
Threshold for the measure of random polytopes

Apostolos Giannopoulos∗

Abstract

Starting with the work of Dyer, Füredi and McDiarmid who established a sharp threshold for the
expected volume of random polytopes with independent vertices uniformly distributed in the discrete
cube En2 = {−1, 1}n, in this survey article we focus on a very general variant of the problem. Let
µ be a log-concave probability measure on Rn and for any N > n consider the random polytope
KN = conv{X1, . . . , XN}, where X1, X2, . . . are independent random points in Rn distributed according
to µ. We discuss an approach to the question if there exists a threshold for the expected measure
EµN [µ(KN )] of KN , based on joint works with S. Brazitikos and M. Pafis, via the Cramér transform Λ∗

µ

of µ. We show that, under some conditions, one has a sharp threshold for the expectation EµN [µ(KN )]
of the measure of KN : it is close to 0 if lnN � Eµ(Λ∗

µ) and close to 1 if lnN � Eµ(Λ∗
µ). The main

condition is that the parameter β(µ) = Varµ(Λ∗
µ)/(Eµ(Λ∗

µ))2 should be small.

1 The case of the discrete cube

LetX be a random vector in Rn with independent coordinates that take each of the values±1 with probability
1
2 . Given N > n, we consider N independent copies X1, . . . , XN of the random vector X and define the
random “0/1 polytope”

(1.1) KN = conv{X1, . . . , XN} ⊆ Qn := [−1, 1]n.

Dyer, Füredi and McDiarmid established in [16] a sharp threshold for the volume of these random 0/1
polytopes.

Theorem 1.1 (Dyer-Füredi-McDiarmid). Let κ = ln 2− 1
2 and for any N > n consider the random polytope

KN defined by (1.1). For every ε ∈ (0, κ) we have that

(1.2) lim
n→∞

sup
{

2−nE |KN | : N 6 exp((κ− ε)n)
}

= 0

and

(1.3) lim
n→∞

inf
{

2−nE |KN | : N > exp((κ+ ε)n)
}

= 1.

In the statement of the theorem we denote by |KN | the n-dimensional volume of KN ; since |Qn| = 2n,
the ratio 2−nE |KN | is the “expected percentage” of Qn occupied by KN . In this section we present the main
points of the proof of Theorem 1.1. Several of the lemmas that are used will be proved in a more general
and stronger form later on.

The function ϕ : (−1, 1)n → R defined by

(1.4) ϕ(x) := inf
{

Prob
(
X ∈ H

)
: x ∈ H, H is a closed half-space

}
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plays a key role in the argument. Note that the infimum in (1.4) is determined by those half-spaces H for
which x lies on the boundary ∂(H) of H. Next, for any origin symmetric convex body A ⊂ (−1, 1)n we
define

(1.5) ϕ+(A) = sup
x/∈A

ϕ(x) and ϕ−(A) = inf
x∈A

ϕ(x).

Lemma 1.2. Let N > n and let A be an origin symmetric convex body contained in (−1, 1)n. Then,

E(|KN |) 6 |A|+ 2nNϕ+(A).

Proof. We write

(1.6) E (|KN |) = E (|KN ∩A|) + E (|KN \A|) 6 |A|+ E (|KN \A|).

Note that if H is a closed half-space containing x, and if x ∈ KN , then we may find i 6 N such that Xi ∈ H
(otherwise, we would have x ∈ KN ⊆ H ′, where H ′ is the complementary half-space of H). It follows that
Prob

(
x ∈ KN

)
6 N ϕ(x). Using Fubini’s theorem we see that

E (|KN \A|) =

∫
Qn\A

Prob(x ∈ KN ) dx 6
∫
Qn\A

Nϕ(x) dx 6 N ϕ+(A) |Qn \A| .

where in the last inequality we use the fact that ϕ(x) 6 ϕ+(A) for every x /∈ A. Going back to (1.6) we get
the lemma.

Lemma 1.2 will be useful for the proof of (1.1). It remains to choose, if possible, suitable A (depending
on N and n) such that for all N 6 exp((κ− ε)n) we will have simultaneously |A| /2n → 0 and Nϕ+(A)→ 0
as n→∞.

A second basic observation is given by the following lemma.

Lemma 1.3. Let A be an origin symmetric convex body contained in (−1, 1)n. Then,

1− Prob
(
KN ⊇ A

)
6

(
N

n

)
2−(N−n) + 2

(
N

n

)(
1− ϕ−(A)

)N−n
.

We skip the proof since we shall discuss a more general version of Lemma 1.3 in Section 3 (see Lemma 3.8).
What is important is that Lemma 1.3 allows us to use the function ϕ in order to prove (1.2). Roughly
speaking, it remains to choose, if possible, suitable A (depending onN and n) so that for allN > exp((κ+ε)n)
we will have simultaneously |A| /2n → 1 and 1− Prob

(
KN ⊇ A

)
→ 0 as n→∞.

Given a bounded random variable X, consider the moment generating function M(s) := E
(
esX

)
and the

logarithmic moment generating function Λ(s) := lnM(s) of X. Since X is bounded, we see that M(s) <∞
for every s ∈ R. By the symmetry of X it also follows that M and Λ are even. Using Hölder’s inequality we
easily check that Λ, and hence also M , is convex. Finally, M is C∞ on R; the n-th derivative of M is the
function M (n)(s) = E

(
XnesX

)
.

Returning to our case, where X takes the values ±1 with probability 1
2 , direct computation shows that

M(s) = cosh(s) and Λ(s) = ln cosh(s).

Consider the Legendre transform of Λ: this is the function

f(x) := sup {sx− Λ(s) : s ∈ R} , x ∈ (−1, 1).

Direct computation shows that

f(x) = 1
2 (1 + x) ln(1 + x) + 1

2 (1− x) ln(1− x)

for every x ∈ (−1, 1). Note that f is an even convex function and lim
x→±1

f(x) = ln 2.

From the definition of f and Markov’s inequality we get the next upper bound for ϕ(x) in terms of∑n
i=1 f(xi), for every x ∈ (−1, 1)n.
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Lemma 1.4. For every x ∈ (−1, 1)n we have that ϕ(x) 6 exp (−
∑n
i=1 f(xi)).

Proof. Let H be a closed half-space such that x ∈ ∂(H). Then, there exists s = (s1, . . . , sn) ∈ Rn such that
H = H(s) = {y : 〈s, y − x〉 > 0}. From Markov’s inequality,

Prob
(
X ∈ H(s)

)
= Prob

(
n∑
i=1

si(Xi − xi) > 0

)
6 E

(
exp

( n∑
i=1

si(Xi − xi)
))

=

n∏
i=1

E
(

exp(si(Xi − xi)
)

=

n∏
i=1

exp(Λ(si)− sixi).

By the definition of ϕ(x) we have

ϕ(x) 6 inf
s∈Rn

n∏
i=1

exp(Λ(si)− sixi) =

n∏
i=1

exp(− sup{sxi − Λ(s) : s ∈ R}) =

n∏
i=1

exp(−f(xi)).

This proves the lemma.

We extend f continuously on [−1, 1] setting f(±1) = ln 2 and for every x = (x1, . . . , xn) ∈ Qn we set

F (x) =
1

n

n∑
i=1

f(xi).

For every 0 < t < ln 2, we define
Ft = {x ∈ (−1, 1)n : F (x) 6 t} .

Since f is even and convex on (−1, 1), the set Ft is an origin symmetric convex body contained in (−1, 1)n.
From the definition of Ft we see that

∑n
i=1 f(xi) = nF (x) = tn for all x ∈ ∂(Ft). Therefore, Lemma 1.4 and

the definition of ϕ− give us the next fact.

Lemma 1.5. Let 0 < t < ln 2. For every x ∈ (−1, 1)n we have ϕ(x) 6 exp(−nF (x)). In particular,

ϕ+(Ft) 6 exp(−tn).

Let U1, . . . , Un be independent random variables, uniformly distributed in (−1, 1). Then, for every
0 < t < ln 2,

2−n |Ft| = Prob((U1, . . . , Un) ∈ Ft) = Prob

(
1

n

n∑
i=1

f(Ui) 6 t

)
.

Note that

κ = E (f(Ui)) = 1
2

∫ 1

−1

f(x)dx = ln 2− 1
2 .

By the law of large numbers we conclude the following.

Lemma 1.6. For every t ∈ (0, κ) we have lim
n→∞

2−n |Ft| = 0 and, similarly, for every t ∈ (κ, ln 2) we have

lim
n→∞

2−n |Ft| = 1.

Now, we can prove the first part of the theorem of Dyer, Füredi and McDiarmid.

Proposition 1.7. For every ε ∈ (0, κ),

lim
n→∞

sup
{

2−nE(|KN |) : N 6 exp((κ− ε)n)
}

= 0.
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Proof. We choose t = κ − ε/2. From Lemma 1.6 we have that lim
n→∞

2−n |Ft| = 0. On the other hand, if

N 6 exp((κ− ε)n), then Lemma 1.5 gives

Nϕ+(Ft) 6 exp(−εn/2).

Applying Lemma 1.2 with A = Ft we get

2−nE (|KN |) 6 2−n |Ft|+ exp(−εn/2),

and Lemma 1.6 shows that the right hand side tends to 0 as n→∞.

For the proof of (1.2) we need to estimate ϕ(x) from below in order to use Lemma 1.3. The basic
technical step is the next proposition, which will be discussed, in a more general context, in Section 3.

Proposition 1.8. For every ε > 0, there exists n(ε) ∈ N, depending only on ε, such that for every 0 < t < ln 2
and every n > n(ε) we have

ϕ−(Ft) > exp(−t(1 + ε)n).

Then, the proof of (1.2) is simple.

Proposition 1.9. For every ε > 0,

lim
n→∞

inf
{

2−nE (|KN |) : N > exp((κ+ ε)n)
}

= 1.

Proof. Fix ε > 0 and choose t = κ+ε/3. Combining Lemma 1.3 with Proposition 1.8 we see that if n > n(ε)
and N > exp((κ+ ε)n) > exp((t+ 2ε/3)n), then

E (|KN |) > |Ft| Prob
(
KN ⊇ Ft) > |Ft| (1− 2−n+1).

Since t > κ, Lemma 1.6 shows that lim
n→∞

2−n |Ft| = 1, and the result follows.

Special cases of the threshold problem have been studied in various works. In addition to the case of the
discrete cube, Dyer, Füredi and McDiarmid established in [16] a sharp threshold for the expected volume of
random polytopes with vertices uniformly distributed in the solid cube Qn = [−1, 1]n. If κ = ln(2π)−γ− 1

2 ,
where γ is the Euler constant, then for every ε ∈ (0, κ) one has

lim
n→∞

sup
{

2−nE|KN | : N 6 exp((κ− ε)n)
}

= 0

and
lim
n→∞

inf
{

2−nE|KN | : N > exp((κ+ ε)n)
}

= 1.

These results were generalized in [20] to the setting where the vertices of KN have independent coordinates
whose distribution is a fixed even measure with compact support in R that satisfies some mild condition (see
Section 8).

The articles [35] and [4], [5] address the same question for a number of cases where Xi have a rotationally
invariant density supported on the Euclidean unit ball Bn2 . More precisely, Pivovarov proved in [35] that if the
vertices ofKN are uniformly distributed on the unit ballBn2 then, for any ε ∈ (0, 1), ifN 6 exp

(
(1− ε)n2 lnn

)
then E |KN |/|Bn2 | tends to 0 and if N > exp

(
(1 + ε)n2 lnn

)
then E |KN |/|Bn2 | tends to 1 as n→∞. In the

same work, he studied the case where the vertices of KN are distributed according to the uniform measure
on the unit sphere Sn−1 or according to the standard Gaussian measure γn on Rn; in the latter case, for a
large range of r = rn > 0 he established a sharp threshold for the ratio E |K ∩ rBn2 |/|rBn2 | as n→∞. The
work [4] of Bonnet, Chasapis, Grote, Temesvari and Turchi deals with the case where the vertices of KN are
distributed according to the measure with density (1 − |x|2)β or (1 − |x|2/σ2)−β on Bn2 , where β > −1 in
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the first case and β > n
2 and σ > 0 in the second case. Sharper estimates for these models, describing the

phase transition as well as its shape, were obtained in [5].
Exponential in the dimension upper and lower thresholds are obtained in [19] for the case where Xi are

uniformly distributed in a simplex (then, the result can be extended to simplicial polytopes in Rn). Let
Ωn = {x = (x1, . . . , xn) : x1 + · · ·+ xn = 1, xi > 0} be the standard embedding of the (n− 1)-dimensional
simplex in n-dimensional space. If N > Cn0 , where C0 > 0 is an absolute constant, then

E |conv{x1, . . . , xN}| > (1− e−c0
√
n)|Ωn|.

A second main result of the same paper provides an upper threshold. For every ε > 0, if N < e(γ−ε)n,
where γ is the Euler constant, then the convex hull of N random points x1, . . . , xN uniformly distributed
in Ωn satisfies E |conv{x1, . . . , xN}|/|Ωn| → 0 as n → ∞. To this end, the authors compute the Legendre
transform of the log-moment generating function of a random vector X uniformly distributed in the simplex.

2 Log-concave probability measures

We would like to formulate and study the question how to obtain a threshold for the expected measure of a
random polytope defined as the convex hull of independent random points with a log-concave distribution.
Consider a log-concave probability measure µ on Rn and let X1, X2, . . . be a sequence of independent random
points in Rn distributed according to µ. Then, for any N > n we may define the random polytope

KN = conv{X1, . . . , XN}.

We are interested in the expectation EµN [µ(KN )] of the µ-measure of KN with respect to the product
measure µN = µ⊗ · · · ⊗ µ (N times). This is an affinely invariant quantity, and hence we may assume that
µ is centered, i.e. the barycenter of µ is at the origin.

Given δ ∈ (0, 1) we say that µ satisfies a “δ-upper threshold” with constant %1 if

(2.1) sup{EµN [µ(KN )] : N 6 exp(%1n)} 6 δ

and that µ satisfies a “δ-lower threshold” with constant %2 if

(2.2) inf{EµN [µ(KN )] : N > exp(%2n)} > 1− δ.

Then, we define %1(µ, δ) = sup{%1 : (2.1) holds true} and %2(µ, δ) = inf{%2 : (2.2) holds true}. Our main
goal is to obtain upper bounds for the difference

%(µ, δ) := %2(µ, δ)− %1(µ, δ)

for any fixed δ ∈
(
0, 1

2

)
.

One may also consider a sequence {µn}∞n=1 of log-concave probability measures, where µn is on Rn, and
say that {µn}∞n=1 exhibits a “sharp threshold” if there exists a sequence {δn}∞n=1 of positive reals such that
δn → 0 and %(µn, δn)→ 0 as n→∞.

We shall describe a general approach to the problem, that was proposed in [11], working with an arbitrary
log-concave probability measure µ on Rn. We present the main ideas, the progress that has been achieved
(especially in the case of the uniform measure on a convex body) and several remaining open questions. In
the remaining part of this section we provide the necessary background information.

Throughout this article we write 〈·, ·〉 for the standard inner product in Rn and denote the Euclidean
norm by | · |, the Euclidean unit ball by Bn2 and the unit sphere by Sn−1. Lebesgue measure in Rn is denoted
by | · | and σ is the rotationally invariant probability measure on Sn−1. We use the letters c, c′, cj , c

′
j etc. to

denote absolute positive constants whose value may change from line to line.
A convex body in Rn is a compact convex set K ⊂ Rn with non-empty interior. We often consider

bounded convex sets K in Rn with 0 ∈ int(K); since the closure of such a set is a convex body, we shall
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call these sets convex bodies too. We say that K is centrally symmetric if −K = K and that K is centered
if the barycenter bar(K) = 1

|K|
∫
K
x dx of K is at the origin. The radial function %K of a convex body K

with 0 ∈ int(K) is defined for all x 6= 0 by %K(x) = sup{λ > 0 : λx ∈ K} and the support function of K is
given by hK(x) = sup{〈x, y〉 : y ∈ K} for all x ∈ Rn. The polar body K◦ of a convex body K in Rn with
0 ∈ int(K) is the convex body

K◦ :=
{
y ∈ Rn : 〈x, y〉 6 1 for all x ∈ K

}
.

A Borel measure µ on Rn is called log-concave if µ(H) < 1 for every hyperplane H in Rn and µ(λA+ (1−
λ)B) > µ(A)λµ(B)1−λ for any compact subsets A,B of Rn and any λ ∈ (0, 1). A theorem of Borell [6]
shows that under these assumptions, µ has a log-concave density fµ. A function f : Rn → [0,∞) is called
log-concave if its support {f > 0} is a convex set in Rn and the restriction of ln f to it is concave. If f has
finite positive integral then there exist constants A,B > 0 such that f(x) 6 Ae−B|x| for all x ∈ Rn (see [12,
Lemma 2.2.1]). In particular, f has finite moments of all orders. We say that µ is even if µ(−B) = µ(B) for
every Borel subset B of Rn and that µ is centered if

bar(µ) :=

∫
Rn
〈x, ξ〉dµ(x) =

∫
Rn
〈x, ξ〉fµ(x)dx = 0

for all ξ ∈ Sn−1. We shall use the fact that if µ is a centered log-concave probability measure on Rk then

(2.3) ‖fµ‖∞ 6 ekfµ(0).

This is a result of Fradelizi from [17]. Note that if K is a convex body in Rn then the Brunn-Minkowski
inequality implies that the indicator function 1K of K is the density of a log-concave measure, the Lebesgue
measure on K.

If µ is a log-concave measure on Rn with density fµ, we define the isotropic constant of µ by

Lµ :=

(
supx∈Rn fµ(x)∫

Rn fµ(x)dx

) 1
n

[det Cov(µ)]
1
2n ,

where Cov(µ) is the covariance matrix of µ with entries

Cov(µ)ij :=

∫
Rn xixjfµ(x) dx∫

Rn fµ(x) dx
−
∫
Rn xifµ(x) dx∫
Rn fµ(x) dx

∫
Rn xjfµ(x) dx∫
Rn fµ(x) dx

.

We say that a log-concave probability measure µ on Rn is isotropic if it is centered and Cov(µ) = In, where

In is the identity n × n matrix. In this case, Lµ = ‖fµ‖1/n∞ . For every µ there exists an invertible affine
transformation T such that the push forward T∗µ of µ defined by T∗µ(B) = µ(T−1(B)) for every Borel
subset B of Rn is isotropic. The hyperplane conjecture asks if there exists an absolute constant C > 0 such
that

Ln := max{Lµ : µ is an isotropic log-concave probability measure on Rn} 6 C

for all n > 1. Bourgain [8] established the upper bound Ln 6 c 4
√
n lnn; later, Klartag, in [26], improved this

estimate to Ln 6 c 4
√
n. In a breakthrough work, Chen [14] proved that for any ε > 0 there exists n0(ε) ∈ N

such that Ln 6 nε for every n > n0(ε). Subsequently, Klartag and Lehec [29] showed that Ln 6 c(lnn)4,
and very recently Klartag [28] achieved the best known bound Ln 6 c

√
lnn.

Let µ be a centered log-concave probability measure on Rn. The logarithmic Laplace transform of µ is
the function

Λµ(ξ) = ln

(∫
Rn
e〈ξ,z〉fµ(z)dz

)
.

It is easy to check that Λµ is convex and Λµ(0) = 0. Since bar(µ) = 0, Jensen’s inequality shows that
Λµ(ξ) > 0 for all ξ. One can also check that the set A(µ) = {Λµ < ∞} is open and Λµ is C∞ and strictly
convex on A(µ). The Legendre transform of Λµ defined by

Λ∗µ(x) = sup
ξ∈Rn

{〈x, ξ〉 − Λµ(ξ)}
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is called the Cramér transform of µ and plays a crucial role in the theory of large deviations (see [15]). For
every t > 0 we also define the convex set

Bt(µ) := {x ∈ Rn : Λ∗µ(x) 6 t}.

A second important family of convex bodies associated to any log-concave probability measure µ on Rn is
the family of Lt-centroid bodies Zt(µ). For every t > 1 the body Zt(µ) is the convex body with support
function

hZt(µ)(y) :=

(∫
Rn
|〈x, y〉|t dµ(x)

)1/t

.

Note that Zt(µ) is always centrally symmetric, and Zt(T∗µ) = T (Zt(µ)) for every T ∈ GL(n) and t > 1.
A centered log-concave probability measure µ is isotropic if and only if Z2(µ) = Bn2 . Paouris (see [12,
Theorem 5.1.17]) established upper bounds for the volume of the Lt-centroid bodies of isotropic log-concave
probability measures.

Theorem 2.1. If µ is a centered log-concave probability measure on Rn, then for every 2 6 t 6 n we have
that

|Zt(µ)|1/n 6 c
√
t/n[det Cov(µ)]

1
2n ,

where c > 0 is an absolute constant. In particular, if µ is isotropic then |Zt(µ)|1/n 6 c
√
t/n for all 2 6 t 6 n.

A variant of the Lt-centroid bodies of µ is defined as follows. For every t > 1 we consider the convex
body Z+

t (µ) with support function

hZ+
t (µ)(y) =

(
2

∫
Rn
〈x, y〉t+fµ(x)dx

)1/t

,

where a+ = max{a, 0}. When fµ is even, it is clear that Z+
t (µ) = Zt(µ). In any case, we easily verify that

Z+
t (µ) ⊆ 21/tZt(µ). Moreover, if µ is isotropic then Z+

2 (µ) ⊇ cBn2 for an absolute constant c > 0. One can
also check that if 1 6 t < s then(

2

e

) 1
t−

1
s

Z+
t (µ) ⊆ Z+

s (µ) ⊆ c1
(

2e− 2

e

) 1
t−

1
s s

t
Z+
t (µ).

The right-hand side inequality gives

(2.4) Eµ(2〈z, ξ〉2t+ ) = [hZ+
2t(µ)(ξ)]

2t 6 C2t[hZ+
t (µ)(ξ)]

2t = C2t[Eµ(2〈z, ξ〉t+)]2,

for all ξ ∈ Sn−1, where C > 1 is an absolute constant. For a proof of all these claims see [22].
The next proposition compares Bt(µ) with Zt(µ) (for a proof see [12, Proposition 15.3.7]).

Proposition 2.2. Let µ be a centered log-concave probability measure on Rn. Then, for any t > 2 we have

Bt(µ) ⊆ cZt(µ)

where c > 0 is an absolute constant.

Finally, if µ is a log-concave probability measure on Rn then, for every t > 0, we define

Kt(µ) := Kt(fµ) =

{
x ∈ Rn :

∫ ∞
0

rt−1fµ(rx) dr >
fµ(0)

t

}
.

From the definition it follows that the radial function of Kt(µ) is given by

(2.5) %Kt(µ)(x) =

(
1

fµ(0)

∫ ∞
0

trt−1fµ(rx) dr

)1/t
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for x 6= 0. The bodies Kt(µ) were introduced by K. Ball [2] who also established their convexity. If µ is
additionally assumed centered then, for every 0 < t 6 s,

(2.6)
Γ(t+ 1)

1
t

Γ(s+ 1)
1
s

Ks(µ) ⊆ Kt(µ) ⊆ ent −nsKs(µ).

A proof is given in [12, Proposition 2.5.7]. It is easily checked that

(2.7) |Kn(f)| fµ(0) =

∫
Rn
fµ(x)dx = 1

(see e.g. [12, Lemma 2.5.6]) and then we can use the inclusions (2.6) in order to estimate the volume of
Kt(µ). For every t > 0 we have

(2.8) e−1 6 fµ(0)
1
n+ 1

t |Kn+t(µ)| 1n+ 1
t 6 e

n+ t

n
.

We are mainly interested in the convex body Kn+1(µ). We shall use the fact that Kn+1(µ) is centered (see
[12, Proposition 2.5.3 (v)]) and that

(2.9) fµ(0)|Kn+1(µ)| ≈ 1.

The last estimate follows immediately from (2.7) and (2.8).
We conclude this section with some basic facts about κ-concave measures. Given κ ∈ [−∞, 1/n] we say

that a measure µ on Rn is κ-concave if

(2.10) µ((1− λ)A+ λB) > ((1− λ)µκ(A) + λµκ(B))1/κ

for all compact subsets A,B of Rn with µ(A)µ(B) > 0 and all λ ∈ (0, 1). The limiting cases are defined
appropriately. For κ = 0 the right hand side in (2.10) becomes µ(A)1−λµ(B)λ (therefore, 0-concave measures
are the log-concave measures). In the case κ = −∞ the right hand side in (2.10) becomes min{µ(A), µ(B)}.
Note that if µ is κ-concave and κ1 6 κ then µ is κ1-concave.

Next, let γ ∈ [−∞,∞]. A function f : Rn → [0,∞) is called γ-concave if

f((1− λ)x+ λy) > ((1− λ)fγ(x) + λfγ(y))1/γ

for all x, y ∈ Rn with f(x)f(y) > 0 and all λ ∈ (0, 1). Again, we define the cases γ = 0,+∞ appropriately.
Borell [7] studied the relation between κ-concave probability measures and γ-concave functions and showed
that if µ is a measure on Rn and the affine subspace F spanned by the support supp(µ) of µ has dimension
dim(F ) = n then for every −∞ 6 κ < 1/n we have that µ is κ-concave if and only if it has a non-negative
density ψ ∈ L1

loc(Rn, dx) and ψ is γ-concave, where γ = κ
1−κn ∈ [−1/n,+∞).

We refer to Schneider’s book [38] for basic facts from the Brunn-Minkowski theory and to the book [1]
for basic facts from asymptotic convex geometry. We also refer to [12] for more information on isotropic
convex bodies and log-concave probability measures.

3 Tukey’s half-space depth

Let µ be a probability measure on Rn. For any x ∈ Rn we denote by H(x) the set of all half-spaces H of Rn
containing x. The function

ϕµ(x) = inf{µ(H) : H ∈ H(x)}

is called Tukey’s half-space depth. Tukey introduced the half-space depth for data sets in [40] as a measure
of centrality for multivariate data that enables efficient visualization of random samples (some form of this
notion had appeared in [23]). The term “depth” also comes from Tukey’s article. The survey article of Nagy,
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Schütt and Werner [31] provides an overview of this topic, with an emphasis on its connections with convex
geometry, and many references.

Tukey’s half-space depth plays a key role in the study of the problem that we address in these notes. In
this section we prove the basic results that we need, starting with estimates for the expectation

Eµ(ϕµ) :=

∫
Rn
ϕµ(x) dµ(x)

of ϕµ with respect to µ. The question to provide an upper bound for this quantity was asked in [30] in
connection with stochastic separability and applications to machine learning and error-correction mechanisms
in artificial intelligence systems; motivation is given in [21] and in the references therein. More precisely,
it was asked if there exists an absolute constant c ∈ (0, 1) such that Eµ(ϕµ) 6 cn for all n > 1 and all
log-concave probability measures µ on Rn. The next theorem from [10] provides an affirmative answer (up
to a lnn-term).

Theorem 3.1. Let µ be a log-concave probability measure on Rn, n > n0. Then, Eµ(ϕµ) 6 exp
(
−cn/L2

µ

)
where Lµ is the isotropic constant of µ and c > 0, n0 ∈ N are absolute constants.

We shall use the next basic (and simple) lemma that generalizes Lemma 1.5.

Lemma 3.2. Let µ be a Borel probability measure on Rn. For every x ∈ Rn we have ϕµ(x) 6 exp(−Λ∗µ(x)).
In particular, for any t > 0 and for all x /∈ Bt(µ) we have that ϕµ(x) 6 exp(−t).

Proof. Let x ∈ Rn. For any ξ ∈ Rn the half-space {z : 〈z − x, ξ〉 > 0} is in H(x), therefore

ϕµ(x) 6 µ({z : 〈z, ξ〉 > 〈x, ξ〉}) 6 e−〈x,ξ〉Eµ
(
e〈z,ξ〉

)
= exp

(
− [〈x, ξ〉 − Λµ(ξ)]

)
,

and taking the infimum over all ξ ∈ Rn we see that ϕµ(x) 6 exp(−Λ∗µ(x)), as claimed.

Proof of Theorem 3.1. The quantity Eµ(ϕµ) is affinely invariant and hence for the proof of Theorem 3.1 we
may assume that µ is isotropic. Using Lemma 3.2 we write∫

Rn
ϕµ(x) dµ(x) 6

∫
Rn
e−Λ∗

µ(x)fµ(x) dx =

∫
Rn

(∫ ∞
Λ∗
µ(x)

e−tdt

)
fµ(x)dx

=

∫ ∞
0

e−t
∫
Rn
1Bt(µ)(x)fµ(x)dx dt =

∫ ∞
0

e−tµ(Bt(µ)) dt.

Fix b ∈ (2/n, 1/2] that will be specified in the end. Since µ(Bt(µ)) 6 1 and also µ(Bt(µ)) 6 ‖fµ‖∞|Bt(µ)|
for all t > 0, we may write∫

Rn
ϕµ(x) dµ(x) 6

∫ ∞
bn

e−tµ(Bt(µ))dt+ ‖fµ‖∞
∫ bn

0

e−t|Bt(µ)| dt

6
∫ ∞
bn

e−t dt+ Lnµ

∫ 2

0

e−t|Bt(µ)| dt+ Lnµ

∫ bn

2

e−t|Bt(µ)| dt

6 e−bn + Lnµ|B2(µ)|+ Lnµ

∫ bn

2

e−t|Bt(µ)| dt.

Applying Proposition 2.2 and Theorem 2.1 we get

|Bt(µ)|1/n 6 c1|Zt(µ)|1/n 6 c2
√
t/n

for all 2 6 t 6 n, where c1, c2 > 0 are absolute constants. It is also known that Lµ > c3 where c3 > 0 is an
absolute constant (see [12, Proposition 2.3.12] for a proof). So, we may assume that c2Lµ >

√
2. Choosing

b0 := 1/(c2Lµ)2 6 1/2 we write

Lnµ

∫ b0n

2

e−t|Bt(µ)| dt 6 cn2L
n
µ

∫ b0n

2

(t/n)n/2e−tdt = (c2Lµ)n
∫ b0n

2

(t/n)n/2e−tdt,
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and since b0n 6 n/2 and the function t 7→ tn/2e−t is increasing on [0, n/2], we get

(c2Lµ)n
∫ b0n

2

e−t|Bt(µ)| dt 6 (b0n− 2) (c2Lµ)nb
n/2
0 e−b0n = (b0n− 2)e−b0n.

Moreover, |B2(µ)|1/n 6 c2
√

2/n, therefore

Lnµ|B2(µ)| 6 (c4L
2
µ/n)n/2 6 e−b0n,

because c4L
2
µ/n 6 e−2 if n > n0. Combining the above we see that∫

Rn
ϕµ(x) dµ(x) 6 e−b0n + e−b0n + (b0n− 2)e−b0n = b0ne

−b0n,

and hence ∫
Rn
ϕµ(x) dµ(x) 6 n exp

(
−n/(c2Lµ)2

)
which implies the result.

The next theorem shows that, modulo the isotropic constant Lµ, the exponential estimate of Theorem 3.1
is sharp.

Theorem 3.3. Let µ be a log-concave probability measure on Rn. Then,∫
Rn
ϕµ(x)dµ(x) > e−cn,

where c > 0 is an absolute constant.

The proof is based on a number of observations. First, by the affine invariance of Eµ(ϕµ), we may assume
that µ is centered. As an application of the Paley-Zygmund inequality we obtain the next lemma.

Lemma 3.4. Let t > 1 and δ ∈ (0, 1). For every x ∈ δZ+
t (µ) we have that

ϕµ(x) > (1− δt)2/Ct1,

where C1 > 1 is an absolute constant.

Proof. Let x ∈ δZ+
t (µ). It is enough to show that

(3.1) inf µ({z ∈ Rn : 〈z, ξ〉 > 〈x, ξ}) > (1− δt)2/Ct1

where the infimum is over all ξ ∈ Sn−1 with 〈x, ξ〉 > 0, because if 〈x, ξ〉 < 0 then Grünbaum’s lemma (see
[12, Lemma 2.2.6]) implies that µξ({z : 〈z − x, ξ〉 > 0}) > 1/e.

Since x ∈ δZ+
t (µ), we have 〈x, ξ〉 6 δhZ+

t (µ)(ξ) for any such ξ ∈ Sn−1, so it is enough to show that

(3.2) µ({z ∈ Rn : 〈z, ξ〉 > δhZ+
t (µ)(ξ)}) > (1− δt)2/Ct1.

We apply the Paley-Zygmund inequality

µ({z : g(z) > δtEµ(g)}) > (1− δt)2 [Eµ(g)]2

Eµ(g2)

for the function g(z) = 〈z, ξ〉t+. From (2.4) we see that

Eµ(g2) 6 Ct1 [Eµ(g)]2

for some absolute constant C1 > 0, and the lemma follows.
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For every t > 1 we consider the convex set

Rt(µ) = {x ∈ Rn : fµ(x) > e−tfµ(0)}.

Since fµ is log-concave, we easily check that Rt(µ) is convex. Note also that Rt(µ) is bounded and 0 ∈
int(Rt(µ)).

Lemma 3.5. For every t > 5n we have Rt(µ) ⊇ c0Kn+1(µ), where c0 > 0 is an absolute constant.

Proof. Let t > 5n. For any ξ ∈ Sn−1 consider the log-concave function h : [0,∞)→ [0,∞) with h(t) = fµ(tξ).
Klartag has proved in [27, Lemma 5.2] that∫ %Rt(µ)(ξ)

0

rn−1h(r)dr > (1− e−t/8)

∫ ∞
0

rn−1h(r)dr.

The definition of Kn(µ) gives ∫ ∞
0

rn−1h(r)dr =
fµ(0)

n
[%Kn(µ)(ξ)]

n

and ∫ %Rt(µ)(ξ)

0

rn−1h(r)dr 6 ‖f‖∞
∫ %Rt(µ)(ξ)

0

rn−1dr =
‖f‖∞
n

[%Rt(µ)(ξ)]
n.

Combining the above with the inequality ‖f‖∞ 6 enfµ(0) from (2.3) we get

en[%Rt(µ)(ξ)]
n > (1− e−t/8)[%Kn(µ)(ξ)]

n.

This shows that Rt(µ) ⊇ c0Kn(µ), where c0 > 0 is an absolute constant. From (2.6) we know that Kn(µ) ≈
Kn+1(µ), and the lemma follows.

We can also compare Z+
t (µ) with Kn+1(µ) when t > 5n.

Lemma 3.6. For every t > 5n we have that Z+
t (µ) ⊇ c′0Kn+1(µ), where c′0 > 0 is an absolute constant.

Proof. From Lemma 3.5 we know that c0Kn+1(µ) ⊆ Rt(µ) for all t > 5n, where c0 > 0 is an absolute
constant. Let ξ ∈ Sn−1 and set mξ := hc0Kn+1(µ)(ξ) = c0hKn+1(µ)(ξ). Define

Aξ = c0Kn+1(µ) ∩ {x : 〈x, ξ〉 > mξ/2}.

Since Kn+1(µ) is centered, one can check (see e.g. [25, Lemma 2.2] or [10, Proposition 4.1]) that

|Aξ| > |c0Kn+1(µ)|/Cn

for some absolute constant C > c0. Moreover, if x ∈ Aξ then x ∈ Rt(µ) and hence fµ(x) > e−tfµ(0). We
write ∫

Rn
〈x, ξ〉t+dµ(x) >

∫
Aξ

〈x, ξ〉t+dµ(x)

>
(mξ

2

)t
e−tfµ(0)|Aξ| >

(mξ

2e

)t (c0
C

)n
fµ(0)|Kn+1(µ)|.

Using also the fact that (c0/C)n > (c0/C)t because t > 5n, we get∫
Rn
〈x, ξ〉t+dµ(x) > (c1mξ)

tfµ(0)|Kn+1(µ)|,

where c1 > 0 is an absolute constant. Finally, fµ(0)|Kn+1(µ)| ≈ 1 by (2.9), which implies that

hZ+
t (µ)(ξ) > c2mξ = c′0hKn+1(µ)(ξ),

where c′0 = c2c0.
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Proof of Theorem 3.3. Combining Lemma 3.5 and Lemma 3.6 we see that

R5n(µ) ∩ Z+
5n(µ) ⊇ c1Kn+1(µ)

for some absolute constant c1 > 0. We apply Lemma 3.4 with t = 5n and δ = 1
2 . For every x ∈ 1

2Z
+
5n(µ) we

have
ϕµ(x) > C−n1

for some absolute constant C1 > 1. It follows that∫
Rn
ϕµ(x) dµ(x) > C−n1 µ

(
1
2Z

+
5n(µ)

)
.

Then, by Lemma 3.6 we have 1
2Z

+
5n(µ) ⊇ c1

2 Kn+1(µ). Since c1
2 Kn+1(µ) ⊆ R5n(µ), we know that fµ(x) >

e−5nfµ(0) for all x ∈ c1
2 Kn+1(µ). Using also (2.9), we get

µ
(

1
2Z

+
5n(µ)

)
> µ

(c1
2
Kn+1(µ)

)
=

∫
c1
2 Kn+1(µ)

fµ(x) dx > e−5nfµ(0)
∣∣∣c1

2
Kn+1(µ)

∣∣∣
= e−5n(c1/2)nfµ(0)|Kn+1(µ)| > e−5ncn2 .

Combining the above we conclude that∫
Rn
ϕµ(x) dµ(x) > C−n1 e−5ncn2 > e−cn,

for some absolute constant c > 0.

The half-space depth plays a key role in the study of the threshold problem. Let µ be a log-concave
probability measure on Rn. Let X1, X2, . . . be independent random points in Rn distributed according to µ
and for any N > n consider the random polytope KN = conv{X1, . . . , XN}. We shall generalize Lemma 1.2
and Lemma 1.3 in this setting. To this end, for every convex body A in Rn with 0 ∈ int(A) we define

ϕ+(A) = sup
x/∈A

ϕµ(x) and ϕ−(A) = inf
x∈A

ϕµ(x).

Recall that Bt(µ) = {v ∈ Rn : Λ∗µ(v) 6 t}, where Λ∗µ is the Cramér transform of µ.

Lemma 3.7. Let µ be a log-concave probability measure on Rn. For every convex body A in Rn and every
N > n we have that

EµN (µ(KN )) 6 µ(A) +Nϕ+(A).

In particular, for every t > 0,
EµN (µ(KN )) 6 µ(Bt(µ)) +N exp(−t).

Proof. We write

EµN (µ(KN )) = EµN (µ(KN ∩A)) + EµN (µ(KN \A)) 6 µ(A) + EµN (µ(KN \A)).

Arguing as in the proof of Lemma 1.2 we see that µN
(
x ∈ KN

)
6 Nϕµ(x) for any x ∈ Rn. Then, Fubini’s

theorem shows that

EµN (µ(KN \A)) =

∫
Rn\A

µN (x ∈ KN ) dµ(x) 6
∫
Rn\A

Nϕµ(x) dµ(x) 6 Nϕ+(A).

The last claim follows if we set A = Bt(µ) because, by Lemma 3.2, ϕµ(x) 6 exp(−Λ∗µ(x)) 6 e−t for all
x /∈ Bt(µ).
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For the lower threshold we shall use the next lemma which is in the spirit of Lemma 1.3.

Lemma 3.8. Let µ be a log-concave probability measure on Rn. For every convex body A in Rn and every
N > n we have that

1− µN (KN ⊇ A) 6 2

(
N

n

)
(1− ϕ−(A))N−n.

Therefore,

EµN (µ(KN )) > µ(A)

(
1− 2

(
N

n

)
(1− ϕ−(A))N−n

)
.

Proof. Note that, with probability equal to 1 the random polytope KN has non-empty interior. For every
subset J = {j1, . . . , jn} of {1, . . . , N}, of cardinality n, note that Xj1 , . . . , Xjn are affinely independent with
probability 1, and define the event LJ as follows: for one of the two closed half-spaces H1, H2 they determine,
say Hi, we have simultaneously KN ⊂ Hi and µ

(
Rn \Hi

)
> ϕ−(A).

If A * KN , then there exists x ∈ ∂(A) \ KN . Since x /∈ KN , there exists a facet F of KN with the
following property: one of the two closed half-spaces H1 and H2 determined by F contains KN but does not
contain x. Thus, if Hi is this half-space, we have simultaneously KN ⊂ Hi and µ

(
Rn\Hi

)
> ϕµ(x) > ϕ−(A).

Since the hyperplane bounding Hi is determined by some affinely independent vertices Xj1 , . . . , Xjn of KN

which lie in F , this shows that

{A * KN} ⊆
⋃
J

LJ .

It follows that

Prob
(
A * KN

)
6
∑
J

Prob(LJ) =

(
N

n

)
Prob(L′),

where L′ := L{1,...,n}. It is not hard to see that

Prob(L′) 6 2(1− ϕ−(A))N−n.

Indeed, X1, . . . , Xn determine two closed half-spaces Hi = Hi(X1, . . . , Xn), i = 1, 2. Let Li be the event
that µ

(
Rn \Hi

)
> ϕ−(A). Then, with Exp denoting expectation with respect to the measure Prob,

Prob(L′) 6
2∑
i=1

Prob
({
Xn+1, . . . , XN ∈ Hi

}
∩ Li

)
=

2∑
i=1

Exp
(
Prob

({
Xn+1, . . . , XN ∈ Hi

}
| X1, . . . , Xn

)
1Li
)

6 (1− ϕ−(A))N−n
2∑
i=1

Prob(Li).

The second claim of the lemma follows from Markov’s inequality.

4 Rough upper and lower thresholds

Rough upper and lower thresholds were obtained by Chakraborti, Tkocz and Vritsiou in [13] for some
general families of distributions. If µ is an even log-concave probability measure supported on a convex
body K in Rn and if X1, X2, . . . are independent random points distributed according to µ, then for any
n < N 6 exp(c1n/L

2
µ) we have that

EµN (|KN |)
|K|

6 exp
(
−c2n/L2

µ

)
,
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where c1, c2 > 0 are absolute constants.
We shall describe a variant of this result for log-concave probability measures. We consider independent

random points X1, X2, . . . in Rn distributed according to a log-concave probability measure µ and the
expectation EµN [µ(KN )] of the µ-measure of KN . Recall that if T : Rn → Rn is an invertible affine
transformation and T∗µ is the push-forward of µ then

E(T∗µ)N [(T∗µ)(KN )] = EµN [µ(KN )].

So, we may assume that µ is isotropic.

Theorem 4.1. Let µ be an isotropic log-concave probability measure on Rn, n > n0. For any N 6
exp(c1n/L

2
µ) we have that

EµN (µ(KN )) 6 2 exp
(
−c2n/L2

µ

)
,

where c1, c2 > 0 and n0 ∈ N are absolute constants.

Proof. Using the estimate µ(Bt(µ)) 6 ‖fµ‖∞|Bt(µ)|, Proposition 2.2 and Theorem 2.1, from Lemma 3.7 we
get

EµN (µ(KN )) 6
(
c1‖fµ‖1/n∞

√
t/n
)n

+N exp(−t)

for every N > n and 2 6 t 6 n. Recall that µ is isotropic, therefore ‖fµ‖2/n∞ = L2
µ = O(lnn). Then, if

n > n0 where n0 ∈ N is an absolute constant, we see that t := (c1e)
−2n/‖fµ‖2/n∞ satisfies 2 6 t 6 n and(

c1‖fµ‖1/n∞
√
t/n
)n

6 e−n.

It follows that
EµN (µ(KN )) 6 e−n +N exp(−c2n/‖fµ‖2/n∞ ),

where c2 = (c1e)
−2. Then, if N 6 exp(c3n/‖fµ‖2/n∞ ) where c3 = c2/2, we see that

EµN (µ(KN )) 6 e−n + exp(−c3n/‖fµ‖2/n∞ )

and the result follows from the fact that ‖fµ‖2/n∞ = L2
µ > c.

We pass now to the lower threshold. It was proved in [13] that if µ is an even κ-concave measure on
Rn with 0 < κ < 1/n, supported on a convex body K in Rn, if X1, X2, . . . are independent random points
in Rn distributed according to µ and KN = conv{X1, . . . , XN} as before, then for any M > C and any
N > exp

(
1
κ (lnn+ 2 lnM)

)
we have that

(4.1)
EµN (|KN |)
|K|

> 1− 1

M
,

where C > 0 is an absolute constant.
Since the family of log-concave probability measures corresponds to the case κ = 0, it is natural to ask

for analogues of this result for 0-concave, i.e. log-concave, probability measures. In order to have a feeling,
we should note that in the case where X1, X2, . . . are uniformly distributed in the Euclidean unit ball the
sharp threshold for the problem (see [35] and [4]) is

exp
(
(1± ε) 1

2n lnn
)
, ε > 0.

We shall establish a weak lower threshold of this order.
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Theorem 4.2. Let δ ∈ (0, 1). Then,

inf
µ

(
inf
{
EµN

[
µ((1 + δ)KN )

]
: N > exp

(
Cδ−1 ln (2/δ)n lnn

)})
−→ 1

as n→∞, where the first infimum is over all centered log-concave probability measures µ on Rn and C > 0
is an absolute constant.

This is a weak threshold in the sense that we consider the expected measure of (1+δ)KN instead of KN ,
where δ > 0 is arbitrarily small. The reason for this is the dependence on δ in the next technical proposition
(we omit the proof; see [10, Proposition 5.6] for the details).

Proposition 4.3. Let µ be an isotropic log-concave probability measure on Rn. For any δ ∈ (0, 1) and any
t > Cδn lnn we have that

µ((1 + δ)Z+
t (µ)) > 1− e−cδt

where Cδ = Cδ−1 ln (2/δ) and cδ = cδ are positive constants depending only on δ.

Proof of Theorem 4.2. Let 0 < δ < 1 and set ε = δ/3. Let µ be a centered log-concave probability measure
on Rn. Since the expectation EµN

[
µ((1 + δ)KN )

]
is a linearly invariant quantity, we may assume that µ is

isotropic. From Lemma 3.4 we know that for every x ∈ (1− ε)Z+
t (µ) we have

ϕµ(x) >
(1− (1− ε)t)2

Ct1
,

where C1 > 1 is an absolute constant. Then, taking into account the fact that 1− ε > 2/3, we get

µN
(
KN ⊇ (1− ε)Z+

t (µ)
)
> 1− 2

(
N

n

)[
1− (1− (1− ε)t)2

Ct1

]N−n
.

By the mean value theorem we have 1− (1− ε)t = tεzt−1 for some z ∈ (1− ε, 1), and hence 1− (1− ε)t >
tε(1− ε)t−1. Taking also into account the fact that 1− ε > 2/3, we get

µN
(
KN ⊇ (1− ε)Z+

t (µ)
)
> 1− 2

(
N

n

)[
1− (tε(1− ε)t−1)2

Ct1

]N−n
> 1−

(
2eN

n

)n
exp

(
−(N − n)

(tε)2

(3C1)t

)
.

This last quantity tends to 1 as n→∞ if

(4.2) (3C1)tn ln(4eN/n) < (N − n)(tε)2,

and assuming that δ ∈ (1/n2, 1) and t > Cεn lnn where Cε is the constant from Proposition 4.3, we check
that (4.2) holds true if N > exp(C2t) for a large enough absolute constant C2 > 0.

Note that ε = δ/3 implies that 1 + δ > 1+ε
1−ε . Then, if N > exp(C2Cεn lnn) we see that

EµN [µ ((1 + δ)KN )] > EµN
[
µ

(
1 + ε

1− ε
KN

)]
> µ((1 + ε)Z+

t (µ))× µN
(
KN ⊇ (1− ε)Z+

t (µ)
)

>
(
1− e−cεt

) [
1−

(
2eN

n

)n
exp

(
−(N − n)

(tε)2

(3C1)t

)]
−→ 1

as n→∞.

The next theorem provides an estimate where “δ is removed”, however the dependence on n becomes
worse.
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Theorem 4.4. There exists an absolute constant C > 0 such that

inf
µ

(
inf
{
EµN

[
µ(KN )

]
: N > exp(C(n lnn)2u(n))

})
−→ 1

as n → ∞, where the first infimum is over all log-concave probability measures µ on Rn and u(n) is any
function with u(n)→∞ as n→∞.

Proof. Let µ be a log-concave probability measure on Rn. Since the expectation EµN
[
µ(KN )

]
is an affinely

invariant quantity, we may assume that µ is centered. Note that if A ⊂ Rn is a Borel set, then

µ((1 + δ)A) =

∫
(1+δ)A

fµ(x) dx = (1 + δ)n
∫
A

fµ((1 + δ)x) dx.

Since fµ is log-concave, we see that

fµ((1 + δ)x) 6 fµ(x)

(
fµ(x)

fµ(0)

)δ
6 enδfµ(x)

for every x ∈ Rn, because fµ(x) 6 enfµ(0) by (2.3). It follows that

(4.3) µ((1 + δ)A) 6 (1 + δ)nenδµ(A) 6 e2nδµ(A).

Given a function u(n) with u(n)→∞ as n→∞, choose δn = (nu(n))−1. From (4.3) we see that

EµN
[
µ(KN )

]
> e−2nδnEµN

[
µ((1 + δn)KN )

]
.

Therefore, we see that

inf
µ

(
inf
{
EµN

[
µ(KN )

]
: N > exp

(
Cδ−1

n ln (2/δn)n lnn
)})

> e−2nδn inf
µ

(
inf
{
EµN

[
µ((1 + δn)KN )

]
: N > exp

(
Cδ−1

n ln (2/δn)n lnn
)})

−→ 1

as n → ∞, using Theorem 4.2 and the fact that e−2nδn = e−2/u(n) → 1. We may clearly assume that
u(n) = O(n). Then,

δ−1
n ln (2/δn)n lnn = n2 lnn ln(2nu(n))u(n) ≈ (n lnn)2u(n),

and the result follows.

5 Comparing half-space depth with the Cramér transform

Let µ be a centered log-concave probability measure on Rn with density f := fµ. Recall that for every t > 0
we consider the convex set Bt(µ) := {x ∈ Rn : Λ∗µ(x) 6 t}, and for any x ∈ Rn we denote by H(x) the set of
all half-spaces H of Rn containing x and consider Tukey’s half-space depth ϕµ(x) = inf{µ(H) : H ∈ H(x)}.
In Lemma 3.2 we showed that for every x ∈ Rn we have ϕµ(x) 6 exp(−Λ∗µ(x)), which implies that

ϕ+(Bt(µ)) 6 e−t

for any t > 0. Our aim in this section is to obtain a lower bound for ϕ−(Bt(µ)), or equivalently for ϕµ(x)
when x ∈ Bt(µ). First, we consider the case where µ = µK is the uniform measure on a centered convex
body K of volume 1 in Rn, and prove the following.

Theorem 5.1. Let K be a centered convex body of volume 1 in Rn. Then, for every t > 0 we have that

inf{ϕµK (x) : x ∈ Bt(µK)} > 1

10
exp(−t− 2

√
n).
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The first part of the argument works for any centered log-concave probability measure µ with density f
on Rn. For every ξ ∈ Rn we define the probability measure µξ with density

fξ(z) = e−Λµ(ξ)+〈ξ,z〉f(z).

One can compute that the barycenter of µξ is x = ∇Λµ(ξ) and Cov(µξ) = Hess (Λµ)(ξ) (a proof is given in
[12, Proposition 7.2.1]). Next, we set

σ2
ξ =

∫
Rn
〈z − x, ξ〉2dµξ(z) = Varµξ(〈ξ, z〉).

Let t > 0. Since Bt(µ) is convex, in order to give a lower bound for inf{ϕµ(x) : x ∈ Bt(µ)} it suffices to give
a lower bound for µ(H), where H is any closed half-space whose bounding hyperplane supports Bt(µ). In
that case,

(5.1) µ(H) = µ({z : 〈z − x, ξ〉 > 0})

for some x ∈ ∂(Bt(µ)), with ξ = ∇Λ∗µ(x), or equivalently x = ∇Λµ(ξ) (see e.g. Theorem 23.5 and Corol-
lary 23.5.1 in [36]). Note that

µ({z : 〈z − x, ξ〉 > 0}) =

∫
Rn
1[0,∞)(〈z − x, ξ〉)f(z) dz(5.2)

= eΛµ(ξ)

∫
Rn
1[0,∞)(〈z − x, ξ〉)e−〈z,ξ〉 dµξ(z)

= eΛµ(ξ)e−〈x,ξ〉
∫
Rn
1[0,∞)(〈z − x, ξ〉)e−〈z−x,ξ〉 dµξ(z)

> e−Λ∗
µ(x)

∫ ∞
0

σξe
−σξtµξ({z : 0 6 〈z − x, ξ〉 6 σξt}) dt.

Using Markov’s inequality we check that µξ({z : 〈z − x, ξ〉 > 2σξ}) 6 1
4 , and since x is the barycenter of µξ,

from Grünbaum’s lemma (see [12, Lemma 2.2.6]) we get that µξ({z : 〈z − x, ξ〉 > 0}) > 1
e . Therefore,

(5.3)

∫ ∞
0

σξe
−σξtµξ({z : 0 6 〈z − x, ξ〉 6 σξt}) dt >

∫ ∞
2

σξe
−σξt

(
1

e
− 1

4

)
dt >

4− e
4e

e−2σξ .

We would like to have an upper bound for supξ σξ. This is the point where we need to restrict ourselves to
the case where µ = µK is the uniform measure on a centered convex body K of volume 1 on Rn: then, we
can exploit a theorem of Nguyen [33] which was proved independently by Wang [42] (the sketch of its proof
below follows [18]).

Theorem 5.2. Let ν be a log-concave probability measure on Rn with density g = exp(−p), where p : Rn →
(−∞,∞] is a convex function. Then,

Varν(p) 6 n.

Sketch of the proof. Note that

Varν(p) = V (g) :=

∫
Rn
g(ln g)2 −

(∫
Rn
g ln g

)2

.

Define F : (0,∞)→ R with F (s) = ln
(∫

Rn g
s(x) dx

)
. A careful computation of F ′′(s) and V (gs) shows that

F ′′(s) = V (gs)/s
2, where gs is the log-concave density

gs =
gs∫

Rn g
s
.
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Next, observe that the function w : Rn × (0,∞) → (−∞,∞] with w(z, s) = sψ(z/s) is convex. It follows
that the function G : (0,∞)→ R defined by

G(s) = sn
∫
Rn
gs(x) dx

is log-concave. In order to check this, one can make the change of variables x = z/s and use the convexity
of w as well as the fact that marginals of a log-concave measure are log-concave, therefore they have a log-
concave density. This implies that V (gs) 6 n for every s > 0. To see this, note that lnG(s) = n ln s+ F (s)
and differentiate twice. In particular, for s = 1, we get V (g) 6 n.

In the case where g = e−p as above, and p is positively homogeneous of degree 1. one can check that
G(s) = 1 for all s > 0, and hence V (gs) = n. In particular, we have that V (g) = n, which shows that the
inequality of the theorem is sharp.

Proof of Theorem 5.1. Set µ := µK . Since f(z) = 1K(z), the density fξ of µξ is proportional to e〈ξ,z〉1K(z).
From Theorem 5.2 we get

σ2
ξ = Eµξ(〈z − x, ξ〉)2 = Varµξ(〈ξ, z〉) = Varµξ(− ln fξ) 6 n.

Then, combining (5.1), (5.2) and (5.3), for any bounding hyperplane H of Bt(µ) we have

µ(H) > e−Λ∗
µ(x)

∫ ∞
0

σξe
−σξtµξ(0 6 〈z − x, ξ〉 6 σξt) dt

>
4− e

4e
e−Λ∗

µ(x)−2σξ >
1

10
exp(−t− 2

√
n),

as claimed.

Theorem 5.1 shows that if K is a centered convex body of volume 1 in Rn then

10ϕµK (x) > exp(−Λ∗µK (x)− 2
√
n)

for all x ∈ Rn. Setting

(5.4) ωµK (x) = ln

(
1

ϕµK (x)

)
and taking into account Lemma 3.2 we have the next two-sided estimate.

Corollary 5.3. Let K be a centered convex body of volume 1 in Rn. Then, for every x ∈ int(K) we have
that

(5.5) ωµK (x)− 5
√
n 6 Λ∗µK (x) 6 ωµK (x).

A basic question that arises is whether an analogue of (5.5) holds true for any centered log-concave
probability measure µ on Rn. This would allow us to apply the next steps of our procedure to all log-concave
probability measures. Brazitikos and Chasapis [9] have recently obtained such a variant of Theorem 5.1
which is valid in this more general setting.

Theorem 5.4. Let µ be a log-concave probability measure on Rn. For every x ∈ supp(µ) and any ε ∈ (0, 1)
we have that

Λ∗µ(x) > (1− ε) ln

(
1

ϕµ(x)

)
+ ln

( ε

21−ε

)
.
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Sketch of the proof. We start with the case n = 1. Note that ϕµ(y) = min{µ((−∞, y]), µ([y,∞))} is a log-
concave function. Then, the function g(y) = −(1 − ε) lnϕµ(y) is convex, and hence we may find t, b ∈ R
such that the `(y) = ty + b satisfies `(x) = g(x) and `(y) 6 g(y) for all y. Then, Eµ(e`(y)) 6 Eµ(eg(y)), or
equivalently − ln

(
Eµ(eg(y))

)
6 − ln

(
Eµ(e`(y))

)
= −b− Λµ(t). Since `(x) = b(x), we see that

g(x)− ln
(
Eµ(eg(y))

)
6 `(x)− b− Λµ(t) = xt− Λµ(t) 6 Λ∗µ(x).

Finally, one can check that E(ϕµ(y)ε−1) 6 (ε2ε−1)−1, which implies that

− ln
(
Eµ(eg(y))

)
= − ln

(
Eµ(φµ(y)ε−1)

)
> ln

( ε

21−ε

)
and the claim follows.

Next, assume that n > 1. If X is a random vector in Rn which is distributed according to µ, for any
ξ ∈ Sn−1 consider the random variable ξX = 〈X, ξ〉. Then, the distribution µξ of ξX is log-concave and from
the one-dimensional result we see that

Λ∗µξ(〈x, ξ〉) > (1− ε) ln

(
1

ϕµξ(〈x, ξ〉)

)
+ ln

( ε

21−ε

)
for all x ∈ Rn. We observe that, for any x ∈ Rn,

Λ∗µ(x) = sup
y∈Rn

(〈x, y〉 − Λµ(y)) = sup
(ξ,t)∈Sn−1×R

(
t〈x, ξ〉 − Λµξ(t)

)
= sup
ξ∈Sn−1

Λ∗µξ(〈x, ξ〉).

Since

sup
ξ∈Sn−1

ln

(
1

ϕµξ(〈x, ξ〉)

)
= ln

(
1

infξ∈Sn−1 µ({z : 〈z, ξ〉 > 〈x, ξ〉})

)
= ln

(
1

ϕµ(x)

)
,

combining the above we obtain the result.

Note. The inequality of Theorem 5.4 can be rewritten as ϕµ(x)1−ε > (ε/21−ε)e−Λ∗
µ(x), which gives

(5.6)
[
ϕ−(Bt(µ))

]1−ε
>

ε

21−ε e
−t

for all ε ∈ (0, 1). This last inequality, which is valid for all log-concave probability measures, may be viewed
as a substitute of the estimate in Theorem 5.1.

6 Moments of the Cramér transform

Our approach to the threshold problem for a given centered log-concave probability measure µ on Rn requires
to know that the Cramér transform Λ∗µ has finite variance. We can give an affirmative answer to this question
in the case where µ = µK is the uniform measure on a centered convex body K of volume 1 in Rn. Actually,
one can show that, for a more general class of measures, it is still true that Λ∗µ has finite moments of all
orders.

Theorem 6.1. Let K be a centered convex body of volume 1 in Rn. Let κ ∈ (0, 1/n] and let µ be a centered
κ-concave probability measure with supp(µ) = K. Then,∫

Rn
exp(κΛ∗µ(x)/2) dµ(x) <∞.

In particular, for all p > 1 we have that Eµ
(
(Λ∗µ(x))p

)
<∞.

For the proof we need a lemma, which is proved in [13, Lemma 7] in the symmetric case.
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Lemma 6.2. Let K be a centered convex body of volume 1 in Rn. Let κ ∈ (0, 1/n] and let µ be a centered
κ-concave probability measure with supp(µ) = K. Then,

(6.1) ϕµ(x) > e−2κ(1− ‖x‖K)1/κ

for every x ∈ K, where ‖x‖K is the Minkowski functional of K.

Sketch of the proof. Let X be a random vector distributed according to µ. Given θ ∈ Sn−1 let b = hK(θ)

and a = hK(−θ). If gθ is the density of 〈X, θ〉 then g
κ

1−κ
θ is concave on [−a, b], therefore

gθ(t) > gθ(0)

(
1− t

b

) 1−κ
κ

for all t ∈ [0, b]. It follows that, for every 0 < s < b,

P(〈X, θ〉 > s) =

∫ b

s

gθ(t) dt > gθ(0)

∫ b

s

(
1− t

b

) 1−κ
κ

dt = κgθ(0)b
(

1− s

b

) 1
κ

.

Note that gθ is a centered log-concave density. Therefore, gθ(0) > e−1‖gθ‖∞ by (2.3) and ‖gθ‖∞b >
P(〈X, θ〉 > 0) > e−1 by Grünbaum’s lemma [12, Lemma 2.2.6], which implies that gθ(0)b > e−2. It follows
that

P(〈X, θ〉 > s) =

∫ b

s

gθ(t) dt > e−2κ
(

1− s

b

) 1
κ

.

Now, let x ∈ K. Then 〈x, θ〉 6 ‖x‖KhK(θ) = ‖x‖Kb, therefore

P(〈X, θ〉 > 〈x, θ〉) > P(〈X, θ〉 > ‖x‖Kb) > e−2κ (1− ‖x‖K)
1
κ

as claimed.

Proof of Theorem 6.1. From Lemma 3.2 we know that ϕµ(x) 6 exp(−Λ∗µ(x)), or equivalently,

exp(κΛ∗µ(x)/2) 6 ϕµ(x)−κ/2

for all x ∈ K. Lemma 6.2 shows that

ϕµ(x) > e−2κ(1− ‖x‖K)1/κ

for every x ∈ K, and hence∫
K

exp(κΛ∗µ(x)/2) dµ(x) 6 (e2/κ)κ/2
∫
K

1

(1− ‖x‖K)1/2
dµ(x).

Recall that the cone probability measure νK on the boundary ∂(K) of a convex body K with 0 ∈ int(K) is
defined by

νK(B) = |{rx : x ∈ B, 0 6 r 6 1}|/|K|

for all Borel subsets B of ∂(K). We shall use the identity∫
Rn
g(x) dx = n|K|

∫ ∞
0

rn−1

∫
∂(K)

g(rx) dνK(x) dr
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which holds for every integrable function g : Rn → R (see [32, Proposition 1]). Let f denote the density of
µ on K. We write∫

K

1

(1− ‖x‖K)1/2
dµ(x) =

∫
Rn

f(x)

(1− ‖x‖K)1/2
1K(x) dx

= n|K|
∫ ∞

0

rn−1

∫
∂(K)

f(ry)

(1− ‖ry‖K)1/2
1K(ry) dνK(y) dr

= n|K|
∫ 1

0

rn−1

√
1− r

∫
∂(K)

f(ry) dνK(y) dr

6 n|K|‖f‖∞
∫ 1

0

rn−1

√
1− r

dr = n|K|B(n, 1/2)‖f‖∞ 6 c
√
n‖f‖∞ < +∞,

and the proof is complete.

In the case of the uniform measure µ = µK on a centered convex body K of volume 1 in Rn we see that∫
K

(
Λ∗µK (x)/2n

)p
dx 6 (c1p)

p

∫
K

exp(Λ∗µK (x)/2n) dx 6 (c2p)
p
√
n,

where c1, c2 > 0 are absolute constants. This shows that

‖Λ∗µK‖Lp(µK) 6 cpn1+ 1
2p

for all p > 1. However, the argument that we used for Theorem 6.1 leads to sharp estimates in the cases
p = 1, 2. We shall use the fact that

(6.2)

∫ 1

0

rn−1 ln(1− r) dr = − 1

n
Hn and

∫ 1

0

rn−1 ln2(1− r) dr =
1

n
H2
n +

1

n

n∑
k=1

1

k2
,

where Hn = 1 + 1
2 + · · ·+ 1

n .

Theorem 6.3. Let K be a centered convex body of volume 1 in Rn, n > 2. Let κ ∈ (0, 1/n] and let µ be a
centered κ-concave probability measure with supp(µ) = K. Then,

Eµ(Λ∗µ) 6
(
Eµ[(Λ∗µ)2]

)1/2
6
c lnn

κ
‖f‖1/2∞ ,

where c > 0 is an absolute constant and f is the density of µ.

Proof. As in the proof of Theorem 6.1 we write∫
K

(
Λ∗µ(x)

)2
dµ(x) 6

∫
K

ln2

(
e2

κ

1

(1− ‖x‖K)1/κ

)
dµ(x).

If f is the density of µ on K and νK is the cone measure of K, using the inequality ln2(ab) 6 2(ln2 a+ ln2 b)
where a, b > 0, we may write

1

2

∫
K

ln2

(
e2

κ

1

(1− ‖x‖K)1/κ

)
dµ(x)− ln2

(
e2

κ

)
6
∫
Rn
f(x) ln2

(
1

(1− ‖x‖K)1/κ

)
1K(x) dx

= n|K|
∫ ∞

0

rn−1

∫
∂(K)

f(ry) ln2

(
1

(1− ‖ry‖K)1/κ

)
1K(ry) dνK(y) dr

=
n

κ2

∫ 1

0

rn−1 ln2(1− r)
∫
∂(K)

f(ry) dνK(y) dr

6
n

κ2
‖f‖∞

∫ 1

0

rn−1 ln2(1− r) dr.
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Since 1 6
∫
K
f(x) dx 6 ‖f‖∞, using also (6.2) we get∫

K

(
Λ∗µ(x)

)2
dµ(x) 6

2n

κ2

(
1

n
H2
n +

1

n

n∑
k=1

1

k2

)
‖f‖∞ + 2 ln2

(
e2

κ

)

6

(
4H2

n

κ2
+ 2 ln2(e2/κ)

)
‖f‖∞ 6

c1 ln2 n

κ2
‖f‖∞,

where c1 > 0 is an absolute constant.

In fact, for the uniform measure on a convex body, we can summarize in a sharp two sided estimate.

Theorem 6.4. Let K be a centered convex body of volume 1 in Rn, n > 2. Then,

c1n/L
2
µK 6 ‖Λ∗µK‖L1(µK) 6 ‖Λ∗µK‖L2(µK) 6 c2n lnn,

where LµK is the isotropic constant of the uniform measure µK on K and c1, c2 > 0 are absolute constants.

Proof. For the left-hand side inequality recall that in Theorem 3.1 we saw that∫
Rn
ϕµ(x) dµ(x) 6 exp

(
−cn/L2

µ

)
,

where c > 0 is an absolute constant. In fact, the proof of this estimate starts with Lemma 3.2 and follows
from the next stronger result: If n > n0 then∫

Rn
exp(−Λ∗µ(x)) dµ(x) 6 exp

(
−cn/L2

µ

)
where Lµ is the isotropic constant of µ and c > 0, n0 ∈ N are absolute constants. Then, Jensen’s inequality
implies that

e−Eµ(Λ∗
µ) 6

∫
Rn

exp(−Λ∗µ(x)) dµ(x) 6 exp
(
−cn/L2

µ

)
and the result follows.

Both the lower and the upper bound are of optimal order with respect to the dimension. This can be
seen e.g. from the example of the uniform measure on the cube or the Euclidean ball, respectively.

An alternative approach to the question of moments of Λ∗µ may be based on the notion of affine surface
area. Let K be a convex body in Rn. The affine surface area of K is the quantity

as(K) =

∫
∂(K)

κ(x)
1

n+1 dµ∂(K)(x),

where κ(x) is the generalized Gauss-Kronecker curvature at x and µ∂(K) is the surface measure on ∂(K) (see
[31] and the references therein). The affine surface area of a Euclidean ball of radius 1 is equal to its surface
area and the affine surface area of all polytopes is equal to 0. The affine isoperimetric inequality states that(

as(K)

as(Bn2 )

)n+1

6

(
|K|
|Bn2 |

)n−1

with equality if and only if K is an ellipsoid (see [38, Section 10.5]). Since as(Bn2 ) = nωn where ωn = |Bn2 |,
we see that if |K| = |Bn2 | then as(K) 6 as(Bn2 ). Thus, if |K| = 1 then

as(K) 6 c1
√
n.
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For every δ ∈ (0, 1/2) we define the floating body

Kδ =
⋂
{H+ : H+ is a closed half-space with |K ∩H−| = δ},

where H− is the complementary half-space of H+. We also define

Tδ = {x ∈ K : ϕµK (x) > δ}

Note that Tδ is convex: if x, y ∈ Tδ then for any z ∈ [x, y] and any H ∈ H(z) we have that either x or y
belongs to H, and hence |K ∩H| > δ, therefore ϕµK (z) > δ, In fact, it is not hard to show that

Tδ = Kδ.

Schütt and Werner proved in [37] that for every convex body K in Rn one has that

lim
δ→0

|K| − |Kδ|
δ

2
n+1

=
1

2

(
n+ 1

ωn−1

) 2
n+1

as(K).

In particular, if |K| = 1 then there exists δ0 > 0 such that if 0 < δ < δ0 then

1− |Kδ| 6 c2n
3/2δ

2
n+1 .

We can exploit these results as follows. Recall that ϕµK (x) 6 exp(−Λ∗µK (x)) and hence, for any s > 0 we
have that

exp(sΛ∗µK (x)) 6 (ϕµK (x))−s.

Then, ∫
K

exp(sΛ∗µK (x)) dx 6
∫
K

1

(ϕµK (x))s
dx =

∫ ∞
0

µK({1/ϕsµK > t}) dt

=

∫ ∞
0

µK({ϕµK 6 1/t1/s}) dt =

∫ ∞
0

(1− µK(Tt−1/s)) dt

=

∫ ∞
0

(1− µK(Tt−1/s)) dt.

Let t0 = δ−s0 . Then, ∫ ∞
t0

(1− µK(Tt−1/s)) dt 6 c2n
3/2

∫ ∞
t0

t−
2

s(n+1) dt < +∞

provided that s < 2
n+1 . This proves the following.

Theorem 6.5. Let K be a convex body of volume 1 in Rn. Then, for any 0 < s < 2
n+1 ,∫

Rn
exp(sΛ∗µK (x)) dµK(x) <∞.

In particular, for all p > 1 we have that EµK
(
(Λ∗µK (x))p

)
<∞.

One can also obtain a generalization of this fact, with a similar argument, using results of Besau, Ludwig
and Werner on weighted floating bodies. More precisely, from [3, Theorem 1.1] it follows that the conclusion
of Theorem 6.5 still holds if we replace µK by any probability measure with continuous and strictly positive
density ψ : K → (0,+∞). These ideas might prove useful in the study of the question for an arbitrary
log-concave probability measure.
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The next result concerns the one-dimensional case. Let µ be a centered probability measure on R which
is absolutely continuous with respect to Lebesgue measure and consider a random variable X, on some
probability space (Ω,F , P ), with distribution µ, i.e., µ(B) := P (X ∈ B), B ∈ B(R). We define

α+ = α+(µ) := sup {x ∈ R : µ([x,∞)) > 0}) and α− = α−(µ) := sup {x ∈ R : µ((−∞,−x])) > 0}).

Thus, −α−, α+ are the endpoints of the support of µ. Note that we may have α± = +∞. We define
Iµ = (−α−, α+). Recall that

Λ∗µ(x) := sup{tx− Λµ(t) : t ∈ R}, x ∈ R.

In fact, since tx − Λµ(t) < 0 for t < 0 when x ∈ [0, α+), we have that Λ∗µ(x) = sup{tx − Λµ(t) : t > 0}
in this case, and similarly Λ∗µ(x) := sup{tx − Λµ(t) : t 6 0} when x ∈ (−α−, 0]. One can also check that
Λ∗µ(α±) = +∞. See [20, Lemma 2.8] for the case α± < +∞. In the case α± = ±∞, the convexity and
monotonicity properties of Λ∗µ imply again that lim

t→±∞
Λ∗µ(t) = +∞.

Proposition 6.6. Let µ be a centered probability measure on R which is absolutely continuous with respect
to Lebesgue measure and let Iµ = supp(µ). Then,∫

Iµ

exp(Λ∗µ(x)/2) dµ(x) 6 4.

Proof. Let F (x) = µ(−∞, x]. For any x ∈ [0, α+) and t > 0 we have

min{F (x), 1− F (x)} = ϕµ(x) 6 e−Λ∗
µ(x).

It follows that ∫
Iµ

eΛ∗
µ(x)/2dµ(x) 6

∫
Iµ

1√
min{F (x), 1− F (x)}

f(x) dx(6.3)

6
∫
Iµ

1√
F (x)

f(x) dx+

∫
Iµ

1√
1− F (x)

f(x) dx.

Write f for the density of µ with respect to Lebesgue measure. Then, (1 − F )′(x) = −f(x), which implies
that ∫ α+

0

1√
1− F (x)

f(x) dx 6 −
∫ α+

0

1√
1− F (x)

(1− F )′(x)dx = −2
√

1− F (x)
∣∣∣α+

0
= 2
√

1− F (0)

since F (α+) = 1. In the same way we check that∫ 0

−α−

1√
1− F (x)

f(x) dx 6 −
∫ 0

−α−

1√
1− F (x)

(1− F )′(x)dx = −2
√

1− F (x)
∣∣∣0
−α−

= 2− 2
√

1− F (0).

This shows that ∫
Iµ

1√
1− F (x)

f(x) dx 6 2.

In a similar way we obtain the same upper bound for the second summand in (6.3) and the result follows.

Proposition 6.6 can be extended to products. Let µi, 1 6 i 6 n be centered probability measures on R,
all of them absolutely continuous with respect to Lebesgue measure. If µ = µ1⊗· · ·⊗µn then Iµ =

∏n
i=1 Iµi

and we can easily check that

Λ∗µ(x) =

n∑
i=1

Λ∗µi(xi)
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for all x = (x1, . . . , xn) ∈ Iµ, which implies that∫
Iµ

eΛ∗
µ(x)/2dµ(x) =

n∏
i=1

(∫
Iµi

eΛ∗
µi

(xi)/2dµi(xi)

)
6 4n.

In particular, for all p > 1 we have that ∫
Iµ

(Λ∗µ(x))p dµ(x) < +∞.

We close this section with one more case where we can establish that Λ∗µ has finite moments of all
orders. We consider an arbitrary centered log-concave probability measure on Rn but we have to assume
that it satisfies some additional condition on the growth of its one-sided Lt-centroid bodies Z+

t (µ); namely,
that the family of the one-sided Lt-centroid bodies grows with some mild rate as t → ∞ (note that the
assumption in the next proposition can be satisfied only for log-concave probability measures µ with support
supp(µ) = Rn).

Proposition 6.7. Let µ be a centered log-concave probability measure on Rn. Assume that there exists an
increasing function g : [1,∞)→ [1,∞) with limt→∞ g(t)/ ln(t+ 1) = +∞ such that Z+

t (µ) ⊇ g(t)Z+
2 (µ) for

all t > 2. Then, ∫
Rn
|Λ∗µ(x)|pdµ(x) < +∞

for every p > 1.

Proof. In Lemma 3.4 we saw that if t > 1 then for every x ∈ 1
2Z

+
t (µ) we have

ϕµ(x) > e−c1t,

where c1 > 1 is an absolute constant. Since Λ∗µ(x) 6 ln 1
ϕµ(x) , this shows that Λ∗µ(x) 6 c1t for all x ∈ 1

2Z
+
t (µ).

In other words,

(6.4)
1

2
Z+
t/c1

(µ) ⊆ Bt(µ), t > c1.

Since limt→∞ g(t) = +∞, there exists t0 > c1 such that µ
(
g(t0/c1)

2 Z+
2 (µ)

)
> 2/3. From Borell’s lemma [12,

Lemma 2.4.5] we know that, for all t > t0,

1− µ
(
g(t/c1)

2
Z+

2 (µ)

)
6 e−c2g(t/c1)/g(t0/c1),

where c2 > 0 is an absolute constant. We write∫
Rn
|Λ∗µ(x)|pdµ(x) =

∫ ∞
0

ptp−1µ({x : Λ∗µ(x) > t}) dt = p

∫ ∞
0

tp−1(1− µ(Bt(µ))) dt.

From (6.4) it follows that

1− µ(Bt(µ)) 6 1− µ
(

1

2
Z+
t/c1

(µ)

)
6 1− µ

(
g(t/c1)

2
Z+

2 (µ)

)
6 e−c2g(t/c1)/g(t0/c1)

for all t > t0. Since limt→∞ g(t)/ ln(t+ 1) = +∞, there exists tp > t0 such that

(p− 1) ln(t) 6
c2

2g(t0/c1)
g(t/c1)
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for all t > tp. Assume that p > 2. Then, from the previous observations we get

p

∫ ∞
tp

tp−1(1− µ(Bt(µ))) dt 6 p

∫ ∞
tp

tp−1
(

1− µ
(
g(t/c1)

2 Z+
2 (µ)

))
dt

6 p

∫ ∞
tp

tp−1t−2(p−1) dt = p

∫ ∞
tp

t−(p−1) dt <∞.

This proves the result for p > 2 and then from Hölder’s inequality it is clear that the assertion of the
proposition is also true for all p > 1.

Note. It is not hard to construct examples of log-concave probability measures, even on the real line, for
which supp(µ) = Rn but the assumption of Proposition 6.7 is not satisfied. Consider for example a measure
µ on R with density f(x) = c · exp(−ψ) where ψ is an even convex function rapidly increasing to infinity,

e.g. ψ(t) = et
2

.
However, this does not exclude the possibility that for every centered log-concave probability measure µ

on Rn the function Λ∗µ has finite second or higher moments.

7 Threshold for the measure: the approach and examples

Let µ be a log-concave probability measure on Rn such that ‖Λ∗µ‖L2(µ) <∞. We define the parameter

(7.1) β(µ) =
Varµ(Λ∗µ)

(Eµ(Λ∗µ))2

We shall give a general estimate for the upper threshold %1(µ, δ) in terms of β(µ).

Theorem 7.1. Let β, δ > 0 with 8β < δ < 1. If µ is a log-concave probability measure on Rn with β(µ) = β
and n/L2

µ > c2 ln(2/δ)
√
δ/β(µ), then

%1(µ, δ) >
(

1−
√

8β(µ)/δ
) Eµ(Λ∗µ)

n
.

Proof. Recall that Bt(µ) = {x ∈ Rn : Λ∗µ(x) 6 t}. We use Lemma 3.7 in the following way. Let m := Eµ(Λ∗µ).
Then, for all ε ∈ (0, 1), from Chebyshev’s inequality we have that

µ({Λ∗µ 6 m− εm}) 6 µ({|Λ∗µ −m| > εm}) 6
Eµ|Λ∗µ −m|2

ε2m2
=
β(µ)

ε2
.

Equivalently,

µ(B(1−ε)m(µ)) 6
β(µ)

ε2
.

Let δ ∈ (β(µ), 1). Since 8β(µ) < δ < 1, choosing ε =
√

2β(µ)/δ we have that

µ(B(1−ε)m(µ)) 6
δ

2
.

Then, from Lemma 3.7 we see that

sup{EµN (µ(KN )) : N 6 e(1−2ε)m} 6 µ(B(1−ε)m(µ)) + e(1−2ε)me−(1−ε)m

6
δ

2
+ e−εm 6 δ,

provided that εm > ln(2/δ). Since m > c1n/L
2
µ, this condition is satisfied if n/L2

µ > c2 ln(2/δ)
√
δ/β(µ). By

the choice of ε we conclude that %1(µ, δ) >
(

1−
√

8β(µ)/δ
)

Eµ(Λ∗
µ)

n .
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For the proof of the lower threshold we work in a similar way, using Lemma 3.8. In the case of the
uniform measure on a convex body we obtain the next theorem.

Theorem 7.2. Let β, δ > 0 with 2β < δ < 1. If K is a centered convex body of volume 1 in Rn with
β(µK) = β and n/L2

µK > c2 ln(2/δ)
√
δ/β then

%2(µK , δ) 6
(

1 +
√

8β/δ
) EµK (Λ∗µK )

n
.

Proof. Note that if m := Eµ(Λ∗µ) then as before, for all ε ∈ (0, 1), from Chebyshev’s inequality we have that

µ({Λ∗µ > m+ εm}) 6 µ({|Λ∗µ −m| > εm}) 6 β(µ)

ε2
.

If β(µ) < 1/2 and 2β(µ) < δ < 1 then, choosing ε =
√

2β(µ)/δ we have that

µ(B(1+ε)m(µ)) > 1− δ

2
.

Therefore, we will have that
%2(µ, δ) 6 (1 + 2ε)m/n

if our lower bound for infx∈B(1+ε)m(µ) ϕµ(x) gives

(7.2) 2

(
N

n

)(
1− inf

x∈B(1+ε)m(µ)
ϕµ(x)

)N−n
6
δ

2

for all N > N0 := exp((1 + 2ε)m). Recall that in the case of the uniform measure on a centered convex body
of volume 1, Theorem 5.1 shows that

inf
x∈B(1+ε)m(µK)

ϕµK (x) >
1

10
exp(−(1 + ε)m− 2

√
n).

We require that n and m are large enough so that 1/2n < δ/2 and 2
√
n 6 εm

2 . Using also the fact that(
N
n

)
6 e−1

(
eN
n

)n
we see that (7.2) will be satisfied if we also have(

2eN

n

)n
e−

N−n
10 e−(1+3ε/2)m

< 1.

Setting x := N/n we see that this last is equivalent to

e(1+3ε/2)m <
x− 1

10 ln(2ex)
.

One can now check that if N > exp((1 + 2ε)m) then all the restrictions are satisfied if we assume that
n/L2

µK > c2 ln(2/δ)
√
δ/β(µK).

For an arbitrary log-concave probability measure we can use the recent estimate (5.6) of Brazitikos and
Chasapis. Using this lower bound for ϕ−(Bt(µ)) instead of Theorem 5.1 we arrive at a similar conclusion.

Theorem 7.3. Let β, δ > 0 with 128β < δ < 1. If n > n0(β, δ) then for any log-concave probability measure
µ on Rn with β(µ) = β we have that

%2(µ, δ) 6
(

1 + c
√
β(µ)/δ

) Eµ(Λ∗µ)

n
,

where c > 0 is an absolute constant.
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From the discussion in this section it is clear that our approach is able to provide good bounds for the
threshold %(µ, δ) if the parameter β(µ) is small, especially if β(µ) = on(1) as the dimension increases. We
illustrate this with a number of examples, starting with the uniform measure on the cube. Let µCn be the
uniform measure on Cn =

[
− 1

2 ,
1
2

]n
. Since µCn = µC1

⊗ · · · ⊗ µC1
we have

VarµCn (Λ∗µCn ) = nVarµC1
(Λ∗µC1

) and EµCn (Λ∗µCn ) = nEµC1
(Λ∗µC1

).

Therefore,

β(µCn) =
VarµCn (Λ∗µCn )

(EµCn (Λ∗µCn ))2
=
β(µC1

)

n
−→ 0.

as n → ∞. Then, Theorem 7.1 and Theorem 7.2 show that for any δ ∈ (0, 1) there exists n0(δ) such that,
for any n > n0,

%(µCn , δ) 6
c√
δn
,

where c > 0 is an absolute constant. This estimate provides a sharp threshold for the measure of a random
polytope KN with independent vertices uniformly distributed in Cn. It provides a direct proof of the result
of Dyer, Füredi and McDiarmid in [16] with a stronger estimate for the “width of the threshold”.

Next, let is consider the example of the standard n-dimensional Gaussian measure γn with density
fγn(x) = (2π)−n/2e−|x|

2/2, x ∈ Rn. Note that γn = γ1⊗· · ·⊗γ1, and hence we may argue as in the previous
example. We may also use direct computation to see that Λγn(ξ) = |ξ|2/2 for all ξ ∈ Rn and Λ∗γn(x) = |x|2/2
for all x ∈ Rn. It follows that Bt(γn) =

√
2tBn2 . We check that if x ∈ ∂(Bt(γn)) then

ϕγn(x) =
1√
2π

∫ ∞
√

2t

e−u
2/2du >

c√
t
e−t

for all t > 1 (see [24, p. 17] for a refined form of the lower bound that we use). By the standard concentration
estimate for the Euclidean norm with respect to γn (see [41, Theorem 3.1.1]), for all s > 0 we have that

γn({x ∈ Rn : | |x| −
√
n | > s

√
n}) 6 2 exp(−cs2n),

where c > 0 is an absolute constant. This shows that

max{γn((1− s)
√
nBn2 ), 1− γn((1 + s)

√
nBn2 )} 6 2 exp(−cs2n)

for every s ∈ (0, 1). From Lemma 3.7 we see that %1(γn, δ) > 1
2 −

c1
√

ln(4/δ)√
n

, and applying Lemma 3.8 we

get %2(γn, δ) 6 1
2 +

c2
√

ln(4/δ)√
n

. Combining the above we get

%(γn, δ) 6
C
√

ln(4/δ)√
n

,

where C > 0 is an absolute constant.

Finally, we discuss the example of the uniform measure on the Euclidean ball. It was proved in [4] that
if ε ∈ (0, 1) and KN = conv{x1, . . . , xN} where x1, . . . , xN are random points independently and uniformly
chosen from Bn2 then

lim
n→∞

sup

{
E|KN |
|Bn2 |

: N 6 exp

(
(1− ε)

(
n+ 1

2

)
lnn

)}
= 0

and

lim
n→∞

inf

{
E|KN |
|Bn2 |

: N > exp

(
(1 + ε)

(
n+ 1

2

)
lnn

)}
= 1.
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We shall obtain a similar conclusion with the approach of this work.
For any centered convex body K of volume 1 in Rn recall the definition of ωµK = ln(1/ϕµK ) in (5.4) and

consider the parameter

(7.3) τ(µK) =
VarµK (ωµK )

(EµK (ωµK ))2
.

From (5.5) we know that ωµK (x)−5
√
n 6 Λ∗µK (x) 6 ωµK (x) for every x ∈ int(K). This allows us to compare

β(µK) with τ(µK); some simple calculations show that

(7.4) β(µK) =
(
τ(µK) +O(L2

µK/
√
n)
) (

1 +O(L2
µK/
√
n)
)

Note also that if K is a centered convex body in Rn and r > 0 then Λ∗µrK (x) = Λ∗µK (x/r) for all x ∈ Rn,
where µrK is the uniform measure on rK. It follows that

1

|rK|

∫
rK

[Λ∗µrK (x)]pdx =
1

|K|

∫
K

[Λ∗µK (x)]pdx

for every p > 0 and r > 0. This shows that if Dn is the centered Euclidean ball of volume 1 in Rn then in
order to compute β(µDn) it suffices to compute the ratio

β(µDn) + 1 =

1
|Bn2 |

∫
Bn2

Λ∗(x)2dx(
1
|Bn2 |

∫
Bn2

Λ∗(x)dx
)2

where Λ∗ := Λ∗µBn2
and, because of (7.4), it is enough to compute τ(µBn2 ). Set ω := ωµBn2

. Then, ω(x) =

ln(1/ϕ(x)) where ϕ(x) = F (|x|),

F (r) = cn

∫ 1

r

(1− t2)
n−1
2 dt, r ∈ [0, 1]

and cn = π−1/2Γ(n2 + 1)/Γ(n+1
2 ). From [4, Lemma 2.2] we know that

F (r) = (1− r2)
n+1
2 h(r, n),

where

(7.5)
1√

2π(n+ 2)
6 h(r, n) 6

1

r
√

2πn

for all r ∈ (0, 1]. We assume that n is even (the case where n is odd can be treated in a similar way). Using
polar coordinates we compute

(7.6)
1

|Bn2 |

∫
Bn2

ω(x) dx =
n+ 1

2
Hn

2
+O(lnn)

and

(7.7)
1

|Bn2 |

∫
Bn2

(ω(x))2 dx =
(n+ 1)2

4
H2

n
2

+O(n2).

From (7.6) and (7.7) we finally get
τ(µBn2 ) = O(1/(lnn)2).

Then, (7.4) and a simple computation show that

β(µDn) =
(
τ(µBn2 ) +O(L2

µBn2
/
√
n)
)(

1 +O(L2
µBn2

/
√
n)
)

= O(1/(lnn)2),
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because LµBn2
≈ 1. Finally, note that by the estimate (5.5) in Corollary 5.3 we have

Eµn(Λ∗µn) =
1

|Bn2 |

∫
Bn2

ω(x) dx+O(
√
n) =

(n+ 1)

2
Hn

2
+O(

√
n)

as n→∞. Combining the above we see that β(µDn) = on(1) but %(µDn , δ) = O(1/
√
δ).

Note. The above discussion leaves open the following question: to estimate

β∗n := sup{β(µK) : K is a centered convex body of volume 1 in Rn}

or, more generally,

βn := sup{β(µ) : µ is a centered log-concave probability measure on Rn}.

8 Product measures

In [20] a threshold for EµN |KN |/(2α)n was established for the case where Xi have independent identically
distributed coordinates supported on a bounded interval, under some mild additional assumptions (see below
for a more precise description). This result was generalized by Pafis in [34] as follows. Let µ be an even Borel
probability measure on the real line and let X1, . . . , Xn be independent and identically distributed random
variables, defined on some probability space (Ω,F , P ), each with distribution µ. Consider the random vector
~X = (X1, . . . , Xn) and, for a fixed N satisfying N > n, consider N independent copies ~X1, . . . , ~XN of ~X. The

distribution of ~X is µn := µ⊗ · · · ⊗ µ (n times) and the distribution of ( ~X1, . . . , ~XN ) is µNn := µn ⊗ · · · ⊗ µn
(N times). The goal is to obtain a sharp threshold for the expected µn-measure of the random polytope

KN := conv
{
~X1, . . . , ~XN

}
.

Assume that µ is non-degenerate, i.e. Var(X) > 0. Let

x∗ = x∗(µ) := sup {x ∈ R : µ([x,∞)) > 0}

be the right endpoint of the support of µ and set Iµ = (−x∗, x∗). Note that since µ is non-degenerate and
even, we have that x∗ > 0. As usual, let

Mµ(t) := E
(
etX
)

:=

∫
R
etx dµ(x), t ∈ R

denote the moment generating function of X, and let Λµ(t) := lnMµ(t) be its logarithmic moment generating
function. Finally, consider the Legendre transform Λ∗µ : Iµ → R of Λµ.

We say that µ is admissible if it is non-degenerate, i.e. Varµ(X) > 0, and satisfies the following conditions:

(i) There exists r > 0 such that E
(
etX
)
<∞ for all t ∈ (−r, r); in particular, X has finite moments of all

orders.

(ii) One of the following holds: (1) x∗ < +∞ and P (X = x∗) = 0, or (2) x∗ = +∞ and {Λµ < ∞} = R,
or (3) x∗ = +∞, {Λµ <∞} is bounded and µ is log-concave.

Finally, we say that µ satisfies the Λ∗-condition if

lim
x↑x∗

− lnµ([x,∞))

Λ∗µ(x)
= 1.

Theorem 8.1. Let µ be an admissible even probability measure on R that satisfies the Λ∗-condition. Then,
for any δ ∈

(
0, 1

2

)
and any ε ∈ (0, 1) there exists n0(µ, δ, ε) such that

%1(µn, δ) > (1− ε)Eµ(Λ∗µ) and %2(µn, δ) 6 (1 + ε)Eµ(Λ∗µ)

for every n > n0(µ, δ, ε). In particular, {µn}∞n=1 exhibits a sharp threshold, i.e. lim
n→∞

%(µn, δ) = 0, with

“threshold constant” Eµ(Λ∗µ).
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An application of Theorem 8.1 is also given to the case of the product p-measure νnp := ν⊗np . For any p > 1
we denote by νp the probability distribution on R with density (2γp)

−1 exp(−|x|p), where γp = Γ(1 + 1/p).
We show that νp satisfies the Λ∗-condition.

Theorem 8.2. For any p > 1 we have that

lim
x→∞

− ln(νp[x,∞))

Λ∗νp(x)
= 1.

Note that the measure νp is admissible for all 1 6 p < ∞; it satisfies condition (ii-3) if p = 1 and
condition (ii-2) for all 1 < p < ∞. Therefore, Theorem 8.2 implies that if KN is the convex hull of N > n

independent random vectors ~X1, . . . , ~XN with distribution νnp then the expected measure E(νnp )N (νnp (KN ))

exhibits a sharp threshold at N = exp((1± ε)Eνp(Λ∗νp)n).
The variant of this question that was studied in [20] dealt with the case where µ is an even, compactly

supported, Borel probability measure on the real line, µn(KN ) is replaced by the volume of KN , and

κ = κ(µ) :=
1

2x∗

∫ x∗

−x∗
Λ∗µ(x)dx.

If 0 < κ(µ) <∞ then one has that, for every ε ∈ (0, κ),

(8.1) lim
n→∞

sup
{

(2x∗)−nE(|KN |) : N 6 exp((κ− ε)n)
}

= 0

and if the distribution µ satisfies the Λ∗-condition then one also has

(8.2) lim
n→∞

inf
{

(2x∗)−nE(|KN |) : N > exp((κ+ ε)n)
}

= 1.
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[16] M. E. Dyer, Z. Füredi and C. McDiarmid, Volumes spanned by random points in the hypercube, Random
Structures Algorithms 3 (1992), 91–106.

[17] M. Fradelizi, Sections of convex bodies through their centroid, Arch. Math. (Basel) 69 (1997), no. 6, 515–522.

[18] M. Fradelizi, M. Madiman and L. Wang, Optimal concentration of information content for log-concave densities,
High dimensional probability VII. Vol. 71. Progr. Probab. Springer (2016), 45–60.

[19] A. Frieze, W. Pegden and T. Tkocz, Random volumes in d-dimensional polytopes, Discrete Anal. 2020, Paper
No. 15, 17 pp.

[20] D. Gatzouras and A. Giannopoulos, Threshold for the volume spanned by random points with independent
coordinates, Israel J. Math. 169 (2009), 125–153.

[21] A. Gorban, B. Grechuk and I. Tyukin, Stochastic separation theorems: how geometry may help to correct AI
errors, Notices Amer. Math. Soc. 70 (2023), no. 1, 25–33.
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