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Abstract

The average section functional as(K) of a centered convex body in Rn is the average volume of the
central hyperplane sections of K:

as(K) =

∫
Sn−1

|K ∩ ξ⊥| dσ(ξ).

We study the question if there exists an absolute constant C > 0 such that for every n, for every
centered convex body K in Rn and for every 1 6 k 6 n− 1,

as(K) 6 Ck|K|
k
n max

E∈Grn−k

as(K ∩ E).

We observe that the case k = 1 is equivalent to the hyperplane conjecture. We show that this inequality
holds true in full generality if one replaces C by CLK or Cdovr(K,BPn

k ), where LK is the isotropic
constant ofK and dovr(K,BPn

k ) is the outer volume ratio distance fromK to the class BPn
k of generalized

k-intersection bodies. We also compare as(K) to the average of as(K ∩ E) over all k-codimensional
sections of K. We examine separately the dependence of the constants on the dimension in the case
where K is in some of the classical positions as well as the natural lower dimensional analogue of the
average section functional.

1 Introduction

Let K be a convex body in Rn, with barycenter at the origin (we call these bodies centered). We denote by
as(K) the average volume of the central hyperplane sections of K:

(1.1) as(K) =

∫
Sn−1

|K ∩ ξ⊥| dσ(ξ),

where | · | denotes volume in the appropriate dimension, ξ⊥ is the subspace perpendicular to ξ, and σ is the
rotationally invariant probability measure on Sn−1. More generally, for any 1 6 r 6 n− 1 we define

(1.2) asr(K) =

∫
Grn−r

|K ∩ E| dνn−r(E),

where νn−r is the Haar probability measure on the Grassmannian Grn−r of (n− r)-dimensional subspaces of
Rn. Thus, asr(K) is the average volume of r-codimensional central sections of K; note that as(K) = as1(K).

The fourth named author proved in [13] that if K is an intersection body in Rn (see Section 2 for
definitions and background information) then

(1.3) as(K) 6 bn,1 |K|
1
n max
ξ∈Sn−1

as(K ∩ ξ⊥),

where
bn,1 :=

ωn−1

ωn−2ω
1
n
n

' 1
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(and ωm denotes the volume of the Euclidean unit ball Bm2 in Rm). Whenever we write a . b we mean that
there exists an absolute constant c > 0 such that a 6 cb, and whenever we write a ' b, we mean that a . b
and b . a. Note that (1.3) is sharp: it becomes equality if K = Bn2 .

The purpose of this article is to discuss similar inequalities for the average volume of hyperplane sections
of an arbitrary centered convex body K in Rn. More precisely, we study the following question.

Question 1.1. Let 1 6 k < n and define γn,k as the smallest constant γ > 0 for which the following holds
true: for every centered convex body K in Rn we have

(1.4) as(K) 6 γk|K| kn max
E∈Grn−k

as(K ∩ E).

Is it true that supn,k γn,k <∞?

In Section 3 we generalize (1.3) using as a parameter the outer volume ratio distance dovr(K,BPnk ) from
an origin-symmetric convex body K to the class BPnk of generalized k-intersection bodies. Our estimates are
based on the next more general theorem which is valid for the larger class of origin-symmetric star bodies
in Rn and for any even continuous density on Rn.

Theorem 1.2. Let 1 6 k 6 n−1, let K be an origin-symmetric star body in Rn, and let f be a non-negative
even continuous function on Rn. Then

(1.5)

∫
Sn−1

ρn−1K (θ)f(ρK(θ)θ) dθ 6 ckn,k d
k
ovr(K,BP

n
k ) |K| kn max

E∈Grn−k

∫
Sn−1∩E

ρn−k−1K (θ)f(ρK(θ)θ) dθ.

In the statement above, ρK is the radial function of a star body K and we use the notation dθ for the
non-normalized measure on the sphere with density 1. The constant cn,k is given by

ckn,k =
nω

n−k
n

n

(n− k)ωn−k
,

and one can check that cn,k ' 1.
Theorem 1.2 provides a first estimate on the constants γn,k of Question 1.1. Choosing f ≡ 1 we see that

(1.5) implies the following.

Theorem 1.3. Let 1 6 k 6 n− 1, and let K be an origin-symmetric star body in Rn. Then,

(1.6) as(K) 6 bkn,kd
k
ovr(K,BP

n
k ) |K| kn max

E∈Grn−k

as(K ∩ E).

In other words, γn,k 6 bn,kdovr(K,BPnk ).

The constant bn,k in Theorem 1.3 is given by

bkn,k =
ωn−1

ωn−k−1ω
k
n
n

,

and one can also check that bn,k ' 1.

In the case where the body K is convex, the distance dovr(K,BPnk ) was estimated in [17]. In particular,
the available bounds for dovr(K,BPnk ) show that γn,k is bounded by a function of n/k, and hence it remains
bounded as long as k is proportional to n. More generally, we have:

Theorem 1.4. For every origin-symmetric convex body K, for every 1 6 k 6 n − 1 and every even non-
negative continuous function f on Rn,

(1.7)

∫
Sn−1

ρn−1K (θ)f(ρK(θ)θ) dθ 6
(
c1h(n/k)

)k |K| kn max
E∈Grn−k

∫
Sn−1∩E

ρn−k−1K (θ)f(ρK(θ)θ) dθ,

where c1 > 0 is an absolute constant and h(t) =
√
t · (log(et))

3
2 , t > 1. In particular,

(1.8) γn,k 6 c1
√
n/k [log(en/k)]

3
2 .
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It is also known that for many classes of convex bodies the distance dovr(K,BPnk ) is bounded by an
absolute constant. This includes unconditional bodies, unit balls of subspaces of Lp, and others. Therefore,
the restriction of Question 1.1 to all these classes has an affirmative answer.

Theorem 1.2 also allows us to prove an analogue of Theorem 1.3 for the quantities asr(K).

Theorem 1.5. Let 1 6 k < n− 2 and 1 6 r < n− k. For any origin-symmetric star body K in Rn we have
that

(1.9) asr(K) 6 φkn,k,rd
k
ovr(K,BP

n
k ) |K| kn max

E∈Grn−k

asr(K ∩ E).

Here
φkn,k,r =

ωn−r

ωn−k−rω
k
n
n

,

and one can check that φn,k,r '
√

n
n−r .

In Section 4 we show that an analogue of (1.3) holds true in full generality, up to the value of the isotropic
constant of K. In order to state our main result we recall the definition of the isotropic position. A centered
convex body K of volume 1 in Rn is called isotropic if there exists a constant LK > 0 such that

(1.10)

∫
K

〈x, ξ〉2dx = L2
K

for every ξ ∈ Sn−1. Every centered convex body K has an isotropic position T (K), T ∈ GL(n), which is
uniquely defined modulo orthogonal transformations, and hence the isotropic constant LK is an invariant of
the linear class of K. A well-known question in asymptotic convex geometry asks if there exists an absolute
constant C > 0 such that LK 6 C for every n and every centered convex body K in Rn. The best known
upper bound

(1.11) Ln := sup{LK : K isotropic in Rn} 6 c 4
√
n

is due to Klartag [11] (see also [6] for the history of the problem and recent developments in this area). On
the other hand, one always has LK > LBn

2
> c, where c > 0 is an absolute constant. In other words, the

question is if LK ' 1 for all centered convex bodies.

Theorem 1.6. Let K be a centered convex body in Rn. Then, for every 1 6 k 6 n− 1,

(1.12) as(K) 6 (c2LK)k |K| kn max
E∈Grn−k

as(K ∩ E),

where c2 > 0 is an absolute constant and LK is the isotropic constant of K.

It is known that for many classes of convex bodies the isotropic constant LK is bounded by an absolute
constant (see [6, Chapter 4]). Theorem 1.6 provides an affirmative answer to Question 1.1 for all these
classes.

On the other hand, it is interesting to note that (1.12) is essentially the best bound we can hope for. We
show in Proposition 4.3 that if K is an isotropic convex body in Rn then

(1.13) as(K) ' LK max
ξ∈Sn−1

as(K ∩ ξ⊥) |K| 1n .

This shows that the estimate of Theorem 1.6 is asymptotically sharp: if γ > 0 is a constant such that (1.4)
holds for k = 1 and all K then we must have γ > cLK . Combining this fact with Theorem 1.6 we actually
conclude that

(1.14) γn,k . γn,1 ' Ln

3



for all 1 6 k 6 n− 1 (see Proposition 4.5).
One of the tools that are used in the proof of Theorem 1.6 is a variant of Meyer’s dual Loomis-Whitney

inequality [22] that was recently obtained in [5]; see (4.2). The second tool is a lower bound for the dual
affine quermassintegrals

(1.15) Φ̃k(K) :=
ωn
ωn−k

(∫
Grn−k

|K ∩ E|n dνn−k(E)

) 1
n

of a convex body K in Rn in terms of the isotropic constant of K (see [7]). In fact, one can check that
the problem to obtain asymptotically sharp lower bounds for Φ̃k(K) is equivalent to the question whether
γn,1 ' Ln ' 1 (see Remark 4.7). When the codimension k is proportional to n the available lower bounds
are independent from the isotropic constant of K (see [7] and [6, Section 6.4]). Thus, we get a variant of
Theorem 1.4.

Theorem 1.7. Let 1 6 k 6 n− 1 and let K be a centered convex body in Rn. Then,

(1.16) as(K) 6
(
c3h(n/k)

)k |K| kn max
E∈Grn−k

as(K ∩ E),

where c2 > 0 is an absolute constant and h(t) =
√
t · (log(et))

3
2 , t > 1.

The methods that are used for the proof of Theorem 1.6 and Theorem 1.3 are independent. Note that
the first method allows us to work with (not necessarily symmetric) centered convex bodies while the second
method allows us to work with origin-symmetric (not necessarily convex) star bodies and to consider even
continuous densities in place of volume. Therefore, the two results complement each other. A link between
the two bounds is given by the inequality

(1.17) LK 6 cLk · dovr(K,BPnk )

which is due to E. Milman (see [23, Corollary 5.4]). However, since we only know that Lk = O( 4
√
k), the

estimates of Theorem 1.6 and Theorem 1.3 are incomparable for k � 1.

In Section 5 we discuss the mean value of the average section functional as(K ∩E) over all E ∈ Grn−k,
1 6 k 6 n− 1. We obtain the next general upper and lower bounds.

Theorem 1.8. Let K be a centered convex body in Rn and define p(K) := R(K)/|K| 1n , where R(K) is the
circumradius of K. Then, for every 1 6 k 6 n− 1 we have that

(1.18)

(
c4
√
n

p(K)

)k
as(K) 6 |K| kn

∫
Grn−k

as(K ∩ E) dνn−k(E) 6

(
c5p(K)√

n

) k
n−1

as(K),

where c4, c5 > 0 are absolute constants.

Since R(K) is polynomial in n for all the classical positions of a convex body K (isotropic position,
minimal surface position, minimal mean width position, John’s and Löwner’s position) the right hand side
inequality of (1.18) implies the following.

Theorem 1.9. Let K be a centered convex body in Rn. If K is in one of the classical positions then

(1.19) |K| kn
∫
Grn−k

as(K ∩ E) dνn−k(E) 6 ck6 as(K)

for every 1 6 k 6 n− 1, where c6 > 0 is an absolute constant.
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Closing this introductory section we would like to note that the results of this article are dual to the ones
in [9]. In that work, the main question was to compare the surface area S(K) of a convex body K in Rn
to the minimal, average or maximal surface area of its hyperplane or lower dimensional projections. One of
the main results in [9] states that there exists an absolute constant c1 > 0 such that, for every convex body
K in Rn,

(1.20) |K| 1n min
ξ∈Sn−1

S(Pξ⊥(K)) 6
c7∂K√
n
S(K),

where c7 > 0 is an absolute constant and

(1.21) ∂K := min
{
S(T (K))/|T (K)|

n−1
n : T ∈ GL(n)

}
is the minimal surface area parameter of K. Another result from [9] asserts that if K is in some of the
classical positions mentioned above, then

(1.22) |K| 1n
∫
Sn−1

S(Pξ⊥(K)) dσ(ξ) > c8S(K),

where c9 > 0 is an absolute constant. The analogy with Theorem 1.6 and Theorem 1.9 is clear; the role
of the average section functional as(K) is played by the surface area S(K), and the role of the isotropic
constant is played by the minimal surface area parameter.

2 Notation and background

We work in Rn, which is equipped with a Euclidean structure 〈·, ·〉. We denote by ‖ · ‖2 the corresponding
Euclidean norm, and write Bn2 for the Euclidean unit ball and Sn−1 for the unit sphere. Volume is denoted
by | · |. We write ωn for the volume of Bn2 and σ for the rotationally invariant probability measure on Sn−1.
We use the notation dθ for the non-normalized measure on the sphere with density 1.

If ξ ∈ Sn−1, then ξ⊥ = {x ∈ Rn : 〈x, ξ〉 = 0}. The Grassmann manifold Grm of m-dimensional subspaces
of Rn is equipped with the Haar probability measure νm. For every 1 6 m 6 n− 1 and E ∈ Grm we write
PE for the orthogonal projection from Rn onto E, and we set BE = Bn2 ∩F and SE = Sn−1∩E. The letters
c, c′, c1, c2 etc. denote absolute positive constants which may change from line to line.

We refer to the books [8] and [25] for basic facts from the Brunn-Minkowski theory and to the book [1]
for basic facts from asymptotic convex geometry.

2.1. Star bodies and convex bodies. A convex body in Rn is a compact convex subset K of Rn with
non-empty interior. We say that K is symmetric if x ∈ K implies that −x ∈ K, and that K is centered
if its barycenter 1

|K|
∫
K
x dx is at the origin. A compact set K in Rn will be called star-shaped at 0 if it

contains the origin in its interior and every line through 0 meets K in a line segment. For such a set, the
radial function ρK is defined on Sn−1 by

(2.1) ρK(θ) = max{λ > 0 : λθ ∈ K}, θ ∈ Sn−1.

If ρK is continuous, then we say that K is a star body. Then, the volume of K in polar coordinates is given
by

(2.2) |K| = ωn

∫
Sn−1

ρnK(θ) dσ(θ).

The radial sum K+̃D of two star bodies K and D is defined by

(2.3) ρK+̃D = ρK + ρD.

5



We equip the class Sn of star bodies with the radial metric

(2.4) dr(K,D) := sup
ξ∈Sn−1

|ρK(ξ)− ρD(ξ)|.

The support function of a convex body K is defined by hK(y) = max{〈x, y〉 : x ∈ K}, and the mean width
of K is

(2.5) w(K) =

∫
Sn−1

hK(θ) dσ(θ).

The circumradius of K is the smallest R > 0 for which K ⊆ RBn2 . If 0 ∈ int(K) then we write r(K) for the
inradius of K (the largest r > 0 for which rBn2 ⊆ K) and we define the polar body K◦ of K by

(2.6) K◦ := {y ∈ Rn : 〈x, y〉 6 1 for all x ∈ K}.

The section of a star body K with ξ⊥ is denoted by K ∩ ξ⊥, and we write Pξ⊥(K) for the orthogonal
projection of K onto ξ⊥.

The volume radius of K is the quantity vrad(K) = (|K|/|Bn2 |)
1/n

. We also define ‖θ‖K = min{t > 0 :
θ ∈ tK} and

(2.7) M(K) =

∫
Sn−1

ρ−1K (θ) dσ(θ) =

∫
Sn−1

‖θ‖K dσ(θ).

2.2. Dual mixed volumes. Lutwak introduced dual mixed volumes in [18]; he first considered convex
bodies, but then extended his definition to the class Sn of star bodies. Given K1, . . . ,Kn ∈ Sn, their dual
mixed volume is the integral

(2.8) Ṽ (K1, . . . ,Kn) = ωn

∫
Sn−1

ρK1
(θ) · · · ρKn

(θ)dσ(θ).

The observation is that such integrals have properties analogous to those of mixed volumes if one replaces
Minkowski addition by radial addition. The function Ṽ is clearly non-negative, symmetric and monotone
with respect to its arguments, positive linear with respect to +̃ in each of its arguments, and has volume as
its diagonal. A simple calculation shows that if K1, . . . ,Km ∈ Sn and λ1, . . . , λm > 0, then

(2.9) |λ1K1+̃ · · · +̃λmKm| =
m∑

i1,...,in=1

Ṽ (Ki1 , . . . ,Kin)λi1 . . . λin .

In particular, if K,D ∈ Sn and t > 0 then

(2.10) |K+̃tD| =
n∑
j=0

(
n

j

)
Ṽj(K,D) tj ,

where Ṽj(K,D) := ωn
∫
Sn−1 ρ

n−j
K (θ)ρjD(θ)dσ(θ), is the j-th dual mixed volume of K and D.

An inequality which further illustrates the analogy with the mixed volumes is the dual Minkowski’s
inequality: for every K,D ∈ Sn an application of Hölder’s inequality gives

(2.11) Ṽ1(K,D) 6

(
ωn

∫
Sn−1

ρnK(θ)dσ(θ)

)n−1
n
(
ωn

∫
Sn−1

ρnD(θ)dσ(θ)

) 1
n

6 |K|
n−1
n |D| 1n .

2.3. Intersection bodies. The class of intersection bodies was introduced by Lutwak [20]. The intersection
body of a star body K in Rn with ρK ∈ C(Sn−1) is the star body IK with radial function

(2.12) ρIK(ξ) = |K ∩ ξ⊥| = ωn−1

∫
S(ξ⊥)

ρn−1K (θ)dσξ(θ),
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where S(ξ⊥) = Sn−1 ∩ ξ⊥ is the Euclidean unit sphere of ξ⊥ and σξ denotes the rotationally invariant
probability measure on S(ξ⊥). If K is a centered convex body then IK is a symmetric convex body. It is
known that

(2.13) I(TK) = |detT | (T−1)∗(IK)

for every T ∈ GL(n). In particular, if T ∈ SL(n) we see that |I(TK)| = |IK|. The class of intersection
bodies In is defined as the closure in the radial metric of intersection bodies of star bodies.

Zhang introduced more general classes of bodies in [26]. For 1 6 k 6 n − 1, the (n − k)-dimensional
spherical Radon transform Rn−k : C(Sn−1)→ C(Grn−k) is a linear operator defined by

(2.14) Rn−kg(E) =

∫
Sn−1∩E

g(θ) dθ, E ∈ Grn−k

for every function g ∈ C(Sn−1). We say that an origin-symmetric star body D in Rn is a generalized k-
intersection body, and write D ∈ BPnk , if there exists a finite non-negative Borel measure µD on Grn−k so
that for every g ∈ C(Sn−1)

(2.15)

∫
Sn−1

ρkD(θ)g(θ) dθ =

∫
Grn−k

Rn−kg(H) dµD(H).

For a star body K in Rn and 1 6 k 6 n− 1, we denote by

dovr(K,BPnk ) = inf

{(
|D|
|K|

)1/n

: K ⊂ D, D ∈ BPnk

}
the outer volume ratio distance from K to the class BPnk . The reader will find more information on the
Radon transform and intersection bodies in the book [12].

3 Bounds in terms of the outer volume ratio distance to the class
of generalized k-intersection bodies

The main result of this section is Theorem 1.2 which is valid for the larger class of origin-symmetric star
bodies in Rn and for any even continuous density on Rn. By an appropriate choice of the density f we
obtain Theorem 1.3 and its generalization in Theorem 1.5.

Proof of Theorem 1.2. Let ε > 0. For every E ∈ Grn−k, we have

(3.1)

∫
(K+̃εBn

2 )∩E
f(x)dx−

∫
K∩E

f(x)dx 6 max
F∈Grn−k

(∫
(K+̃εBn

2 )∩F
f(x)dx−

∫
K∩F

f(x)dx

)
.

Note that ρK+̃εBn
2

= ρK + ε. Expressing the integrals in polar coordinates we get

(3.2) Rn−k

(∫ ρK(·)+ε

ρK(·)
rn−k−1f(r·)dr

)
(E) 6 max

F∈Grn−k

(∫
Sn−1∩F

∫ ρK(θ)+ε

ρK(θ)

rn−k−1f(rθ)drdθ

)
.

Let D ∈ BPnk such that K ⊂ D. Integrating the latter inequality by E over Grn−k with the measure µD
corresponding to D by (2.14), we get∫

Sn−1

ρkD(θ)

∫ ρK(θ)+ε

ρK(θ)

rn−k−1f(rθ)drdθ(3.3)

6 µD(Grn−k) · max
F∈Grn−k

(∫
Sn−1∩F

∫ ρK(θ)+ε

ρK(θ)

rn−k−1f(rθ)drdθ

)
.
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We divide both sides by ε and send ε to zero. Note that we can interchange the limit with the maximum,
because the convergence is uniform with respect to F . Thus, we get

(3.4)

∫
Sn−1

ρkD(θ)ρn−k−1K (θ)f(ρK(θ)θ)dθ 6 µD(Grn−k) · max
F∈Grn−k

(∫
Sn−1∩F

ρn−k−1K (θ)f(ρK(θ)θ)dθ

)
.

The integral in the left hand side can be estimated from below by
∫
Sn−1 ρ

n−1
K (θ)f(ρK(θ)θ) dθ, because

K ⊂ D.
To estimate µD(Grn−k) from above, we combine the fact that 1 = Rn−k1(E)/|Sn−k−1| for every E ∈

Grn−k with Definition (2.14) and Hölder’s inequality to write

µD(Grn−k) =
1

|Sn−k−1|

∫
Grn−k

Rn−k1(E)dµD(E)(3.5)

=
1

|Sn−k−1|

∫
Sn−1

‖θ‖−kD dθ

6
1

|Sn−k−1|
∣∣Sn−1∣∣n−k

n

(∫
Sn−1

‖θ‖−nD dθ

) k
n

=
1

|Sn−k−1|
∣∣Sn−1∣∣n−k

n n
k
n |D| kn .

These estimates show that∫
Sn−1

ρn−1K (θ)f(ρK(θ)θ)dθ(3.6)

6
1

|Sn−k−1|
∣∣Sn−1∣∣n−k

n n
k
n |D| kn max

F∈Grn−k

(∫
Sn−1∩F

ρn−k−1K (θ)f(ρK(θ)θ)dθ

)
.

Finally, we choose D so that |D|1/n 6 (1 + δ)dovr(K,BPnk )|K|1/n, and then send δ to zero.

All the other results of this section are consequences of Theorem 1.2.

Proof of Theorem 1.3. First, we express the average section functionals as(K) and as(K ∩E) in terms of
the radial function of K. Using (2.2) we write

as(K) =

∫
Sn−1

|K ∩ ξ⊥| dσ(ξ) = ωn−1

∫
Sn−1

∫
S(ξ⊥)

ρn−1K (θ) dσξ(θ) dσ(ξ)(3.7)

= ωn−1

∫
Sn−1

ρn−1K (θ) dσ(θ).

Similarly, for every 1 6 k 6 n− 1 and any E ∈ Grn−k, we have

(3.8) as(K ∩ E) = ωn−k−1

∫
SE

ρn−k−1K (θ) dσE(θ),

where σE is the rotationally invariant probability measure on SE = Sm−1 ∩ E. Applying Theorem 1.2 for
the density f ≡ 1 we get

(3.9)

∫
Sn−1

ρn−1K (θ) dθ 6 ckn,k d
k
ovr(K,BP

n
k ) |K| kn max

E∈Grn−k

∫
Sn−1∩E

ρn−k−1K (θ) dθ,

and Theorem 1.3 follows from (3.7) and (3.8) and an adjustment of the constants.

Remark 3.1. For certain classes of origin-symmetric convex bodies the distance dovr(K,BPnk ) is bounded by
an absolute constant. These classes include unconditional convex bodies and duals of bodies with bounded
volume ratio (see [14]) and the unit balls of normed spaces that embed in Lp, −n < p <∞ (see [15], [23] and
[16]). If we restrict Question 1.1 to any of these classes then Theorem 1.3 provides an affirmative answer.
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Proof of Theorem 1.4. We combine Theorem 1.2 with the following result from [17]: For every origin-
symmetric convex body K in Rn,

(3.10) dovr(K,BPnk ) 6 c
√
n/k [log(en/k)]

3
2 ,

where c > 0 is an absolute constant.

Proof of Theorem 1.5. We choose f(x) = ‖x‖−r+1
2 in Theorem 1.2 to get

(3.11)

∫
Sn−1

ρn−rK (θ) dθ 6 ckn,k d
k
ovr(K,BP

n
k ) |K| kn max

E∈Grn−k

∫
Sn−1∩E

ρn−k−rK (θ) dθ.

Then, we apply the formula

(3.12) asr(K) = ωn−r

∫
Sn−1

ρn−rK (θ)dσ(θ)

which generalizes (3.7) and is easily verified in the same way.

4 Bounds in terms of the isotropic constant

Let K be a centered convex body in Rn. In this section we compare as(K) with the corresponding average
section functional as(K ∩ E) for any k-codimensional subspace E of Rn. Our main tool will be a recent
result from [5] which is a restricted version of Meyer’s dual Loomis-Whitney inequality

(4.1) |K|n−1 >
n!

nn

n∏
i=1

|K ∩ e⊥i |

where {e1, . . . , en} is any orthonormal basis of Rn (see [22]) and in a sense dualizes the uniform cover
inequality of Bollobás and Thomason (see [4]). In order to give the precise statement, we introduce some
notation. For every non-empty τ ⊂ [n] := {1, . . . , n} we set Fτ = span{ej : j ∈ τ} and Eτ = F⊥τ . Given s > 1
and σ ⊆ [n], following the terminology of [4] we say that the (not necessarily distinct) sets σ1, . . . , σt ⊆ σ
form an s-uniform cover of σ if every j ∈ σ belongs to exactly s of the sets σi. Then, [5, Theorem 1.3] states
that for any centered convex body K in Rn, for any t > 1 and any s-uniform cover (σ1, . . . , σt) of a subset
σ of [n] we have

(4.2)

t∏
i=1

|K ∩ Eσi | 6
(
c0t

s

)ds
|K ∩ Eσ|s|K|t−s,

where d = |σ|. We will need a special case of this inequality. We consider 1 6 k 6 n− 1 and a (k + 1)-tuple
of orthonormal vectors e1, . . . , ek, ek+1 := ξ in Rn. Note that the sets σ1 = [k] and σ2 = {k + 1} form a
1-uniform cover of the set σ = [k + 1]. Applying (4.2) with t = 2, s = 1 and d = k + 1 we obtain the next
lemma.

Lemma 4.1. Let K be a centered convex body in Rn. For every 1 6 k 6 n− 1, for any E ∈ Grn−k and any
ξ ∈ Sn−1 ∩ E we have

(4.3) |K ∩ E| · |K ∩ ξ⊥| 6 ck+1
0 |K ∩ E ∩ ξ⊥| · |K|,

where c0 > 0 is an absolute constant.

Using Lemma 4.1 we can compare as(K) to as(K∩E) for every E ∈ Grn−k. We need the next well-known
properties of the parameter M which was defined by (2.7). If D is a symmetric convex body in Rm then for
every 1 6 s 6 m− 1 and F ∈ Grs(Rm) we have that

(4.4) M(D ∩ F ) =

∫
SF

‖ξ‖D dσF (ξ) 6 c1
√
m/s

∫
Sm−1

‖ξ‖D dσ(ξ) = c1
√
m/sM(D),
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where c1 > 0 is an absolute constant. It is also known that

(4.5)

∫
Sm−1

ρD(θ) dσ(θ) =

∫
Sm−1

‖θ‖−1D dσ(θ) ' 1

M(D)
.

For a proof of (4.4) and (4.5) see [1, Section 5.2.1] and [1, Theorem 5.8.7] respectively.

Theorem 4.2. Let K be a centered convex body in Rn. For every 1 6 k 6 n− 1 and E ∈ Grn−k we have

(4.6) |K ∩ E| · as(K) 6 ck2 as(K ∩ E) · |K|,

where c2 > 0 is an absolute constant.

Proof. We consider an orhonormal basis {e1, . . . , ek} of E⊥ and any unit vector ξ ∈ E. From Lemma 4.1 we
have

(4.7) |K ∩ E| · |K ∩ ξ⊥| 6 ck+1
0 |K ∩ E ∩ ξ⊥| · |K|.

Integrating (4.7) with respect to ξ ∈ SE we see that

|K ∩ E| ·
∫
SE

|K ∩ ξ⊥|dσE(ξ) 6 ck+1
0

∫
SE

|(K ∩ E) ∩ ξ⊥|dσE(ξ) · |K|(4.8)

= ck+1
0 as(K ∩ E) · |K|.

Applying (4.5) for the symmetric convex body IK ∩ E we see that

(4.9)

∫
SE

|K ∩ ξ⊥|dσE(ξ) =

∫
SE

ρIK(ξ) dσE(ξ) ' 1

M(IK ∩ E)
,

and hence, using (4.4) with m = n and s = n − k and then applying (4.5) for the body IK this time, we
obtain ∫

SE

|K ∩ ξ⊥|dσE(ξ) >
c
√
n− k√
n

1

M(IK)
'
√
n− k√
n

∫
Sn−1

ρIK(ξ) dσ(ξ)(4.10)

=

√
n− k√
n

∫
Sn−1

|K ∩ ξ⊥| dσ(ξ) =

√
n− k√
n

as(K).

Therefore,

(4.11) |K ∩ E| as(K) 6
c1
√
n√

n− k
ck+1
0 as(K ∩ E) · |K| 6 ck2 as(K ∩ E) · |K|

for every E ∈ Grn−k.

For the proof of Theorem 1.6 we use Theorem 4.2 and estimates for the dual affine quermassintegrals of
a centered convex body K: these are defined, for any 1 6 k 6 n− 1, as follows:

(4.12) R̃k(K) :=
1

|K|n−k

∫
Grn−k

|K ∩ E|n dνn−k(E).

The quantities R̃k(K) were introduced by Lutwak in [19] and [20]. More precisely, he considered the quantities
Φ̃k(K) that were introduced in (1.15), which clearly satisfy the identity

(4.13) Φ̃k(K) =
ωn
ωn−k

|K|
n−k
n

[
R̃k(K)

] 1
n .

10



Grinberg proved in [10] that the quantity R̃k(K) is invariant under T ∈ GL(n): one has

(4.14) R̃k(T (K)) = R̃k(K)

for every T ∈ GL(n). He also proved that

(4.15) R̃k(K) 6 R̃k(Bn2 ) :=
ωnn−k

ωn−kn

6 e
kn
2 .

On the other hand, it was observed by Dafnis and Paouris in [7] that

(4.16) R̃k(K) >

(
c4
LK

)kn
,

where c4 > 0 is an absolute constant. We will use this lower bound, which is an immediate consequence
of (4.14) and of the fact that if K is isotropic then |K ∩ E| 1k > c4

LK
for every E ∈ Grn−k (see [6, Proposi-

tion 5.1.15] for a proof).

Proof of Theorem 1.6. Let K be a centered convex body in Rn and fix 1 6 k 6 n − 1. From Theorem
4.2 we know that for every E ∈ Grn−k we have

(4.17) |K ∩ E| · as(K) 6 ck2 as(K ∩ E) · |K|,

where c2 > 0 is an absolute constant. Therefore,

(4.18) max
E∈Grn−k

|K ∩ E| · as(K) 6 ck2 max
E∈Grn−k

as(K ∩ E) · |K|.

Next, from (4.14) we see that

(4.19) max
E∈Grn−k

|K ∩ E| >

(∫
Grn−k

|K ∩ E|n dνn−k(E)

) 1
n

>

(
c4
LK

)k
|K|

n−k
n .

Going back to (4.18) we see that

(4.20)

(
c4
LK

)k
|K|

n−k
n as(K) 6 ck2 |K| max

E∈Grn−k

as(K ∩ E),

and this proves Theorem 1.6. 2

The next proposition shows that if K is isotropic and if we consider the hyperplane case (where k = 1)
then the estimate of Theorem 1.6 is sharp: we have an asymptotic formula.

Proposition 4.3. Let K be an isotropic convex body in Rn. Then, as(K) ' L−1K and as(K ∩ ξ⊥) ' L−2K for
all ξ ∈ Sn−1. In particular,

(4.21) as(K) ' LK |K|
1
n max
ξ∈Sn−1

as(K ∩ ξ⊥).

Proof. It is a general fact (following from [6, Proposition 5.1.15]) that if K is an isotropic convex body then,
for every E ∈ Grn−k we have

(4.22)
c1
LK

6 |K ∩ E| 1k 6
cLk
LK

6
c2(k)

LK
,

where c1 > 0 is an absolute constant and c2(k) is a positive constant depending only on k (in fact, c2(k) 6 c 4
√
k

by Klartag’s estimate on Lk). Applying (4.22) with k = 1 we see that all hyperplane sections K ∩ ξ⊥ of K
have volume equal (up to an absolute constant) to L−1K . In particular,

(4.23) as(K) =

∫
Sn−1

|K ∩ ξ⊥| dσ(ξ) ' L−1K .

11



Applying (4.22) with k = 2 we see that all 2-codimensional sections K ∩ E of K have volume equal (up to
an absolute constant) to L−2K . In particular, for every ξ ∈ Sn−1 we get

(4.24) as(K ∩ ξ⊥) =

∫
S(ξ⊥)

|K ∩ Eξ,θ| dσξ(θ) ' L−2K ,

where Eξ,θ = [span{ξ, θ}]⊥. This shows that

(4.25) as(K) ' LK as(K ∩ ξ⊥) = LK as(K ∩ ξ⊥) |K| 1n

In particular, (4.25) implies (4.21).

Remark 4.4. Proposition 4.3 and the definition of γn,1 show that

(4.26) L−1K ' as(K) 6 γn,1 max
ξ∈Sn−1

as(K ∩ ξ⊥) ' γn,1L−2K

for every isotropic convex body K in Rn. Therefore, LK 6 cγn,1 for some absolute constant c > 0, which
implies that

(4.27) Ln 6 cγn,1.

Note that by Theorem 1.6 we can then conclude that γn,k 6 cLn 6 cγn,1. Finally, Theorem 1.6 shows that
γn,1 6 c′Ln. We summarize in the next proposition.

Proposition 4.5. For any 1 6 k 6 n− 1 we have

(4.28) γn,k . γn,1 ' Ln,

where c > 0 is an absolute constant.

Proposition 4.5 shows that a positive answer to Question 1.1 (actually, in the case k = 1) is equivalent to
the uniform boundedness of the isotropic constants of all convex bodies in all dimensions (this is exactly the
hyperplane conjecture). It also shows that the question becomes “easier” when the codimension k increases,
in the sense that γn,k . γn,1. In fact, we can show that if k is proportional to n then γn,k is bounded (this
is precisely the content of Theorem 1.7):

Theorem 4.6. For any 1 6 k 6 n− 1 we have

(4.29) γn,k 6 c
√
n/k [log(en/k)]

3
2 ,

where c > 0 is an absolute constant.

Proof. We repeat the proof of Theorem 1.6 using the estimate (see [7, Theorem 1.3])

(4.30) R̃k(K) >

(
c5√

n/k [log(en/k)]
3
2

)kn
instead of (4.16).

Remark 4.7. Let αn,k be the largest constant α > 0 with the property that R̃k(K) > αkn for every centered
convex body K in Rn. Repeating the proof of Theorem 1.6 or Theorem 4.6 we see that

(4.31) γn,k 6
c1
αn,k

,
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where c1 > 0 is an absolute constant. In particular,

(4.32) γn,k . γn,1 ' Ln . α−1n,1.

On the other hand, (4.16) shows that αn,k > c/Ln for all 1 6 k 6 n− 1, and hence α−1n,1 . Ln. Therefore,

(4.33) γn,1 ' Ln ' α−1n,1.

In other words, the question whether

(4.34) R̃k(K) > ckn

for all 1 6 k 6 n−1 which is studied in [7] (see also [8, Section 9.4]) is equivalent to the hyperplane conjecture
and to Question 1.1.

5 Reverse inequalities in the classical positions

Next, we pass to estimates for the mean value of the average section functional of hyperplane sections of K.
We start by expressing as(K) in terms of dual mixed volumes. Note that by (3.7) we have

(5.1) as(K) = ωn−1

∫
Sn−1

ρn−1K (θ) dσ(θ) =
ωn−1
ωn

Ṽ (K, . . . ,K,Bn2 ),

and using (3.8) we see that

(5.2)

∫
Gn,,n−k

as(K ∩E) dνn−k(E) = ωn−k−1

∫
Sn−1

ρn−k−1K (θ) dσ(θ) =
ωn−k−1
ωn

Ṽ (K [n− k− 1], Bn2 [k+ 1]),

where A [s] means A, . . . , A repeated s-times.

Theorem 5.1. Let K be a centered convex body in Rn. Then,

(5.3) as(K)k+1 6 ck |K|k
∫
Grn−k

as(K ∩ E) dνn−k(E)

and

(5.4)

∫
Grn−k

as(K ∩ E) dνn−k(E) 6 ck as(K)
n−k−1
n−1 ,

where c > 0 is an absolute constant.

Proof. From Hölder’s inequality we see that

(5.5)

(∫
Sn−1

ρn−1K (θ) dσ(θ)

)k+1

6

(∫
Sn−1

ρnK(θ) dσ(θ)

)k (∫
Sn−1

ρn−k−1K (θ) dσ(θ)

)
,

which can be equivalently written as

(5.6) Ṽ (K, . . . ,K,Bn2 )k+1 6 |K|k Ṽ (K [n− k − 1], Bn2 [k + 1]).

Taking into account (5.1) and (5.2) we rewrite (5.6) in the form

(5.7) as(K)k+1 6 |K|k
ωk+1
n−1

ωknωn−k−1

∫
Grn−k

as(K ∩ E) dνn−k(E).
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A simple computation shows that
ωk+1

n−1

ωk
nωn−k−1

< ck for an absolute constant c > 0, and (5.3) follows.

On the other hand, by Hölder’s inequality,

1

ωn−k−1

∫
Grn−k

as(K ∩ E) dνn−k(E) =

∫
Sn−1

ρn−k−1K (θ) dσ(θ)(5.8)

6

(∫
Sn−1

ρn−1K (θ) dσ(θ)

)n−k−1
n−1

=

(
as(K)

ωn−1

)n−k−1
n−1

,

therefore

(5.9)

∫
Grn−k

as(K ∩ E) dνn−k(E) 6 %n,k as(K)
n−k−1
n−1 ,

where %n,k = ωn−k−1 · ω
−n−k−1

n−1

n−1 6 ck for an absolute constant c > 0, which gives (5.4).

Let K be a convex body in Rn with 0 ∈ int(K). Recall that the radius R(K) of K is the smallest R > 0
for which K ⊆ RBn2 . Using the monotonicity and homogeneity of dual mixed volumes and (5.1) we may
write

as(K) =
ωn−1
ωn

Ṽ (K, . . . ,K,Bn2 ) >
ωn−1

ωnR(K)
Ṽ (K, . . . ,K,R(K)Bn2 )(5.10)

>
ωn−1

ωnR(K)
Ṽ (K, . . . ,K,K) =

ωn−1
ωnR(K)

|K|.

In this way we obtain the following general lower bound for as(K).

Lemma 5.2. Let K be a centered convex body in Rn. If we define p(K) = R(K)/|K| 1n then

(5.11)
c
√
n

p(K)
6

as(K)

|K|n−1
n

,

where c > 0 is an absolute constant.

Proof. From (5.10) we see that

(5.12)
as(K)

|K|n−1
n

>
ωn−1

ωnR(K)
|K|1/n >

c
√
n

R(K)
|K|1/n,

and the lemma follows by the definition of p(K).

Going back to Theorem 5.1 we immediately get the following.

Theorem 5.3. Let K be a centered convex body in Rn. Then, for every 1 6 k 6 n− 1 we have that

(5.13)

(
c1
√
n

p(K)

)k
as(K) 6 |K| kn

∫
Grn−k

as(K ∩ E) dνn−k(E) 6

(
c2p(K)√

n

) k
n−1

as(K),

where c1, c2 > 0 are absolute constants.

Proof. The left hand side inequality follows from Lemma 5.2 and (5.3). We have

|K|
k(n−1)

n

(
c1
√
n

p(K)

)k
as(K) 6 as(K)k+1 6 ck|K|k

∫
Grn−k

as(K ∩ E) dνn−k(E),
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which implies that (
c1
√
n

cp(K)

)k
as(K) 6 |K| kn

∫
Grn−k

as(K ∩ E) dνn−k(E).

Next, we observe that

(5.14) |K| kn =
(
|K|

n−1
n

) k
n−1

6

(
p(K)as(K)

c
√
n

) k
n−1

,

which implies that

(5.15) |K| kn as(K)
n−k−1
n−1 6

(
c2p(K)√

n

) k
n−1

as(K).

Then, the right hand side inequality of (5.13) follows from (5.4) in Theorem 5.1.

Remark 5.4. We will discuss the estimates that one can get from Theorem 5.3 if the centered convex
body K in Rn is assumed to be in some of the classical positions; we introduce these below. For a detailed
presentation and references see [1].

(i) We say that K is in minimal mean width position if w(K) 6 w(T (K)) for every T ∈ SL(n). It was
proved by V. Milman and the second named author that K has minimal mean width if and only if

(5.16) w(K) = n

∫
Sn−1

hK(θ)〈ξ, θ〉2dσ(θ)

for every ξ ∈ Sn−1. From results of Figiel-Tomczak, Lewis and Pisier (see [1, Chapter 6]) we know that

if a convex body K in Rn has minimal mean width then w(K) 6 c|K| 1n
√
n log n. From the general

fact that R(K) 6 c
√
nw(K) for every centered convex body, we conclude that R(K) 6 c|K| 1nn log n

in the minimal mean width position.

(ii) We say that K is in John’s position if the ellipsoid of maximal volume inscribed in K is a multiple
of the Euclidean unit ball Bn2 and that K is in Löwner’s position if the ellipsoid of minimal volume
containing K is a multiple of the Euclidean unit ball Bn2 . One can check that this holds true if and
only if K◦ is in John’s position. The volume ratio of a centered convex body K in Rn is the quantity

(5.17) vr(K) = inf

{(
|K|
|E|

) 1
n

: E is an ellipsoid and E ⊆ K

}
.

The outer volume ratio of a centered convex body K in Rn is the quantity ovr(K) = vr(K◦). K. Ball
proved in [2] that vr(K) 6 vr(Cn) '

√
n in the symmetric case and vr(K) 6 vr(∆n) '

√
n in the

not necessarily symmetric case, where Cn = [−1, 1]n and ∆n is a regular simplex in Rn. Assume
that K is in John’s position. Then, from a theorem of Barthe [3] we know that if ∆n is the regular
simplex whose maximal volume ellipsoid is Bn2 and rBn2 is the maximal volume ellipsoid of K we have
w(r−1K) 6 w(∆n) 6 c

√
log n. Since |K|1/n > r|Bn2 |1/n > cr/

√
n, we get

(5.18) R(K) 6 c
√
nw(K) = cr

√
nw(r−1K) 6 cr

√
n log n 6 c′|K| 1nn

√
log n.

Next, assume that K is in Löwner’s position; we know that R(K)Bn2 is the minimal volume ellipsoid
of K, and hence

(5.19) R(K)|Bn2 |1/n = |K| 1n ovr(K) = |K| 1n vr(K◦) 6 c
√
n|K| 1n ,

which implies that R(K) 6 cn|K| 1n .
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(iii) We say that K has minimal surface area if S(K) 6 S(T (K)) for every T ∈ SL(n). Recall that the
area measure σK of K is the Borel measure on Sn−1 defined by

(5.20) σK(A) = λ({x ∈ bd(K) : the outer normal to K at x belongs to A}),

where λ is the usual surface measure on K. Petty proved in [24] that K has minimal surface area if
and only if σK satisfies the isotropic condition

(5.21) S(K) = n

∫
Sn−1

〈ξ, θ〉2dσK(θ)

for every ξ ∈ Sn−1. It is known that if K has minimal surface area then w(K) 6 cn|K| 1n (this was

observed by Markessinis, Paouris and Saroglou in [21]). Therefore, R(K) 6 cn
3
2 |K| 1n .

(iv) Finally, if K is in the isotropic position then we know that R(K) 6 |K| 1n (n+ 1)LK . This estimate is

due to Kannan, Lovász and Simonovits (the asymptotically sharp bound R(K) 6 cnLK |K|
1
n can be

obtained with an elementary argument).

Since R(K) is polynomial in n for all the classical positions of a convex body K, from the right hand
side inequality (5.13) of Theorem 5.3 we obtain the next result.

Theorem 5.5. Let K be a centered convex body in Rn. If K is in any of the classical positions that we
discussed in Remark 5.4, then

(5.22) |K| kn
∫
Grn−k

as(K ∩ E) dνn−k(E) 6 Ck as(K)

for all 1 6 k 6 n− 1, where C > 0 is an absolute constant.

Remark 5.6. Similarly, from the left hand side inequality (5.13) of Theorem 5.3 we see that if K is in some
of the classical positions that we discussed in Remark 5.4 then

(5.23) c−kn as(K) 6 |K| kn
∫
Grn−k

as(K ∩ E) dνn−k(E)

for every 1 6 k 6 n−1, where cn '
√
n if K is in Löwner’s position, cn '

√
n log n if K is in John’s position,

cn '
√
n(log n) if K is in the minimal mean width position, cn ' n if K is in the minimal surface area

position, and cn '
√
nLK if K is in the isotropic position.
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