
Conentration property on probabilityspaesA.A. Giannopoulos and V.D. Milman�
1 Introdution1.1 The starting point of this paper is the notion of onentration for metriprobability spaes. Let (X; d; �) be a metri spae with metri d and diameterdiam(X) � 1, whih is also equipped with a Borel probability measure �. We thende�ne the onentration funtion (or \isoperimetri onstant") of X by�(X ; ") = 1� inf��(A") : A Borel subset of X;�(A) � 1=2	;where A" = fx 2 X : d(x;A) � "g is the "-extension of A. A family (Xn; dn; �n) ofmetri probability spaes is alled a L�evy family if for every " > 0�(Xn; ")! 0as n!1. A natural example of a L�evy family is given by the family (Sn�1; �n; �n),where Sn�1 is the Eulidean sphere in Rn , �n is the geodesi distane, and �n isthe rotationally invariant probability measure on Sn�1. L�evy observed that theisoperimetri inequality on Sn+1 implies that�(Sn+1; ") �p�=8 exp(�"2n=2);a fat whih is ruial for the proof of Dvoretzky's theorem and many other resultsof the asymptoti theory of �nite dimensional normed spaes. Other importantexamples are given by the family of the orthogonal groups (O(n); �n; �n) equippedwith the Hilbert-Shmidt metri and the Haar probability measure, and all homo-geneous spaes of O(n) (for example, any family of Stiefel manifolds Wn;kn or anyfamily of Grassman manifolds Gn;kn). Disrete examples are given by the fam-ily of spaes En2 = f�1; 1gn or the groups �n of permutations of f1; : : : ; ng withthe normalized Hamming distane and the normalized ounting measure. In most�The seond named author would like to aknowledge the hospitality of IHES, wherepart of his ontribution to this work was done. Researh of the seond named author ispartially supported by a BSF grant. 1



ases, new and very interesting tehniques were invented in order to estimate theonentration funtion �(X ; "). We refer the reader to [MS℄, [Mi℄ and [T1℄ for adetailed disussion and referenes.Let (X; d; �) be a metri probability spae with small onentration funtion.Then, every 1-Lipshitz funtion on X onentrates around its L�evy mean (see[MS℄). There exists one value Lf suh that� (x 2 X : jf(x)� Lf j � ") � 2�(X ; "):This type of onentration implies equivalene of Lp-norms for Lipshitz funtionsonX , that is, inverse H�older inequalities of the form kfkLp(X;�) � (p; �)kfkL1(X;�),where the order of the onstant (p; �) as p ! 1 reets the degree of onentra-tion.Suh inverse H�older inequalities appear often in the ontext of probabilityspaes. For example, linear funtionals on a onvex body K with volume 1 satisfythe inequality kfkLp(K;dx) � pkfkL1(K;dx)where  > 0 is an absolute onstant [GM℄. More generally, Bourgain [B1℄ has shownthat if f : K ! R is a polynomial of degree m, then kfkp � (p;m)kfk2 for everyp > 2, where (p;m) depends only on p and on the degree m of f . Talagrand [T2℄showed that an analogous statement holds true for the lass of onvex funtionson En2 . In view of these results, we would like to disuss the level of onentrationwith respet to a given lass of funtions.1.2 A typial example of onentration expressed by equivalene of Lp-norms isthe lassial Khinthine inequality: There is an absolute onstant  > 0 suh thatfor every n 2 N, p > 2, and a1; : : : ; an 2 R we have0�Ave �� nXj=1�aj��p1A1=p � pp0� mXj=1 a2j1A1=2 � p2pp Ave �� nXj=1�aj��:For the best onstants, see [Sz℄ and [H℄. By expanding exp(x2) into power series,we may equivalently state Khinthine's inequality in the formkh"; yikL 2(En2 ;�) � kh"; yikL1(En2 ;�); y 2 Rn ;where En2 = f�1; 1gn with the normalized ounting measure �, andkfkL �(
;�) = inf�� > 0 : Z
 exp�(jf j=�)��d� � 2�for every probability spae (
; �) and � > 0.The following fat was observed in [S℄ (see also [BLM℄ for an extension from thelass of linear funtionals to arbitrary norms, in the spirit of Kahane's inequality):2



Fat. There exist onstants C > 1 and  > 0 suh that: for every n 2 N andm � Cn, a random subset A of En2 with ardinality jAj = m satis�eskh"; yikL2(A;�(A)) � kh"; yikL1(A;�(A));for every y 2 Rn , where �(A) is the normalized ounting measure on A.It is not lear if C may be replaed by any � > 1, and  by a onstant (�)respetively. However, the fat shows that very small sets of n-tuples of signsmay replae En2 in the Khinthine inequality. We are thus lead to the followingde�nition:De�nition. Let p > 1 and M � 1. A �nite set S � Rn will be alled a (p;M)-distribution (for linear funtionals) ifkhx; yikLp(S;�(S)) �Mkhx; yikL1(S;�(S)); y 2 Rn :Analogously, S will be alled a ( �;M)-distribution ifkhx; yikL �(S;�(S)) �Mkhx; yikL1(S;�(S)); y 2 Rn :This is equivalent to the fat that S is a (p;Mp)-distribution for every p � 1, withMp � Mp1=� for an absolute onstant  > 0. We will often talk about a p or �-distribution without speifying the onstant M , but the estimate for M will belear in every ase.In view of these de�nitions, the question whih arises is to determine the min-imal ardinality m(p; n) (m(�; n) respetively) for whih a random subset A � En2with ardinality m � m(p; n) (or, m � m(�; n)) forms a (p;M)-distribution (or,( �;M) distribution) with a \good" onstant M � 1, while at the same time Arepresents the spae in the sense that khx; yikL1(A;�(A)) ' khx; yikL1(En2 ;�) for everyy 2 Rn . Known results (see [BGN℄, [BDGJN℄ and [S℄) show that one an takeM ' pp and m(p; n) ' np=2 if p � 2, and m(p; n) ' n if 1 � p � 2. This estimateis optimal.1.3 The purpose of this paper is to study the level of onentration with respetto the lass of linear funtionals by measuring the size of minimal well-distributedsubstrutures of ertain probability spaes. These substrutures should exhibita high level of onentration and, at the same time, they should represent theoriginal spae in an essential way. Our setting will be an arbitrary log-onaveBorel probability measure � on Rn . Reall that � is alled log-onave if, for allompat sets A, B and all � 2 (0; 1) we have �(�A + (1� �)B) � �(A)��(B)1��.We say that � is isotropi if ZRnhx; yi2�(dx) = L2�for every y 2 Sn�1. We will say that � satis�es a  �-estimate with onstant C� � 1if khx; yikL �(�) � C�L�3



for every y 2 Sn�1. From Borell's lemma (see [MS℄, Appendix III) we getkhx; yikL 1(�) � C1khx; yikL1(�)for every y 2 Sn�1 and every log-onave probability measure � on Rn , whereC1 � 1 is an absolute onstant. That is, all log-onave probability measuressatisfy a  1-estimate with some uniformly bounded onstant.With these de�nitions, the general formulation of our problem is the following:Question. Let � be an isotropi log-onave Borel probability measure on Rn ,whih satis�es a  �-estimate with onstant C� � 1 for some � 2 [1; 2℄. Find theminimal value of m 2 N for whih a random S � Rn of ardinality jSj = m is ap-distribution or  �-distribution with a small onstant M � 1, and represents � inthe sense that khx; yikL1(�) ' khx; yikL1(S;�(S)) for all y 2 Rn .Note that the isotropi ondition about � is not so restritive: every log-onaveprobability measure � whose support spans Rn has an image measure T�1(�)(A) :=�(T�1(A)), T 2 SL(n), whih is isotropi and log-onave. Then, every p or �-distribution of points with respet to T�1(�) orresponds to an equally gooddistribution of points with respet to �.In Setion 2 we study the question in full generality. Our main general resultis the following:Theorem A. Let 0 < p < 1 and Æ 2 (0; 1). There exists n0(Æ) suh that, forevery n � n0, every m � m0 and every isotropi log-onave probability measure �on Rn , m random points x1; : : : ; xm 2 (Rn ;B; �) form with probability greater than1� Æ a (p;M)-distribution representing �, where M = O(p) as p!1, andm0 = m0(p; Æ) = 8>>><>>>: (p; Æ)n , if 0 < p � 1(p; Æ)n(log n)p , if 1 < p � 2(p; Æ)hp;n(n logn)p=2 , if p > 2.The onstant hp;n is bounded by minf(p� 2)�1; logng, and this implies ontinuityof m0(p; Æ) at p = 2.One an also show that any exponential number of points is enough for a good 1-distribution:Theorem B. Let � be an isotropi log-onave probability measure on Rn , and 2 (0; 1). If n � n0() and m � exp(n), then m points x1; : : : ; xm, hosenindependently with respet to �, form with probability > 1�Æ a ( 1;M)-distributionrepresenting �, where M � (Æ)=p.A typial example of log-onave probability measure arises if we onsider aonvex body K of volume 1 in Rn . The Brunn-Minkowski inequality implies thatthe restrition �K of the Lebesgue measure onto K is log-onave, thereforekhx; yikL 1(K;dx) � 0khx; yikL1(K;dx)4



for every y 2 Rn , where 0 > 0 is an absolute onstant. The  1-estimate is bestpossible in full generality, but there exist bodies K whih allow even a  2-estimate(the ube and the ball are suh examples).In this situation, some of the ases were previously studied: the values 0 < p � 1an be treated with the methods developped in [BLM℄, while the ase p = 2 wasstudied by Bourgain [B2℄ (see also [R℄). Our general approah in Setion 2 uses aombination of these arguments: in partiular, Bourgain's lemma 2:4 plays the keyrole.1.4 In Setion 3 we follow the same geometri approah for En2 . The geometryinvolved is simpler here: the main advantages are the  2-estimate for linear fun-tionals (whih omes from Khinthine's inequality), and the fat that all vertiesof the ube are at distane pn from the origin. This allows us to reover all knownresults on p-distributions, as well as optimal estimates for the minimal ardinalityof  �-distributions. The following statement is true:Theorem C. Let 0 < p <1 and Æ 2 (0; 1). There exists n0(Æ) suh that, for everyn � n0 a subset A � En2 with m � m0 elements forms with probability greater than1� Æ a p-distribution representing En2 , wherem0 = m0(p; Æ) = 8<: (p; Æ)n , if 0 < p � 2(p; Æ)np=2 , if p > 2.(see also [S℄, [BGN℄, [BDGJN℄).Moreover, if  > 0, � 2 [1; 2℄, and n � n0(; Æ), then a subset A of En2 withjAj = m � exp(n�=2) satis�es with probability greater than 1� Ækh"; yikL �(A) � C(Æ)1=�for every y 2 Sn�1.Observe the phase transition at p = 2: For p 2 (0; 2℄ we get p-distributions withardinality ' n (in the general ase, up to a logarithmi term) while for p > 2,minimal p-distributions have ardinality ' np=2. The same phenomenon appearsin several other questions of this nature. For example, in Setion 4 we show that ifN � np� , p� = maxf1; p=2g, and feigi�N is an orthonormal basis of RN , then fora random En 2 GN;n the set fpNPEn(ei) : i = 1; : : : ; Ng forms a p-distributionon En with M � pp, p � 1. All these examples are onneted with Dvoretzky'stheorem for `Np spaes, where a similar behavior is observed. The preise relationwill be disussed throughout the paper.Finally, in Setion 5 we study a di�erent question on random points: we �x 2 (0; 1) and show that m = exp(n) points whih are hosen uniformly andindependently from a onvex body K with entroid at the origin in Rn satisfy withprobability greater than 1� ÆA = ofx1; : : : ; xmg � (Æ)K:5



That is, any exponential number of random points from a onvex body K reatesa body whih \represents" K in the distane sense. This question is naturallyonneted with the disussion in Setion 2 (in partiular, with Theorem B): everyonvex body K reates a log-onave measure �K , and a random set of exp(n)points hosen from K reates a body equivalent to K and, at the same time, formsa  1-distribution for �K .1.5We assume that Rn is equipped with a Eulidean struture h�; �i and denotethe orresponding Eulidean norm by j � j. Dn will be the Eulidean unit ball andSn�1 will be the unit sphere. We also write j � j for the volume (Lebesgue measure)in Rn , and for the ardinality of a �nite set. The letters ; 0; 1; 2 et. will denoteabsolute positive onstants whih may hange from line to line.2 Log-onave probability measures satisfying a �-estimateIn this setion we study the ase of a log-onave Borel probability measure � onRn , whih satis�es the isotropi onditionZRnhx; yi2�(dx) = L2� ; y 2 Sn�1and a  �-estimate with onstant C� � 1 for some � 2 [1; 2℄, i.e.ZRn exp�(jhx; yij=C�L�)�� � 2for every y 2 Sn�1. Note that, by Borell's lemma, � always satis�es a  1-estimatewith an absolute onstant C1. We �rst ollet some Lemmas about measures withthese properties. The proofs are adaptations of analogous results for isotropionvex bodies.2.1 Lemma. There exist absolute onstants 1; 2 > 0 suh that1L� � �Z jhx; yijp�(dx)�1=p � 2C�maxf1; p1=�gL�;for every p > 0 and y 2 Sn�1.Proof: The right hand side inequality is a diret onsequene of the inequalityex > xk=k!, x > 0, k = 1; 2; : : :. For the left hand side inequality, we use the fatthat, by a result of Latala [L℄, there exists an absolute onstant 1 > 0 suh that1L� = 1khx; yikL2(�) � khx; yikLp(�)for every y 2 Rn and 0 < p < 2. 2 6



The funtion x 7! jxj satis�es a better estimate:2.2. Lemma. There exists an absolute onstant A > 0 suh thatZnL�Dn exp(jxj2=A2nL2�)�(dx) � 2:Proof: We follow Alesker's argument from [A℄. Sine � is log-onave, it satis�es a 1-estimate with an absolute onstant  > 0. By Lemma 2.1, this implies thatZRn jhx; yijp�(dx) � p1ppLp�for every y 2 Sn�1 and p � 1. Integrating this inequality with respet to y, weobtain �ZRn jxjp�(dx)�1=p � 2pnL�rp�1 + pn�:This means that, for p � n, we have�ZRn jxjp�(dx)�1=p � 3pppnL�:On the other hand, if p > n we obviously have ZnL�Dn jxjp�(dx)!1=p � nL� � pppnL�:It follows that there is a onstant A > 0 suh thatZnL�Dn �ejxj2=A2nL2� � 1��(dx) = 1Xp=1 ZnL�Dn � jxjApnL��2p� 1Xp=1 ppp! �maxf1; 3gA �2p � 1: 2We will also make use of the following simple lemma:2.3. Lemma. Let 0 < p � � and y 2 Sn�1. Then,kjhx; yijp=Lp�kL 1(�) � 2Cp�:Proof: For every s � 1 we haveZRn jhx; yij�s(C�L�)�s�(dx) � 2�(s+ 1):7



Now, if 0 < p � �,ZRn exp� jhx; yijp2Cp�Lp� ��(dx) = 1 + 1Xk=1 1k! ZRn jhx; yijpk2kCpk� Lpk� �(dx)� 1 + 1Xk=1 �(pk� + 1)k!2k� 1 + 1Xk=1 12k = 2sine �(pk� + 1) � k!. 2In what follows, �(Æ) denotes a positive onstant bounded by �log(2=Æ)�1=� forÆ 2 (0; 1), where  > 0 is an absolute onstant, not neessarily the same in eahourrene.2.4. Lemma. [B2℄ Let Æ 2 (0; 1), and x1; : : : ; xm be random points in (Rn ;B; �).If m � Æ exp(pn), then, with probability greater than 1� Æ we havejxj j � 2(Æ)pnL�plogmfor all j 2 f1; : : : ;mg, andjXi2E xij � 2(Æ)L�plogmpjEjpn+ �(Æ)C�L�(logm)1=�jEjfor all E � f1; : : : ;mg.Proof: Sine � is isotropi, we haveZRn jxj2�(dx) = nL2�:From Markov's inequality we get �(4pnL�Dn) � 15=16, and Borell's lemma showsthat �(4tpnL�Dn) > 1 �  exp(�t) for every t > 1. It follows that, if m �Æ exp(pn), then m random points x1; : : : ; xm satisfy with probability > 1� Æ4xi 2 nL�Dn; i = 1; : : : ;m:Observe now thatProb �x =2 AtpnL�Dn j x 2 nL�Dn� � 2e�t2=�(nL�Dn) � e�t2sine �(nL�Dn) � 0�(4pnL�Dn) for an absolute onstant 0 > 0 (if pn � 4 thisis lear, otherwise it follows by the log-onavity of �). Sine the xj 's are hosenindependently, we onlude that if t � 2(Æ)plogm, thenProb �8j � m;xj 2 AtpnL�Dn j 8j � m;xj 2 nL�Dn� > 1� Æ4 :8



Hene, with probability > 1� Æ2 we havejxj j � 2(Æ)pnL�plogm; j = 1; : : : ;m:Let E � f1; : : : ;mg. We writejXi2E xij2 = Xi2E jxij2 + Xi 6=j2Ehxi; xji� 22(Æ)L2�n(logm)jEj+ Xi 6=j2Ehxi; xji:If Æj takes the values 0 or 1 with probability 1=2, thenE~Æ h mXi=1 Æixi; mXj=1(1� Æj)xji = 14 Xi 6=j2Ehxi; xji:Therefore, we an �nd E1; E2 � E with jE1j � jE2j, E1 \ E2 = ;, E1 [ E2 = E,suh that Xi 6=j2Ehxi; xji � 4hXi2E1 xi; Xj2E2 xji� 4 Xi2E1 jhxi; Xj2E2 xjij:Rewrite this last sum in the formXi2E1 jhxi; Xj2E2 xjij = j Xj2E2 xj jXi2E1 jhxi; yE2ij;where yE2 = Pj2E2 xjjPj2E2 xj j ; jyE2 j = 1:Observe that the set fxigi2E1 is independent from yE2 , sine E1 \E2 = ;. If we �xjE1j = k, the number of possible E1's is bounded by mk, therefore, the  1-estimateon linear funtionals implies thatProb ~x 2 (Rn )m : 9E1 � E; jE1j = k;Xi2E1 jhxi; yE2ij > tkC�L�! < mke�kt� :This probability will be smaller than Æ=2m if t ' (logm)1=�. Doing this for k =1; : : : ;m, we see that (x1; : : : ; xm) 2 (Rn )m satis�es with probability greater than1� Æ2 the following: For every E � f1; : : : ;mg,Xi 6=j2Ehxi; xji � �(Æ)C�L�(logm)1=� maxE1�EfjE1j �� Xj2EnE1 xj��g:9



To �nish the proof, �x s 2 N and writeAs = maxjF j�s jXj2F xj j:We have jXi2E xij2 � 22(Æ)L2�n(logm)jEj+ �(Æ)C�L�(logm)1=�jEjAjEj;therefore A2jEj � 22(Æ)L2�n(logm)jEj+ �(Æ)C�L�(logm)1=�jEjAjEj;whih impliesAjEj � 2(Æ)L�pnplogmpjEj+ �(Æ)C�L�(logm)1=�jEj: 2Remark: Borell's lemma shows that, if we do not want to impose any restrition onm, then m random points x1; : : : ; xm 2 (Rn ;B; �) satisfy with probability greaterthan 1� Æ the inequalityjxj j � 1(Æ)pnL� logm; j = 1; : : : ;m:Then, the proof of Lemma 2.4 givesjXi2E xij � 2(Æ)L� logmpjEjpn+ �(Æ)C�L�(logm)1=�jEjfor all E � f1; : : : ;mg. This observation will be useful for the proof of Theorem2.14.Our tool from probability theory will be several versions of Bernstein's inequality:2.5 Lemma. [BLM℄ Let ffjgj�m be independent random variables with mean 0on some probability spae (
; �).(i) If kfjk1 � 2 and kfjk1 � B, then, for every " 2 (0; 1),Prob0�j mXj=1 fj j > "m1A � 2 exp(�"2m=8B):(ii) If kfjkL 1(�) � A, j = 1; : : : ;m, then, for every 0 < " < 4A,Prob0��� mXj=1 fj ��� "m1A � 2 exp(�"2m=16A2):10



(iii) If kfjkL 2(�) � A, j = 1; : : : ;m, then, for every " > 0,Prob0��� mXj=1 fj ��� "m1A � 2 exp(�"2m=8A2): 2We �rst study the ardinality of p-distributed sets for small values of p > 0:2.6. Proposition. Let � be an isotropi log-onave probability measure on Rn ,whih satis�es a  �-estimate with onstant C� for some � 2 [1; 2℄. Let Æ 2 (0; 1)and 0 < p � �. Assume that m � 1(Æ)p�2C2p� n. Then, m random pointsx1; : : : ; xm 2 (Rn ;B; �) satisfy with probability greater than 1� Æ�1L� � 0� 1m mXj=1 jhxj ; yijp1A1=p � �2L�;for all y 2 Sn�1, where �1;�2 > 0 are absolute onstants.Proof: Let � 2 (0; 1) to be determined later, and onsider a �-net N for Sn�1 withardinality jN j � (3=�)n.Fix y 2 N and de�ne f(x) = jhx; yijpLp� :We set fj(x1; : : : ; xm) = f(xj) � R f on (Rn )m. Sine R f � 1, Lemma 2:3 showsthat Efj = 0 ; kfjkL 1 � 4Cp�:Hene, Lemma 2:5(ii) implies thatProb0��� 1m mXj=1 jhxj ; yijp � Lp� Z f ��� "Lp�1A � 2 exp(�"2m=C2p� );if 0 < " < 1. This probability is smaller than Æ=jN j, provided thatm � 1(Æ; �)"�2C2p� n:Then, hoosing " = p1p=4, for all y 2 N we havep1(1� p=4)Lp� � 1m mXj=1 jhxj ; yijp � (1 + p1p=4)Lp�;whih implies 3L� � 0� 1m mXj=1 jhxj ; yijp1A1=p � 4L�:11



To omplete the proof, we hoose � = Æ and employ a standard suessive approx-imation argument. 22.7. Corollary. Let � be an isotropi log-onave probability measure on Rn ,Æ 2 (0; 1) and p � 1. If m � 1(Æ)n, then m random points x1; : : : ; xm 2 (Rn ;B; �)satisfy with probability greater than 1� Æ�1L� � 0� 1m mXj=1 jhxj ; yijp1A1=p ;for all y 2 Sn�1.Proof: Obvious from Proposition 2:6, sine every log-onave probability measure �satis�es a  1-estimate with a uniformly bounded onstant C1 � 1, and the quantity0� 1m mXj=1 jhxj ; yijp1A1=pis an inreasing funtion of p. 2Proposition 2:6 settles our Question for 0 < p � 1: the minimal ardinality ofa random p-distribution for � (0 < p � 1) is proportional to n. Also, by Corollary2:7 we only need to onsider upper bounds when we ask about p-distributions withp � 1: the lower bound holds with probability > 1� Æ if m � 1(Æ)n.In order to examine the ase � < p, we follow Bourgain's argument:2.8. Lemma. Let � be an isotropi log-onave probability measure on Rn whihsatis�es a  �-estimate with onstant C� for some � 2 [1; 2℄, and p � 1. FixÆ 2 (0; 1) and B > 0. If m � 1(Æ)n( B1L� )p, then m random points x1; : : : ; xmsatisfy with probability greater than 1� Æ0� 1m Xfj:jhxj ;yij�Bg jhxj ; yijp1A1=p � 22p1=�C�L�for all y 2 Sn�1.Proof: Let � 2 (0; 1), to be determined. There exists a �-net N for Sn�1 withardinality jN j � (3=�)n. Fix y 2 N and let Ip(y) = (R jhz; yijp�(dz))1=p. Wede�ne f(x) = 1Ipp (y) jhx; yijp�fz:jhz;yij�Bg(x)on Rn , and set fj(x1; : : : ; xm) = f(xj) � R f on (Rn )m. Sine Ip(y) � 1L�, wehave kfjk1 � 2 ; Efj = 0 ; kfjk1 � � B1L��p :12



Applying Lemma 2:5(i) we get: for every " 2 (0; 1),Prob0� 1m mXj=1 f(xj)� Z f > "1A � exp ��"2m=8(B=1L�)p� < Æ=jN j;provided that m � 1(Æ; �)"�2n� B1L��p. This means that with probability greaterthan 1� Æ, 0� 1m Xfj:jhxj ;yij�Bg jhxj ; yijp1A1=p � (1 + ")1=pIp(y)for all y 2 N . Choosing " = � = 1=4, using suessive approximation for anarbitrary y 2 Sn�1, and taking into aount Lemma 2:1 we onlude the proof. 22.9. Lemma. Let � be an isotropi log-onave probability measure on Rn whihsatis�es a  �-estimate with onstant C�, let Æ 2 (0; 1), and x1; : : : ; xm satisfyingLemma 2:4. If B � 4�(Æ)C�L�(logm)1=�, thenXfj:jhxj ;yij>Bg jhxj ; yijp �8>>>><>>>>: 22(Æ)hpBp�2L2�n logm , if 0 < p < 2p2(Æ)hpLp�(n logm)p=2 , if p > 2L2�n logm logn , if p = 2.The onstant hp satis�es 1 � hp � maxf2;minfjp� 2j�1; logngg.Proof: For every � � �0 = 4�(Æ)C�L�(logm)1=� and y 2 Sn�1, we de�neE�(y) = fj � m : jhxj ; yij > �g:We an estimate the size of E�(y) as follows:�jE� j � Xj2E� jhxj ; yij � max"j=�1;j2E� jX "jxj j� 2 maxF�E� jXj2F xj j� 22(Æ)L�plogmpnqjE� j+ 2�(Æ)C�L�(logm)1=�jE� j� 22(Æ)L�plogmpnqjE� j+ �2 jE� j;from where we dedue that �2jE� j � 22(Æ)L2�n logm:13



Note that this estimate is independent from the hoie of y 2 Sn�1. It follows that,if B � �0 thenXfj:jhxj ;yij>Bg jhxj ; yijp = k0�1Xk=0 Xfj:2kB<jhxj;yij�2k+1Bg jhxj ; yijp� k0�1Xk=0 jE2kB j(2k+1B)p� 22(Æ)L2�n(logm) k0�1Xk=0 (2k+1B)p(2kB)2� 2p22(Æ)L2�n(logm)Bp�2 k0�1Xk=0 2(p�2)k;where k0 is the least integer for whih 2(Æ)pnL�plogm � 2k0B. Sine B �4�(Æ)C�L�plogm, we have k0 �  logn. We now onlude the proof by distin-guishing ases about p:If 0 < p < 2, the result follows withhp = k0�1Xk=0 2(p�2)k:If p > 2, then setting �2 = 22(Æ)L2�n logm we haveXfj:jhxj ;yij>Bg jhxj ; yijp � 2p�2Bp�2 2k0(p�2)2p�2 � 1� 2p�22p�2 � 1(2�)2Bp�2 �2�B �p�2=: hp(2�)p: 2Our �rst result overs the ase � < p < 2, where � satis�es a  �-estimate:2.10. Proposition. Let � be an isotropi log-onave probability measure whihsatis�es a  �-estimate with onstant C�, and � < p < 2. Assume that m �31(Æ)hpCp�n(logn)p=�. Then, m random points x1; : : : ; xm satisfy with probability> 1� Æ 0� 1m mXj=1 jhxj ; yijp1A1=p � 3L�for all y 2 Sn�1. 14



Proof: Choose B = 4�(Æ)C�L�(logm)1=�. From Lemma 2:8 we know that if m �1(Æ)hpCp�n(logm)p=�, then m random points x1; : : : ; xm satisfy with probabilitygreater than 1� Æ 0� 1m Xfj:jhxj ;yij�Bg jhxj ; yijp1A1=p � 2L�for all y 2 Sn�1. On the other hand, from Lemma 2:9 we have1m Xfj:jhxj ;yij>Bg jhxj ; yijp � 1m22(Æ)hpp�2� (Æ)Cp�2� Lp�2K (logn) p�2� L2�n logm� (logn)��2� Lp� � Lp�;for suitably hosen 3(Æ). Adding, we see that0� 1m mXj=1 jhxj ; yijp1A1=p � 3L�for all y 2 Sn�1. 2We now ome to the ase p = 2:2.11. Proposition. Let � be an isotropi log-onave probability measure on Rn .If m � 21(Æ)n(log n)2, then m random points x1; : : : ; xm satisfy with probability> 1� Æ 1L� � 0� 1m mXj=1hxj ; yi21A1=2 � 2L�for all y 2 Sn�1. 2Proof: We hoose B = 42(Æ)L� logm, and ombine the estimates from Lemmas2:8 and 2:9. 2Remark: In this ase (p = 2) we an atually replae 1 and 2 by 1 � ", 1 + "respetively, if we hoose m � (Æ)"�2n(log n)2 and repeat the argument in asuitable way (this is the question originally studied by Bourgain [B2℄ and Rudelson[R℄ for onvex bodies: note that Bourgain's method ombined with Lemma 2:2 isenough for Rudelson's estimate m = ("; Æ)n(logn)2).The ase p > 2 an be treated in a similar way. The estimate in Lemma 2:9fores us to hoose m � p2(Æ)hp(n logn)p=2, and if B = 42(Æ)L� logm, then thehypotheses of Lemma 2:8 are satis�ed, provided that n � n0. Therefore, we havethe following result about the minimal ardinality of a p-distribution of points for�: 15



2.12. Proposition. Let � be an isotropi log-onave probability measure on Rnwhih satis�es a  �-estimate with onstant C� for some � 2 [1; 2℄, and p > 2.If Æ exp(pn) � m � p2(Æ)hp(n logn)p=2, then m random points x1; : : : ; xm 2(Rn ;B; �) satisfy with probability > 1� Æ1L� � 0� 1m mXj=1 jhxj ; yijp1A1=p � 2C�p1=�L�: 2Remark: One may interpret all these results as giving random embeddings of `n2into `Np , where N ' (n logn)p=2 when p > 2. The preision of Dvoretzky's theoremis somehow lost: the subspaes are p1=�-isomorphi to `n2 and the dependene onn is worse beause of the logarithmi term. But, the notion of \randomness" isdi�erent from the usual one. We obtain subspaes whih are random with respetto the given log-onave measure.From the above, we have the following general estimates for an isotropi log-onaveprobability measure �:2.13. Theorem. Let 0 < p <1 and Æ 2 (0; 1). There exists n0(Æ) suh that, forevery n � n0, every m � m0 and every isotropi log-onave probability measure� on Rn whih satis�es a  �-estimate with onstant C� for some � 2 [1; 2℄, mrandom points x1; : : : ; xm 2 (Rn ;B; �) form with probability greater than 1 � Æ a(p;M)-distribution representing �, wherem0 = m0(p; Æ) = 8>>>><>>>>: (Æ)p�2n , if 0 < p � 1(Æ)hpn(logn)p , if 1 < p � 2p2(Æ)hp(n logn)p=2 , if p > 2. 2Here, M is bounded by an absolute onstant in the �rst two ases, while in the thirdone we may have ' p1=� under the restrition m � Æ exp(pn), or ' p with noupper restrition on m.Finally, we study the ardinality of a random  1-distribution with respet to �:2.14. Theorem. Let � be an isotropi log-onave probability measure on Rn , and 2 (0; 1). If n � n0() and m � exp(n), then m random points x1; : : : ; xm satisfywith probability > 1� Æ 1m mXj=1 epjhxj;yij1(Æ)L� � 2for every y 2 Sn�1.Proof: Let M = 01(Æ)L�=p (where the onstant 01(Æ) is to be hosen) and B �41(Æ)C1L� logm. Keeping the notation of Lemma 2:9 and taking into aount the16



Remark after Lemma 2.4, we estimate as follows:Xfj:jhxj ;yij>Bg exp(jhxj ; yij=M) = k0�1Xk=0 Xfj:2kB<jhxj;yij�2k+1Bg exp(jhxj ; yij=M)� 22(Æ)L2Kn log2m k0�1Xk=0 exp(2k+1B=M)(2kB)2� 22(Æ)L2�n log2mB2 exp�22(Æ)pnL� logmM �� n exp(pn logm=2):It follows that, if n � n0() and m � exp(n), then1m Xfj:jhxj ;yij>Bg exp(jhxj ; yij=M) � 12 :On the other hand, by Lemma 2:1, R exp�jhx; yij=M� � 5=4 for every y 2 Sn�1.For every B > 0, we de�nef(x) = exp(jhx; yij=M)R exp�jhx; yij=CL���fx:jhx;yij�Bg(x)and following the proof of Lemma 2:8 we get1m Xfj:jhxj ;yij�Bg exp�jhxj ; yij=M� � 3=2for all y 2 Sn�1, provided thatm � 1(Æ)n exp�B=M�:We hoose B = 41(Æ)C1L� logm, and hek that this restrition is satis�ed.Adding the estimates above, we onlude the proof. 2Remark: Consider the ase � = �K , where K is an isotropi onvex body in Rn .This means that jKj = 1, and ZKhx; yi2dx = L2Kfor every y 2 Sn�1. Then, �K is an isotropi log-onave probability measureon Rn , and this implies that all the results of this Setion are valid for pointsx1; : : : ; xm hosen independently and uniformly from K. Moreover, all the resultsmay be stated without the restrition m � Æ exp(pn), sine a result of Alesker [A℄shows that khx; yikL 2(K;dx) � ApnLK for an absolute onstant A > 0 (whih is astronger statement than Lemma 2.2). 17



Observe that, in this ase, there exists an absolute onstant a > 0 suh that�(apnLKDn) � a. Thus, for a random hoie of points S = fx1; : : : ; xmg in Kthere exists i � m for whih jxij � apnLK . Therefore,maxy2Sn�1 khx; yikLp(S;�(S)) � jxijm1=p � apnLKm1=pfor every p � 2. It follows that a random p-distribution S for �K must haveardinality of order at least np=2. Hene, the estimates in Theorem 2.13 are optimalup to the logarithmi terms. We do not know if the estimate for m in Theorem2.14 is also optimal.3 Well distributed sets of verties of the ubeConsider En2 = f�1; 1gn with the produt measure �(A) = jAj=2n, A � En2 , andwrite � for an element of En2 . The analogue of Lemma 2:1 in this ase is Khinthine'sinequality:3.1. Lemma. There exist absolute onstants 1; 2 > 0 suh that1jyj �  ZEn2 jh�; yijp�(d�)!1=p � maxf1; 2ppg jyjfor every p > 0 and y 2 Rn . 2Given Æ 2 (0; 1), we ask for the minimum value of m 2 N whih satis�es thefollowing: with probability greater than 1� Æ, a subset A of En2 with m elementsis a p-distribution (analogously, a  �-distribution) representing En2 . The methodused in the previous setion allows us better estimates in this ase, beause theube satis�es a  2-estimate and has small diameter: Using the fats that j�j = pnfor every � 2 En2 and kh�; yikL 2 �  for every y 2 Sn�1, we obtain the followinganalogue of Lemma 2:4:3.2. Lemma. Let Æ 2 (0; 1) and �1; : : : ; �m be random points in En2 . With proba-bility greater than 1� Æ we havejXi2E �ij � pnpjEj+ 2(Æ)plogmjEjfor all E � f1; : : : ;mg. 2We will �rst onsider the ase 0 < p � 2:3.3. Proposition. Let p 2 (0; 2℄ and Æ 2 (0; 1). If m � 1(Æ)p�2n, then a subsetA of En2 with jAj = m satis�es with probability > 1� Æ �  1jAjX�2A jh�; yijp!1=p � 018



for every y 2 Sn�1, where ; 0 > 0 are absolute onstants.Proof: For every y 2 Sn�1 we have kh�; yikL 2(En2 ;�) �  and kh�; yik2 = 1. ByLemma 2:3, kh�; yikL 1(En2 ;�) � p. Then, we follow the proof of Proposition 2:6. 2For the ase p > 2 we need the analogue of Lemma 2:9:3.4. Lemma. Let �1; : : : ; �m be as in Lemma 3:2. If B � 42(Æ)plogm, thenXfj:jh�j ;yij>Bg jh�j ; yijp � hp(4n)p=2;for every p > 2 and y 2 Sn�1.Proof: As in Lemma 2:9, we de�ne E�(y) = fj � m : jh�j ; yij > �g. Then, forevery � � 42(Æ)plogm and y 2 Sn�1 we have �2jE�(y)j � n.Let B � 42(Æ)plogm, and k0 be the smallest integer for whih 2k0B � pn.Then, Xfj:jh�j ;yij>Bg jh�j ; yijp = k0�1Xk=0 Xfj:2kB<jh�j;yij�2k+1Bg jh�j ; yijp� k0�1Xk=0 jE2kB j(2k+1B)p � n k0�1Xk=0 (2k+1B)p(2kB)2= 2pnBp�2 k0�1Xk=0 2(p�2)k � 2pnBp�2 2k0(p�2)2p�2 � 1� 2p2p�2 � 1nBp�2�2pnB �p�2 = hp(4n)p=2: 2On the other hand, an adaptation of the proof of Lemma 2:8 gives: If m �(Æ)n�B1�p, then a subset A of En2 with jAj = m satis�es with probability > 1� Æ(�) 0� 1jAj Xf�2A:jh�;yij�Bg jh�; yijp1A1=p � 4ppfor all y 2 Sn�1. If we hoose B = 42(Æ)plogm and assume that n � n0(Æ), thenany m � hp(4n)p=2 satis�es our ondition for (�). Therefore, (�) and Lemma 3:4imply  1jAjX�2A jh�; yijp!1=p � (4 + 1)ppfor every y 2 Sn�1. The lower bound is lear from Proposition 3:3 and the mono-toniity of our average in p. We summarize as follows:19



3.5. Theorem. Let 0 < p < 1 and Æ 2 (0; 1). There exists n0(Æ) suh that, forevery n � n0 a subset A � En2 with m � m0 elements forms a p-distribution withprobability greater than 1� Æ, wherem0 = m0(p; Æ) =8<: (Æ)p�2n , if 0 < p � 2hp(4n)p=2 , if p > 2. 2The next two lemmas will allow us to estimate the size of a  �-distribution in En2 :3.6. Lemma. Let �1; : : : ; �m be as in Lemma 3:2. Let � 2 [1; 2℄ and M > 0. IfB � 42(Æ)plogm > 2M , thenXfj:jh�j ;yij>Bg exp� jh�j ; yij�M� � � exp�2�n�=2M� � ;for all y 2 Sn�1.Proof: Keeping the notation of Lemma 3:4, we estimate as follows:Xfj:jh�j ;yij>Bg exp� jh�j ; yij�M� � = k0�1Xk=0 Xfj:2kB<jh�j;yij�2k+1Bg exp� jh�j ; yij�M� �� k0�1Xk=0 jE2kB j exp� (2k+1B)�M� �� nB2 k0�1Xk=0 2�2k exp� (2k+1B)�M� �� n22k0B2 exp� (2k0B)�M� � ;sine B > 2M guarantees that the sum is dominated by the last term. On observingthat 2k0B � 2pn, we onlude the proof. 23.7. Lemma. Let � 2 [1; 2℄, Æ 2 (0; 1) and B > 0. If m � (Æ)n exp�(B=)��,then m random points �1; : : : ; �m 2 En2 satisfy with probability greater than 1� Æ1m Xfj:jh�j ;yij�Bg exp�(jh�j ; yij=)�� � 3=2for all y 2 Sn�1.Proof: There exists  > 0 suh that REn2 exp�(jh�; yij=)�� � 5=4 for every y 2 Sn�1and � 2 [1; 2℄. We de�nef(x) = e( jh�;yij )�REn2 exp�(jh�; yij=)���f�:jh�;yij�Bg(�)20



and follow the proof of Lemma 2:8. 23.8. Theorem. Let  > 0, Æ 2 (0; 1) and � 2 [1; 2℄. If n � n0(; Æ), then a subsetA of En2 with jAj = m � exp(n�=2) satis�es with probability greater than 1� Ækh�; yikL �(A) � C(Æ)1=�for every y 2 Sn�1.Proof: We hoose B = 42(Æ) 12n�4 , and M = 8(Æ)= 1� , where 2(Æ); (Æ) are theonstants in Lemmas 3:6 and 3:7 respetively. By Lemma 3:6,Xfj:jh�j ;yij>Bg exp�jh�j ; yij�(8(Æ))� � � exp� n�=2(4(Æ))�� � m=2;if n � n0(Æ; ). We may also assume that exp(2n�=2) � (Æ)n, therefore theondition for Lemma 3:7 beomes2n�=2 � 12�  �2 n�24 ;whih is obviously satis�ed sine � � 2. Hene, Lemma 3:7 givesXfj:jh�j ;yij�Bg exp�jh�j ; yij=(8(Æ))�� � 3m=2:Adding the estimates, we onlude the proof with C(Æ) = 8(Æ). 2Remark: The estimates in Theorems 3.5 and 3.8 are optimal (see the Remark afterTheorem 2.14).4 Random projetions onto n-dimensional subspaesIn this Setion we disuss a di�erent type of question, whih reets the samegeometry. We are going to present two formulations of the problem:(a) Let N > n, and onsider an orthonormal basis of RN . For every U = (uij)in the orthogonal group O(N), de�nevi = pNPnU�(ei) = (pNuij)j�n ; i = 1; : : : ; N;where Pn denotes the orthogonal projetion of RN onto Rn . Let V = fv1; : : : ; vNg.Using the orthogonality of U , we easily hek thatkhv; yikL2(V ;�(V )) =  1N NXi=1hvi; yi2! 12 = 0� NXi=1( nXj=1 uijyj)21A 12 = jyj21



for every y 2 Rn . The question is: given p � 1, �nd the minimal value N(p) ofN > n for whih a random (with respet to U 2 O(N)) set V = V (U) as above isa (p;M)-distribution for some good onstant M � 1.The answer is given by the following fat:4.1. Theorem. For every � > 1 there exists (�) > 0 suh that: if N � �n, thena random U 2 O(N) satis�eskhv; yikL1(V;�(V )) � (�)for every y 2 Sn�1. If p > 2 and N � np=2, then a random U 2 O(N) satis�eskhv; yikLp(V;�(V )) � ppfor every y 2 Sn�1, where  > 0 is an absolute onstant.Proof: Let U 2 O(N). Then, U indues a random embedding of Rn into RN , givenby y 7! (hvi; yi)i�N = pNUy:For every y 2 Rn and every p � 1 we have 1N NXi=1 jhvi; yijp!1=p = N 12� 1p kU(y)kp:Now, Dvoretzky's theorem for `Np , p > 2 shows that if N � np=2, then for a randomU 2 O(N) we will have N 12� 1p kU(y)kp � 2N 12� 1pMpjyjfor every y 2 Rn , whereMp = ZSn�1 kxkp�(dx) � ppN 1p� 12 :This shows that khv; yikLp(V;�(V )) � pp for every y 2 Sn�1. The proof of the otherinequality is analogous: we now use the fat (�rst proved by Kashin [Ka℄) that, forevery � 2 (0; 1), a random �N -dimensional subspae of `N1 is C(�)-Eulidean (seealso [STJ℄, or [Pi, Chapter 6℄). 2For every p � 1, we de�ne p� = maxf1; p=2g. Then, ombining the two estimatesin Theorem 4.1 we obtain:4.2. Corollary. Let p � 1 and N � np� . Then, a random U 2 O(N) satis�eskhv; yikLp(V;�(V )) � pp khv; yikL1(V;�(V ))for every y 2 Rn , where V = fpNPnU�(ei) : i = 1; : : : ; Ng. 222



Observe that we have a phase transition at p = 2, whih is a onsequene ofthe orresponding hange of behavior in Dvoretzky's theorem for `Np .(b) Another interpretation of the same fat: Let N > n and onsider an or-thonormal basis feigi�N of RN . For every n-dimensional subspae En 2 GN;n,de�ne the vetors wi = pNPEn(ei) ; i = 1; : : : ; N;and write W = W (En) for the set fw1; : : : ; wNg. Given p � 1, the question is to�nd N(p) suh that: if N � N(p), then a random En 2 GN;n satis�eskhw; yikLp(W;�(W )) � pp khw; yikL1(W;�(W ))for every y 2 En. The isotropi ondition is now oming from the observation thatkhw; yik2L2(W;�(W )) = NXi=1hPEn(ei); yi2 = jyj2for every En 2 GN;n and y 2 En.Observe that there is a natural orrespondene between the sets V (U) in (a)and the sets W (En) in (b): in the �rst ase we projet a random orthonormal basisof RN onto a �xed n-dimensional subspae, while in the seond ase we projet a�xed orthonormal basis onto a random subspae. As expeted, the estimates forN(p) in ase (b) are similar to the ones in Corollary 4.2:4.3. Theorem. Let N � N(p), where N(p) ' np� , p� = maxf1; p=2g. Then, arandom En 2 GN;n satis�eskhv; yikLp(V;�(V )) � pp khv; yikL1(V;�(V ))for all y 2 En, where V = fpNPEn(ei) : i = 1; : : : ; Ng. 2() One an also study the minimal value N(�), � 2 [1; 2℄, of N > n for whih arandom set V = V (U) or W =W (En) forms a  �-distribution (in the notation of(a) and (b) respetively). The argument will be exatly as in the proof of Theorem4.1. We will have to use Dvoretzky's theorem for `N � : a diret omputation of thequantity k(�;N) = n(M=b)2 where M = RSn�1 kxk`N ��(dx) and b = maxfkxk`N � :x 2 Sn�1g, and the fat that k(�;N) determines (up to a onstant) the maximaldimension for whih a random subspae of `N � is 4-Eulidean, will give the relationbetween N(�) and n. We have k(�;N) ' (logN)2=�, and needk(�;N) ' n;therefore N ' exp(n�=2):4.4 Theorem. Let N � (Æ) exp(n�=2). Then,(i) With probability greater than 1�Æ, an orthogonal transformation U 2 O(N)satis�es khv; yikL �(V;�(V )) �  khv; yikL1(V;�(V ))23



for every y 2 Rn , where V = fpNPnU�(ei) : i = 1; : : : ; Ng.(ii) With probability greater than 1� Æ, a subspae En 2 GN;n satis�eskhv; yikL �(V;�(V )) �  khv; yikL1(V;�(V ))for all y 2 En, where V = fpNPEn(ei) : i = 1; : : : ; Ng. 25 Convex hull of random points inside a onvexbody: distane estimatesIn this Setion we onsider the following question: Let K be a onvex body withentroid at the origin in Rn , and let Æ 2 (0; 1). We �x  2 (0; 1) and hoose N =exp(n) points x1; : : : ; xN , uniformly and independently from K. The quantity wewant to estimate is � = �(Æ; ), the smallest positive number for whiho(x1; : : : ; xN ) � �Kwith probability greater than 1 � Æ. We may learly assume that K is isotropiwith entroid at the origin, in whih ase we an make use of the fat that(�) 1n Dn � 01n LKDn � K � (n+ 1)LKDn � 2n3=2Dn:The support funtion of K is de�ned by hK(y) = maxx2Khx; yi. We will need thefollowing simple lemma:5.1. Lemma. Let K be an isotropi onvex body in Rn , with entroid at the origin.For every � 2 Sn�1 de�ne f�(t) = jK \ (�? + t�)j. Then, for every " 2 (0; 1) wehave Z hK(�)"hK (�) f�(t)dt � n2 (1� ")n:Proof: By the Brunn-Minkowski inequality f1=(n�1)� is onave, and f�(s) = 0 forevery s > hK(�). Therefore,f�(t) � �1� thK(�)�n�1 f�(0);and, integrating on ["hK(�); hK(�)℄, we getZ hK (�)"hK(�) f�(t)dt � f�(0)hK(�)n (1� ")n:But f�(0) � kf�k1=e (see [MM℄), and (n + 1)kf�k1hK(�) � jKj = 1 beause Khas its entroid at the origin. Hene, the lemma follows. 224



5.2. Theorem. Let  2 (0; 1) and K be an isotropi onvex body with entroidat the origin in Rn . For every Æ 2 (0; 1), m = exp(n) points x1; : : : ; xm hosenuniformly and independently from K, satisfy with probability greater than 1� ÆK � o(x1; : : : ; xm) � (Æ)K:Proof: Let � 2 (0; 1) to be determined, and onsider an �-net N for Sn�1, withjN j � exp(n log(3=�)). For every � 2 N we haveProb (x 2 K : hx; �i < "hK(�)) < 1� (1� ")nn2by Lemma 5.1. Hene, m random points x1; : : : ; xm from K will satisfymaxj�mhxj ; �i < "hK(�)with probability smaller than�1� (1� ")nn2 �m � exp(�m(1� ")n=n2):Therefore, if we set A = o(x1; : : : ; xm), we will have with probability greater than1� Æ hA(�) � "hK(�)for all � 2 N , provided thatm � (Æ) log(3=�)n3 exp(2"n):Then, the triangle inequality and (�) show thathA(�) � �"� 2n5=2�1 �hK(�) � "2hK(�)for all � 2 Sn�1, that is, K � A � "2K;provided that � ' "n�5=2, whih gives the restrition m � (Æ) log(3n5=2=")n3e2"n.Putting m = exp(n) and hoosing the best ", we onlude the proof. 2An inspetion of the argument above shows that if we want A to be very loseto K in the distane sense, we still have an estimate of the number of points needed:5.3 Proposition. Let K be an isotropi onvex body with entroid at the origin inRn . For every Æ; " 2 (0; 1), m points x1; : : : ; xm hosen uniformly and independentlyfrom K, satisfy with probability greater than 1� ÆK � o(x1; : : : ; xm) � (1� ")K;provided that m � (Æ)(=")n. 225
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