
Berry–Esseen Bounds for random tensors

Konstantinos Tyros

University of Athens
Department of Mathematics

2024
Joint work with P. Dodos

Konstantinos Tyros Berry–Esseen Bounds for random tensors



Central Limit Theorem

Let (Xn)n be a sequence of i.i.d. random variables with E[X1] = 0 and
E[X2] = 1. Then

dK

(X1 + . . .+ Xn√
n

,N (0, 1)
)
→ 0,

where for every pair of X,Y of random variables we denote by

dK(X,Y) = sup
x∈R

∣∣P([X ⩽ x])− P([Y ⩽ x])
∣∣.
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Berry–Esseen Theorem

Let n be a positive integer and let (X1, . . . ,Xn) be a random vector
with i.i.d. entries satisfying E[X1] = 0, E[X2] = 1 and
ρ = E[|X1|3] < ∞.

Then we have that

dK

(X1 + . . .+ Xn√
n

,N (0, 1)
)
⩽

Cρ√
n
.

Moreover, for every (θ1, . . . , θn) ∈ Rn with
∑n

i=1 θ
2
i = 1 we

have that

dk

( n∑
i=1

θiXi,N (0, 1)
)
⩽ Cρ

n∑
i=1

|θi|3.
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Notation

Let d, n be positive integers.

We denote by [n] the set {1, ..., n} and by [n]d the set of all maps
form [d] into [n].

By [n]dInj, we denote the set of all injective maps from [d] into [n].

By Sn, we denote the symmetric group of [n], that is, the set of
all permutations of [n].
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Framework

Let d, n be positive integers with 2d ⩽ n. Also let X = ⟨Xi : i ∈ [n]d⟩
be a random tensor satisfying the following.

(A1) We have E[Xi] = 0, E[X2
i ] ⩽ 1 and E

[
|Xi|3

]
< ∞ for every

i ∈ [n]d.

(A2) The random tensor X is symmetric, exchangeable and its
diagonal terms vanish (Xi = 0 for all i ∈ [n]d \ [n]dInj).

— symmetric: X(i1,...,id) = X(iτ(1),...,iτ(d)) for every (i1, . . . , id) ∈ [n]d

and every τ ∈ Sd

— exchangeable: for every π ∈ Sn the random tensors X and
Xπ = ⟨Xπ◦i : i ∈ [n]d⟩ have the same distribution.
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Examples

Let (ξk)k be a sequence of i.i.d. random variables which take
values in a measurable space E and let and h : Ed → R be a
measurable symmetric function. For every i ∈ [n]dInj set
Xi = h(ξi(1), . . . , ξi(d)) and consider the random tensor
X = ⟨Xi : i ∈ [n]d⟩.
Let k, ℓ be positive integers with k ⩽ ℓ. Let (ζ1, . . . , ζℓ) be a
boolean random vector uniformly distributed on the “slice”
{f ∈ {0, 1}ℓ :

∑ℓ
i=1 f (i) = k}. Also let n be an integer with

n ⩽ ℓ. Consider the random vector X = (ζ1 − k
ℓ , . . . , ζn − k

ℓ ).

Let (ζ1, . . . , ζn) be an exchangeable random vector which takes
values in [0, 1]n. For every i ∈ [n]dInj, set

Xi =
∏d

ℓ=1 ζi(ℓ) − E
[∏d

ℓ=1 ζi(ℓ)
]
. Consider the random tensor

X = ⟨Xi : i ∈ [n]d⟩.
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Framework

Let d, n be positive integers with 2d ⩽ n. Also let X = ⟨Xi : i ∈ [n]d⟩
be a random tensor and let θ = ⟨θi : i ∈ [n]d⟩ be a deterministic tensor
satisfying the following.

(A1) We have E[Xi] = 0, E[X2
i ] ⩽ 1 and E

[
|Xi|3

]
< ∞ for every

i ∈ [n]d.

(A2) The random tensor X is symmetric, exchangeable and its
diagonal terms vanish.

(A3) The real tensor θ is symmetric and its diagonal terms vanish.

Our goal is to estimate the quantity

dK
(
⟨θ,X⟩,N (0, σ2)

)
,

where σ2 denotes the variance of ⟨θ,X⟩ =
∑

i∈[n]d θiXi.
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Connection to permutation statistics

Set Y =
∑

i∈[n]d θi Xπ◦i where π is a random permutation,
independent of X, which is uniformly distributed on Sn.
Since X is exchangeable, we have that ⟨θ,X⟩ and Y have the same
distribution and therefore

dK
(
⟨θ,X⟩,N (0, σ2)

)
= dK

(
Y,N (0, σ2)

)
.

Let (Ω,F ,P) denote the underlying probability space on which the
random tensor X is defined. For every ω ∈ Ω denote by Zω the
random variable

Zω =
∑

i∈[n]d
θi · Xπ◦i(ω)

where π is uniformly distributed on Sn.
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Connection to permutation statistics

Noticing that Y is the mixture with respect to (Ω,F ,P) of Zω, we
have that

dK
(
⟨θ,X⟩,N (0, σ2)

)
= dK

(
Y,N (0, σ2)

)
⩽ Eω[dK

(
Zω,N (0, σ2)

)
]

With a deterministic tensor ζ : [n]d × [n]d → R we associate the
Z-statistic

Z =
∑

i∈[n]d
ζ(i, π ◦ i),

where π is uniformly distributed on Sn.
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W-statistics

Let s be a positive integer (with s ⩽ d), and let ξ : [n]s × [n]s → R.
We say that ξ is a Hoeffding tensor if for every r ∈ [s], every
j0, q0 ∈ [n][d]\{r} and every i0, p0 ∈ [n]d we have∑

j0⊑i∈[n]d
ξ(i, p0) = 0 and

∑
q0⊑p∈[n]d

ξ(i0, p) = 0

where [n][d]\{r} denotes the set of all maps from [d] \ {r} to [n].
A W-statistic is a statistic of the form

W =

d∑
s=1

∑
i∈[n]sInj

ξs(i, π ◦ i)

where π is uniformly distributed in Sn and ξs : [n]
s × [n]s → R is a

Hoeffding tensor for every s ∈ [d].
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Combinatorial CLT

Classical results for matrix permutation statistics were obtained
by Wald/Wolfowitz (1944) and Hoeffding (1951) who
established asymptotic normality under general conditions.

The optimal result in establishing quantitative normality of
W-statistics of order one was obtained by Bolthausen (1984)
who showed that

dK

( n∑
i=1

ξ
(
i, π(i)

)
,N (0, 1)

)
⩽

C1

n

n∑
i,j=1

|ξ(i, j)|3

for every Hoeffding tensor ξ : [n]× [n] → R which satisfies∑n
i,j=1 ξ(i, j)2 = n − 1.

Chen and Fang (2015) showed that we can take C1 = 451.
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Combinatorial CLT

W-statistics of order two are also studied by Barbour and
Eagleson (1986), as well as, Zhao, Bai, Chao and Liang (1997).

The strongest quantitative normal approximation was obtained
by Barbour and Chen (2005) who showed that if
ξ1 : [n]× [n] → R and ξ2 : [n]

2 × [n]2 → R are Hoeffding tensors
with

∑n
i,j=1 ξ1(i, j)2 = n − 1, and W is the W-statistic associated

with ξ1 and ξ2, then

dK
(
W,N (0, 1)

)
⩽

aC1

n

n∑
i,j=1

|ξ1(i, j)|3 + C2

√√√√ 1
n2

∑
i,p∈[n]2

ξ2(i, p)2

High-dimensional Z-statistics and W-statistics have been studied,
for instance, by Bolthausen and Götze (1993), by Bloznelis and
Götze (2002) and by Loh (1996).
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Combinatorial CLT

Theorem (P. Dodos, K.T.)

Let n, d be positive integers such that n ⩾ 4d2. For every s ∈ [d] let
ξs : [n]

s × [n]s → R be a Hoeffding tensor, and set

βs =
∑

i,p∈[n]s
ξs(i, p)2.

Assume that β1 = n − 1, and let W be the W-statistic associated with
ξ1, . . . , ξd. Then we have

dK
(
W,N (0, 1)

)
⩽

218C1

n

n∑
i,j=1

|ξ1(i, j)|3 + Cd

d∑
s=2

√
βs

ns

In fact, we can take Cd = 5d2ed(2d)!.
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Framework

Let d, n be positive integers with 2d ⩽ n. Also let X = ⟨Xi : i ∈ [n]d⟩
be a random tensor and let θ = ⟨θi : i ∈ [n]d⟩ be a deterministic
tensor. We may assume the following.

(A1) We have E[Xi] = 0, E[X2
i ] ⩽ 1 and E

[
|Xi|3

]
< ∞ for every

i ∈ [n]d.

(A2) The random tensor X is symmetric, exchangeable and its
diagonal terms vanish.

(A3) The real tensor θ is symmetric and its diagonal terms vanish.

Our goal is to estimate the quantity

dK
(
⟨θ,X⟩,N (0, σ2)

)
,

where σ2 denotes the variance of ⟨θ,X⟩.
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Relevant parameters

For every s ∈ {0, 1, . . . , d} we set

|||θ|||s =
( ∑

j∈[n]s

( ∑
j⊑i∈[n]d

θi
)2
)1/2

δs = δs(X) = E[X(1,...,d)X(1,...,s,d+1,...,2d−s)]

Σs = Σs(X) =

s∑
t=0

(
s
t

)
(−1)s−t δt.

Then we have

Var
(
⟨θ,X⟩

)
=

d∑
s=0

(
d
s

)2

s! Σs |||θ|||2s .

Konstantinos Tyros Berry–Esseen Bounds for random tensors



Relevant parameters

For every s ∈ {0, 1, . . . , d} we set

|||θ|||s =
( ∑

j∈[n]s

( ∑
j⊑i∈[n]d

θi
)2
)1/2

δs = δs(X) = E[X(1,...,d)X(1,...,s,d+1,...,2d−s)]

Σs = Σs(X) =

s∑
t=0

(
s
t

)
(−1)s−t δt.

Then we have

Var
(
⟨θ,X⟩

)
=

d∑
s=0

(
d
s

)2

s! Σs |||θ|||2s .

Konstantinos Tyros Berry–Esseen Bounds for random tensors



Relevant parameters

For every s ∈ {0, 1, . . . , d} we set

|||θ|||s =
( ∑

j∈[n]s

( ∑
j⊑i∈[n]d

θi
)2
)1/2

δs = δs(X) = E[X(1,...,d)X(1,...,s,d+1,...,2d−s)]

Σs = Σs(X) =

s∑
t=0

(
s
t

)
(−1)s−t δt.

Then we have

Var
(
⟨θ,X⟩

)
=

d∑
s=0

(
d
s

)2

s! Σs |||θ|||2s .

Konstantinos Tyros Berry–Esseen Bounds for random tensors



Relevant parameters

For every s ∈ {0, 1, . . . , d} we set

|||θ|||s =
( ∑

j∈[n]s

( ∑
j⊑i∈[n]d

θi
)2
)1/2

δs = δs(X) = E[X(1,...,d)X(1,...,s,d+1,...,2d−s)]

Σs = Σs(X) =

s∑
t=0

(
s
t

)
(−1)s−t δt.

Then we have

Var
(
⟨θ,X⟩

)
=

d∑
s=0

(
d
s

)2

s! Σs |||θ|||2s .
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Relevant parameters

Finally, we define the oscillation of X by

osc(X) =
∥∥∥1

n

n∑
j=1

( 1
nd−1

∑
i∈[n]d
i(1)=j

Xi

)2
− δ1

∥∥∥
L1
.

The oscillation of random vectors appeared, for instance, in work
of Bobkov, Chistyakov and Götze (2018) albeit with different
terminology.
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Main result

Let X,θ satisfying (A1), (A2) and (A3), and such that |||θ|||1 = 1. Set
κ = κ(d) = 20d318d(2d)! and B =

∥∥ 1
nd

∑
i∈[n]d Xi

∥∥2
L2

. Let α ∈ (0, 1).
Assume that the following non-degenericity condition holds true

δ1 ⩾ max
{

osc(X)α,Bα,
(κ

n

)α}
.

Then, setting σ2 = Var
(
⟨θ,X⟩

)
, we have

dK
(
⟨θ,X⟩,N (0, σ2)

)
⩽ E1 + E2 + E3
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Main result

where

E1 = 5osc(X)1−α + 5|δ0|1−α +
∣∣∣ δ0

d2δ1
(|||θ|||20 − 1)

∣∣∣+ 6κ
n1−α

+ 4
|||θ|||20

n

E2 = 236 E
[
|X(1,...,d)|3

]
δ

3/2
1

( n∑
j=1

∣∣∣ ∑
i∈[n]d
i(1)=j

θi

∣∣∣3)

E3 = 3κ
1

d
√
δ1

d∑
s=2

(
d
s

)√
s!

√
Σs +

16d22d

n
|||θ|||s.
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On the bounds

E1 = 5osc(X)1−α + 5|δ0|1−α +
∣∣∣ δ0

d2δ1
(|||θ|||20 − 1)

∣∣∣+ 6κ
n1−α

+ 4
|||θ|||20

n

The first term of E1 is, essentially, the oscillation of X.

The second and third terms are quantitative measures of the
correlation of the entries of X.

The fourth term is related to the non-degenericity assumption.

The last term in E1 is more subtle, and it is related to the
extendability of X.
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On the bounds

E2 = 236 E
[
|X(1,...,d)|3

]
δ

3/2
1

( n∑
j=1

∣∣∣ ∑
i∈[n]d
i(1)=j

θi

∣∣∣3)

E3 = 3κ
1

d
√
δ1

d∑
s=2

(
d
s

)√
s!

√
Σs +

16d22d

n
|||θ|||s.
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Bounding the oscillation

Let d = 1 and assume that the entries of X are of unit variance. Then

osc(X) ⩽
√∣∣E[X2

1X2
2 ]− 1

∣∣+ 4E
[
|X1|3

]
4
√

n
.

Assuming that the entries of X are of finite forth moment, we have that

osc(X) ⩽
√∣∣E[X2

1X2
2 ]− 1

∣∣+ E[X4
1 ]

1/2
√

n
.
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Bounding the oscillation

For general d define the parallelepipedal correlation of X by

pc(X) =
∣∣E[X(1,...,d)X(1,d+1,...,2d−1)X(2d,...,3d−1)X(2d,3d,...,4d−2)]− δ2

1
∣∣.

For example, if d = 2, then pc(X) =
∣∣E[X(1,2)X(1,3)X(4,5)X(4,6)]− δ2

1

∣∣.
X(1,2) X(1,3)

1

2

3
X(4,5) X(4,6)

4

5

6

Notice that for d = 1 we have that pc(X) =
∣∣E[X2

1X2
2 ]− 1

∣∣.
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Bounding the oscillation

Under the additional assumption that the entries of X are of finite
forth moment, we have that

osc(X) ⩽
√

pc(X) +
5d√

n

(
1 + E[X4

(1,...,d)]
)1/2

.
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Bounding the oscillation

If X is dissociated, then we have that pc(X) = 0 and

osc(X) ⩽
16d

(
E
[
|X(1,...,d)|3

]
+ 1

)
4
√

n
.

If X is a mixture of exchangeable, symmetric and dissociated random
tensors and the entries of X have finite third moment, then we have

osc(X) ⩽
√

pc(X) +
16d

(
E
[
|X(1,...,d)|3

]
+ 1

)
4
√

n
.
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Thank you !!!
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