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GAUSSIAN CONVEX BODIES: A NON-ASYMPTOTIC
APPROACH

ABSTRACT. We study linear images of a symmetric convex body
C C RN under an n x N Gaussian random matrix G, where N > n.
Special cases include common models of Gaussian random polytopes
and zonotopes. We focus on the intrinsic volumes of GC' and study
the expectation, variance, small and large deviations from the mean,
small ball probabilities, and higher moments. We discuss how the ge-
ometry of C, quantified through several different global parameters,
affects such concentration properties. When n = 1, G is simply a
1 x N row vector and our analysis reduces to Gaussian concentration
for norms. For matrices of higher rank and for natural families of
convex bodies Cy C RN, with N — oo, we obtain new asymptotic
results and take first steps to compare with the asymptotic theory.

§1. INTRODUCTION

In this paper we study random convex sets that arise as linear images
of Gaussian matrices. Specifically, let G = G(n, N) be an n x N random
matrix with independent columns gy, ..., gn distributed according to the
standard Gaussian measure 7, on R". We view G = [g1, ..., gn] as a linear
operator from RN to R™. If C' C RY is a compact convex set, then the
image of C' under G is a random convex set in R™ given by

N
GC =3 cigire=(c)eCy. (1)
i=1

We call GC' a Gaussian convex body. In this way, one can generate random
convex hulls, Minkowski sums and a variety of other random convex sets.

Key words and phrases: intrinsic volumes, Gaussian matrices, deviation inequalities,
higher moments.
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Indeed, if C' = conv{ey,...,en}, i.e., the convex hull of the standard unit
vector basis, then one gets a Gaussian polytope

Py :=Gconv{ey,...,en} =conv{gs,...,gn}. (2)

Similarly, when C is the crosspolytope, i.e., C'= B} =conv {+ey, ..., £ex},
then one gets a symmetric Gaussian polytope

Ky = GB{V:conv{igh---aigN}- (3)

When C'is the cube, i.e., C' = BY = [~1,1]", then GC is just the zonotope
generated by the symmetric line segments [—g;, ¢;] = {Ag; : || < 1}, i.e.,
N
Zy = G[-1,11N = [~g;,9i]- (4)
i=1
Random sets of the form (1) arise naturally in several fields, even if they
are studied from different perspectives. In stochastic geometry, Gaussian
polytopes have been studied extensively and the asymptotic behavior of
various functionals is now well-understood. The expectation of the k-th
intrinsic volume Vi, (Py), 1 < k < n, satisfies

n\ w
BN = () 22 (g )21 + 1), )
as N — oo, which is due to Affentranger [2]. Recently, major advances have
been made in understanding the variance. Calka and Yukich [12] proved
that s
A}im var(Vi,(Pn))(log N) = % = ¢ 1, (6)
—00

where ¢, 1, is a finite constant that depends on n and k; while ¢, , was
proved to be positive, the authors left open the possibility that ¢, ; = 0 if
k < n. Subsequently, Bardny and Thaele [7] proved that indeed ¢, > 0.
This provides a complete resolution of the asymptotic behavior of the
variance, sharpening previous bounds due to Hug and Reitzner [17] and
Barany and Vu [9]. The latter authors have also proved a central limit
theorem for the volume, namely, as N — oo,

Vi(PNn) —EV,(PN) 4
— N
var(V,,(Pn))
With the recent progress on variance of Vi (Py), central limit theorems
for other intrinsic volumes also follow, as explained in [9,12]. While our

focus here is on intrinsic volumes, there is a fruitful line of research con-
necting the facial structure of Gaussian polytopes and random projections

0,1).
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of simplices, e.g., [4,8]; see [12] for further history and references. We also
focus on Gaussian measure as opposed to other forms of randomness such
as random polytopes in convex bodies; see, e.g., [6,11] and the references
therein for the limiting theory and, e.g., [13] and the references therein for
a non-asymptotic framework.

In the study of high-dimensional convex bodies, Gaussian matrices, or
random orthogonal projections, play an essential role. For example, they
arise in probabilistic proofs of Dvoretzky’s Theorem. V. Milman’s random
version of the latter [24] asserts that given any € > 0, N and convex body
C C RY, there is a critical dimension k.(C) and a constant ¢ = ¢(g)
such that whenever k < ¢(e)k.(C), “most” rank-k projections of C are
essentially Euclidean balls, i.e.,

(1 —e)w(C)PgBY C PrC C (1 + )w(C)PrBY; (7)

here w(C') denotes half of the mean width of C', BY is the Euclidean
ball, Pg is the orthogonal projection onto E and the inclusion holds with
high probability (with respect to the Haar probability measure vy on
the Grassmannian manifold G, of k-dimensional subspaces E C RM).
The focus in this study is on phenomena that hold for arbitrary convex
bodies C, the dimension N is large and the critical dimension k. (C) grows
with N. For example, if C' is in Lowner’s position, i.e., By is the mini-
mal volume ellipsoid containing C, then k.(C) > ¢; log N, where ¢; is an
absolute constant. The latter is sharp for C = BY, while for C = BY
the parameter k.(BY) is proportional to N. For a detailed introduction to
this fundamental result and its influence in Asymptotic Geometric Anal-
ysis, we refer to the recent book by Artstein-Avidan, Giannopoulos, and
V. Milman [1].

Variants of Gaussian polytopes, when N is linear in n, also arise as
counter-examples, e.g., Gluskin’s theorem which exhibits convex bodies of
nearly extremal Banach—-Mazur distance [16]; see also the survey [27] for
much related work in this direction. Whereas these relate to the shape of
such bodies, our interest here is on the intrinsic volumes.

Despite the fact that such sets have been studied from different points of
view and in different asymptotic regimes, there are some common under-
lying probabilistic characteristics. Our aim is to place a family of problems
on intrinsic volumes of such sets in a general framework. The goal is to de-
termine how the probabilistic behavior of Vi, (GC') reflects the geometry of
C C RY and vice-versa. We study the expectation, variance, concentration
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around the mean, small and large deviations and small ball probabilities.
We address these topics in a non-asymptotic setting with precise study of
the dependence on C, k,n and N.

All of the above topics are meaningful even when n = 1. Then G is
simply a 1 x N row vector, say G = g, and GC = {(g,c) :c€ C} C R.
Sudakov’s seminal work on infinite-dimensional Gaussian processes [40]
gives as a special case,

Esup(z,g) = \/—2—WV1(C)- (8)

zeC

The latter connects the first intrinsic volume V;(C') (suitably normalized
mean width of C') with the supremum of an associated Gaussian process
indexed by C'. The aforementioned concentration properties are non-trivial
even for the support function of C; for example for the ijv -norm when
p = p(N), the variance has only been understood in the last several years
[21,32,35].

For n > 1, even less is known about higher order concentration proper-
ties of GC'. Concerning the expectation of V;,(GC'), Tsirelson [42] extended
Sudakov’s identity (8) and it can be formulated as

EV,\(GC) = Edet(GG*)/2 / Vi (PoC)dvn n(E). )
GN,n

Since the righthand side is a multiple of the n-th intrinsic volume of C', the
latter identity is sometimes called the Gaussian representation of intrinsic
volumes, e.g., [44]. When n = 1, then (9) amounts to (8). The latter pro-
vides a direct connection between GC' and random orthogonal projections
of C.

Milman’s random version of Dvoretzky’s theorem (7) and Tsirelson’s
identity (9) together imply that the quantity EV;(GC), up to normalizing
constants, behaves like w(C)*, provided k does not exceed the critical
dimension k. (C). Moreover, for families of convex bodies Cy C RV, with
N — oo and k fixed, the assumption k¥ < k.(Cy) is trivially satisfied
if k.(Cn) — 00, as N — oo. Thus the above reasoning readily implies
laws of large numbers for Vi, (GCx)/w*(Cn) whenever k.(Cn) — oo, G =
G(n,N) and N — oo; this occurs, e.g., when each Cy is in Lowner’s
position. However, since (7) concerns set inclusions, there is no reason
to expect that the rates of convergence for Vi, (GCy) should be precisely
determined from (7) alone. Indeed, a more detailed analysis of Vi (GC)
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involves parameters other than k.(C). In [29], we show that Alexandrov’s
fundamental inequality for intrinsic volumes can be reversed beyond what
can be expected by the Dvoretzky number. An important parameter in [29],
and in previous study of Gaussian concentration of norms as in [32,33,35],
is B.(C) defined by

_ Varfhc(g)

]
)= e (o) (10)

where he denotes the support function of C' and g is a standard N-
dimensional Gaussian vector in R™. In this paper, we use these recent
tools to prove concentration properties that are sharper than those follow-
ing from random versions of Dvoretzky’s theorem.

Theorem 1.1. Let C be a symmetric convex body in RV,

u(z) = v/zlog(e/z), p>0, and 2 <k<n<N.
If2<k <af ' (0), then

k“»—-

(EVP(GC))*» kp
m < \/1+cmax{u(kﬂ*(0)),nk*(c)}, (11)

where c,c; are absolute constants. Moreover, if 2 < k < ¢18;1(C) and

0<p< ﬁfc), then

(EV, P (GC)) ™
(EVA(GO))F

where co, c3 are absolute constants.

> 1 — cs max{u(kp.(C)), pkB.(C)}, (12)

The latter theorem gives reverse Holder inequalities for EV (GC)? for
both positive and negative powers. By standard arguments, these lead
to deviation inequalities, which we state in Subsection 3.3. We also note
that the latter theorem provides an immediate counterpart to (5) for gen-
eral Gaussian convex bodies. Indeed, suppose that (Cn)R7_,, is a sequence
of symmetric convex bodies with each Oy C RN, N = n,n+1,..., in
Lowner’s position. If k,n and p are fixed and N — oo and we write
G = G(n, N), then Theorem 1.1 implies

@G0 NON)E = () 2N PuC - o), (3
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since, as mentioned, EV;(GCy) is of order w(Cn)*, up to explicit con-
stants. Now, plugging Cny = B and p = 1 into (13) gives the sym-
metric analogue of (5) and explains why a logarithmic term appears: it
corresponds to the mean width of BY. One can check that w(BY) =

\/ %(1 —o(1)); see, e.g., [20] for further references and related interest-

ing questions. In this way, asymptotic expansions for (EV}? (G(n, N)CN))l/p
are directly reduced to those of the mean width of Cy. Recently, Kabluchko
and Zaporozhets [19] studied asymptotics for expected intrinsic volumes of
Ky, Py and Zy; in particular, they further develop connections between
Tsirelson’s identity (9) and explicit expressions for the intrinsic volumes
of the cross-polytope and simplex from [5] and the cube; see also [28]. The
expansion in (13) is complementary: it follows from a non-asymptotic ap-
proach, for arbitrary symmetric convex bodies Cn and (fixed) powers p.
For simplicity, the focus of this paper is symmetric convex bodies C'; one
can use a regular simplex inscribed in the sphere SV ~! to model the Gauss-
ian polytopes Py but some non-trivial technical steps in our approach need
to be modified appropriately.

In the non-asymptotic setting, relations between k, p, n and N affect
the limiting behavior. While (13) concerns N — oo with k,n and p fixed,
we also study when p grows with N. For example, we prove the following
comparison of higher moments.

Theorem 1.2. Let C C RY be a convez body in Léwner’s position and
q>p>cNlogN. Then

C1

¢ _ EV(GON™ _ g
» S ERGom S 2\/;’ (4

where c1,co are absolute constants.

The next proposition shows that the variance of Vi, (GC) can be esti-
mated using the variance of ho(g), which we state in terms of 5. (C).

Theorem 1.3. Let C C RY be a convex body and let u(z) = \/zlog(e/x),
0 <z <1 Then

2

nk.(C)

Var[V,,(GC)] < ckN* max{ ,ku(kﬁ*(C’))} Vi(C)?,
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whenever 1 < k < min{n, c\/nk.(C), c(8.(C) log B*%C))_lm}’ where ¢, c;
are absolute constants. Moreover, for all 1 < k < n, we have
cERENF1VL(O)?

Var[Vi,(GC)] > - ,

where ¢y 18 an absolute constant.

The latter estimates do not appear to be sharp, even when C' is the cube.
For comparison, we discuss asymptotic results for zonotopes in Section 4.
At present, the asymptotic and non-asymptotic regimes are not completely
comparable. We feel it is of interest to better understand the transition
from the non-asymptotic setting to the asymptotic, for specific bodies like
the cube and cross-polytope, but also in general. The latter theorem does,
however, present the first general variance estimates, as far as we are aware,
for arbitrary Gaussian convex bodies GC. Moreover, the approach that we
explore here provides further non-trivial information about higher order
concentration properties, which we discuss further in Section 3, including
deviation inequalities and small ball probabilities.

§2. PREPARATORY TOOLS

The setting is R equipped with the standard inner-product (-,-) and
Euclidean norm ||z||2 := \/(z,z) for z € RY; BY is the Euclidean ball of
radius 1; SV~ is the unit sphere, equipped with the Haar probability mea-
sure o. For Borel sets A C RY, we use Vi (A) or |A| for the Lebesgue mea-
sure of A; wy for the Lebesgue measure of BY. The Grassmannian man-
ifold of all n-dimensional subspaces of RY is denoted by G, equipped
with the Haar probability measure vy ,. For a subspace F € Gn 5, we
write Pg for the orthogonal projection onto E.

Throughout the paper we reserve the symbols ¢, ¢y, ¢o, . .. for absolute
constants (not necessarily the same in each occurrence). We use the con-
vention S ~ T to signify that ¢;T < S < T for some positive absolute
constants ¢; and c3. Our results are most meaningful when N is large and
we assume throughout that N exceeds a fixed absolute constant.

A convex body C C RY is a compact, convex set with non-empty
interior. The support function of a convex body C' is given by

he(y) = sup{(z,y) 1z € C}, y € RV,
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We say that C' is (origin) symmetric if C' = —C'. For a symmetric convex
body C' the polar body C° is defined by

C°:={z cRY : |(z,y)| < L,y € C}.
For p # 0, we define the p-generalized mean width of C' by
1/p

wy(C) = /hg(a)da(a) . (15)

N-1
The circumradius of C' is defined by

R(C) = max ho(6) = mas o]z
Note that R(C) = weo(C) = limp_,oo wp(C). In addition, we denote by
r(C) the inradius of K, i.e. r(K) = mingcgrv-1 ho(f). Again, we have:
7(C) = w_oo(C) := lim,_. o w_,(C). Note that r(C°) = 1/R(C).

The intrinsic volumes of a convex body C C R¥ can be defined via the
Steiner formula for the outer parallel volume of C":

C+tB2 ZkaN k , t > 0.

Here Vi, k =1,..., N, is the k-th intrinsic volume of C' (we set Vo = 1); Vy
is volume, 2VN 118 surface area and N ! —Vi=w=wis half of the mean
width (cf. (15)). Intrinsic volumes are also referred to as quermassintegrals
(under an alternate labeling and normalization). For further background,
see [38, Ch. 4]. Here we prefer to work with a different normalization,
similar to that used in [15,28]. As in the introduction, for a convex body
CCRN and 1 < k<N —1, we write

1/k

1
W[k](C') = w—k / Vk(PEC')dI/NJg(E)
GNk

We will need the following generalization of this definition: for p # 0 we

write
1

pk

1
W[k,p](c) = w_z) / Vk(PEC)p dVNJC(E)
GN,k
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Note that by Kubota’s integral formula,

i) = () 22wy (16)

WN—k

1/N
We also set Winj(C) = vrad(C) := (VYVJ\E%CI‘E)) , which is the volume
2

radius of C, i.e., the radius of a Euclidean ball with the same volume as C'.
For ease of reference, we will also explicitly state Alexandrov’s inequalities,
ie,for1<n <N,

w(C) =Wy (C) =+ =Wy, (C) = -+ = Win(C) = vrad(C).  (17)

Recall the Dvoretzky number k. (C) of C C RY is the maximum dimen-
sion k£ such that a “random” subspace F' € G, has the property that
PrC is 4-Euclidean, i.e. %aPFBéV C PrpC C 2aPrBY, for some a > 0.
Milman’s formula (see [26]) states that

(18)
We also recall a definition of Klartag and Vershynin from [18]. For a
symmetric convex body C' C R", let
d.(C) = min(—logo{f € S" ' :2||0]|c < w(C)},n).

Let C be a convex body in RN with support function ho(-). We define
B+«(C) to be the normalized variance of the support function of C' with
respect to the standard Gaussian measure in RY, i.e.

var(hc(g))
B.(C) = —— L 19
= Encla)? 1
where g is an N-dimensional standard Gaussian vector.
If C is a convex body in RY, then
C1
(©) < 57gy <2 (©) (20)

where ¢1,c2 are absolute constants. For the above inequalities, see [33]
or [34]. In particular, when k,(C) ~ N, all quantities in (20) are equivalent.
The values of k. (C), B+ (C) and d.(C) are discussed for particular examples
in Subsection 3.4.
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§3. (GAUSSIAN CONVEX BODIES

3.1. Gaussian representation of intrinsic volumes and extensions.
We recalled Kubota’s integral formula in (16). There is a version of the
latter formula that uses Gaussian random matrices, rather than orthogonal
projections and integration on the Grassmannian, due to Tsirelson [42],
sometimes called the Gaussian representation of intrinsic volumes, see the
work of Vitale [44]. Throughout this section, we assume that G = (g;;) is
an n X N matrix with independent standard Gaussian entries. Then the
n-th intrinsic volume of C' C RY is given by
n/2
vy = 2" e o, (21)

wpn!

An extension of the previous representation involving Wi, ,;(C) is proved
in [28]. In particular it was shown that if C C RY is a convex body and
p>—(N —n+1), then

(EV,(GOYP)¥ = (Edet (GG*)%)s W,

n,pl

(C)wp.- (22)
The latter is based on the fact that
Vi(GCO) = det(GG*)'/?V,(PC),

where E = Im(G*). Moreover, E is distributed uniformly on Gy, and
det(GG*) and V,,(PgC) are independent; see [42] or [30]. The main result
of this subsection is the following generalization of (22).

Proposition 3.1. Let 1 <k <n < N andlet T’ be a k x N matriz with
independent standard Gaussian entries. Let C C RN be a convex body.
Then for allp > —(N —k + 1),

EW,?(GC) = Edet(TT*) 2 W) (C). (23)
In particular,
Edet(TT*)"/* = EW?  (GBY). (24)

Note that when k& = n, (23) amounts to (22).

Proof. Let ¢1,...,gn denote the columns of G. For any subspace E €
Gy, i, define 'y by

I'g := PpG = [Pgg: - Ppgn]
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and note that I'y and I' have the same distribution. Thus using Fubini’s
theorem and (22), we have

EWP (GC) = w,'E /1VMF%GCVHW%“E)
Gk

=w;it / EVi (TpC)Pdvy, 1, (E)

Gk
= /IEdet(FEFE)gd’/mk(E)W[llcc{)p](C)
Gnk
— Edet(TT") W17 (O). -

The random matrix GG* is distributed according to the Wishart dis-
tribution. Formulae for the expectation of det(GG*) are well known (see
e.g. [3, Chapter 7]). We will make use of the following concentration in-
equality for det(GG™); a proof is given for the reader’s convenience.

Proposition 3.2. Letn < N/2 and 0 < p < %. Then

C1ip *\12 e *\1—2 o C2p
1+ 3P < (]E[det(GG )] ) (E[det(GG )] ) <1+2F, (25)

where c1,co > 0 are absolute constants. Furthermore, for p > 2,

cip _ (Edet(GG*)P/2)ww Cap
1+ < - <y /l+— 26
VTN S (Ede@ar) s VTN (26)

Moreover, we have

Lo (Edet(GG™*))~

< <1 (27)
N Elgli3

Finally, we have
E(det(GG*)Y?)Y" ~ VN, Var[(det(GG*)Y/*)/" ~1.  (28)

1

Proof. Let d > 1, ¢ € [-%,00) and let aqy := (E|/g||1)*, where g is

a d-dimensional Gaussian vector. A straightforward computation shows

that .
_ s (DN
Qd,q *= V2 ( F(%) ) .
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Thus, for 0 < ¢ < %,1

ElglD?  an,  (TEHDED)T .
(Engn;qﬁ_ad,—q‘( (@) )—”9(3)- (29)

Let hi,- - , hy be the columns of G*. Let Hy = {0} andfor k =1, - - -

7n_17
set Hy := span{hy,---

,hi}. Then, as in e.g. [3, Chapter 7], we may write:

det(GG*)? = H||PHL B8
k=1

Integrating first with respect to h,, then h,,_1, and so forth we get that:

Edet(GG*)% = HaN . (30)

Hence using (29) for ¢ = 1>

> 5 we obtain:

1

(Edet(GG*)%) ™"

dd:=
( aN ON_kt1p )
(Edet(GG*)~%) AN g1,
1+

S vl

M {ve (=)} )
o(%).

This proves (25). Arguing similarly, we have for ¢ > 2,

2
<_> =1+0(%).

Taking into account the above estimate and (30) we also get (26).

LThe last asymptotic estimate follows from Taylor’s theorem for the function h —
Gz (h) :=¢(x + h) + ¢¥(x — h) — 2¢(z), i.e. there exists 0 < £, < h such that
2

Golh) = " [0 (@ + &) + 9" (2 — &),

OO
where = = d/2, h = q/2, ¥(x) := log(z) and (logT)"(z) = . (z +j)~2 ~ 1/z for
Jj=0
> 1.
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In order to prove (27) we note that (30) for p = 2 implies that
n
Edet(GG*) = [[(V =k +1).
k=1

So,

(Edet(GG*))™ (szl(N —k+ 1))?
Ellgll3 N7 '
The result follows.
O

3.2. General variance estimates. It is proven in [34, See Claim in the
proof of Lemma 6.1] that for any convex body C in RV,

Var[w(G(C)] < min {Var[hC(Z)], R(g)2 } .

In [34] it is stated for symmetric convex bodies but an inspection of the
proof shows that the symmetry assumption is not essential. Moreover, we
have the following lower bound:

crw(C)?
—

Indeed, integration in polar coordinates and Cauchy—Schwarz inequality
yields

Var[w(GC)] >

Ew(GC)
E||Gllus

Recall that E||G|lus ~ vVaN, Ew(GC) ~ vV Nw(C) and Var(||G|us) ~ 1.

Varfu(GO)] > ( )2Var[||G||Hs1.

Lemma 3.3. Let C be a symmetric conver body in RN and let p > 0.
Then

(Elw(GO)P)? <, [1+ n,f:(pc) Ew(GC) = /1 + n,fj(”o)E||g||2w<c),
(31)

where g is a standard N -dimensional Gaussian vector.

Proof. We will need the following:
Claim. For any n x N matrices T, 7> with rank n we have

W(TL0) — w(Ty0)]| < %’)nn ~Ty/lns. (32)
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Proof of Claim. Since w(TC) = [ hc(T*0)do(8), by the triangle in-
Snfl
equality we get

W(Ti0) ~w(B:O)| < [ ho((Tf - T5)8) doe)
S’nfl

< R(C) / |(T; — T3)0]l2 do(6)
S’n,fl

R(C
< Py 1y~ 1) s,

N

which proves the claim.

By the claim, the function R¥" 3 T +s w(TC) is Lipschitz with con-
stant R(C)/+/n. By [29, Proposition 3.3] and the standard Gaussian con-
centration, we get the lemma. O

Proposition 3.4. Let C be a symmetric convex body in RN and let 1 <
kE<n<N.

i. Foralll1 <k <n,
Var[W[’,Z] (GO)] < Var[W[’,Z] (TC)] = Var[vrad(T'C)"],

where T' is a Gaussian k x N matrix.

ii. For 2 < k < min{n,c\/nk.(C),c(B.(C)log B*%C))*lm}, we have

2

Varl 7y (GO)) < mane { L 3.0 | R ©tova

where tn = (Edet(TT*)Y/2)? = 2F[D(2=E£2) /T (D)2 so that
1/k

tyy = N and u(z) = /zlog(e/r), 0 <z < L.

iii. For all 1 <k < n, we have

k‘2
tN k-

Var[Wh (GO)] > Wﬁc’f(c)m :
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Proof. Part (i) follows from the Cauchy—Schwarz inequality. Indeed, if
G,G' are independent n x N Gaussian matrices, then

22 Var Wl (GC) = E / Ve(PrGC) dvpy(F) — / Vi(PrG/C) dvn i (F)
Gn,k Gn,k
< / E (Vi(PrGC) — Vi(PrG'C))” dvp i (F).
Gk
But for fixed F' € Gy, the matrices PrG and PrG’ are independent and
each has the same distribution as a Gaussian k x N matrix I'. Thus, we
may write:
22 Var[IVh (GC)] < / E(Vi(TC) — Vi(T'C))? dun (F) = Vax[Vi (NC)].
Gn,k

(ii) Using Alexandrov’s inequality (17) and Lemma 3.3, we have

ck k
EWii (GC) < E(w(GC))** < (1 + m) (Ew(GC))?*

ck k 2 2
_ (1+ Wm) (Elglls)*w(C),

where g ~ N (0, In).

Next, we also use our recent reverse form of Alexandrov’s inequality [29,
Theorem 1.1], which states that W) (C') is very close to w(C) for all k up
to ¢8.1(C). In particular, it was proved that

Wi (C) = (1 = cu(kp.(C))) w(C), (33)
where u(z) := y/zlog(e/x). Thus
EW} (GC) = Edet(TT*)/* W, (C)
> Edet(PT)'/?(1 — cu(kB.(0)))*w(C)*,
as long as k < ¢/B.(C). It follows that

BV (GO _k “ (Elgl)™
W < (1 + cmax{nk*(c) ,u(kﬁ*(C'))}) W'
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Finally, we may check that

k
(Ellgll2)**  _ N1

. = Tk
(Edet(PT)'2)> [1%_ %11,

_ [ ] ek’ k)"
‘[mﬂ)] [m#)] <<”F) /

2

for all 1 < k < n. Putting all inequalities together we obtain:

E[WH(GO)] " k
EWE,(GO)? (14 ema{ gy w0} )

2

ck
< [
< 1+ ¢ max { Wk (C) ku(kﬂ*(C))} )
as long as max{#?c), ku(kB.(C))} < 1. Hence,

, [ EVEE(GO))
Var[Wi (GO)] = (EW[, (GC)) <(1EW[E?:C]]W - 1)

k
< clmax{m

(k5. (O)) | W€ (CT) 2P,

forll 1 < & < min {n, /8.0, /5y /198 ey}
(ili) We apply Holder’s inequality to get

E[W2k(GC
VarlI) (GO)] = (W) (GC))? (M )

(EWE (GC))?
E[| G5
> EWE (GC))? (7115 —1
] (E[Glfs)?
k2
—_ 2k *\1/2712
= Wi (€) —[det(IT") /22, O

3.3. Concentration properties. In this section we discuss concentra-
tion properties of the intrinsic volumes of Gaussian convex bodies. In ad-
dition to [29, Theorem 1.1], which we stated in (33), we will also need the
following stronger statement (see Proposition 4.2 in [29]).
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Proposition 3.5. Let C be a symmetric convex body in R™ and let 2 <
k< c1B71(C). Then for all 0 < p < e2(kB.(C)) 71,

Wik,—p)(C) = (1 = ez max{u(kB.(C)), pkB.(C)}) w(C),  (34)
where u(x) := y/zlog(e/x).

Proposition 3.6. Let C' be a symmetric conver body in RV, u(z) =

Vzxlogle/z),p>0and 1 <k <n < N. Then

(BWi(G0)) ™ <\ [1+ EsBlgllau(C), (35)

where g is a standard N -dimensional Gaussian vector. Moreover, if 2 <
k<aB'(C), then

EWy(GC) > (1 — cou(kB.(C)) Edet (TT*) % w(C), (36)

where T is an k x N Gaussian matriz. In particular we have that for every
2< k< HC) and p >0,

(EW[’;’]’(GC)) w kp

EW,(GO) S \/l—i—cmax{u(kﬁ*(C)), nk*(C)} (37)

Finally we have that for 2 < k < c¢13;71(C) and 0 < p < ﬁic),

N

1

(B co)) ™
EW(GC)

> 1 — cmax{u(kB.(C)),pkB.(C)}.  (38)

Proof. By Alexandrov’s inequality (17) and Lemma 3.3 we get that

(EWi(60))* < (Bu(GO™) ¥ < [14 222

which proves (35). Using Proposition 3.1, Holder’s inequality and Propo-
sition 3.5 we get that

EWp, (GC) > EW[k7%](GC)
= Edet (TT*) W, 1,(C)
> (1 — cou(kp.(C)) Edet (TT*) 2F w(C),
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which proves (36). Next, (37) follows from (36), (35) and Proposition 3.2.
Finally, using Holder’s inequality, Alexandrov’s inequality (17), followed
by Propositions 3.1, 3.2 and 3.5, we have

(EW,P*(GC)) ™o _E WP (GO)) o

EW (GO) - Ew(GC)
_ (E(det(TT*)~8) "% Wy, —(C)
Ellgll2 w(C)
cmax(p, k)
(s

X (1 - esmax{u(kB.), ph.(C)}) w(C). O

Applying the previous proposition and Markov’s inequality, we get the
following.

Proposition 3.7. (Small deviations near the mean) Let C' be a symmetric

convex body in RV and 2 < k < 7 Set u(z) = y/zlog(e/z) and
r = u(kB.(C)). Then for everye >r,
P (Wi (GC) > (1+ e)EWpy (GC)) < e~ k=), (39)

Moreover, for everyr <e <1,
P (W[k] (GC) < (1 - S)EW[k] (GC)) e B*(c) (40)

Proposition 3.8. (Small ball probabilities below the mean) Let 1 < k <
n < N. Assume that C is a symmetric convex body in R™. Then for all
0<e<1l,

P (Wi (GC) < csEWpyy (GC)) < e, (41)

where ¢ s an absolute constant.

Proof. Let 0 < p < N — k + 1. We first recall an inequality from [15, p.
1014):

Wik, (C) > cow_i (), (42)
where ¢g is a positive absolute constant. By Alexandrov’s inequality (17),
EWpyy (GC) < Ew(GC) ~ vNuw(0). (43)

By Holder’s inequality and Proposition 3.1, we get
EW,"(GC) <EW,' (GC) = Edet(TT*) P 2W " (C).  (44)
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Thus,

EW*(GC) < PN~ Pw=ik(0).

Finally, we apply Markov’s inequality with p = d.(C)/k.
P (Wi (C) < ceEWy (GC)) = P (W""’(C) > (ce)~*P(EW, (GC))—kp)

(k]
= (ce)*? (EW}yy (GO) " EW " (GC)
<ehr
for a suitable absolute constant c. O

In [28], a general method to estimate small ball probabilities for the
volume of random convex sets is developed. The method applies beyond
Gaussian convex bodies — to random sets similar to (1) but the random-
ness involves arbitrary continuous distributions with bounded densities.
An essential ingredient is the use of affine quermassintegrals, which were
introduced by E. Lutwak [22]. For a compact set C C RY and 1 < k < N,
we define the k-th affine quermassintegral as

1
Nk

@[k](C) = / Vk(PFC)_NdI/N7k(F) . (45)

G Nk

By Holder’s inequality,
w,lc/kW[k] ) = (I)[k](C'). (46)

A crucial inequality from [28], that will also be needed here, is an “iso-
morphic” solution to a conjecture of E. Lutwak [23], namely, for every
convex body C C RN and every 1 < k < N,

®,(C) > c\/ng(c)ﬁz_ (47)

Proposition 3.9. (Small ball probabilities below the volume) Let C be a
convez body in RY andlet 1 <k <n < N. Then for every e > 0,

P (W[k] (GO) < cavN(C)%) < (ee)'F (48)

Proof. As in the proof of the previous proposition, we have

EW, " (GC) < Edet(TT*) P W " (C). (49)
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Next, we note that for 0 < p < N, Holder’s inequality and (47) imply that

Wk (C) < @y () 7PN < (ewy/* vrad(€))7P/N.

By Markov’s inequality, we get the result. O

By compactness, w, W' ,(C) — maxgegy , Va(PeC) as p — oo. The
next proposition provides a quantitative form of this fact.

Proposition 3.10. Let C' be a symmetric conver body in RN and let
1< n < N/2. Then, for all p > c¢N log(R(C)/r(C)) we have:

¢ max Vn(PrC)'/™ < wrl/"W[n,p] (C) < Fren(%fn Va(PrC)'/™.

FeGnn

For the proof we will need estimates for the metric entropy on the Grass-
mannian which are due to Szarek [41] (see also [31] for the formulation we
use below).

Lemma 3.11. Let 1 < n < N — 1 and let 0 be the invariant metric
defined by:

E,F €Gnn 0o(BE,F)=inf{|I - Ullop:U(E) = F, U € O(N)}.

We define the “spherical cap” with respect to oo, of radius € > 0, centered
at F' € Gnp, as follows:

Coo(Fie) ={E € GNp:0x(E,F) < e},
Then, we have
UNn(Coo(Fr€)) = (cg)™ N1, (50)

Lemma 3.12. Let K be a symmetric convezx body with s=R(C)/r(C) in
RN. Let E,F € Gn,, with 00o(E,F) = t. Then, there exists U € O(N)
such that

UE)=F and U(PgK)C (1+ts)PrK.

Proof. We consider U € O(N) such that ¢t = ||[I — U||. Let § € Sp. Then,
U*0 = ¢ € Sg therefore we have || — ¢||2 < t. We may write:

hyper)(0) _ hik () hi (6 — ¢) tR(K)
= Sl+—F/—F— <1+ —5—=.
hp, k() hi(6) hi(6) r(PrK)
Since r(PrK) > r(K) the result follows. O

Now we are ready to prove the aforementioned result:
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Proof of Proposition 3.10. The rightmost inequality is trivial. For the left-
most inequality let F/y € G, such that maxpeay , Vo(PrC) =V, (Pr,C).
For any ¢ € (0, 1) note that if F' € C(Fp,€), then by Lemma 3.12 we get
Vo(PrC) = (1 + es) "V, (PF,C), where s = R(C)/r(C). Hence, we may

write:

/ Vi (PrC)YP duy n(F) > / Vi (PrCYP dun n(F)
GNon Coo(Fo,e)
(L4+es) PV (Pr, C)PvN n(Coo (Fo, €))
(1+ 55)7pn(cs)”NVn(PF0 a)r,

where in the last step we have used Lemma 3.11. Choosing £ ~ 1/s we
find

2
2

Winp) (C) = 1V (P, C) ™ (e2/ )P = e5Vi(Pr, C) 7,
provided that p > N log(c's), which is the desired result. O
The next proposition is immediate:

Proposition 3.13. (Higher moments) Let C be a symmetric convez body
in RN and let 1 <k < n < N/2. Then, for any p > cN log(R(C)/r(C)),

(EWE (GO)) = | p maXreay, Vi(PrC)*

~ (51)
(EWi (GC)) N Wiy (C)
Proof. Using Proposition 3.1, we get
EWy(GOY* (Edet(IT*) %)% Wik (C)
(EW (GO)) (Edet(CT*)2)% Wiy (C)
The assertion now follows from Proposition 3.10 and estimate (26). O

3.4. Gaussian polytopes and zonotopes. In the previous sections, we
presented general concentration properties of the quantities W (GC) in
terms of the parameters k.(C), di«(C) and B.(C) and Wy (C). In this
section, we review bounds on all of the latter quantities when C' is the
cross-polytope BV and the cube BY, which correspond to Ky and Zy,
respectively, as defined in the introduction. We also set

my(C) = pmax Vi (PFC)%.

The following table summarizes the geometric parameters of interest.
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C RO ] 75 | d(0) [vad(@) | W@ | w(@) [mi(C)

BY |logN |log? N | > Neo | N | \/losleN/) Nt

BN | N N N VN VN VN

The table gives the order of magnitude, up to absolute constants, of each
of the given parameters; for example k, (B}) ~ log N, while for d. (B{Y), we
have given just a lower bound in terms of an absolute constant ¢y € (0, 1).

For the cube C' = BY one has k.(BY) ~ N, by (18). Moreover, using
(20) the values of d.(BY) and 1/3.(BX) are also of order N. The intrinsic
volumes of the cube satisfy

=z

VN =~ vrad(BY) < Wi (BY) < w(BY) ~ VN, (52)

which can be seen by direct computation or as consequence of Alexandrov’s
inequality (17). The final entry in the row for BYY follows from, e.g., the
inclusion BY C vVNBY and (52).

For the cross-polytope B, k.(BYN) ~ log N, which can be directly
computed using (18). To compute £, (B}Y), it is enough to compute the
var(max;<n |gi|), which is well-known; see, e.g., [10]. The quantity d.(B)
has been estimated in [28, Props. 6.1, 6.2]. For the maximal volume k-
dimensional projection of BY we will need that every k-codimensional
section of BI¥ has volume of order c*, i.e. Vy_(BN N FH)% ~ 1 (see
e.g. [25]). Then by Rogers—Shephard inequality [36], we have that for every
FeGnp,

Vi (PeBN)® < Vi (PrBN)* Vy_y (BN N FH)* < ( ) <<
Here W =Vn(BN)"~BY and Vy(BN)~ ~ + so we get that
c

1
max Vi (PrBM)* <
FeGn ok k( r 1) =

Bl

On the other side we have that if F' is the subspace spanned by {e;, - ,ex},
then Vi (Pr, BN)% = Vi (B)% ~ L.

Using the above table of values and the results in the previous section,
we readily get the next theorems.
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Theorem 3.14. For every 1 <k <n < ¢N, and every e > ¢ % log %,
P (Wi (Zn) > (1+ ) EWg(Zn)) < e (53)
and for every ¢ € [/ £ log &Y, 1],
2
P (Wi (Zn) < (1 - e)EW(Zn)) <e N, (54)
Moreover for every e > 0,
P (Wi (Zn) < EWpyg(Zn)) < ()% (55)
Theorem 3.15. For every 1 <n < N, 1 < k < min{log® N,n} and every
e>c logN log M
P (Wi (Kn) = (14 &) EWy(Ky)) < e~ nlogN (56)
and for every e € [/ IOgN log EIOgN 1],
P (Wi (Kn) < (1 - 2)EWg(Kn)) < e o8N, (57)
Moreover for every e > 0,

P (Wi (Kn) < EWpy(Kn)) < (o)™ (58)
Finally, for every p > Nlog N,

(EVi(Kn)")7 F
(EVi(Kn))e  ky/log

§4. ASYMPTOTIC RESULTS FOR ZONOTOPES

In this section, we discuss properties of the limiting distributions of the

N
intrinsic volumes of the Gaussian zonotopes Zy = G[—1,1]N = 3 [~g;, gi]
to complement the non-asymptotic results in the previous sectiloi.

A central limit theorem for the volume of Minkowski sums of random
convex sets was proved by Vitale [43]. As a special case, it was shown that
as N — oo,

Va(Zn) — EV.(ZN)

var(Vo(Zn)
In [30], we used the latter fact to prove a central limit theorem for the
volume of random orthogonal projections of rank n of BY, when n is fixed

— N(0,1). (60)
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and N — oo. We also proved bounds for centered moments of the volume
Vi (Zn). The next proposition extends this to other intrinsic volumes. The
proof is a natural generalization of [30, Proposition 4.2]; detailed proofs
are included here for completeness.

Theorem 4.1. Let 1 <k<n<N.

(1) For each p > 2,
E|Vi(Zn) — EVi(ZN)[P < cnppNPE—3), (61)

where cp 1 p 15 a constant that depends only on n, k and p.
(2) The variance of Vi(Zn) satisfies

V&I‘(Vk (ZN))

NQk—l - n,k7 (62)

where ¢y 1, s a positive constant that depends only on n and k.
(3) Vi(Zn) satisfies the following central limit theorem:
Vi(ZNn) — EVi(ZN) .
V&I‘(Vk (ZN))

N(0,1). (63)

To prove Theorem 4.1, it will be useful to recall several results on U-
statistics; for background, see e.g. [14,37,39]. Let X1, X5, ... be a sequence
of i.i.d. random variables with values in a measurable space (S,S). Let
h: S™ — R be a measurable function. For N > m, the U-statistic of order
m with kernel h is defined by

UN:UN(h):M Z h(Xiu-'-aXim)a (64)

N!
(1 yenesim ) ETT
where
IT = {(i1, ... im) 1i; €N, 1 <i; < Nyij #ig if j # k} .
When h is symmetric, i.e., h(21,...,2Zm) = h(Ty1),- -, To(m)) for every

permutation o of m elements, we can write

1
Unv=U(X1,...,XN) = =~ Z h(Xi,,..., X ); (65)
(m) 1<i1 <. <im <IN

here the sum is taken over all (ﬁ) subsets {i1,...,9m} of {1,...,N}. We
recall several well-known results, which go back to Hoeffding (e.g. [39,

Ch. 5]).
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Theorem 4.2. For N > m, let Uy be a statistic with kernel h : S™ — R.
Set C = VarE[h(Xl, . ,Xm)|X1]

(1) The variance of Un satisfies VarUn = mTQC +O(N72) as N — oo.

(2) IfE|A(X1,...,Xm)| < 0o, then Uy “3 EUx as N — co.
(3) If ER?(Xy,...,X,,) < oo and ¢ > 0, then

\/N(wvm_i\]/]%w) 2 N(0,1) as N — .

We will also recall the following decoupling result for U-statistics. As-
sume that h : (R™)™ — R satisfies E[h(X7,..., X;n)| <ocoand let 1 < r <

m. Following [14, Definition 3.5.1], we say that h is degenerate of order
r—1if

Ex,..x, h(z1, . 2r—1,Xp, ..., X)) = Eh(X1, ..., X0)
for all z1,...,2,—1 € R", and the function
S"s (@1, wp) = Exopyox M@, e, X, -, X))

is non-constant. If & is not degenerate of any positive order r, we say it is
non-degenerate or degenerate of order 0. We will make use of the following
randomization theorem, which is a special case of [14, Theorem 3.5.3].

Theorem 4.3. Let 1 < r < m and p > 1. Suppose that h : S™ — R is
degenerate of order r — 1 and E|h(X1,..., X;,)[P < co. Set

flxe, ... zm) =h(z1, .. om) —Eh(Xq, ..., Xn)-

Let eq,...,en denote i.i.d. Rademacher random variables, independent of
Xi,....,XnN. Then

B e X)) 2

(il,...7im)61x
Z P
E| 5i1"'5irf(Xi17"'7Xim)| -
(i1,--yim )ETRH
Here A ~, , B means C}, ,A < B < (Y}, A, where C, , and C}), , are

constants that depend only on m and p.

Corollary 4.4. Let 1 < k < n < N and let Xq,..., Xy be i.i.d. ran-
dom vectors distributed according to an absolutely continuous probability
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measure p on R™. Assume that E||X1]|5 < oo for some p > 2. Define
frRYE R by
flz1,...,2E) = |det [Pgxy - - - Ppaxg]|dvn, k (E)
Gn,k
_E / \det [PpX, - - - PpXy]|dva(E).
Gk

Then

P

IE‘ S (X, Xa)

1<ii<...<ipg <N

< Crs pNPEDE[F(XY, ..., Xp)]?,

where Cy .p 15 a constant that depends on n,k and p.

Proof. Since p is absolutely continuous, dim(span{Xy,...,X,}) =r as.
forr =1,...,k. Moreover, f(az1,...,x;) = |a|f(z1,...,2;) for any a € R,
hence f is non-degenerate. By Holder and Hadamard’s inequalities,

p
E / |det[PEX1---PEXk]|dI/n7k gEHXngEHXng
Gn ke
Thus we may apply Theorem 4.3 with r = 1:
P
E‘ S Rf(Xa,. X :IE‘ S (X, Xa)

1<in <. <ip <N (i1,...,ik)€IIk\’,

p

P
< C’n,k,pE} Z 5i1f(Xi1,---,Xik)
(i1,..0ik) ETR,
Suppose X, ..., Xy are fixed. Taking expectation in e=(eq,...,en) and

appling Khintchine’s inequality and then Holder’s inequality, we have

EE‘ Z Eilf(Xilv"'aXik)

(i1,min) €I

N
Zf‘:il Z f(XnaaXlk)

i1=1 (i, k)
(1,0 erin ) ETR

p

p
—F.
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P
3

< c‘i( 3 f(Xil,...,Xik))Q

i1=1 " (i2,...,ix)
(1,0 erin ) ETE

@((Z‘f)(k—l)!)%‘ ST f(Kie X))

(i15e-mrin ) ETY

<c<<];fll)(k—l)!)%<<]:>k!>p_22 S XL X,

(81 5eemyine ) ETT

p

2

where ¢ is an absolute constant. Taking expectation in the X;’s gives

p
E" Z Silf(Xiu"'aXik)

(i1,evin) €T

p—

< <<]Z_11)(k1)!)%<<]]j>k!> ; <JZ>k!IE|f(X1,...,Xk)|p.

We complete the proof by using the estimate (%) < (eN/k)*. O

Proof of Theorem 4.1. Note that for a, ; := (Z)ﬁ, we have

N
Vi(Zn) = Vi (Z[_giagi])
=1 N
= an / Vi (Z[_PEgi:PEgi]> dvn, i (EF)

Gn,k
= Qi Z / |det([PEa:1,...,PEa:k])|d1/n,k(E).
H=ka, 4

Thus if A : (R")* — R* is the permutation-invariant function given by

h@r, ... 0) = an / \det([Pears .., Poas])ldvns(E),  (66)
Gn,k
then ﬁVk(ZN) is a U-statistic with kernel h.
k

To prove (1), we note that h is non-degenerate. Thus we can apply
Corollary 4.4 to the function

f(xla"'axk) = h(xla"'axk) 7Eh(glaagk) (67)
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Next, we prove (2). For fixed E € Gy, 1, we write
|det[Prg: - - Pegill = [loll2]| Prroallz - [[Preyokll2s - (68)

where v; = Pgg;, for i = 1,...,k and F, = span{vy,...,v,} for r =
1,...,k—1, while Fy = {0}. Denote the expectation with respect to g, by
E,. Note that for r = 2,...,k — 1, E; 41| Privr11]| depends only on the
dimension of F;., which is equal to r a.s. By Fubini’s theorem, integrating
first in g, then g,_1, and so on, we have

k—1
By ... Eg|[Ppivalla ... [ Pr_vklla = [ BVXE = Bu,
r=1

where x2 denotes a chi-squared random variable with r degrees of freedom,
r=1,...,k—1. Moreover, the latter expression is independent of E. Thus

Elh(g1, .-y 9:)l91] = Eo .k | nke |det[Prg1 - - - Prgr)|dvn,ix(E)
Gk

— an B / | Peg |2 1 (E).
Gnk

Thus ¢ = var(E[h(g1,...,9%)|91]) > 0 and hence we can apply Theo-
rem 4.2(2), to get

o (BB s
k

On the other hand, by part (1) we have

E|(Vi(Zn)) — EVi(Zn)|*
Nik—2 < Cn,,k,4-

This implies that the sequence (Vi (Zx) — EVi(Zy)/N*~2)y is uniformly
integrable, hence

V&I‘(Vk (ZN))
N7 ()kVE
Part (3) now follows from (69) and Slutsky’s theorem. O

—1las N — oo.
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