ + 〈x, v − ξ〉+ 6
1

1 + ε
hZ+

t (µ)(ξ) + αµ(x)hZ+
t (µ)(v − ξ).

From (5.1) it follows that

〈x, v〉+ 6
1

1 + ε
hZ+

t (µ)(ξ) + εαµ(x)hZ+
t (µ)(v) =

1

1 + ε
hZ+

t (µ)(ξ) + ε〈x, v〉+,

which gives

〈x, v〉+ 6
1

1− ε2
hZ+

t (µ)(ξ).

Moreover,

hZ+
t (µ)(ξ) 6 hZ+

t (µ)(v) + hZ+
t (µ)(ξ − v) 6 hZ+

t (µ)(v) + εhZ+
t (µ)(v) = (1 + ε)hZ+

t (µ)(v),

which finally gives αµ(x) 6 1/(1− ε). This shows that (1− ε)W ⊆ Z+
t (µ). For every ξ ∈ N we have

µ({x : 〈x, ξ〉+ > (1 + ε)‖〈·, ξ〉+‖t}) 6 (1 + ε)−t.

Since δ ∈ (0, 1) we have 0 < ε < 1/5, therefore (1+ε)2

1−ε 6 1 + 5ε = 1 + δ. Then,

µ((1 + δ)Z+
t (µ)) > µ

(
(1 + ε)2

1− ε
Z+
t (µ)

)
> µ((1 + ε)2W )

= µ

⋂
ξ∈N

{
x : 〈x, ξ〉+ 6 (1 + ε)hZ+

t (µ)(ξ)
}

> 1− |N | · (1 + ε)−t > 1− (C ′εt)
n(1 + ε)−t,
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where C ′ε = 3b/ε. It follows that there exists Cε > 1 such that if t > Cεn lnn then

(5.2) (C ′εt)
n(1 + ε)−t 6 (1 + ε)−t/2 6 e−εt/4.

To see this, consider the function

`(t) =
t

2
ln(1 + ε)− n ln(3bt/ε).

It is easily checked that ` is increasing on [2n/ ln(1 + ε),∞). Therefore, if t > Cεn lnn where Cε = C
ε ln

(
2
ε

)
for a large enough absolute constant C > 0, one can check that `(t) > `(Cεn lnn) > 0. This implies (5.2).
Since ε = δ/5, we obtain the assertion of the proposition with the stated dependence of the constants Cδ, cδ
on δ.

For the proof of Theorem 5.5 we also need a basic fact that plays a main role in the proof of all the lower
thresholds that have been obtained so far. It is stated in the form below in [9, Lemma 3]. For a proof see
[13] or [15, Lemma 4.1].

Lemma 5.7. For every Borel subset A of Rn we have that

1− µN (KN ⊇ A) 6 2

(
N

n

)(
1− inf

x∈A
ϕµ(x)

)N−n
.

Therefore,

EµN [µ(KN )] > µ(A)

(
1− 2

(
N

n

)(
1− inf

x∈A
ϕµ(x)

)N−n)
.

Proof of Theorem 5.5. Let 0 < δ < 1 and set ε = δ/3. Let µ be a centered log-concave probability measure
on Rn. Since the expectation EµN

[
µ((1 + δ)KN )

]
is a linearly invariant quantity, we may assume that µ is

isotropic. From Lemma 4.3 we know that for every x ∈ (1− ε)Z+
t (µ) we have

ϕµ(x) >
(1− (1− ε)t)2

Ct1
,

where C1 > 1 is an absolute constant. Then, taking into account the fact that 1− ε > 2/3, we get

µN
(
KN ⊇ (1− ε)Z+

t (µ)
)
> 1− 2

(
N

n

)[
1− (1− (1− ε)t)2

Ct1

]N−n
.

By the mean value theorem we have 1 − (1 − ε)t = tεzt−1 for some z ∈ (1 − ε, 1), and hence 1 − (1 − ε)t >
tε(1− ε)t−1. Taking also into account the fact that 1− ε > 2/3, we get

µN
(
KN ⊇ (1− ε)Z+

t (µ)
)
> 1− 2

(
N

n

)[
1− (tε(1− ε)t−1)2

Ct1

]N−n
> 1−

(
2eN

n

)n
exp

(
−(N − n)

(tε)2

(3C1)t

)
.

This last quantity tends to 1 as n→∞ if

(5.3) (3C1)tn ln(4eN/n) < (N − n)(tε)2,

and assuming that δ ∈ (1/n2, 1) and t > Cεn lnn where Cε is the constant from Proposition 5.6, we check
that (5.3) holds true if N > exp(C2t) for a large enough absolute constant C2 > 0.
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Note that ε = δ/3 implies that 1 + δ > 1+ε
1−ε . Then, if N > exp(C2Cεn lnn) we see that

EµN [µ ((1 + δ)KN )] > EµN
[
µ

(
1 + ε

1− ε
KN

)]
> µ((1 + ε)Z+

t (µ))× µN
(
KN ⊇ (1− ε)Z+

t (µ)
)

>
(
1− e−cεt

) [
1−

(
2eN

n

)n
exp

(
−(N − n)

(tε)2

(3C1)t

)]
−→ 1

as n→∞.

We have already mentioned that Theorem 5.5 provides a weak threshold in the sense that we estimate the
expectation EµN

(
µ((1 + δ)KN )

)
(for an arbitrarily small but positive value of δ) while the original question

is about EµN
(
µ(KN )

)
. The next result provides an estimate where “δ is removed”, however the dependence

on n is worse. The argument below was suggested by the referee and replaces our much more complicated
original argument, leading to the same final estimate.

Theorem 5.8. There exists an absolute constant C > 0 such that

inf
µ

(
inf
{
EµN

[
µ(KN )

]
: N > exp(C(n lnn)2u(n))

})
−→ 1

as n → ∞, where the first infimum is over all log-concave probability measures µ on Rn and u(n) is any
function with u(n)→∞ as n→∞.

Proof. Let µ be a log-concave probability measure on Rn. Since the expectation EµN
[
µ(KN )

]
is an affinely

invariant quantity, we may assume that µ is centered. Note that if A ⊂ Rn is a Borel set, then

µ((1 + δ)A) =

∫
(1+δ)A

fµ(x) dx = (1 + δ)n
∫
A

fµ((1 + δ)x) dx.

Since fµ is log-concave, we see that

fµ((1 + δ)x) 6 fµ(x)

(
fµ(x)

fµ(0)

)δ
6 enδfµ(x)

for every x ∈ Rn, because fµ(x) 6 enfµ(0) by (2.2). It follows that

(5.4) µ((1 + δ)A) 6 (1 + δ)nenδµ(A) 6 e2nδµ(A).

Given a function u(n) with u(n)→∞ as n→∞, choose δn = (nu(n))−1. From (5.4) we see that

EµN
[
µ(KN )

]
> e−2nδnEµN

[
µ((1 + δn)KN )

]
.

Therefore, we see that

inf
µ

(
inf
{
EµN

[
µ(KN )

]
: N > exp

(
Cδ−1

n ln (2/δn)n lnn
)})

> e−2nδn inf
µ

(
inf
{
EµN

[
µ((1 + δn)KN )

]
: N > exp

(
Cδ−1

n ln (2/δn)n lnn
)})

−→ 1

as n → ∞, using Theorem 5.5 and the fact that e−2nδn = e−2/u(n) → 1. We may clearly assume that
u(n) = O(n). Then,

δ−1
n ln (2/δn)n lnn = n2 lnn ln(2nu(n))u(n) ≈ (n lnn)2u(n),

and the result follows.
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