A note on a problem of H. Busemann and C.M. Petty concerning sections of symmetric convex bodies

A. Giannopoulos

Abstract

Let $A_{n}(a, b)=\left\{\left(x_{i}\right) \in \mathbb{R}^{n}: \sum_{i=1}^{n-1}\left|x_{i}\right|^{2} \leq a^{2},\left|x_{n}\right| \leq b\right\}$. It is proved that for suitable a and $b, n \geq 7$, one can have $V_{n}\left(A_{n}\right)=V_{n}\left(B_{n}\right)$ and $V_{n-1}\left(H \cap A_{n}\right)<V_{n-1}\left(H \cap B_{n}\right)$ for every $(n-1)$-dimensional subspace H of \mathbb{R}^{n}, where B_{n} is the unit ball of \mathbb{R}^{n}. This strengthens previous negative results on a problem of H. Busemann and C.M. Petty.

1 Introduction

In [1] Busemann and Petty asked the question: "Let A, B be two convex symmetric bodies in \mathbb{R}^{n} with their common centre of symmetry at the origin. If, for each ($n-1$)-dimensional subspace H of $\mathbb{R}^{n}, V_{n-1}(H \cap A)<V_{n-1}(H \cap B)$, is it then true that $V_{n}(A)<V_{n}(B)$?" (V_{k} is the k-dimensional volume function). If $n=2$, it is clear that this is true. However, in [2], Larman and Rogers showed that the above assertion is false for $n \geq 12$. In their counterexample, B is the ball of \mathbb{R}^{n}, while the existence of A is established by probabilistic arguments. Ball [3] showed that if $Q_{n}=\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}$ is the unit cube of \mathbb{R}^{n}, then $V_{n-1}\left(H \cap Q_{n}\right) \leq \sqrt{2}$ for every ($n-1$)-dimensional subspace H of \mathbb{R}^{n}, and in [4] he observed that his result implies a negative answer to the problem of Busemann and Petty for $n \geq 10$ (with $A=Q_{n}$, B the ball of volume 1).

In this note we give an elementary counterexample for $n \geq 7$, by considering the sections of cylinders of the form

$$
A_{n}(a, b)=\left\{\left(x_{i}\right) \in \mathbb{R}^{n}: \sum_{i=1}^{n-1}\left|x_{i}\right|^{2} \leq a^{2},\left|x_{n}\right| \leq b\right\},
$$

for suitable $a, b>0$.

2 Sections of $A_{n}(a, b)$

We shall use the notation $v_{k}=\pi^{k / 2} / \Gamma\left(1+\frac{1}{2} k\right)$ for the volume of the unit ball of $\mathbb{R}^{k},\left\{e_{i}\right\}_{i \leq k}$ for the usual basis of \mathbb{R}^{k} and

$$
I_{k}=\int_{-1}^{1}\left(1-t^{2}\right)^{\frac{k-1}{2}} d t=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos ^{k} \theta d \theta=\frac{v_{k}}{v_{k-1}}
$$

We first prove the following.
Proposition 2.1 Let

$$
\begin{gathered}
A_{n}(a, b)=\left\{\left(x_{i}\right) \in \mathbb{R}^{n}: \sum_{i=1}^{n-1}\left|x_{i}\right|^{2} \leq a^{2},\left|x_{n}\right| \leq b\right\}, \quad n \geq 3 \\
m=\left(\frac{a}{b}\right)^{2} \quad \text { and } f(x)=\sqrt{1+m x^{2}} \frac{1}{x} \int_{0}^{x}\left(1-t^{2}\right)^{\frac{n-2}{2}} d t, 0<x \leq 1, \quad f(0)=1
\end{gathered}
$$

Then,

$$
\sup _{H} V_{n-1}\left(H \cap A_{n}\right)=2 v_{n-2} a^{n-2} b \sup f(x)
$$

where H runs over all $(n-1)$-dimensional subspaces of \mathbb{R}^{n}.
Proof: Let H be an $(n-1)$-dimensional subspace of \mathbb{R}^{n} and $u=\left(u_{1}, \ldots, u_{n}\right)$ be the unit vector normal to H. We can clearly assume that $u_{n}>0$. Set $\varphi_{0}=\operatorname{arccot}(a / b)$ and $\varphi_{u}=\arccos u_{n}$. As we shall see, $V_{n-1}\left(H \cap A_{n}\right)$ depends only on $\left|u_{n}\right|$.

We examine two cases separately.
(i) $0 \leq \varphi_{u} \leq \varphi_{0}$, that is $\cot ^{2} \varphi_{u} \geq a^{2} / b^{2}$ or $\left|u_{n}\right| \geq a /\left(a^{2}+b^{2}\right)^{1 / 2}$. Let $P_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the orthogonal projection onto the subspace $\left\{x:\left\langle x, e_{n}\right\rangle=0\right\}$. It is easy to see that

$$
P_{n}\left(H \cap A_{n}\right)=B_{n-1}(a)=\left\{\left(x_{i}\right) \in \mathbb{R}^{n}: \sum_{i=1}^{n-1}\left|x_{i}\right|^{2} \leq a^{2}, x_{n}=0\right\}
$$

So,

$$
\begin{gather*}
V_{n-1}\left(H \cap A_{n}\right)=\frac{1}{\left|\left\langle u, e_{n}\right\rangle\right|} V_{n-1}\left[P_{n}\left(H \cap A_{n}\right)\right]=\frac{1}{\left|u_{n}\right|} v_{n-1} a^{n-1} \tag{1}\\
\leq v_{n-1} a^{n-2}\left(a^{2}+b^{2}\right)^{1 / 2}=2 v_{n-2} a^{n-2} b f(1)
\end{gather*}
$$

(ii) $\varphi_{0} \leq \varphi_{u} \leq \frac{\pi}{2}$, that is $a^{2} \geq \cot ^{2} \varphi_{u} b^{2}$. Let

$$
v=\frac{1}{\sqrt{1-u_{n}^{2}}}\left(u_{1}, \ldots, u_{n-1}, 0\right), \quad|t| \leq b
$$

and $P_{v}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the orthogonal projection onto the subspace $\{x:\langle x, v\rangle=0\}$.

We set $\left[P_{v}\left(H \cap A_{n}\right)\right]_{t}=P_{v}\left(H \cap A_{n}\right) \cap\left\{x: x_{n}=t\right\}$. If $x \in H \cap A_{n}, x_{n}=$ $t, \sum_{i<n-1}\left|x_{i}\right|^{2}=d^{2} \leq a^{2}$, then $P_{v}(x)=x-\langle x, v\rangle v=x+\left(t \cot \varphi_{u}\right) v$ and $\| P_{v}(x)-$ $t e_{n} \|^{2}=d^{2}-t^{2} \cot ^{2} \varphi_{u}$. It is also clear that $P_{v}(x)-t e_{n} \in\left[v, e_{n}\right]^{\perp}$.

Conversely, if $\langle y, u\rangle=0, y_{n}=t,\left\|y-t e_{n}\right\|^{2}=d^{2}-t^{2} \cot ^{2} \varphi_{u}$, then $x=y-$ $\left(t \cot \varphi_{u}\right) v \in H \cap A_{n}, x_{n}=t, \sum_{i \leq n-1}\left|x_{i}\right|^{2}=d^{2}$ and $P_{v}(x)=y$. So, $\left[P_{v}\left(H \cap A_{n}\right)\right]_{t}$ is an $(n-2)$-dimensional ball of radius $\left(a^{2}-t^{2} \cot ^{2} \varphi_{u}\right)^{1 / 2}$, centered on $t e_{n}$ and lying on $t e_{n}+\left[v, e_{n}\right]^{\perp}$.

It follows that

$$
V_{n-1}\left(P_{v}\left(H \cap A_{n}\right)\right)=v_{n-2} \int_{-b}^{b}\left(a^{2}-\cot ^{2} \varphi_{u} t^{2}\right)^{\frac{n-2}{2}} d t
$$

and

$$
\begin{gather*}
V_{n-1}\left(H \cap A_{n}\right)=\frac{1}{|\langle u, v\rangle|} v_{n-2} \int_{-b}^{b}\left(a^{2}-\cot ^{2} \varphi_{u} t^{2}\right)^{\frac{n-2}{2}} d t \tag{2}\\
=\frac{1}{\sin \varphi_{u}} v_{n-2} \int_{-b}^{b}\left(a^{2}-\cot ^{2} \varphi_{u} t^{2}\right)^{\frac{n-2}{2}} d t \\
=\sqrt{1+\cot ^{2} \varphi_{u}} v_{n-2} \int_{-b}^{b}\left(a^{2}-\cot ^{2} \varphi_{u} t^{2}\right)^{\frac{n-2}{2}} d t
\end{gather*}
$$

Now, setting $x=(b / a) \cot \varphi_{u},(2)$ becomes

$$
\begin{align*}
& V_{n-1}\left(H \cap A_{n}\right)=\sqrt{1+m x^{2}} v_{n-2} a^{n-2} b \int_{-1}^{1}\left(1-x^{2} t^{2}\right)^{\frac{n-2}{2}} d t \tag{3}\\
= & \sqrt{1+m x^{2}} v_{n-2} a^{n-2} b \frac{1}{x} \int_{-1}^{1}\left(1-t^{2}\right)^{\frac{n-2}{2}} d t=2 v_{n-2} a^{n-2} b f(x)
\end{align*}
$$

On observing that $\varphi_{0} \leq \varphi_{u} \leq \pi / 2$ is equivalent to $0 \leq x \leq 1$, the result follows from (1) and (3).

3 Case of $n \geq 8$

Consider two sequences, $p_{n}=\left(I_{n} / I_{n-1}\right)^{n-1}$ and $s_{n}=\sqrt{n} I_{n}$. As Ball shows in [4], p_{n} is decreasing. We set $t_{n}=s_{n+1} / s_{n}$. Then $t_{n} \rightarrow 1$ and since $I_{n+2}=$ $((n+1) /(n+2)) I_{n}$ we have

$$
\frac{t_{n+2}}{t_{n}}=\left[\frac{n(n+2)}{(n+1)(n+3)}\right]^{1 / 2} \frac{n+2}{n+1}<1
$$

So $t_{n}>1$, i.e, s_{n} is increasing. By Stirling's formula, $s_{n} \rightarrow \sqrt{2 \pi}$.
Lemma 3.1 Let f be as in Proposition 2.1. Then f is decreasing on $[0,1]$ if and only if $m \leq \frac{n-2}{3}(n \geq 4)$.

Proof: Differentiating we see that f is decreasing if and only if

$$
\begin{equation*}
x\left(1+m x^{2}\right)\left(1-x^{2}\right)^{\frac{n-2}{2}} \leq \int_{0}^{x}\left(1-t^{2}\right)^{\frac{n-2}{2}} d t, \quad 0 \leq x \leq 1 \tag{4}
\end{equation*}
$$

We set

$$
g(x)=x\left(1+m x^{2}\right)\left(1-x^{2}\right)^{\frac{n-2}{2}}-\int_{0}^{x}\left(1-t^{2}\right)^{\frac{n-2}{2}} d t
$$

and observe that $g^{\prime}(x) \leq 0$ if and only if $3 m\left(1-x^{2}\right) \leq(n-2)\left(1+m x^{2}\right)$. Since $g(0)=0,(4)$ is true if and only if $m \leq \frac{n-2}{3}$.

Lemma 3.2 Suppose that $n \geq 8$. We can choose a and b so that
(i) $V_{n}\left(A_{n}(a, b)\right)=v_{n}$,
(ii) $2 v_{n-2} a^{n-2} b f(0)<v_{n-1}$, and
(iii) $m \leq \frac{n-2}{3}$.

Proof: Since

$$
\begin{equation*}
V_{n}\left(A_{n}(a, b)\right)=2 v_{n-1} a^{n-1} b \tag{5}
\end{equation*}
$$

(i) is true if $a^{n-1} b=I_{n} / 2$. In view of (5), (ii) is satisfied if $v_{n-2} I_{n} / a<v_{n-1}$, i.e, if

$$
\begin{equation*}
a>I_{n} / I_{n-1} \tag{6}
\end{equation*}
$$

Set $a=I_{n} / I_{n-1}$. From (5),

$$
\begin{equation*}
m=\left(\frac{a}{b}\right)^{2}=\left(\frac{2 a^{n}}{I_{n}}\right)^{2}=\left[2\left(\frac{I_{n}}{I_{n-1}}\right)^{n-1} \frac{1}{I_{n-1}}\right]^{2}=\left(\frac{2 p_{n}}{I_{n-1}}\right)^{2} \tag{7}
\end{equation*}
$$

So, if (iii) is to be true, we must have

$$
\begin{equation*}
2 p_{n}<\sqrt{\frac{n-2}{3}} I_{n-1}, \quad \text { or } \quad 2 p_{n}<\frac{1}{\sqrt{3}} \sqrt{\frac{n-2}{n-1}} s_{n-1} \tag{8}
\end{equation*}
$$

Now, the sequence on the left is decreasing, while the one on the right is increasing. So, we only need to check the inequality for $n=8$.

But,

$$
2 p_{8}=2\left(\frac{I_{8}}{I_{7}}\right)^{7}=2\left(\frac{1225 \pi}{4096}\right)^{7} \simeq 1.29274 \ldots
$$

while

$$
\sqrt{2} I_{7}=\sqrt{2} \frac{32}{35} \simeq 1.29299 \ldots
$$

It is now clear that choosing a slightly larger than I_{n} / I_{n-1} and b from (5), conditions (i)-(iii) are satisfied.

Proposition 2.1 and the above two lemmas imply our counterexample for $n \geq 8$:

Theorem 3.1 Let

$$
A_{n}(a, b)=\left\{\left(x_{i}\right) \in \mathbb{R}^{n}: \sum_{i \leq n-1}\left|x_{i}\right|^{2} \leq a^{2},\left|x_{n}\right| \leq b\right\}, \quad n \geq 7
$$

We can choose $a, b>0$ so that
(i) $V_{n}\left(A_{n}(a, b)\right)=v_{n}$,
(ii) for each $(n-1)$-dimensional subspace H of $\mathbb{R}^{n}, V_{n-1}\left(H \cap A_{n}\right)<v_{n-1}$.

Note that in our example $(n \geq 8), V_{n-1}\left(H \cap A_{n}\right)$ is a decreasing function of $\left|u_{n}\right|$, where $u=\left(u_{1}, \ldots, u_{n}\right)$ is the unit vector normal to H.

$4 \quad$ Case of $n=7$

If $3 \leq n \leq 7$, conditions (i)-(iii) of Lemma 3.2 are incompatible. However, in case $n=7$, we can also find a and b for which the theorem is true.

Let $C=\sup _{H} V_{6}\left(H \cap A_{7}(a, b)\right)$. From $V_{7}\left(A_{7}(a, b)\right)=v_{7}$, we get

$$
\begin{equation*}
a^{6} b=\frac{1}{2} I_{7} \tag{9}
\end{equation*}
$$

and hence $2 v_{5} a^{5} b=v_{6} \frac{I_{7}}{I_{6}} \frac{1}{a}$, and $m=\left(\frac{2 a^{7}}{I_{7}}\right)^{2}$, i.e,

$$
\begin{equation*}
a=\left(\frac{I_{7}}{2}\right)^{1 / 7} m^{1 / 14} \tag{10}
\end{equation*}
$$

So, by Proposition 2.1,

$$
\frac{C}{v_{6}}=\frac{I_{7}}{I_{6}}\left(\frac{2}{I_{7}}\right)^{1 / 7} \frac{1}{m^{1 / 14}} \sup _{0 \leq x \leq 1} \sqrt{1+m x} \int_{0}^{1}\left(1-x t^{2}\right)^{5 / 2} d t
$$

Now,

$$
\left(1-x t^{2}\right)^{5 / 2}=\sum_{n=0}^{\infty}\binom{5 / 2}{n}(-1)^{n} x^{n} t^{2 n} \leq 1-\frac{5}{2} x t^{2}+\frac{15}{8} x^{2} t^{4}
$$

and hence

$$
\int_{0}^{1}\left(1-x t^{2}\right)^{5 / 2} d t \leq 1-\frac{5}{6} x+\frac{3}{8} x^{2}
$$

Let $r_{m}(x)=\sqrt{1+m x}\left[1-\frac{5}{6} x+\frac{3}{8} x^{2}\right]$. One must choose m such that

$$
\frac{I_{7}}{I_{6}}\left(\frac{2}{I_{7}}\right)^{1 / 7} \frac{1}{m^{1 / 14}} \sup _{0 \leq x \leq 1} r_{m}(x)<1
$$

This can be done with m a little larger than $\frac{5}{3}=\frac{n-2}{3}$. For example, if we look for m such that $\sup _{0 \leq x \leq 1} r_{m}(x)=r_{m}(1 / 20)$, then, as we can easily see by differentiating
$r_{m}, m=m_{0}$ with $m_{0}=3056 / 1689$ (for this value of m, r_{m} has two local maxima: $r_{m}(1 / 20)>1$ and $\left.r_{m}(1)<1\right)$.

On observing that the number
$\frac{I_{7}}{I_{6}}\left(\frac{2}{I_{7}}\right)^{1 / 7} \frac{1}{m_{0}^{1 / 14}} r_{m_{0}}\left(\frac{1}{20}\right)=\left(\frac{512}{175 \pi}\right)\left(\frac{35}{16}\right)^{1 / 7}\left(\frac{1689}{3056}\right)^{1 / 14}\left(\frac{36836}{33780}\right)^{1 / 2}\left(\frac{9209}{9600}\right)$
$\simeq 0.999998 \ldots$ is smaller than 1 , we conclude the proof for $n=7$.

Acknowledgement: I thank Professor S. Papadopoulou for her encouragement and advice.

References

[1] H. Busemann and C.M. Petty, Problems on convex bodies, Math. Scand. 4 (1956), 88-94.
[2] D.G. Larman and C.A. Rogers, The existence of a centrally symmetric convex body with central sections that are unexpectedly small, Mathematika 22 (1975), 164-175.
[3] K.M. Ball, Cube slicing in \mathbb{R}^{n}, Proc. Amer. Math. Soc. 97 (1986), 465-473.
[4] K.M. Ball, Some remarks on the geometry of convex sets, Geometric Aspects of Functional Analysis, LNM 1317 (1988), 224-231.

Department of Mathematics, University of Crete, Iraklion, Crete, Greece
E-mail: deligia@talos.cc.uch.gr

