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Central Limit Theorem

Let (X,), be a sequence of i.i.d. random variables with E[X;] = 0 and
E[X?] = 1. Then

dk(w,f\/(o,l)) -0,

where for every pair of X, Y of random variables we denote by

d(X,Y) = sup IP([X <)) —P([Y < ).
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Berry—Esseen Theorem

Let n be a positive integer and let (X, ..., X,) be a random vector
with i.i.d. entries satisfying E[X;] = 0, E[X?*] = 1 and
p = E[[Xi1]*] < co.

Konstantinos Tyros Berry-Esseen Bounds for random tensors



Berry—Esseen Theorem

Let n be a positive integer and let (X, ..., X,) be a random vector
with i.i.d. entries satisfying E[X;] = 0, E[X?*] = 1 and
p = E[[Xi1]*] < co.

@ Then we have that

Xi+...+X, Cp
dK(T,N(O, 1)> < %
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Berry—Esseen Theorem

Let n be a positive integer and let (X, ..., X,) be a random vector
with i.i.d. entries satisfying E[X;] = 0, E[X?*] = 1 and
p = E[[Xi1]*] < co.

@ Then we have that

X . C
dK( 1+ P

\/ﬁ Vo

@ Moreover, for every (01, ...,0,) € R" with >0 62 = 1 we
have that

% Ao, 1))

dk(ZHiXi,N(O, 1)) <Cp> 16
i=1

i=1
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Let d, n be positive integers.
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Let d, n be positive integers.

@ We denote by [n] the set {1, ..., n} and by [n]¢ the set of all maps
form [d] into [n].
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Let d, n be positive integers.

@ We denote by [n] the set {1, ..., n} and by [n]¢ the set of all maps
form [d] into [n].

d

fnj> We denote the set of all injective maps from [d] into [n].

e By [n]
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Let d, n be positive integers.

@ We denote by [n] the set {1, ..., n} and by [n]¢ the set of all maps
form [d] into [n].

e By [n]fnj, we denote the set of all injective maps from [d] into [n].

e By S,, we denote the symmetric group of [n], that is, the set of
all permutations of [n].
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Framework

Let d, n be positive integers with 2d < n. Also let X = (X; : i € [n]“)
be a random tensor satisfying the following.

(A1) We have E[X;] = 0, E[X?] < 1 and E[|X;*] < oo for every
i € [n]9.
(A2) The random tensor X is symmetric, exchangeable and its

diagonal terms vanish (X; = 0 for all i € [n] \ [n]f,,).

— symmetric: X, i) for every (i1, ... ,iq) € [n]?

and every 7 € Sy

i‘r(l)""vi‘r(d))

— exchangeable: for every m € S, the random tensors X and
X = (Xpoi : i € [n]¢) have the same distribution.
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@ Let (& )x be a sequence of i.i.d. random variables which take
values in a measurable space £ and let and : £4 — R be a
measurable symmetric function.
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@ Let (& )x be a sequence of i.i.d. random variables which take
values in a measurable space £ and let and : £4 — R be a
measurable symmetric function. For every i € [n]f; set

Xi = h(&q1), - - - » &i(ay) and consider the random tensor

X =(X;:i€[n).
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@ Let (& )x be a sequence of i.i.d. random variables which take
values in a measurable space £ and let and : £4 — R be a
measurable symmetric function. For every i € [n]f; set
Xi = h(&q1), - - - » &i(ay) and consider the random tensor
X =(X;:ic[n?.

@ Let k, ¢ be positive integers with k < ¢. Let (¢1,...,(;) be a
boolean random vector uniformly distributed on the “slice”

{f {0, 1} o £(i) =k}
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@ Let (& )x be a sequence of i.i.d. random variables which take
values in a measurable space £ and let and : £4 — R be a
measurable symmetric function. For every i € [n]f; set
Xi = h(&q1), - - - » &i(ay) and consider the random tensor
X =(X;:ic[n?.

@ Let k, ¢ be positive integers with k < ¢. Let (¢1,...,(;) be a
boolean random vector uniformly distributed on the “slice”
{f € {0,1}* : 25, f(i) = k}. Also let n be an integer with
n < ¢. Consider the random vector X = ({; — ]zf, ces G — %)
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@ Let (& )x be a sequence of i.i.d. random variables which take
values in a measurable space £ and let and : £4 — R be a
measurable symmetric function. For every i € [n]f; set
Xi = h(&q1), - - - » &i(ay) and consider the random tensor
X =(X;:i€[n).

@ Let k, ¢ be positive integers with k < ¢. Let (¢1,...,(;) be a
boolean random vector uniformly distributed on the “slice”

{f € {0,1}* : 25, f(i) = k}. Also let n be an integer with
n < ¢. Consider the random vector X = ({; — ]zf, ces G — %)

e Let ((y,...,(,) be an exchangeable random vector which takes
values in [0, 1]". For every i € [n]fnj, set

X = szl Gy — E I ngl Ci(g)]. Consider the random tensor

X =(X;:ic[n?.
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Framework

Let d, n be positive integers with 2d < n. Also let X = (X; : i € [n]9)
be a random tensor and let @ = (0; : i € [n]¢) be a deterministic tensor
satisfying the following.

(A1) We have E[X;] = 0, E[X?] < 1 and E[|X;]*] < oo for every
i€ [n)e.
(A2) The random tensor X is symmetric, exchangeable and its

diagonal terms vanish.

(A3) The real tensor 6 is symmetric and its diagonal terms vanish.

Our goal is to estimate the quantity
dx ((6,X),N(0,07)),

where % denotes the variance of (0, X) = . 1, 0:X;.

i€n|
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Connection to permutation statistics

SetY = Zie[n]d 0; Xroi Where 7 is a random permutation,
independent of X, which is uniformly distributed on S,,.

Since X is exchangeable, we have that (8, X) and Y have the same
distribution and therefore

dx ((0,X),N(0,0%)) = dk (Y, N(0,0%)).
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Connection to permutation statistics

SetY = Zie[n]d 0; Xroi Where 7 is a random permutation,
independent of X, which is uniformly distributed on S,,.

Since X is exchangeable, we have that (8, X) and Y have the same
distribution and therefore

dx ((0,X),N(0,0%)) = dk (Y, N(0,0%)).

Let (2, F,P) denote the underlying probability space on which the
random tensor X is defined. For every w € () denote by Z,, the
random variable
Zy = Z 0; 'Xwoi(w)
i€[n]¢

where 7 is uniformly distributed on S,,.
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Connection to permutation statistics

Noticing that Y is the mixture with respect to (2, F, P) of Z,,, we
have that

dx ((6.X),N(0,0%)) = dx (Y, N (0,0%))
< Ew[dK(ZwaN(()? 02))]
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Connection to permutation statistics

Noticing that Y is the mixture with respect to (2, F, P) of Z,,, we
have that

dx ((6.X),N(0,0%)) = dx (Y, N (0,0%))
< Ew[dK(ZwaN(()? 02))]

With a deterministic tensor ¢ : [n]¢ x [n]¢ — R we associate the
Z-statistic
Z="> ((i,moi),
i€[n]4

where 7 is uniformly distributed on S,,.
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W-statistics

Let s be a positive integer (with s < d), and let € : [n]* x [n]* — R.
We say that £ is a Hoeffding tensor if for every r € [s], every
jo.qo € [n]"\M7} and every ig, po € [n]? we have

> &(i,po)=0 and Y £&(io,p) =0

JoCi€[n]d qoEpEn)

where [n][“\{"} denotes the set of all maps from [d] \ {r} to [n].
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W-statistics

Let s be a positive integer (with s < d), and let € : [n]* x [n]* — R.
We say that £ is a Hoeffding tensor if for every r € [s], every
jo.qo € [n]"\M7} and every ig, po € [n]? we have

> &(i,po)=0 and Y £&(io,p) =0

JoCi€[n]d qoEpEn)

where [n][“\{"} denotes the set of all maps from [d] \ {r} to [n].
A W-statistic is a statistic of the form

where 7 is uniformly distributed in S, and §; : [n]* X [n]* — Risa
Hoeffding tensor for every s € [d].
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Combinatorial CLT

@ Classical results for matrix permutation statistics were obtained
by Wald/Wolfowitz (1944) and Hoeffding (1951) who
established asymptotic normality under general conditions.
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Combinatorial CLT

@ Classical results for matrix permutation statistics were obtained
by Wald/Wolfowitz (1944) and Hoeffding (1951) who
established asymptotic normality under general conditions.

o The optimal result in establishing quantitative normality of
W-statistics of order one was obtained by Bolthausen (1984)
who showed that

(Y €(im(0), M0,1) < S 57 eGP
i=1

ij=1
for every Hoeffding tensor £: [n] x [n] — R which satisfies

ZZ,‘:] £3i.j)> =n—1.
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Combinatorial CLT

@ Classical results for matrix permutation statistics were obtained
by Wald/Wolfowitz (1944) and Hoeffding (1951) who
established asymptotic normality under general conditions.

o The optimal result in establishing quantitative normality of
W-statistics of order one was obtained by Bolthausen (1984)
who showed that

(Y €(im(0), M0,1) < S 57 eGP
i=1

ij=1
for every Hoeffding tensor £: [n] x [n] — R which satisfies
ZZ,‘:] £Gi,j)> =n—1.
@ Chen and Fang (2015) showed that we can take C; = 451.
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Combinatorial CLT

o Wh-statistics of order two are also studied by Barbour and
Eagleson (1986), as well as, Zhao, Bai, Chao and Liang (1997).
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Combinatorial CLT

o Wh-statistics of order two are also studied by Barbour and
Eagleson (1986), as well as, Zhao, Bai, Chao and Liang (1997).

o The strongest quantitative normal approximation was obtained
by Barbour and Chen (2005) who showed that if
€:[n] x [n] = Rand &,: [n]*> x [n]> — R are Hoeffding tensors
with > 27, &, (i,j)> = n — 1, and W is the W-statistic associated
with £, and &,, then

dg (W, N(0,1)) “Cl Z €1(i.J))° + Ca n—lz Y &lip)?

ij=1 i,p€ln]?
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Combinatorial CLT

o Wh-statistics of order two are also studied by Barbour and
Eagleson (1986), as well as, Zhao, Bai, Chao and Liang (1997).

o The strongest quantitative normal approximation was obtained
by Barbour and Chen (2005) who showed that if
€:[n] x [n] = Rand &,: [n]*> x [n]> — R are Hoeffding tensors
with > 27, &, (i,j)> = n — 1, and W is the W-statistic associated
with £, and &,, then

dg (W, N(0,1)) “Cl Z €1(i.J))° + Ca n—lz Y &lip)?

ij=1 i,p€ln]?

o High-dimensional Z-statistics and W-statistics have been studied,
for instance, by Bolthausen and Gotze (1993), by Bloznelis and
Gotze (2002) and by Loh (1996).
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Combinatorial CLT

Theorem (P. Dodos, K.T.)

Let n, d be positive integers such that n > 4d>. For every s € [d] let
&, ¢ [n)® x [n]* — R be a Hoeffding tensor, and set

= Z Es(i7p)2

i,p€[n]*

Assume that 81 = n — 1, and let W be the W-statistic associated with
&1,..., &, Then we have

dx (W, N(0,1)) 2C12|£111|+Cd2\/a

ij=1

In fact, we can take Cq = 5d%e?(2d)!.
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Framework

Let d, n be positive integers with 2d < n. Also let X = (X; : i € [n]“)
be a random tensor and let @ = (6; : i € [n]¢) be a deterministic
tensor. We may assume the following.

(A1) We have E[X;] = 0, E[X?] < 1 and E[|X;|*] < oo for every
i€ [n)e.

(A2) The random tensor X is symmetric, exchangeable and its
diagonal terms vanish.

(A3) The real tensor 6 is symmetric and its diagonal terms vanish.

Our goal is to estimate the quantity
dx ((6,X), N (0,07)),

where % denotes the variance of (6, X).
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Relevant parameters

For every s € {0, 1,...,d} we set

o |16, = ( SN (Y 902)1/2

J€lP  jCien)
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Relevant parameters

For every s € {0, 1,...,d} we set
N 1/2
o lloll, = (- (X 6)%)
JEl)S jTig[n)
0 0y = 0(X) = E[X(1,..)X(1,....5.441,...2d—s)]
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Relevant parameters

For every s € {0, 1,...,d} we set

o |16, = ( SN (Y 902)1/2

JElm) jCin)
0 0y = 0(X) = E[X(1,..)X(1,....5.441,...2d—s)]

° B, =%,(X) =) (j) (=15,
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Relevant parameters

For every s € {0, 1,...,d} we set

o |16, = ( SN (Y 902)1/2

JElm) jCin)
0 0y = 0(X) = E[X(1,..)X(1,....5.441,...2d—s)]

° B, =%,(X) =) (j) (=15,

d 2
Var((0,X)) = (‘sl) 1Y |62
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Relevant parameters

Finally, we define the oscillation of X by

osc(X) = Hrlzznl: (% Z Xi)z B 51”L1'

J= icn)?
i(N)=j
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Relevant parameters

Finally, we define the oscillation of X by

osc(X) = Hrlzznl: (% Z Xi)z B 51”L1'

J= icn)?
i(N)=j

o The oscillation of random vectors appeared, for instance, in work
of Bobkov, Chistyakov and Gotze (2018) albeit with different
terminology.
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Let X, 6 satistying (A1), (A2) and (A3), and such that ||@]|, = 1. Set
k= k(d) = 20d°18%(2d)! and B = || > e X,-Hiz. Leta € (0,1).

wd
Assume that the following non-degenericity condition holds true

0 = max{osc(X)a,Bo‘, (E)a}.

n

Then, setting 0 = Var((H,X)), we have

dK(<07X>7N(07 02)) SE +E+E;3
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where
. . 65, lloI;
Br = Sosc(X)! = + 3[aaf' =+ | 5 (ol — 1] + -2 +4 10
E[|X, 3
E2:236U53’/27‘!)”(Z‘Z 0; )
1 =1 ign)
i(1)=j
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On the bounds

. . lel;
B1 = Sosc(X)! -+ 513"~ +| 22 (61 - 1) + - =

o The first term of E| is, essentially, the oscillation of X.
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On the bounds

. . lel;
B1 = Sosc(X)! -+ 513"~ +| 22 (61 - 1) + - =

o The first term of E| is, essentially, the oscillation of X.

@ The second and third terms are quantitative measures of the
correlation of the entries of X.
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On the bounds

_ lel;
B1 = Sosc(X)! -+ 513"~ +| 22 (61 - 1) + - =

o The first term of E| is, essentially, the oscillation of X.

@ The second and third terms are quantitative measures of the
correlation of the entries of X.

@ The fourth term is related to the non-degenericity assumption.
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On the bounds

_ lel;
B1 = Sosc(X)! -+ 513"~ +| 22 (61 - 1) + - =

o The first term of E| is, essentially, the oscillation of X.

@ The second and third terms are quantitative measures of the
correlation of the entries of X.

@ The fourth term is related to the non-degenericity assumption.

@ The last term in E; is more subtle, and it is related to the
extendability of X.
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On the bounds

E[IXq,.al’] /<
Ez=236[§3/2‘”(2(29f
1

=1 ign

)
i(1)=j

d
1 d 164224
E;=3 M/ 2 o,
1= D )Vt 22 o,
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Bounding the oscillation

Let d = 1 and assume that the entries of X are of unit variance. Then

4E[|Xi[*]
X E[X?X3] — —
osc(X) < ‘ [ + 7
Assuming that the entries of X are of finite forth moment, we have that
E X4 1/2
osc(X) < /|EXX3] — 1] + [\lf]
n
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Bounding the oscillation

For general d define the parallelepipedal correlation of X by

pc(X) = }E[X(l,...,d)X(l,d+1,...,2dfI)X(Zd,...,3d71)X(2d,3d,...,4d72)] - 5%‘

For example, if d = 2, then pc(X) = ’E[X(l,Z)X(173)X(475)X(4’6)] — 512’

Xaz Xaz)

Notice that for d = 1 we have that pc(X) = ’]E[XfX%] - 1!.
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Bounding the oscillation

Under the additional assumption that the entries of X are of finite
forth moment, we have that
5d

osc(X) < v/pc(X) + %(1 + E[X?L...,d)])l/z'
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Bounding the oscillation

If X is dissociated, then we have that pc(X) = 0 and

16d (E[|X,. o] +1)
s .

If X is a mixture of exchangeable, symmetric and dissociated random
tensors and the entries of X have finite third moment, then we have

osc(X) < v/pc(X) +

osc(X) <

16d (E[X1,...)] + 1)
L .

Konstantinos Tyros Berry-Esseen Bounds for random tensors



Thank you !!!




