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AN ALGORITHMIC REGULARITY LEMMA FOR Lp REGULAR

SPARSE MATRICES

SILOUANOS BRAZITIKOS AND THODORIS KARAGEORGOS

Abstract. We prove an algorithmic regularity lemma for Lp regular matrices

(1 < p 6 ∞), a class of sparse {0, 1} matrices which obey a natural pseudoran-

domness condition. This extends a result of Coja-Oghlan, Cooper and Frieze

who treated the case of L∞ regular matrices. We also present applications of

this result for tensors and MAX-CSP instances.

1. Introduction

1.1. It is well known that it is NP-hard not only to compute the optimal solution

for the MAX-CSP problem, but also to find “good” approximations of this optimal

solution (see, e.g., [9, 10, 16]).

In a seminal paper [8], Frieze and Kannan proved several results concerning

dense instances of the previous problems. Later on, Coja-Oghlan, Cooper and

Frieze [3] showed that such results may be extended to the sparse setting if we

assume a pseudorandomness condition known as (C, η)-boundedness (see [11, 12]).

Specifically, in [3] the authors found an algorithm for approximating a sparse {0, 1}
matrix f by a sum of cut matrices under the assumption that f is (C, η)-bounded.

The crucial fact is that the number of summands is independent of the size of the

matrix and its density. Then, using this result, they proved a similar theorem for

tensors which in turn yields approximations for sparse MAX-CSP instances.

The purpose of this paper is to extend these results to a larger class of sparse

{0, 1} matrices, namely, the Lp regular matrices introduced recently by Borgs,

Chayes, Cohn and Zhao [2].

1.2. To proceed with our discussion it is useful at this point to introduce some

pieces of notation and some terminology. Unless otherwise stated, in the rest of this

paper by n1 and n2 we denote two positive integers, and by µ1 and µ2 we denote

the uniform probability measures on [n1] and [n2] respectively. (As usual, for every

positive integer n we set [n] := {1, . . . , n}.) Moreover, by µ we denote the uniform

probability measure on [n1]× [n2]. If P is a partition of [n1]× [n2], then by AP we

denote the (finite) σ-algebra on [n1]× [n2] generated by P .
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Next, let X1, X2 be nonempty finite sets and set

SX1×X2 = {A1 ×A2 : A1 ⊆ X1 and A2 ⊆ X2}.

If X1 and X2 are understood from the context (in particular, if X1 = [n1] and

X2 = [n2]), then we shall denote SX1×X2 simply by S. Moreover, denoting by

ν1 and ν2 the uniform probability measures on X1 and X2 respectively, for every

partition P of X1 ×X2 with P ⊆ SX1×X2 we set

ι(P) = min
{

min{ν1(P1), ν2(P2)} : P = P1 × P2 ∈ P
}

.

Now recall that a cut matrix g : [n1]× [n2] → R is a matrix for which there exist

two sets S ⊆ [n1] and T ⊆ [n2], and a real number c such that g = c · 1S×T ; the
set S × T is called the support of the matrix g. Also recall that for every matrix

f : [n1]× [n2] → R the cut norm of f is the quantity

‖f‖� = max
S⊆[n1]
T⊆[n2]

∣

∣

∣

∑

(x1,x2)∈S×T

f(x1, x2)
∣

∣

∣
= (n1 n2) · max

S⊆[n1]
T⊆[n2]

∣

∣

∣

∫

S×T

f dµ
∣

∣

∣
.

Finally, let f : [n1] × [n2] → {0, 1} be a matrix and let P be a partition of

[n1]× [n2] with P ⊆ S. Recall that the conditional expectation of f with respect to

AP is defined by

E(f | AP) =
∑

P∈P

∫

P f dµ

µ(P )
1P .

Notice, in particular, that E(f | AP) is a sum of cut matrices with disjoint supports.

This observation will be useful later on. Also note that if 1 6 p <∞, then we have

‖E(f | AP )‖Lp
=
(

∑

P∈P

∣

∣

∣

∫

P f dµ

µ(P )

∣

∣

∣

p

µ(P )
)1/p

while if p = ∞, then

‖E(f | AP)‖L∞
= max

{
∣

∣

∣

∫

P
f dµ

µ(P )

∣

∣

∣
: P ∈ P

}

.

In particular, observe that ‖f‖L1 is equal to the density of f , that is, the number

of ones in the matrix divided by n1 n2. Also notice that ‖f‖� = ‖f‖L1 · (n1 n2).

1.3. We are now ready to introduce the class of {0, 1} matrices which we will

consider in this paper.

Definition 1.1 (Lp regular matrices [2]). Let 0 < η 6 1, C > 1 and 1 6 p 6 ∞.

A matrix f : [n1] × [n2] → {0, 1} is called (C, η, p)-regular (or simply Lp regular

if C and η are understood) if for every partition P of [n1] × [n2] with P ⊆ S and

ι(P) > η we have

(1) ‖E(f | AP)‖Lp
6 C ‖f‖L1.
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Notice that, by the monotonicity of the Lp norms, if 1 6 p1 6 p2 6 ∞ and f is

a Lp2 regular, then f is Lp1 regular. Thus, Lp regularity is less restrictive when p

gets smaller. Also observe that for p = 1 the previous definition is essentially of no

interest since every {0, 1} matrix is L1 regular. On the other hand, the case p = ∞
in Definition 1.1 is equivalent to the aforementioned (C, η)-boundedness condition.

Indeed, recall that a matrix f : [n1] × [n2] → {0, 1} is said to be (C, η)-bounded if

for every S ⊆ [n1] and every T ⊆ [n2] with µ1(S1) > η and µ2(T ) > η we have
∫

S×T f dµ

µ(S × T )
6 C ‖f‖L1.

We have the following simple fact.

Fact 1.2. Let 0 < η 6 1 and C > 1, and let f : [n1]×[n2] → {0, 1} be a matrix. If f

is (C, η)-bounded, then f is (C, η,∞)-regular. Conversely, if f is (C, η,∞)-regular,

then f is (4C, η)-bounded.

Between the extreme cases “p = 1” and “p = ∞”, there is a large class of sparse

matrices which are very well behaved. For more details and a presentation of several

examples we refer to [2] (see also [5, 6]).

1.4. The following theorem is the main result of this paper.

Theorem 1.3. There exist absolute constants a1, a2 > 0, an algorithm and a poly-

nomial Π0 such that the following holds. Let 0 < ε < 1/2 and C > 1. Also let

1 < p 6 ∞, set p† = min{2, p} and let q denote the conjugate exponent of p† (that

is, 1/p† + 1/q = 1). We set

(2) τ =
⌈ a1 · C2

(p† − 1) ε2

⌉

and η =
(a2 · ε

C

)

∑τ+1
i=1 ( 2

p†
+1)i−1qi

.

If we input

INP: a (C, η, p)-regular matrix f : [n1]× [n2] → {0, 1},
then the algorithm outputs

OUT: a partition P of [n1]× [n2] with P ⊆ S, |P| 6 4τ and ι(P) > η, such that

(3) ‖f − E(f | AP)‖� 6 ε‖f‖�.

Moreover, this algorithm has running time (τ 4τ ) · Π0(n1 n2).

Theorem 1.3 extends [3, Theorem 1] which corresponds to the case p = ∞1. Note

that, by (2) and (3), the matrix f is well approximated by a sum of at most 4τ cut

matrices with disjoint supports and, moreover, the positive integer τ is independent

of the size of f and its density. Also observe that, as expected, the running time of

the algorithm in Theorem 1.3 increases as p decreases to 1.

1Actually, the argument in [3] works for the more general case p > 2. We also remark that the

cut matrices obtained by [3, Theorem 1] do not necessarily have disjoint supports, but this can

be easily arranged—see [3, Corollary 1] for more details.
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1.5. The paper is organized as follows. In Section 2 we recall some results which are

needed for the proof of Theorem 1.3, and in Section 3 we present some preparatory

lemmas. The proof of Theorem 1.3 is completed in Section 4. Finally, in Section 5

we present applications for tensors and sparse MAX-CSP instances.

2. Background material

2.1. Martingale difference sequences. Recall that a finite sequence (di)
n
i=0 of

integrable real-valued random variables on a probability space (X,Σ, µ) is said to

be a martingale difference sequence if there exists a martingale (fi)
n
i=0 such that

d0 = f0 and di = fi − fi−1 if n > 1 and i ∈ [n]. We will need the following result

due to Ricard and Xu [14] which can be seen as an extension of the basic fact that

martingale difference sequences are orthogonal in L2.

Proposition 2.1. Let (X,Σ, µ) be a probability space and 1 < p 6 2. Then for

every martingale difference sequence (di)
n
i=0 in Lp(X,Σ, µ) we have

(4)
(

n
∑

i=0

‖di‖2Lp

)1/2

6

( 1

p− 1

)1/2
∥

∥

n
∑

i=0

di
∥

∥

Lp
.

We point out that the constant (p − 1)−1/2 appearing in the right-hand side of

(4) is best possible.

2.2. The algorithmic version of Grothendieck’s inequality. We will need

the following result due to Alon and Naor [1].

Proposition 2.2. There exist a constant a0 > 0, an algorithm and a polynomial

ΠAN such that the following holds. If we input

INP: a matrix f : [n1]× [n2] → R,

then the algorithm outputs

OUT: a set A ∈ S such that (n1 n2)
∣

∣

∫

A f dµ
∣

∣ > a0‖f‖�.
Moreover, this algorithm has running time ΠAN(n1 n2).

The constant a0 in Proposition 2.2 is closely related to Grothendieck’s constant

KG (see, e.g., [13]); in particular, we have a0 > K−1
G .

3. Preparatory Lemmas

In this section we prove some preparatory results concerning Lp regular matrices.

We begin with the following lemma.

Lemma 3.1. There exist an algorithm and a polynomial Π1 such that the following

holds. Let X1, X2 be two nonempty finite sets, let ν1, ν2 denote the uniform mea-

sures on X1 and X2 respectively, and let ν denote the uniform probability measure

on X1 ×X2. Also let 0 < ϑ < 1/2. If we input

INP: two sets A1 ⊆ X1 and A2 ⊆ X2 with ν1(A1) > ϑ and ν2(A2) > ϑ,
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then the algorithm outputs

OUT1: a partition Q ⊆ S with |Q| 6 4 and ι(Q) > ϑ, and

OUT2: a set B ∈ Q such that A1 ×A2 ⊆ B and ν
(

B \ (A1 ×A2)
)

6 2ϑ.

Moreover, this algorithm has running time Π1(|X1| · |X2|).

Proof. We distinguish the following four (mutually exclusive) cases.

Case 1: ν1(A1) < 1 − ϑ and ν2(A2) < 1 − ϑ. In this case the algorithm outputs

Q = {A1×A2, (X1\A1)×A2, A1×(X2\A2), (X1\A1)×(X2\A2)} and B = A1×A2.

Notice that Q and B satisfy the requirements of the lemma.

Case 2: ν1(A1) < 1 − ϑ and ν2(A2) > 1 − ϑ. In this case the algorithm outputs

Q = {A1 ×X2, (X1 \A1)×X2} and B = A1 ×X2. Again, it is easy to see that Q
and B satisfy the requirements of the lemma.

Case 3: ν1(A1) > 1 − ϑ and ν2(A2) < 1 − ϑ. This case is similar to Case 2. In

particular, we set Q = {X1 ×A2, X1 × (X2 \A2)} and B = X1 ×A2.

Case 4: ν1(A1) > 1 − ϑ and ν2(A2) > 1 − ϑ. In this case the algorithm outputs

Q = {X1 ×X2} and B = X1 ×X2. As before, it is easy to see that Q and B are

as desired.

Finally, notice that the most costly part of this algorithm is to estimate the

quantities ν1(A1) and ν2(A2), but of course this can be done in polynomial time of

|X1| · |X2|. Thus, this algorithm will stop in polynomial time of |X1| · |X2|. �

The following lemma is a Hölder-type inequality for Lp regular matrices (see also

[5, Proposition 4.1]).

Lemma 3.2. Let 0 < η < 1/2 and C > 1. Also let 1 < p 6 2 and let q denote its

conjugate exponent. Finally, let f : [n1] × [n2] → {0, 1} be (C, η, p)-regular. Then

for every A ⊆ [n1]× [n2] with A ∈ S we have

(5)

∫

A

f dµ 6 C ‖f‖L1(µ(A) + 6η)1/q.

Proof. Fix a nonempty subset A of [n1] × [n2] with A ∈ S, and let A1 ⊆ [n1] and

A2 ⊆ [n2] such that A = A1×A2. If µ1(A1) > η and µ2(A2) > η, then we claim that

(6)

∫

A

f dµ 6 C ‖f‖L1(µ(A) + 2η)1/q.

Indeed, by Lemma 3.1 applied for X1 = [n1] and X2 = [n2], we obtain a partition

Q of [n1] × [n2] with Q ∈ S and ι(Q) > η, and a set B ∈ Q such that A ⊆ B and

µ(B \A) 6 2η. By the Lp regularity of f , we have
∫

B
f dµ

µ(B)
µ(B)1/p 6 ‖E(f | AQ)‖Lp

6 C ‖f‖L1
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and so
∫

A

f dµ 6

∫

B

f dµ 6 C ‖f‖L1µ(B)1/q 6 C ‖f‖L1(µ(A) + 2η)1/q.

Next, we assume that µ1(A1) > η and µ2(A2) < η and observe that we may

select a set B ⊆ [n2] with η < µ2(B) 6 2η. Then, we have
∫

A

f dµ 6

∫

A1×(A2∪B)

f dµ
(6)

6 C ‖f‖L1

(

µ
(

A1 × (A2 ∪B)
)

+ 2η
)1/q

6 C ‖f‖L1(µ(A) + 2η µ1(A1) + 2η)1/q 6 C ‖f‖L1(µ(A) + 4η)1/q.

The case µ1(A1) < η and µ2(A2) > η is identical.

Finally, assume that µ1(A1) < η and µ2(A2) < η, and observe that there exist

B1 ⊆ [n1] and B2 ⊆ [n2] such that η < µ1(B1) 6 2η and η < µ2(B2) 6 2η. Then,
∫

A

f dµ 6

∫

(A1∪B1)×(A2∪B2)

f dµ

(6)

6 C ‖f‖L1

(

µ
(

(A1 ∪B1)× (A2 ∪B2)
)

+ 2η
)1/q

6 C ‖f‖L1(µ(A) + 8η2 + 2η)1/q 6 C ‖f‖L1(µ(A) + 6η)1/q

and the proof of the lemma is completed. �

Lemmas 3.1 and 3.2 will be used in the proof of the following result.

Lemma 3.3. There exist an algorithm and a polynomial Π2 such that the following

holds. Let 0 < ε < 1/2 and C > 1. Let 1 < p 6 ∞, set p† = min{2, p} and let q

denote the conjugate exponent of p†. Also let a0 be as in Proposition 2.2, and set

ϑ =
a0 ε

16C
and η 6

(

ϑ · ι(P)
2

p†
+1
)q

.

If we input

INP1: a partition P of [n1]× [n2] with P ⊆ S,
INP2: a subset A of [n1]× [n2] with A ∈ S, and
INP3: a (C, η, p)-regular matrix f : [n1]× [n2] → {0, 1},

then the algorithm outputs

OUT1: a refinement Q of P with Q⊆S, |Q|64|P| and ι(Q) > (ϑ · ι(P)
2

p†
+1

)q, and

OUT2: a set B ∈ AQ such that

(7)

∫

A△B

E(f | AP ) dµ 6 2C ‖f‖L1ϑ and

∫

A△B

f dµ 6 6C ‖f‖L1ϑ.

If we additionally assume that the matrix f in INP3 satisfies

(8)
∣

∣

∫

A

(

f − E(f | AP )
)

dµ
∣

∣ > a0 ε ‖f‖L1,

then the partition Q in OUT2 satisfies

(9) ‖E(f | AQ)− E(f | AP)‖L
p†

>
a0 ε ‖f‖L1

2
.

Finally, this algorithm has running time |P| · Π2(n1 n2).
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Lemma 3.3 is an algorithmic version of [5, Lemmas 5.1 and 5.2]. We also notice

that if the matrix f satisfies the estimate in (8), then inequality (9) implies that

the partition Q is a genuine refinement of P . We proceed to the proof.

Proof of Lemma 3.3. We may (and we will) assume that A is nonempty. We select

A1 ⊆ [n1] and A2 ⊆ [n2] such that A = A1 ×A2, and we set

θ = ϑq · ι(P)
2q

p† .

Also let

P1 = {P = P1 × P2 ∈ P : µ1(A1 ∩ P1) < θµ1(P1) and µ2(A2 ∩ P2) < θµ2(P2)},
P2 = {P = P1 × P2 ∈ P : µ1(A1 ∩ P1) < θµ1(P1) and µ2(A2 ∩ P2) > θµ2(P2)},
P3 = {P = P1 × P2 ∈ P : µ1(A1 ∩ P1) > θµ1(P1) and µ2(A2 ∩ P2) < θµ2(P2)},
P4 = {P = P1 × P2 ∈ P : µ1(A1 ∩ P1) > θµ1(P1) and µ2(A2 ∩ P2) > θµ2(P2)}.

Clearly, the family {P1,P2,P3,P4} is a partition of P .

Now for every P ∈ P we perform the following subroutine. First, assume that

P ∈ P1 ∪ P2 ∪ P3 and notice that in this case we have µ(A ∩ P ) 6 θµ(P ). Then

we set BP = ∅ and QP = {P}. On the other hand, if P = P1 × P2 ∈ P4, then

we apply Lemma 3.1 for X1 = P1 and X2 = P2, and we obtain2 a partition QP

of P with Q ∈ S, |QP | 6 4 and ι(QP ) > θ · ι(P), and a set BP ∈ QP such that

A ∩ P ⊆ BP and µ(BP \ (A ∩ P )) 6 2θµ(P ).

Once this is done, the algorithm outputs

Q =
⋃

P∈P

QP and B =
⋃

P∈P

BP .

Notice that there exists a polynomial Π2 such that this algorithm has running time

|P| ·Π2(n1 n2). Indeed, recall that the algorithm in Lemma 3.1 runs in polynomial

time and observe that we have applied Lemma 3.1 at most |P| times.

We proceed to show that the partition Q and the set B satisfy the requirements

of the lemma. To this end, we first observe thatQ satisfies the requirements in OUT1.

Moreover, we have B ∈ AQ and

(10) A△B =
(

3
⋃

i=1

⋃

P∈Pi

(A ∩ P )
)

∪
(

⋃

P∈P4

(

BP \ (A ∩ P )
)

)

.

Therefore,

(11) µ(A△B) 6 2θ

2Notice that if ν1 is the uniform probability measure on X1, then for every A ⊆ X1 we have

ν1(A) = µ1(A)/µ1(X1), and similarly for X2.
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and so, by the Lp regularity of f , Hölder’s inequality, the monotonicity of the

Lp norms and the fact that p† 6 p, we obtain that
∫

A△B

E(f | AP ) dµ 6 ‖E(f | AP)‖L
p†

· µ(A△B)1/q 6 ‖E(f | AP )‖Lp
· µ(A△B)1/q

6 C ‖f‖L1(2θ)
1/q

6 2C ‖f‖L1ϑ

which proves the first inequality in (7). For the second inequality, by (10), we have

(12)

∫

A△B

f dµ =
∑

P∈P1∪P2∪P3

∫

A∩P

f dµ+
∑

P∈P4

∫

BP \(A∩P )

f dµ

and, by the definition of θ and the fact that η 6 (ϑ · ι(P)
2

p†
+1

)q, we have η 6 θµ(P )

for every P ∈ P . Thus, if P ∈ P1∪P2∪P3, then, by Lemma 3.2 and our assumption

that f is (C, η, p)-regular (and, consequently, (C, η, p†)-regular), we have
∫

A∩P

f dµ 6 C ‖f‖L1(µ(A ∩ P ) + 6η)1/q 6 3C ‖f‖L1

(

θµ(P )
)1/q

which yields that

(13)
∑

P∈P1∪P2∪P3

∫

A∩P

f dµ 6 3C ‖f‖L1 θ
1/q

∑

P∈P1∪P2∪P3

µ(P )1/q.

On the other hand, by the choice of the family {BP : P ∈ P4} and Lemma 3.2,

(14)
∑

P∈P4

∫

BP \(A∩P )

f dµ 6 6C ‖f‖L1 θ
1/q

∑

P∈P4

µ(P )1/q.

Moreover, since q > 2 we have that x1/q is concave on R+, and so

(15)
∑

P∈P

µ(P )1/q 6 |P|
1

p† 6 ι(P)
− 2

p† .

Combining (13)–(15), we see that the second inequality in (7) is satisfied.

Finally, assume that the matrix f satisfies (8). By (7) and the choice of ϑ,

∣

∣

∣

∫

A

(

f − E(f | AP )
)

dµ−
∫

B

(

f − E(f | AP)
)

dµ
∣

∣

∣

6

∫

A△B

E(f | AP) dµ+

∫

A△B

f dµ 6
a0 ε ‖f‖L1

2

and so, by (8), we have

(16)
∣

∣

∣

∫

B

(

f − E(f | AP)
)

dµ
∣

∣

∣
>
a0 ε ‖f‖L1

2
.

Moreover, the fact that B ∈ AQ yields that

(17)

∫

B

(

f − E(f | AP)
)

dµ =

∫

B

(

E(f | AQ)− E(f | AP)
)

dµ.
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Thus, by the monotonicity of the Lp norms, we conclude that

‖E(f | AQ)− E(f | AP)‖L
p†

> ‖E(f | AQ)− E(f | AP)‖L1

>

∣

∣

∣

∫

B

(

E(f | AQ)− E(f | AP)
)

dµ
∣

∣

∣

(17)
=
∣

∣

∣

∫

B

(

f − E(f | AP)
)

dµ
∣

∣

∣

(16)

>
a0 ε ‖f‖L1

2

and the proof of Lemma 3.3 is completed. �

4. Proof of theorem 1.3

We will describe a recursive algorithm that performs the following steps. Start-

ing from the trivial partition of [n1] × [n2] and using Lemma 3.3 as a subroutine,

the algorithm will produce an increasing family of partitions of [n1]× [n2]. Simul-

taneously, using Proposition 2.2 as a subroutine, the algorithm will be checking

if the partition that is produced at each step satisfies the requirements in OUT of

Theorem 1.3. The fact that this algorithm will eventually terminate is based on

Proposition 2.1.

Proof of Theorem 1.3. Let a0 be as in Proposition 2.2, and set

(18) ϑ =
a0 ε

16C
, τ =

⌈ 4C2

(p† − 1) ε2 a20

⌉

and η = ϑ
∑τ+1

i=1 ( 2

p†
+1)i−1qi

.

Also fix a (C, η, p)-regular matrix f : [n1]× [n2] → {0, 1}. The algorithm performs

the following steps.

InitialStep: We set P0 = {[n1] × [n2]} and we apply the algorithm in Proposi-

tion 2.2 for the matrix f −E(f | AP0). Thus, we obtain a set A0 ⊆ [n1]× [n2] with

A0 ∈ S and such that (n1 n2)|
∫

A0

(

f − E(f | AP0)
)

dµ| > a0‖f − E(f | AP0)‖�. If
|
∫

A0

(

f − E(f | AP0)
)

dµ| 6 a0 ε ‖f‖L1, then the algorithm outputs the partition

P0 and Halts. Otherwise, the algorithm sets m = 1 and enters into the following

loop.

GeneralStep: The algorithm will have as an input a positive integer m ∈ [τ − 1],

a partition3 Pm−1 ⊆ S and a set Am−1 ⊆ [n1]× [n2] with Am−1 ∈ S, such that

(a) |Pm−1| 6 4m,

(b) (ϑ · ι(Pm−1)
2

p†
+1

)q > ϑ
∑m

i=1(
2

p†
+1)i−1qi

, and

(c) |
∫

Am−1

(

f − E(f | APm−1)
)

dµ| > a0 ε ‖f‖L1.

By (b) and the choice of η in (18), we have η 6 (ϑ·ι(Pm−1)
2

p†
+1

)q. This fact together

with the choice of ϑ in (18) allows us to perform the algorithm in Lemma 3.3 for

the matrix f , the partition Pm−1 and the set Am−1. Thus, we obtain a refinement

Pm of Pm−1 with Pm ⊆ S, |Pm| 6 4|Pm−1|, ι(Pm) > (ϑ · ι(Pm−1)
2

p†
+1

)q, such that

‖E(f | APm
)− E(f | APm−1)‖Lp†

>
a0 ε ‖f‖L1

2
.

3Notice that P0 ⊆ S and ι(P0) = 1.
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Next, we apply the algorithm in Proposition 2.2 for the matrix f −E(f | APm
), and

we obtain a set Am ⊆ [n1]× [n2] with Am ∈ S and such that

(n1 n2)
∣

∣

∣

∫

Am

(

f − E(f | APm
)
)

dµ
∣

∣

∣
> a0 ‖f − E(f | APm

)‖�.

If |
∫

Am

(

f−E(f | APm
)
)

dµ| 6 a0 ε ‖f‖L1, then the algorithm outputs the partition

Pm and Halts. Otherwise, if m < τ − 1, then the algorithm reruns the loop we

described above for the positive integer m + 1, the partition Pm and the set Am,

while if m = τ − 1, then the algorithm proceeds to the following step.

FinalStep: The algorithm will have as an input a partition Pτ−1 ⊆ S and a set

Aτ−1 ⊆ [n1]× [n2] with Aτ−1 ∈ S, such that

(d) |Pτ−1| 6 4τ−1,

(e) (ϑ · ι(Pτ−1)
2

p†
+1

)q > ϑ
∑τ

i=1(
2

p†
+1)i−1qi

, and

(f) |
∫

Aτ−1

(

f − E(f | APτ−1)
)

dµ| > a0 ε ‖f‖L1.

Again observe that, by (e) and the choice of η in (18), we have η 6 (ϑ·ι(Pτ−1)
2

p†
+1

)q.

Using this fact and the choice of ϑ in (18), we may apply the algorithm in Lemma 3.3

for the matrix f, the partition Pτ−1 and the set Aτ−1. Therefore, we obtain a

refinement Pτ of Pτ−1 with Pτ ⊆ S, |Pτ | 6 4|Pτ−1|, ι(Pτ ) > (ϑ · ι(Pτ−1)
2

p†
+1

)q,

and such that

‖E(f | APτ
)− E(f | APτ−1)‖Lp†

>
a0 ε ‖f‖L1

2
.

The algorithm outputs the partition Pτ and Halts.

Notice that there exists a polynomial Π0 such that the previous algorithm has

running time (τ 4τ )·Π0(n1n2). Indeed, by Proposition 2.2, there exists a polynomial

Π′
0 such that the InitialStep runs in time Π′

0(n1 n2). Moreover, by the running

times of the algorithms in Lemma 3.3 and Proposition 2.2, there exists a polynomial

Π′′
0 such that each of the GeneralStep runs in time 4τ ·Π′′

0 (n1 n2). Finally, invoking

again Lemma 3.3, we see that there exists a polynomial Π′′′
0 such that the FinalStep

runs in time Π′′′
0 (n1 n2). Therefore, the algorithm we described above runs in time

Π′
0(n1 n2) + (τ − 1) 4τ Π′′

0 (n1 n2) + Π′′′
0 (n1 n2)

which in turn yields that there exists a polynomial Π0 such that the algorithm has

running time (τ 4τ ) ·Π0(n1 n2).

It remains to verify that the previous algorithm will produce a partition that

satisfies the requirements in OUT of Theorem 1.3. As we have noted, the argument

is based on Proposition 2.1 and can be seen as the Lp version of the, so called, energy

increment method (see, e.g., [15]). For more information and further applications

of this method we refer to [4, 5, 7].

We proceed to the details. First assume that the algorithm has stopped before

the FinalStep. Then the output of the algorithm is one of the partitions we

described in InitialStep and in GeneralStep, say Pm for somem ∈ {0, . . . , τ−1}.
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Observe that Pm satisfies Pm ⊆ S, |Pm| 6 4m, and ι(Pm) > η; in other words, Pm
satisfies the first three requirements in OUT of Theorem 1.3. Moreover, recall that

there exists a set Am ⊆ [n1]× [n2] with Am ∈ S, and such that

(n1 n2)
∣

∣

∣

∫

Am

(

f − E(f | APm
)
)

dµ
∣

∣

∣
> a0 ‖f − E(f | APm

)‖�.

On the other hand, since the output of the algorithm is the partition Pm, we have

|
∫

Am

(

f − E(f | APm
)
)

dµ| 6 a0 ε ‖f‖L1. Combining these estimates, we conclude

that ‖f − E(f | APm
)‖� 6 ε‖f‖�.

Next, assume that the algorithm reaches the FinalStep. Recall that Pτ ⊆ S
and observe that, by (d) above and the fact that |Pτ | 6 4|Pτ−1|, we have |Pτ | 6 4τ .

Moreover, by (e) and the choice of η in (18),

(19) ι(Pτ ) > (ϑ · ι(Pτ−1)
2

p†
+1

)q > ϑ
∑τ

i=1(
2

p†
+1)i−1qi

> η.

Thus, we only need to show that ‖f −E(f | APτ
)‖� 6 ε‖f‖�. To this end assume,

towards a contradiction, that ‖f − E(f | APτ
)‖� > ε‖f‖�. Notice that, by the

choice of η in (18) and (19), we have (ϑ · ι(Pτ )
2

p†
+1

)q > η. Using the previous two

estimates, Proposition 2.2, Lemma 3.3 and arguing precisely as in the GeneralStep,

we may select a refinement Pτ+1 of Pτ with Pτ+1 ⊆ S and ι(Pτ+1) > η, and such

that ‖E(f | APτ+1) − E(f | APτ
)‖L

p†
> (a0 ε ‖f‖L1)/2. It follows that there exists

an increasing finite sequence (Pi)τ+1
i=0 of partitions with P0 = {[n1]× [n2]} and such

that for every i ∈ [τ + 1] we have Pi ⊆ S, ι(Pi) > η, and

(20) ‖E(f | APi
)− E(f | APi−1)‖Lp†

>
a0 ε ‖f‖L1

2
.

Now set d0 = E(f | AP0) and di = E(f | APi
)−E(f | APi−1) for every i ∈ [τ+1], and

observe that the sequence (di)
τ+1
i=0 is a martingale difference sequence. Therefore,

by Proposition 2.1 and the fact that the matrix f is (C, η, p)-regular, we have

a0 ε ‖f‖L1

2
·
√
τ + 1

(20)

6

(

τ+1
∑

i=1

‖di‖2L
p†

)1/2

6

(

τ+1
∑

i=0

‖di‖2L
p†

)1/2

(4)

6
1

√

p† − 1

∥

∥

τ+1
∑

i=0

di
∥

∥

L
p†

=
1

√

p† − 1
‖E(f | APτ+1)‖Lp†

6
C

√

p† − 1
‖f‖L1

which clearly contradicts the choice of τ in (18). The proof of Theorem 1.3 is thus

completed. �

5. Applications

5.1. Tensor approximation algorithms. Throughout this subsection let k > 2

be an integer. Also let n1, . . . , nk be positive integers, and let µk denote the uniform

probability measure on [n1]× · · · × [nk].
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Recall that a k-dimensional tensor is a function F : [n1]×· · ·×[nk] → R. (Notice,

in particular, that a 2-dimensional tensor is just a matrix.) Also recall, that a tensor

G : [n1]× · · ·× [nk] → R is called a cut tensor if there exist a real number c and for

every i ∈ [k] a subset Si of [ni] such that G = c · 1S1×···×Sk
. Finally, recall that for

every tensor F : [n1]× . . . [nk] → R its cut norm is defined as

‖F‖� =
(

k
∏

i=1

ni

)

·max
{∣

∣

∣

∫

S1×···×Sk

F dµk

∣

∣

∣
: Si ⊆ [ni] for every i ∈ [k]

}

.

Next, let

(21) k1 = ⌊k/2⌋, Ak = [n1]× · · · × [nk1 ] and Bk = [nk1+1]× · · · × [nk],

and for every tensor F : [n1]× · · · × [nk] → {0, 1} let the respective matrix fF of F

be the matrix fF : Ak ×Bk → {0, 1} defined by the rule

(22) fF
(

(i1, . . . , ik1), (ik1+1, . . . , ik)
)

= F (i1, . . . , ik)

for every
(

(i1, . . . , ik1), (ik1+1, . . . , ik)
)

∈ Ak ×Bk = [n1]× · · · × [nk].

As in [3], we extend the notion of Lp regularity from matrices to tensors as

follows.

Definition 5.1 (Lp regular tensors). Let 0 < η 6 1, C > 1 and 1 6 p 6 ∞.

A tensor F : [n1]× · · · × [nk] is called (C, η, p)-regular if its respective matrix fF is

(C, η, p)-regular, that is, if for every partition P of Ak ×Bk with P ⊆ SAk×Bk
and

ι(P) > η we have ‖E(fF | AP)‖Lp
6 C.

To state our main result about Lp regular tensors we need to introduce some

numerical invariants. Specifically, let ε > 0 and C > 1. Also let 1 < p 6 ∞, set

p† = min{2, p} and let q denote the conjugate exponent of p†. Finally, let a1, a2 be

as in Theorem 1.3, and define

(23) τ(ε, C, p) =
⌈ a1 C

2

(p† − 1) ε2

⌉

and η(ε, C, p) =
(a2 ε

C

)

∑τ(ε,C,p)+1
i=1 ( 2

p†
+1)i−1qi

.

We have the following theorem.

Theorem 5.2. There exist a constant b, an algorithm and a polynomial Π3 such

that the following holds. Let 0 < ε < 1/2 and C > 1. Also let 1 < p 6 ∞, and let

τ = τ(ε/2, C, p) and η = η(ε/2, C, p) be as in (23). If we input

INP: a (C, η, p)-regular tensor F : [n1]× · · · × [nk] → {0, 1},
then the algorithm outputs

OUT: cut tensors G1, . . . , Gs with s 6
(2b C

ε η2

)2(k−1)

and such that

(24)
∥

∥F −
s
∑

i=1

Gi
∥

∥

�
6 ε‖F‖� and

s
∑

i=1

‖Gi‖2L∞
6

(C ‖F‖L1

η2

)2

b2k.

Moreover, this algorithm has running time
(

τ 4τ +
(

2C
εη2

)3k) ·Π3

(
∏k
i=1 ni

)

.
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Theorem 5.2 can be proved arguing precisely as in the proof of [3, Theorem 2]

and using Theorem 1.3 instead of [3, Corollary 1]. We leave the details to the

interested reader.

5.2. MAX-CSP instances approximation. In what follows let n, k denote two

positive integers with k 6 n.

Let V = {x1, . . . , xn} be a set of Boolean variables, and recall that an assignment

σ on V is a map σ : V → {0, 1}. Notice that if σ is an assignment on V andW ⊆ V ,

then σ|W : W → {0, 1} is an assignment on W . Also recall that a k-constraint is

a pair (φ, Vφ) where Vφ ⊆ V with |Vφ| = k and φ : {0, 1}Vφ → {0, 1} is a not

identically zero map. Finally, recall that a k-CSP instance over V is a family F of

k-constraints over V .

For every k-CSP instance F we define

(25) OPT(F) = max
σ∈{0,1}V

∑

(φ,Vφ)∈F

φ(σ|Vφ
).

Moreover, let Ψk be the set of all non-zero maps {0, 1}k → {0, 1}. We have the

following definition.

Definition 5.3. Let ψ ∈ Ψk. Also let (φ, Vφ) be a k-constraint over V where

Vφ = {xi1 , . . . , xik} for some 1 6 i1 < · · · < ik 6 n. We say that (φ, Vφ) is of type

ψ if for every assignment σ : V → {0, 1} we have

ψ
(

σ(xi1 ), . . . , σ(xik )
)

= φ(σ|Vφ
).

Observe that every k-CSP instance F can be represented by a family (FψF )ψ∈Ψk

of 22
k − 1 tensors where for every ψ ∈ Ψk the tensor FψF : [n]k → {0, 1} is defined

by the rule

(26) FψF (i1, . . . , ik) =















1 if there is (φ, Vφ) ∈ F of type ψ

with Vφ = {xi1 , . . . , xik},
0 otherwise.

Having this representation in mind, we say that a k-constraint F is (C, η, p)-regular

for some 0 < η 6 1, C > 1 and 1 6 p 6 ∞, provided that for every ψ ∈ Ψk the

tensor FψF defined above is (C, η, p)-regular.

We have the following theorem which extends [3, Theorem 3]. It follows from

Theorem 5.2 using the arguments in the proof of [3, Theorem 3]; as such, its proof

is left to the reader.

Theorem 5.4. There exist an algorithm, a constant γ > 0 and a polynomial Π4

such that the following holds. Let k be a positive integer, and let 0 < ε < 1/2, C > 1

and 1 < p 6 ∞. Set a = ε 2−(2k+2k+2), and let τ = τ(a, C, p) and η = η(a, C, p) be

as in (23). If we input
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INP: a (C, η, p)-regular k-CSP instance F over a set V = {x1, . . . , xn} of Boolean

variables,

then the algorithm outputs

OUT: an assignment σ : V → {0, 1} such that

∑

(φ,Vφ)∈F

φ(σ|Vφ
) > (1− ε) ·OPT(F).

Moreover, this algorithm has running time

Π4

(

nk · exp
(

k 2k 22
k( 2C

ε η2
)2k

ln
( 2C

ε η2
)

)

)

.

References

[1] N. Alon and A. Naor, Approximating the cut-norm via Grothendieck’s inequality, Proc. 36th

STOC, 2004, 72–80.

[2] C. Borgs, J. T. Chayes, H. Cohn and Y. Zhao, An Lp theory of sparse graph convergence I:

limits, sparse random graph models, and power law distributions, preprint (2014), available

at arXiv:1401.2906.

[3] A. Coja-Oghlan, C. Cooper and A. Frieze, An efficient sparse regularity concept, SIAM J.

Discrete Math. 23 (2010), 2000–2034.

[4] P. Dodos, V. Kanellopoulos and Th. Karageorgos, Szemerédi’s regularity lemma via martin-
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