Berry–Esseen Bounds for random tensors

Konstantinos Tyros

University of Athens Department of Mathematics

2024 Joint work with P. Dodos

4 ロ ト 4 伊 ト 4 ミ

 QQ

Let $(X_n)_n$ be a sequence of i.i.d. random variables with $\mathbb{E}[X_1] = 0$ and $\mathbb{E}[X^2] = 1$. Then

$$
d_K\left(\frac{X_1+\ldots+X_n}{\sqrt{n}}, \mathcal{N}(0,1)\right) \to 0,
$$

where for every pair of *X*, *Y* of random variables we denote by

$$
d_K(X,Y)=\sup_{x\in\mathbb{R}}\big|\mathbb{P}([X\leqslant x])-\mathbb{P}([Y\leqslant x])\big|.
$$

K ロ ▶ K 伊 ▶ K ヨ ▶

Berry–Esseen Theorem

Let *n* be a positive integer and let (X_1, \ldots, X_n) be a random vector with i.i.d. entries satisfying $\mathbb{E}[X_1] = 0$, $\mathbb{E}[X^2] = 1$ and $\rho = \mathbb{E}[|X_1|^3] < \infty.$

• Then we have that

$$
d_K\left(\frac{X_1+\ldots+X_n}{\sqrt{n}}, \mathcal{N}(0,1)\right) \leqslant \frac{C\rho}{\sqrt{n}}.
$$

Moreover, for every $(\theta_1, \dots, \theta_n) \in \mathbb{R}^n$ with $\sum_{i=1}^n \theta_i^2 = 1$ we have that

$$
d_k\left(\sum_{i=1}^n \theta_i X_i, \mathcal{N}(0,1)\right) \leqslant C\rho \sum_{i=1}^n |\theta_i|^3.
$$

イロト (何) イヨト (ヨ)

Berry–Esseen Theorem

Let *n* be a positive integer and let (X_1, \ldots, X_n) be a random vector with i.i.d. entries satisfying $\mathbb{E}[X_1] = 0$, $\mathbb{E}[X^2] = 1$ and $\rho = \mathbb{E}[|X_1|^3] < \infty.$

• Then we have that

$$
d_K\left(\frac{X_1+\ldots+X_n}{\sqrt{n}}, \mathcal{N}(0,1)\right) \leqslant \frac{C\rho}{\sqrt{n}}.
$$

Moreover, for every $(\theta_1, \dots, \theta_n) \in \mathbb{R}^n$ with $\sum_{i=1}^n \theta_i^2 = 1$ we have that

$$
d_k\left(\sum_{i=1}^n \theta_i X_i, \mathcal{N}(0,1)\right) \leqslant C\rho \sum_{i=1}^n |\theta_i|^3.
$$

イロト イ押 トイヨ トイヨ ト

Berry–Esseen Theorem

Let *n* be a positive integer and let (X_1, \ldots, X_n) be a random vector with i.i.d. entries satisfying $\mathbb{E}[X_1] = 0$, $\mathbb{E}[X^2] = 1$ and $\rho = \mathbb{E}[|X_1|^3] < \infty.$

• Then we have that

$$
d_K\left(\frac{X_1+\ldots+X_n}{\sqrt{n}}, \mathcal{N}(0,1)\right) \leqslant \frac{C\rho}{\sqrt{n}}.
$$

Moreover, for every $(\theta_1, \dots, \theta_n) \in \mathbb{R}^n$ with $\sum_{i=1}^n \theta_i^2 = 1$ we have that

$$
d_k\left(\sum_{i=1}^n \theta_i X_i, \mathcal{N}(0,1)\right) \leqslant C\rho \sum_{i=1}^n |\theta_i|^3.
$$

 $2Q$

∢ ロ ▶ (伊) (ミ) (ミ) .

- We denote by [*n*] the set $\{1, ..., n\}$ and by [*n*]^{*d*} the set of all maps form [*d*] into [*n*].
- By $[n]_{\text{Inj}}^d$, we denote the set of all injective maps from $[d]$ into $[n]$.
- \bullet By \mathbb{S}_n , we denote the symmetric group of $[n]$, that is, the set of all permutations of [*n*].

- We denote by $[n]$ the set $\{1, ..., n\}$ and by $[n]^d$ the set of all maps form $[d]$ into $[n]$.
- By $[n]_{\text{Inj}}^d$, we denote the set of all injective maps from $[d]$ into $[n]$.
- \bullet By \mathbb{S}_n , we denote the symmetric group of $[n]$, that is, the set of all permutations of [*n*].

- We denote by $[n]$ the set $\{1, ..., n\}$ and by $[n]^d$ the set of all maps form $[d]$ into $[n]$.
- By $[n]_{\text{Inj}}^d$, we denote the set of all injective maps from $[d]$ into $[n]$.
- \bullet By \mathbb{S}_n , we denote the symmetric group of $[n]$, that is, the set of all permutations of [*n*].

- We denote by $[n]$ the set $\{1, ..., n\}$ and by $[n]^d$ the set of all maps form $[d]$ into $[n]$.
- By $[n]_{\text{Inj}}^d$, we denote the set of all injective maps from $[d]$ into $[n]$.
- \bullet By \mathbb{S}_n , we denote the symmetric group of $[n]$, that is, the set of all permutations of [*n*].

 $2Q$

Let *d*, *n* be positive integers with $2d \le n$. Also let $X = \langle X_i : i \in [n]^d \rangle$ be a random tensor satisfying the following.

- (A1) We have $\mathbb{E}[X_i] = 0$, $\mathbb{E}[X_i^2] \le 1$ and $\mathbb{E}[|X_i|^3] < \infty$ for every $i \in [n]^d$.
- $(A2)$ The random tensor X is symmetric, exchangeable and its diagonal terms vanish ($X_i = 0$ for all $i \in [n]^d \setminus [n]^d_{\text{Inj}}$).
	- *symmetric*: $X_{(i_1,...,i_d)} = X_{(i_{\tau(1)},...,i_{\tau(d)})}$ for every $(i_1,...,i_d) \in [n]^d$ and every $\tau \in \mathbb{S}_d$
	- *exchangeable*: for every $\pi \in \mathbb{S}_n$ the random tensors X and $X_{\pi} = \langle X_{\pi \circ i} : i \in [n]^d \rangle$ have the same distribution.

 $2Q$

∢ ロ ▶ (伊) (ミ) (ミ) 。

- Let $(\xi_k)_k$ be a sequence of i.i.d. random variables which take values in a measurable space $\mathcal E$ and let and $h: \mathcal E^d \to \mathbb R$ be a **measurable symmetric function.** For every $i \in [n]_{\text{Inj}}^d$ set $X_i = h(\xi_{i(1)}, \ldots, \xi_{i(d)})$ and consider the random tensor $\pmb{X} = \langle X_i : i \in [n]^d \rangle.$
-
-

伊 ト イヨ ト イヨ ト

- Let $(\xi_k)_k$ be a sequence of i.i.d. random variables which take values in a measurable space $\mathcal E$ and let and $h: \mathcal E^d \to \mathbb R$ be a measurable symmetric function. For every $i \in [n]_{\text{Inj}}^d$ set $X_i = h(\xi_{i(1)}, \dots, \xi_{i(d)})$ and consider the random tensor $X = \langle X_i : i \in [n]^d \rangle.$
- Let *k*, ℓ be positive integers with $k \leq \ell$. Let $(\zeta_1, \ldots, \zeta_\ell)$ be a boolean random vector uniformly distributed on the "slice" ${f} \in {0,1}^{\ell}: \sum_{i=1}^{\ell} f(i) = k$. Also let *n* be an integer with
-

 $\mathcal{A} \oplus \mathcal{B}$ $\mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B}$ \mathcal{B}

- Let $(\xi_k)_k$ be a sequence of i.i.d. random variables which take values in a measurable space $\mathcal E$ and let and $h: \mathcal E^d \to \mathbb R$ be a measurable symmetric function. For every $i \in [n]_{\text{Inj}}^d$ set $X_i = h(\xi_{i(1)}, \dots, \xi_{i(d)})$ and consider the random tensor $X = \langle X_i : i \in [n]^d \rangle.$
- Let *k*, ℓ be positive integers with $k \leq \ell$. Let $(\zeta_1, \ldots, \zeta_\ell)$ be a boolean random vector uniformly distributed on the "slice" $\{f \in \{0,1\}^\ell : \sum_{i=1}^\ell f(i) = k\}.$ Also let *n* be an integer with *n* $\leq \ell$. Consider the random vector $X = (\zeta_1 - \frac{k}{\ell})$
-

イロメ イ押メ イヨメ イヨメー

- Let $(\xi_k)_k$ be a sequence of i.i.d. random variables which take values in a measurable space $\mathcal E$ and let and $h: \mathcal E^d \to \mathbb R$ be a measurable symmetric function. For every $i \in [n]_{\text{Inj}}^d$ set $X_i = h(\xi_{i(1)}, \dots, \xi_{i(d)})$ and consider the random tensor $X = \langle X_i : i \in [n]^d \rangle.$
- Let *k*, ℓ be positive integers with $k \leq \ell$. Let $(\zeta_1, \ldots, \zeta_\ell)$ be a boolean random vector uniformly distributed on the "slice" ${f \in \{0,1\}^{\ell} : \sum_{i=1}^{\ell} f(i) = k\}}$. Also let *n* be an integer with *n* $\leq \ell$. Consider the random vector $X = (\zeta_1 - \frac{k}{\ell})$ $\frac{k}{\ell}, \ldots, \zeta_n - \frac{k}{\ell}$ $\frac{\kappa}{\ell}).$
- Let $(\zeta_1, \ldots, \zeta_n)$ be an exchangeable random vector which takes values in $[0, 1]^n$. For every $i \in [n]^d_{\text{Inj}}$, set $X_i = \prod_{\ell=1}^d \zeta_{i(\ell)} - \mathbb{E} \big[\prod_{\ell=1}^d \zeta_{i(\ell)} \big]$. Consider the random tensor $X = \langle X_i : i \in [n]^d \rangle.$

メ押 トメミ トメミト

- Let $(\xi_k)_k$ be a sequence of i.i.d. random variables which take values in a measurable space $\mathcal E$ and let and $h: \mathcal E^d \to \mathbb R$ be a measurable symmetric function. For every $i \in [n]_{\text{Inj}}^d$ set $X_i = h(\xi_{i(1)}, \dots, \xi_{i(d)})$ and consider the random tensor $X = \langle X_i : i \in [n]^d \rangle.$
- Let *k*, ℓ be positive integers with $k \leq \ell$. Let $(\zeta_1, \ldots, \zeta_\ell)$ be a boolean random vector uniformly distributed on the "slice" ${f \in \{0,1\}^{\ell} : \sum_{i=1}^{\ell} f(i) = k\}}$. Also let *n* be an integer with *n* $\leq \ell$. Consider the random vector $X = (\zeta_1 - \frac{k}{\ell})$ $\frac{k}{\ell}, \ldots, \zeta_n - \frac{k}{\ell}$ $\frac{\kappa}{\ell}).$
- Let $(\zeta_1, \ldots, \zeta_n)$ be an exchangeable random vector which takes values in $[0, 1]^n$. For every $i \in [n]_{\text{Inj}}^d$, set $X_i = \prod_{\ell=1}^d \zeta_{i(\ell)} - \mathbb{E} \big[\prod_{\ell=1}^d \zeta_{i(\ell)} \big]$. Consider the random tensor $X = \langle X_i : i \in [n]^d \rangle.$

イロト イ押 トイヨ トイヨ トー

 $2Q$

Let *d*, *n* be positive integers with $2d \le n$. Also let $X = \langle X_i : i \in [n]^d \rangle$ be a random tensor and let $\theta = \langle \theta_i : i \in [n]^d \rangle$ be a deterministic tensor satisfying the following.

- (A1) We have $\mathbb{E}[X_i] = 0$, $\mathbb{E}[X_i^2] \le 1$ and $\mathbb{E}[|X_i|^3] < \infty$ for every $i \in [n]^d$.
- $(A2)$ The random tensor X is symmetric, exchangeable and its diagonal terms vanish.
- ($\mathcal{A}3$) The real tensor θ is symmetric and its diagonal terms vanish. Our goal is to estimate the quantity

$$
d_K\big(\langle\bm{\theta},\bm{X}\rangle,\mathcal{N}(0,\sigma^2)\big),
$$

where σ^2 denotes the variance of $\langle \theta, X \rangle = \sum_{i \in [n]^d} \theta_i X_i$.

K ロ ト K 何 ト K ヨ ト K ヨ

Set $Y = \sum_{i \in [n]^d} \theta_i X_{\pi \circ i}$ where π is a random permutation, independent of X , which is uniformly distributed on \mathbb{S}_n . Since *X* is exchangeable, we have that $\langle \theta, X \rangle$ and *Y* have the same distribution and therefore

$$
d_K(\langle \boldsymbol{\theta}, \boldsymbol{X} \rangle, \mathcal{N}(0, \sigma^2)) = d_K(Y, \mathcal{N}(0, \sigma^2)).
$$

Let $(\Omega, \mathcal{F}, \mathbb{P})$ denote the underlying probability space on which the random tensor *X* is defined. For every $\omega \in \Omega$ denote by Z_{ω} , the random variable

$$
Z_{\omega}=\sum_{i\in [n]^d} \theta_i \cdot X_{\pi \circ i}(\omega)
$$

where π is uniformly distributed on \mathbb{S}_n .

伊 ▶ 4 ヨ ▶ 4 ヨ

Set $Y = \sum_{i \in [n]^d} \theta_i X_{\pi \circ i}$ where π is a random permutation, independent of X , which is uniformly distributed on \mathbb{S}_n . Since *X* is exchangeable, we have that $\langle \theta, X \rangle$ and *Y* have the same distribution and therefore

$$
d_K(\langle \theta, X \rangle, \mathcal{N}(0, \sigma^2)) = d_K(Y, \mathcal{N}(0, \sigma^2)).
$$

Let $(\Omega, \mathcal{F}, \mathbb{P})$ denote the underlying probability space on which the random tensor *X* is defined. For every $\omega \in \Omega$ denote by Z_{ω} , the random variable

$$
Z_\omega = \sum_{i \in [n]^d} \theta_i \cdot X_{\pi \circ i}(\omega)
$$

where π is uniformly distributed on \mathbb{S}_n .

Noticing that *Y* is the mixture with respect to $(\Omega, \mathcal{F}, \mathbb{P})$ of Z_{ω} , we have that

$$
d_K(\langle \theta, X \rangle, \mathcal{N}(0, \sigma^2)) = d_K(Y, \mathcal{N}(0, \sigma^2))
$$

$$
\leq \mathbb{E}_{\omega}[d_K(Z_{\omega}, \mathcal{N}(0, \sigma^2))]
$$

With a deterministic tensor $\boldsymbol{\zeta} : [n]^d \times [n]^d \to \mathbb{R}$ we associate the *Z*-statistic

$$
Z=\sum_{i\in [n]^d}\zeta(i,\pi\circ i),
$$

where π is uniformly distributed on \mathbb{S}_n .

伊 ▶ (ヨ) (ヨ)

Noticing that *Y* is the mixture with respect to $(\Omega, \mathcal{F}, \mathbb{P})$ of Z_{ω} , we have that

$$
d_K(\langle \theta, X \rangle, \mathcal{N}(0, \sigma^2)) = d_K(Y, \mathcal{N}(0, \sigma^2))
$$

$$
\leq \mathbb{E}_{\omega}[d_K(Z_{\omega}, \mathcal{N}(0, \sigma^2))]
$$

With a deterministic tensor $\zeta : [n]^d \times [n]^d \to \mathbb{R}$ we associate the *Z*-statistic

$$
Z=\sum_{i\in [n]^d}\zeta(i,\pi\circ i),
$$

where π is uniformly distributed on \mathbb{S}_n .

W-statistics

Let *s* be a positive integer (with $s \le d$), and let $\xi : [n]^s \times [n]^s \to \mathbb{R}$. We say that ξ is a *Hoeffding tensor* if for every $r \in [s]$, every $j_0, q_0 \in [n]^{[d] \setminus \{r\}}$ and every $i_0, p_0 \in [n]^d$ we have

$$
\sum_{j_0 \sqsubseteq i \in [n]^d} \xi(i,p_0) = 0 \quad \text{ and } \quad \sum_{q_0 \sqsubseteq p \in [n]^d} \xi(i_0,p) = 0
$$

where $[n]^{[d]\setminus\{r\}}$ denotes the set of all maps from $[d] \setminus \{r\}$ to $[n]$. A *W*-statistic is a statistic of the form

$$
W = \sum_{s=1}^d \sum_{i \in [n]^s_{\text{Inj}}} \xi_s(i, \pi \circ i)
$$

where π is uniformly distributed in \mathbb{S}_n and $\xi_s : [n]^s \times [n]^s \to \mathbb{R}$ is a Hoeffding tensor for every $s \in [d]$.

 \overline{AB}) \overline{AB}) \overline{AB})

W-statistics

Let *s* be a positive integer (with $s \le d$), and let $\xi : [n]^s \times [n]^s \to \mathbb{R}$. We say that ξ is a *Hoeffding tensor* if for every $r \in [s]$, every $j_0, q_0 \in [n]^{[d] \setminus \{r\}}$ and every $i_0, p_0 \in [n]^d$ we have

$$
\sum_{j_0 \sqsubseteq i \in [n]^d} \xi(i,p_0) = 0 \quad \text{ and } \quad \sum_{q_0 \sqsubseteq p \in [n]^d} \xi(i_0,p) = 0
$$

where $[n]^{[d]\setminus\{r\}}$ denotes the set of all maps from $[d] \setminus \{r\}$ to $[n]$. A *W*-statistic is a statistic of the form

$$
W = \sum_{s=1}^d \sum_{i \in [n]^s_{\text{inj}}} \xi_s(i, \pi \circ i)
$$

where π is uniformly distributed in \mathbb{S}_n and $\xi_s : [n]^s \times [n]^s \to \mathbb{R}$ is a Hoeffding tensor for every $s \in [d]$.

(ロ) (何) (ヨ) (ヨ)

- Classical results for matrix permutation statistics were obtained by Wald/Wolfowitz (1944) and Hoeffding (1951) who established asymptotic normality under general conditions.
- The optimal result in establishing quantitative normality of *W*-statistics of order one was obtained by Bolthausen (1984) who showed that

$$
d_K\Big(\sum_{i=1}^n \xi\big(i,\pi(i)\big),\mathcal{N}(0,1)\Big) \leqslant \frac{C_1}{n} \sum_{i,j=1}^n |\xi(i,j)|^3
$$

for every Hoeffding tensor ξ : $[n] \times [n] \rightarrow \mathbb{R}$ which satisfies \sum_{i}^{n} $\sum_{i,j=1}^n \xi(i,j)^2 = n-1.$

• Chen and Fang (2015) showed that we can take $C_1 = 451$.

イロト (何) イヨト (ヨ)

- Classical results for matrix permutation statistics were obtained by Wald/Wolfowitz (1944) and Hoeffding (1951) who established asymptotic normality under general conditions.
- The optimal result in establishing quantitative normality of *W*-statistics of order one was obtained by Bolthausen (1984) who showed that

$$
d_K\Big(\sum_{i=1}^n \xi\big(i,\pi(i)\big),\mathcal{N}(0,1)\Big) \leqslant \frac{C_1}{n} \sum_{i,j=1}^n |\xi(i,j)|^3
$$

for every Hoeffding tensor ξ : $[n] \times [n] \rightarrow \mathbb{R}$ which satisfies $\sum_{i=1}^{n}$ $\int_{i,j=1}^{n} \xi(i,j)^2 = n-1.$

• Chen and Fang (2015) showed that we can take $C_1 = 451$.

イロト (何) イヨト (ヨ)

- Classical results for matrix permutation statistics were obtained by Wald/Wolfowitz (1944) and Hoeffding (1951) who established asymptotic normality under general conditions.
- The optimal result in establishing quantitative normality of *W*-statistics of order one was obtained by Bolthausen (1984) who showed that

$$
d_K\Big(\sum_{i=1}^n \xi\big(i,\pi(i)\big),\mathcal{N}(0,1)\Big) \leqslant \frac{C_1}{n} \sum_{i,j=1}^n |\xi(i,j)|^3
$$

for every Hoeffding tensor ξ : $[n] \times [n] \rightarrow \mathbb{R}$ which satisfies $\sum_{i=1}^{n}$ $\int_{i,j=1}^{n} \xi(i,j)^2 = n-1.$

• Chen and Fang (2015) showed that we can take $C_1 = 451$.

イロト (何) イヨト (ヨ)

- W-statistics of order two are also studied by Barbour and Eagleson (1986), as well as, Zhao, Bai, Chao and Liang (1997).
- The strongest quantitative normal approximation was obtained by Barbour and Chen (2005) who showed that if $\xi_1 \colon [n] \times [n] \to \mathbb{R}$ and $\xi_2 \colon [n]^2 \times [n]^2 \to \mathbb{R}$ are Hoeffding tensors with $\sum_{i,j=1}^{n} \xi_1(i,j)^2 = n - 1$, and *W* is the *W*-statistic associated with ξ_1 and ξ_2 , then

$$
d_K\big(W, \mathcal{N}(0, 1)\big) \leqslant \frac{aC_1}{n} \sum_{i,j=1}^n |\xi_1(i,j)|^3 + C_2 \sqrt{\frac{1}{n^2} \sum_{i,p \in [n]^2} \xi_2(i,p)^2}
$$

High-dimensional *Z*-statistics and *W*-statistics have been studied, for instance, by Bolthausen and Götze (1993), by Bloznelis and Götze (2002) and by Loh (1996).

 $\mathcal{A} \oplus \mathcal{B}$ $\mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B}$ \mathcal{B}

- W-statistics of order two are also studied by Barbour and Eagleson (1986), as well as, Zhao, Bai, Chao and Liang (1997).
- The strongest quantitative normal approximation was obtained by Barbour and Chen (2005) who showed that if ξ_1 : $[n] \times [n] \to \mathbb{R}$ and ξ_2 : $[n]^2 \times [n]^2 \to \mathbb{R}$ are Hoeffding tensors with $\sum_{i,j=1}^{n} \xi_1(i,j)^2 = n - 1$, and *W* is the *W*-statistic associated with ξ_1 and ξ_2 , then

$$
d_K\big(W, \mathcal{N}(0, 1)\big) \leqslant \frac{aC_1}{n} \sum_{i,j=1}^n |\xi_1(i,j)|^3 + C_2 \sqrt{\frac{1}{n^2} \sum_{i,p \in [n]^2} \xi_2(i,p)^2}
$$

High-dimensional *Z*-statistics and *W*-statistics have been studied, for instance, by Bolthausen and Götze (1993), by Bloznelis and Götze (2002) and by Loh (1996).

イロト (何) イヨト (ヨ)

- W-statistics of order two are also studied by Barbour and Eagleson (1986), as well as, Zhao, Bai, Chao and Liang (1997).
- The strongest quantitative normal approximation was obtained by Barbour and Chen (2005) who showed that if ξ_1 : $[n] \times [n] \to \mathbb{R}$ and ξ_2 : $[n]^2 \times [n]^2 \to \mathbb{R}$ are Hoeffding tensors with $\sum_{i,j=1}^{n} \xi_1(i,j)^2 = n - 1$, and *W* is the *W*-statistic associated with ξ_1 and ξ_2 , then

$$
d_K\big(W, \mathcal{N}(0, 1)\big) \leqslant \frac{aC_1}{n} \sum_{i,j=1}^n |\xi_1(i,j)|^3 + C_2 \sqrt{\frac{1}{n^2} \sum_{i,p \in [n]^2} \xi_2(i,p)^2}
$$

High-dimensional *Z*-statistics and *W*-statistics have been studied, for instance, by Bolthausen and Götze (1993), by Bloznelis and Götze (2002) and by Loh (1996).

∢ ロ ▶ ∢ 伊 ▶ ∢ ヨ ▶ ∢ ヨ ▶

Theorem (P. Dodos, K.T.)

Let *n*, *d* be positive integers such that $n \geq 4d^2$. For every $s \in [d]$ let $\xi_s : [n]^s \times [n]^s \to \mathbb{R}$ be a Hoeffding tensor, and set

$$
\beta_s = \sum_{i,p \in [n]^s} \xi_s(i,p)^2.
$$

Assume that $\beta_1 = n - 1$ *, and let W be the W-statistic associated with* ξ_1,\ldots,ξ_d . Then we have

$$
d_K(W, \mathcal{N}(0, 1)) \leq \frac{2^{18}C_1}{n} \sum_{i,j=1}^n |\xi_1(i,j)|^3 + C_d \sum_{s=2}^d \sqrt{\frac{\beta_s}{n^s}}
$$

In fact, we can take $C_d = 5d^2 e^d (2d)!$.

Framework

Let *d*, *n* be positive integers with $2d \le n$. Also let $X = \langle X_i : i \in [n]^d \rangle$ be a random tensor and let $\boldsymbol{\theta} = \langle \theta_i : i \in [n]^d \rangle$ be a deterministic tensor. We may assume the following.

- (A1) We have $\mathbb{E}[X_i] = 0$, $\mathbb{E}[X_i^2] \le 1$ and $\mathbb{E}[|X_i|^3] < \infty$ for every $i \in [n]^d$.
- $(A2)$ The random tensor X is symmetric, exchangeable and its diagonal terms vanish.
- ($\overline{A}3$) The real tensor θ is symmetric and its diagonal terms vanish. Our goal is to estimate the quantity

$$
d_K\big(\langle\bm{\theta},X\rangle,\mathcal{N}(0,\sigma^2)\big),
$$

where σ^2 denotes the variance of $\langle \theta, X \rangle$.

 $4 - 5 - 4 = 1$

For every
$$
s \in \{0, 1, ..., d\}
$$
 we set
\n
$$
\bullet \|\theta\|_{s} = \Big(\sum_{j \in [n]^{s}} \Big(\sum_{j \subseteq i \in [n]^{d}} \theta_{i}\Big)^{2}\Big)^{1/2}
$$
\n
$$
\bullet \delta_{s} = \delta_{s}(\mathbb{X}) = \mathbb{E}[X_{(1,...,d)}X_{(1,...,s,d+1,...,2d-s)}]
$$
\n
$$
\bullet \Sigma_{s} = \Sigma_{s}(\mathbb{X}) = \sum_{t=0}^{s} {s \choose t} (-1)^{s-t} \delta_{t}.
$$

Then we have

$$
\text{Var}\big(\langle \boldsymbol{\theta}, \boldsymbol{X} \rangle\big) = \sum_{s=0}^d \binom{d}{s}^2 s! \, \Sigma_s \, \|\!|\boldsymbol{\theta}\!|\!|\!|_s^2.
$$

K ロト K 個 ト K 差 ト K 差 ト

ă

 2990

For every
$$
s \in \{0, 1, ..., d\}
$$
 we set
\n• $||\boldsymbol{\theta}||_s = \Big(\sum_{j \in [n]^s} \big(\sum_{j \in [n]^d} \theta_i\big)^2\Big)^{1/2}$
\n• $\delta_s = \delta_s(\boldsymbol{X}) = \mathbb{E}[X_{(1,...,d)}X_{(1,...,s,d+1,...,2d-s)}]$
\n• $\Sigma_s = \Sigma_s(\boldsymbol{X}) = \sum_{t=0}^s {s \choose t} (-1)^{s-t} \delta_t$.

Then we have

$$
\text{Var}(\langle \boldsymbol{\theta}, \boldsymbol{X} \rangle) = \sum_{s=0}^d \binom{d}{s}^2 s! \Sigma_s |\|\boldsymbol{\theta}\|_s^2.
$$

K ロト K 個 ト K 差 ト K 差 ト

ă

 2990

For every
$$
s \in \{0, 1, ..., d\}
$$
 we set
\n• $||\boldsymbol{\theta}||_s = \Big(\sum_{j \in [n]^s} \big(\sum_{j \in [n]^d} \theta_i\big)^2\Big)^{1/2}$
\n• $\delta_s = \delta_s(\boldsymbol{X}) = \mathbb{E}[X_{(1, ..., d)}X_{(1, ..., s, d+1, ..., 2d-s)}]$
\n• $\Sigma_s = \Sigma_s(\boldsymbol{X}) = \sum_{t=0}^s {s \choose t} (-1)^{s-t} \delta_t.$

Then we have

$$
\text{Var}(\langle \boldsymbol{\theta}, \boldsymbol{X} \rangle) = \sum_{s=0}^d \binom{d}{s}^2 s! \Sigma_s |\|\boldsymbol{\theta}\|_s^2.
$$

K ロト K 個 ト K 差 ト K 差 ト

ă

 2990

For every
$$
s \in \{0, 1, ..., d\}
$$
 we set
\n• $||\boldsymbol{\theta}||_s = \Big(\sum_{j \in [n]^s} \big(\sum_{j \in [n]^d} \theta_i\big)^2\Big)^{1/2}$
\n• $\delta_s = \delta_s(\boldsymbol{X}) = \mathbb{E}[X_{(1, ..., d)}X_{(1, ..., s, d+1, ..., 2d-s)}]$
\n• $\Sigma_s = \Sigma_s(\boldsymbol{X}) = \sum_{t=0}^s {s \choose t} (-1)^{s-t} \delta_t.$

Then we have

$$
\text{Var}(\langle \boldsymbol{\theta}, \boldsymbol{X} \rangle) = \sum_{s=0}^d \binom{d}{s}^2 s! \Sigma_s |\|\boldsymbol{\theta}\|_s^2.
$$

*ロト→個→→ *目→ *目→

 290

∍

Finally, we define the *oscillation* of *X* by

$$
\operatorname{osc}(X) = \Big\|\frac{1}{n}\sum_{j=1}^n \Big(\frac{1}{n^{d-1}}\sum_{\substack{i \in [n]^d \\ i(1)=j}} X_i\Big)^2 - \delta_1\Big\|_{L_1}.
$$

• The oscillation of random vectors appeared, for instance, in work of Bobkov, Chistyakov and Götze (2018) albeit with different terminology.

∢ ロ ▶ ∢ 伊 ▶ ∢ ヨ ▶ ∢ ヨ ▶

Finally, we define the *oscillation* of *X* by

$$
\operatorname{osc}(X) = \Big\|\frac{1}{n}\sum_{j=1}^n \Big(\frac{1}{n^{d-1}}\sum_{\substack{i \in [n]^d \\ i(1)=j}} X_i\Big)^2 - \delta_1\Big\|_{L_1}.
$$

The oscillation of random vectors appeared, for instance, in work of Bobkov, Chistyakov and Götze (2018) albeit with different terminology.

 $2Q$

Let *X*, θ satisfying (*A1*), (*A2*) and (*A3*), and such that $\|\theta\|_1 = 1$. Set $\kappa = \kappa(d) = 20d^3 18^d (2d)!$ and $B = ||\frac{1}{n^d}$ $\frac{1}{n^d} \sum_{i \in [n]^d} X_i$ 2 $\sum_{L_2}^2$. Let $\alpha \in (0,1)$. Assume that the following non-degenericity condition holds true

$$
\delta_1 \geqslant \max\Big\{\operatorname{osc}(X)^\alpha, B^\alpha, \left(\frac{\kappa}{n}\right)^\alpha\Big\}.
$$

Then, setting $\sigma^2 = \text{Var}(\langle \boldsymbol{\theta}, \boldsymbol{X} \rangle)$, we have

$$
d_K\big(\langle\boldsymbol{\theta},\boldsymbol{X}\rangle,\mathcal{N}(0,\sigma^2)\big)\leqslant E_1+E_2+E_3
$$

where

$$
E_1 = 5\operatorname{osc}(X)^{1-\alpha} + 5|\delta_0|^{1-\alpha} + \left|\frac{\delta_0}{d^2\delta_1}(\|\theta\|_0^2 - 1)\right| + \frac{6\kappa}{n^{1-\alpha}} + 4\frac{\|\theta\|_0^2}{n}
$$

\n
$$
E_2 = 2^{36} \frac{\mathbb{E}\big[|X_{(1,...,d)}|^3\big]}{\delta_1^{3/2}} \Big(\sum_{j=1}^n \Big|\sum_{\substack{i \in [n]^d\\i(1)=j}} \theta_i\Big|^3\Big)
$$

\n
$$
E_3 = 3\kappa \frac{1}{d\sqrt{\delta_1}} \sum_{s=2}^d \binom{d}{s} \sqrt{s!} \sqrt{\sum_s + \frac{16d^2 2^d}{n}} \|\theta\|_s.
$$

イロンス個 とく言う く言う

È

 $2Q$

$$
E_1 = 5\mathrm{osc}(X)^{1-\alpha} + 5|\delta_0|^{1-\alpha} + \left|\frac{\delta_0}{d^2\delta_1}(\|\|\theta\|_0^2 - 1)\right| + \frac{6\kappa}{n^{1-\alpha}} + 4\frac{\|\theta\|_0^2}{n}
$$

• The first term of E_1 is, essentially, the oscillation of X .

- The second and third terms are quantitative measures of the correlation of the entries of *X*.
- The fourth term is related to the non-degenericity assumption.
- \bullet The last term in E_1 is more subtle, and it is related to the extendability of *X*.

$$
E_1 = 5\mathrm{osc}(X)^{1-\alpha} + 5|\delta_0|^{1-\alpha} + \left|\frac{\delta_0}{d^2\delta_1}(\|\|\theta\|_0^2 - 1)\right| + \frac{6\kappa}{n^{1-\alpha}} + 4\frac{\|\theta\|_0^2}{n}
$$

- The first term of E_1 is, essentially, the oscillation of X .
- The second and third terms are quantitative measures of the correlation of the entries of *X*.
- The fourth term is related to the non-degenericity assumption.
- \bullet The last term in E_1 is more subtle, and it is related to the extendability of *X*.

$$
E_1 = 5\mathrm{osc}(X)^{1-\alpha} + 5|\delta_0|^{1-\alpha} + \left|\frac{\delta_0}{d^2\delta_1}(\|\|\theta\|_0^2 - 1)\right| + \frac{6\kappa}{n^{1-\alpha}} + 4\frac{\|\theta\|_0^2}{n}
$$

- The first term of E_1 is, essentially, the oscillation of X .
- The second and third terms are quantitative measures of the correlation of the entries of *X*.
- The fourth term is related to the non-degenericity assumption.
- \bullet The last term in E_1 is more subtle, and it is related to the extendability of *X*.

$$
E_1 = 5\mathrm{osc}(X)^{1-\alpha} + 5|\delta_0|^{1-\alpha} + \left|\frac{\delta_0}{d^2\delta_1}(\|\|\theta\|_0^2 - 1)\right| + \frac{6\kappa}{n^{1-\alpha}} + 4\frac{\|\theta\|_0^2}{n}
$$

- The first term of E_1 is, essentially, the oscillation of X .
- The second and third terms are quantitative measures of the correlation of the entries of *X*.
- The fourth term is related to the non-degenericity assumption.
- \bullet The last term in E_1 is more subtle, and it is related to the extendability of *X*.

$$
E_2 = 2^{36} \frac{\mathbb{E}\left[|X_{(1,...,d)}|^3\right]}{\delta_1^{3/2}} \Big(\sum_{j=1}^n \Big|\sum_{\substack{i \in [n]^d\\i(1)=j}} \theta_i\Big|^3\Big)
$$

$$
E_3 = 3\kappa \frac{1}{d\sqrt{\delta_1}} \sum_{s=2}^d \binom{d}{s} \sqrt{s!} \sqrt{\sum_s + \frac{16d^2 2^d}{n}} |\theta| |\theta| |s|.
$$

K ロトメ 御 トメ 君 トメ 君 トー

目

 $2Q$

Let $d = 1$ and assume that the entries of *X* are of unit variance. Then

$$
\text{osc}(X) \leqslant \sqrt{\big|\mathbb{E}[X_1^2X_2^2]-1\big|} + \frac{4\mathbb{E}\big[|X_1|^3\big]}{\sqrt[4]{n}}.
$$

Assuming that the entries of *X* are of finite forth moment, we have that

$$
osc(X) \le \sqrt{\left| \mathbb{E}[X_1^2 X_2^2] - 1 \right|} + \frac{\mathbb{E}[X_1^4]^{1/2}}{\sqrt{n}}.
$$

≮ロト ⊀ 伊 ト ⊀ ヨ ト

 QQ

メ ヨ メー

Bounding the oscillation

For general *d* define the *parallelepipedal correlation* of *X* by

$$
\mathrm{pc}(X) = \big| \mathbb{E}[X_{(1,\ldots,d)}X_{(1,d+1,\ldots,2d-1)}X_{(2d,\ldots,3d-1)}X_{(2d,3d,\ldots,4d-2)}] - \delta_1^2 \big|.
$$

For example, if $d = 2$, then $pc(X) = \left| \mathbb{E}[X_{(1,2)}X_{(1,3)}X_{(4,5)}X_{(4,6)}] - \delta_1^2 \right|$.

Notice that for $d = 1$ we have that $pc(X) = \left| \mathbb{E}[X_1^2 X_2^2] - 1 \right|$.

 $2Q$

Under the additional assumption that the entries of *X* are of finite forth moment, we have that

$$
\mathrm{osc}(X) \leqslant \sqrt{\mathrm{pc}(X)} + \frac{5d}{\sqrt{n}} \big(1 + \mathbb{E}[X^4_{(1,\ldots,d)}]\big)^{1/2}.
$$

4 0 8 4

同 ▶ 4 ミト メ ヨ ト QQ

If *X* is dissociated, then we have that $pc(X) = 0$ and

$$
\text{osc}(X) \leqslant \frac{16d \left(\mathbb{E}\left[|X_{(1,\ldots,d)}|^3 \right] + 1 \right)}{\sqrt[4]{n}}.
$$

If *X* is a mixture of exchangeable, symmetric and dissociated random tensors and the entries of *X* have finite third moment, then we have

$$
\text{osc}(X) \leqslant \sqrt{\text{pc}(X)} + \frac{16d \left(\mathbb{E} \left[|X_{(1,\ldots,d)}|^3 \right] + 1 \right)}{\sqrt[4]{n}}.
$$

Thank you !!!

イロトメ 倒 トメ ミトメ ミト

 290

目