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On the existence of subgaussian directions for log-concave
measures
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Abstract. We show that if µ is a centered log-concave probability measure

on Rn then,
c1√
n
≤ |Ψ2(µ)|1/n ≤

c2
√

logn
√
n

,

where Ψ2(µ) is the ψ2-body of µ, and c1, c2 > 0 are absolute constants. It
follows that µ has “almost subgaussian” directions: there exists θ ∈ Sn−1 such
that

µ ({x ∈ Rn : |〈x, θ〉| ≥ ctE|〈·, θ〉|}) ≤ e
− t2

log (t+1)

for all 1 ≤ t ≤
√
n logn, where c > 0 is an absolute constant.

1. Introduction

Let µ be a log-concave probability measure on Rn, with centre of mass at the
origin. We say that a direction θ ∈ Sn−1 is subgaussian for µ with constant r > 0
if

(1.1) ‖〈·, θ〉‖ψ2 ≤ rmθ,

where mθ is the median of |〈·, θ〉| with respect to µ, and

(1.2) ‖f‖ψ2 = inf
{

t > 0 :
∫

Rn

exp
(
(|f(x)|/t)2

)
dµ(x) ≤ 2

}
.

It is known that

(1.3) ‖f‖ψ2 ' sup
q≥2

‖f‖q√
q

.

This article provides a new general estimate on the following question: is it true
that every log-concave measure µ has at least one “subgaussian” direction (with
constant r = O(1))?

This question was posed by V. Milman in the setting of convex bodies and an
affirmative answer was first given for some special classes. Bobkov and Nazarov
(see [3] and [4]) proved that if K is an isotropic 1–unconditional convex body, then
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‖〈·, θ〉‖ψ2 ≤ c
√

n‖θ‖∞ for every θ ∈ Sn−1, which implies that the diagonal direction
is a subgaussian direction with constant O(1). In [16] it is proved that every zonoid
has a subgaussian direction with a uniformly bounded constant. Another partial
result was obtained in [17]: if K is isotropic and K ⊆ (γ

√
nLK)Bn

2 for some γ > 0,
then

(1.4) σ
(
θ ∈ Sn−1 : ‖〈·, θ〉‖ψ2 ≥ c1γtLK

)
≤ exp(−c2

√
nt2/γ)

for every t ≥ 1, where σ is the rotationally invariant probability measure on Sn−1

and c1, c2 > 0 are absolute constants.
In the general case, B. Klartag ([9]) established the existence of a “subgaussian”

direction up to a logarithmic in the dimension factor (see also [8]). More precisely,
there exists θ ∈ Sn−1 such that

(1.5) µ ({x : |〈x, θ〉| ≥ ctmθ}) ≤ e
− t2

log2α(t+1) ,

for all 1 ≤ t ≤
√

n logα n, where α = 3 in [9] and α = 1 in [8]. In this article we
obtain a slightly better estimate.

A natural way to study this problem is to define the symmetric convex set
Ψ2(µ) with support function

(1.6) hΨ2(µ)(θ) := sup
2≤q≤n

(E |〈·, θ〉|q)1/q
√

q
,

and to estimate its volume. Actually, this was the strategy in [9] and [8]. Note
that Ψ2(µ) contains the ellipsoid 1√

2
Z2(µ), where

(1.7) hZ2(µ)(θ) :=
(
E |〈·, θ〉|2

)1/2
.

It seems plausible that, in the case of centered log-concave probability measures,
Ψ2(µ) is a “bounded volume ratio” body, i.e.

(1.8)
(
|Ψ2(µ)|
|Z2(µ)|

)1/n

≤ C,

where C > 0 is an absolute constant.
The main result of the paper establishes this volume estimate up to a

√
log n

term.

Theorem 1.1. Let µ be a centered log-concave probability measure on Rn.
Then,

(1.9)
c1√
n
≤ |Ψ2(µ)|1/n ≤ c2

√
log n√
n

,

where c1, c2 > 0 are absolute constants.

A direct consequence of Theorem 1.1 is the existence of subgauusian directions
for µ with constant r = O(

√
log n). A variant of the proof leads to the following:

Theorem 1.2. (i) If K is a centered convex body of volume 1 in Rn, then there
exists θ ∈ Sn−1 such that

(1.10) |{x ∈ K : |〈x, θ〉| ≥ cthZ2(K)(θ)}| ≤ e−
t2

log (t+1)

for all t ≥ 1, where c > 0 is an absolute constant.
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(ii) If µ is a centered log-concave probability measure on Rn, then there exists
θ ∈ Sn−1 such that

(1.11) µ ({x ∈ Rn : |〈x, θ〉| ≥ ctE|〈·, θ〉|}) ≤ e−
t2

log (t+1)

for all 1 ≤ t ≤
√

n log n, where c > 0 is an absolute constant.

The starting point of the proof is the same as in [8]. Assume, for simplic-
ity, that µ is the Lebesgue measure on an isotropic convex body K with bounded
isotropic constant. We approximate Ψ2(K) by the convex hull of a logarithmic in
the dimension number of bodies of the form Zq(K)/

√
q, where Zq(K) is the Lq-

centroid body of K. We obtain an improved estimate for the covering numbers
N(Zq(K), t

√
qBn

2 ) by replacing the argument in [8], which was using quermassin-
tegrals, by a variant of an argument of M. Talagrand which provides a bound for
the dual covering numbers N(Bn

2 , t
√

qZ◦
q (K)) in terms of widths of Zq(K) of neg-

ative order (see Proposition 4.4 and Corollary 4.5). Here we exploit the negative
moments approach which has been developed by the second named author. Then,
we apply the theorem of Artstein, Milman and Szarek (see [1]) on the duality of
entropy numbers.

An additional feature of the proof is a reduction to the case of convex bodies
with uniformly bounded isotropic constant. This reduction is obtained by a “convo-
lution argument” which is presented in Section 3 and is of independent interest. An
analogous reduction is an essential ingredient in Klartag’s work [9, Section 4]; the
main difference is that in the present paper convolution with a gaussian is replaced
by convolution with a Euclidean ball.

The paper is organized as follows: In Section 2 we introduce notation, termi-
nology and some background material which is needed for the rest of the paper.
In Section 3 we describe the convolution procedure. In Section 4 we introduce the
p-medians and describe a method for covering numbers estimates in a more general
setting. In Section 5, this method is applied to the Lq-centroid bodies. The proof
of the theorems is given in Section 6.

2. Preliminaries

We work in Rn, which is equipped with a Euclidean structure 〈·, ·〉. We denote
by ‖ · ‖2 the corresponding Euclidean norm, and write Bn

2 for the Euclidean unit
ball, and Sn−1 for the unit sphere. Volume is denoted by | · |. We write ωn for the
volume of Bn

2 and σ for the rotationally invariant probability measure on Sn−1.
We also write Ã for the homothetic image of volume 1 of a compact set A ⊆ Rn of
positive volume, i.e. Ã := A

|A|1/n .
The letters c, c′, c1, c2 etc. denote absolute positive constants which may change

from line to line. Whenever we write a ' b, we mean that there exist absolute
constants c1, c2 > 0 such that c1a ≤ b ≤ c2a. Also, if K, L ⊆ Rn we will write
K ' L if there exist absolute constants c1, c2 > 0 such that c1K ⊆ L ⊆ c2K.

A star-shaped body C with respect to the origin is a compact set that satisfies
tC ⊆ C for all t ∈ [0, 1]. We denote by ‖ · ‖C the gauge function of C:

(2.1) ‖x‖C = inf{λ > 0 : x ∈ λC}.

A convex body in Rn is a compact convex subset C of Rn with non-empty interior.
We say that C is symmetric if x ∈ C implies that −x ∈ C. We say that C is
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centered if it has centre of mass at the origin:
∫
C
〈x, θ〉 dx = 0 for every θ ∈ Sn−1.

The support function hC : Rn → R of C is defined by hC(x) = max{〈x, y〉 : y ∈ C}.
We define the mean width of C by

(2.2) W (C) =
∫
Sn−1

hC(θ)σ(dθ),

and, for each −∞ < p < ∞, p 6= 0, we define the p-mean width of C by

(2.3) Wp(C) =
(∫

Sn−1
hpC(θ)σ(dθ)

)1/p

.

The radius of C is the quantity R(C) = max{‖x‖2 : x ∈ C} and, if the origin is an
interior point of C, the polar body C◦ of C is

(2.4) C◦ := {y ∈ Rn : 〈x, y〉 ≤ 1 for all x ∈ C}.
The geometric distance of two centered convex bodies A and B is the quantity
d(A,B) = inf

{
ts | t, s > 0, 1

tA ⊆ B ⊆ sA
}
.

If A and B are compact sets in Rn, then the covering number N(A,B) of A by
B is the smallest number of translates of B whose union covers A. We will use the
duality of entropy numbers theorem of Artstein, Milman and Szarek (see [1]):

Theorem 2.1. Let K be a symmetric convex body in Rn. Then,

(2.5) log N(K, Bn
2 ) ≤ c1 log N(Bn

2 , c2K
◦),

where c1, c2 > 0 are absolute constants.

We will also use Sudakov’s inequality [23]: If C is a symmetric convex body in
Rn, then

(2.6) N(C, tBn
2 ) ≤ exp(cn(W (C)/t)2)

for every t > 0, where c > 0 is an absolute constant.
We refer to the books [22], [15] and [20] for basic facts from the Brunn-

Minkowski theory and the asymptotic theory of finite dimensional normed spaces.

We write P[n] for the class of all probability measures in Rn which are absolutely
continuous with respect to the Lebesgue measure. The density of µ ∈ P[n] is denoted
by fµ. A probability measure µ ∈ P[n] is called symmetric if fµ is an even function
on Rn. We say that µ ∈ P[n] is centered if for all θ ∈ Sn−1,

∫
Rn〈x, θ〉dµ(x) = 0. A

measure µ on Rn is called log-concave if for any Borel subsets A and B of Rn and
any λ ∈ (0, 1), µ(λA + (1 − λ)B) ≥ µ(A)λµ(B)1−λ. A function f : Rn → [0,∞)
is called log-concave if log f is concave on its support {f > 0}. It is known that
if µ is log-concave and µ(H) < 1 for every hyperplane H, then µ ∈ P[n] and its
density fµ is log-concave (see [5]). Note that if K is a convex body in Rn then
the Brunn-Minkowski inequality implies that 1K̃ is the density of a log-concave
measure.

Let µ ∈ P[n]. For every q ≥ 1 and θ ∈ Sn−1 we define

(2.7) hZq(µ)(θ) :=
(∫

Rn

|〈x, θ〉|qfµ(x) dx

)1/q

.

If µ is log-concave then hZq(µ)(θ) < ∞ for every q ≥ 1 and every θ ∈ Sn−1. We
define the Lq-centroid body Zq(µ) of µ to be the centrally symmetric convex set
with support function hZq(µ). Lq–centroid bodies were introduced in [12]. Here
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we follow the normalization (and notation) that appeared in [18]. The original
definition concerned the class of measures 1K where K is a convex body of volume
1. In this case, we also write Zq(K) instead of Zq(1K).

If K is a compact set in Rn and |K| = 1, it is easy to check that Z1(K) ⊆
Zp(K) ⊆ Zq(K) ⊆ Z∞(K) for every 1 ≤ p ≤ q ≤ ∞, where Z∞(K) = conv{K,−K}.
Note that if T ∈ SLn then Zp(T (K)) = T (Zp(K)). Moreover, if K is convex body,
as a consequence of the Brunn–Minkowski inequality (see, for example, [18]), one
can check that

(2.8) Zq(K) ⊆ c
q

p
Zp(K)

for all 1 ≤ p < q, where c ≥ 1 is an absolute constant. If K has its center of mass
at the origin, then

(2.9) Zq(K) ⊇ cK

for all q ≥ n, where c > 0 is an absolute constant. Additional information on
Lq–centroid bodies can be found in [16] and [19].

A centered measure in µ ∈ P[n] is called isotropic if Z2(µ) = Bn
2 . We say that

a centered convex body K is isotropic if Z2(K) is a multiple of the Euclidean ball
and we define the isotropic constant of K by

(2.10) LK :=
(
|Z2(K)|
|Bn

2 |

)1/n

.

So, K is isotropic if and only if Z2(K) = LKBn
2 . Note that K is isotropic if and

only if LnK1 K
LK

is isotropic. A centered convex body K is called almost isotropic if

K has volume one and K ' T (K) where T (K) is an isotropic linear transformation
of K. In general, we define the isotropic constant of an isotropic µ ∈ P[n] by
Lµ := fµ(0)

1
n . We refer to [14], [7] and [19] for additional information on isotropic

convex bodies.
Let µ be a centered measure in P[n]. For every star shaped body C in Rn and

any −n < p ≤ ∞, p 6= 0, we set

(2.11) Ip(µ,C) :=
(∫

Rn

‖x‖pCdµ(x)
)1/p

.

As before, if K is a compact set of volume 1, we write Ip(K, C) instead of Ip(1K , C).
We also define

(2.12) R(K, C) := I∞(K, C) := max
x∈K

‖x‖C .

This is the radius of K with respect to C. If C = Bn
2 we simply write Ip(K) instead

of Ip(K, Bn
2 ).

Let µ ∈ P[n] and assume that 0 ∈ supp(µ). For every p > 0 we define a set
Kp(µ) as follows:

(2.13) Kp(µ) :=
{

x ∈ Rn : p

∫ ∞

0

fµ(rx)rp−1dr ≥ fµ(0)
}

.

The bodies Kp(µ) were introduced in [2] and allow us to study log-concave measures
using convex bodies. K. Ball proved that if µ is log-concave then Kp(µ) is convex.
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If µ is centered then Kn+1(µ) is also centered. Moreover, if µ is centered and
log-concave, then, for all1 ≤ p ≤ n,

(2.14) c1fµ(0)1/nZq(µ) ⊆ Zq(K̃n+1(µ)) ⊆ c2fµ(0)1/nZq(µ),

where c1, c2 > 0 are absolute constants (see [19] for a proof). By the definition of
Ψ2(µ), it follows that

(2.15) c1fµ(0)1/nΨ2(µ) ⊆ Ψ2(K̃n+1(µ)) ⊆ c2fµ(0)1/nΨ2(µ),

Note that, if µ is also isotropic, (2.14) implies that

(2.16) Lµ = fµ(0)1/n ' LKn+1(µ).

3. Convolutions

The purpose of this Section is to show that for every isotropic convex body K
there exists a second isotropic convex body K1 with bounded isotropic constant
and the “same behavior” with respect to linear functionals.

Theorem 3.1. Let K be an isotropic convex body in Rn. There exists an
isotropic convex body K1 in Rn with the following properties:

(1) LK1 ≤ c1.
(2) c2Zp(K1) ⊆ Zp(K)

LK
+
√

pBn
2 ⊆ c3Zp(K1) for all 1 ≤ p ≤ n.

(3) c4Ψ2(K1) ⊆ Ψ2(K)
LK

⊆ c5Ψ2(K1).

The constants ci, i = 1, . . . , 5 are absolute positive constants.

We shall define K1 as the “convolution” of K with a multiple of Bn
2 . Before

giving the necessary definitions, we recall some simple properties of the convolution
f ∗ g of two non-negative integrable functions f and g on Rn; recall that f ∗ g is
defined by

(3.1) (f ∗ g)(x) =
∫

Rn

f(y)g(x− y) dy, x ∈ Rn

and satisfies

(3.2)
∫

Rn

(f ∗ g)(x) dx =
(∫

Rn

f(x) dx

)(∫
Rn

g(x) dx

)
.

If µ1, µ2 ∈ P[n] we define µ1∗µ2 to be the probability measure with density fµ1 ∗fµ2 .

Lemma 3.2. Let f, g : Rn → R+ be integrable functions with
∫

Rn f(x) dx =∫
Rn g(x) dx = 1.

(1) If f and g are even, then f ∗ g is even.
(2) If f and g have their center of mass at the origin, then f ∗g has its center

of mass at the origin.
(3) If f and g are log-concave, then f ∗ g is log-concave.

Proof. The first assertion follows directly from the definition and the third one is
a consequence of the Prékopa–Leindler inequality (see e.g. [20]). Assuming that
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both f and g have center of mass at the origin, for every θ ∈ Sn−1 we write∫
Rn

〈x, θ〉(f ∗ g)(x)dx =
∫

Rn

f(y)
∫

Rn

〈x, θ〉g(x− y)dxdy

=
∫

Rn

f(y)
∫

Rn

〈z + y, θ〉g(z)dzdy

=
∫

Rn

〈y, θ〉f(y)dy +
∫

Rn

〈z, θ〉g(z)dz = 0.

This proves the second claim. �

Lemma 3.3. Let µ1, µ2 ∈ P[n]. Assume that at least one of the densities f :=
fµ1 and g = gµ2 is even. Then, for every k ∈ N,

(3.3)
Z2k(µ1) + Z2k(µ2)

2
⊆ Z2k(µ1 ∗ µ2) ⊆ Z2k(µ1) + Z2k(µ2).

In the case k = 1 we have

(3.4) h2
Z2(µ1∗µ2)

= h2
Z2(µ1)

+ h2
Z2(µ2)

.

Proof. For every θ ∈ Sn−1 we have

h2k
Z2k(f∗g)(θ) =

∫
Rn

〈x, θ〉2k(f ∗ g)(x) dx

=
∫

Rn

f(y)
∫

Rn

〈x, θ〉2kg(x− y)dxdy

=
∫

Rn

f(y)
∫

Rn

(〈y, θ〉+ 〈z, θ〉)2kg(z)dzdy

=
2k∑
s=0

(
2k

s

)(∫
Rn

〈z, θ〉sg(z)dz

)(∫
Rn

〈y, θ〉2k−sf(y)dy

)
.

Since at least one of f and g is even, for all odd s we have

(3.5)
(∫

Rn

〈z, θ〉sg(z)dz

)(∫
Rn

〈y, θ〉2k−sf(y)dy

)
= 0,

and hence, all the terms in the above sum are non-negative. It follows that, for
every θ ∈ Sn−1,

(3.6) h2k
Z2k(µ1∗µ2)

(θ) ≥
(∫

Rn

〈z, θ〉2kg(z)dz +
∫

Rn

〈y, θ〉2kf(y)dy

)
,

which shows that

(3.7) hZ2k(µ1∗µ2) ≥
(
h2k
Z2k(µ1)

+ h2k
Z2k(µ2)

)1/2k

≥
hZ2k(µ1) + hZ2k(µ2)

2
.

On the other hand, for all 0 ≤ s ≤ 2k we have

(3.8)
∫

Rn

〈x, θ〉sf(y)dy ≤
(∫

Rn

|〈y, θ〉|2kf(y)dy

)s/2k
= hsZ2k(µ1)

(θ)

and similarly,

(3.9)
∫

Rn

〈z, θ〉2k−sg(z)dz ≤
(∫

Rn

|〈z, θ〉|2kg(z)dz

)(2k−s)/2k

= h2k−s
Z2k(µ2)

(θ).
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This implies that

(3.10) h2k
Z2k(µ1∗µ2)

≤
2k∑
s=0

(
2k

s

)
hsZ2k(µ2)

h2k−s
Z2k(µ1)

=
(
hZ2k(µ1) + hZ2k(µ2)

)2k
.

So, Z2k(µ1 ∗ µ2) ⊆ Z2k(µ1) + Z2k(µ2). �

Definition 3.4. Let f : Rn → R+ be an integrable function with
∫

Rn f(x) dx =
1. For every λ > 0 we define f(λ) : Rn → R+ by

(3.11) f(λ)(x) := λnf(λx).

Moreover, if µ ∈ P[n], we write µ(λ) for the measure with density fµ(λ) := (fµ)(λ).

It is easily checked that

(3.12)
∫

Rn

f(λ)(x)dx =
∫

Rn

f(x)dx = 1

and

(3.13) Zq(µ(λ)) =
1
λ

Zq(µ)

for every q > 0. In particular, if K is a convex body of volume 1, for all q, a > 0
we have

(3.14) Zq(an1K
a
) =

1
a
Zq(K).

and for all −n < q < ∞, q 6= 0 and a > 0 we have

(3.15) Iq(an1K
a
) =

1
a
Iq(K).

Definition 3.5. Let C1 and C2 be two centered convex bodies of volume 1 in
Rn. Assume that at least one of K1,K2 is symmetric. For any a, b > 0 we define a
log-concave function hC1

a ,
C2
b

on Rn by

(3.16) hC1
a ,

C2
b

(x) := anbn
(
1C1

a
∗ 1C2

b

)
(x).

From Lemma 3.2 we see that hC1
a ,

C2
b

has center of mass at the origin and integral
equal to 1. Observe that

(3.17) hC1
a ,

C2
b

(0) = anbn
∫

Rn

1C1
a

(y)1C2
b

(−y)dy = |bC1∩ (−aC2)| = |bC1∩ (aC2)|.

We define the centered log-concave measure µC1
a ,

C2
b

as the measure with density
hC1

a ,
C2
b

.

Proposition 3.6. Let C1, C2 be two centered convex bodies of volume 1 in Rn

and let µC1
a ,

C2
b

be defined as above. If C = K̃n+1

(
µC1

a ,
C2
b

)
, then

(1) C is centered and has volume 1.
(2) For any 1 ≤ q ≤ n, abZq(C) ' |bC1 ∩ aC2|1/n (bZq(C1) + aZq(C2)).
(3) abΨ2(C) ' |bC1 ∩ aC2|1/n (bΨ2(C1) + aΨ2(C2)).
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Proof. The first assertion is clear. Let 1 ≤ q ≤ n. Then, using Lemma 3.3 and
(2.14), (3.17) and (3.14), we see that

Zq(C) = Zq(K̃n+1(hC1
a ,

C2
b

))

' h
1/n
C1
a ,

C2
b

(0)Zq(hC1
a ,

C2
b

)

' |bC1 ∩ aC2|1/nZq
(
(an1C1

a
) ∗ (bn1C2

b
)
)

' |bC1 ∩ aC2|1/n
(
Zq(an1C1

a
) + Zq(bn1C2

b
)
)

' |bC1 ∩ aC2|1/n
(

Zq(C1)
a

+
Zq(C2)

b

)
.

This proves the second claim. Finally, observe that, for every θ ∈ Sn−1,

1
|bC1 ∩ aC2|1/n

hΨ2(C)(θ) ' sup
q≥2

a−1hZq(C1)(θ) + b−1hZq(C2)(θ)√
q

≥ max
{

1
a

sup
q≥2

hZq(C1)(θ)√
q

,
1
b

sup
q≥2

hZq(C2)(θ)√
q

}
≥ c

(
hΨ2(C1)(θ)

a
+

hΨ2(C2)(θ)
b

)
,

and
1

|bC1 ∩ aC2|1/n
hΨ2(C)(θ) ' sup

q≥2

a−1hZq(C1)(θ) + b−1hZq(C2)(θ)√
q

≤ sup
q≥2

a−1hZq(C1)(θ)√
q

+ sup
q≥1

b−1hZq(C2)(θ)√
q

=
hΨ2(C1)(θ)

a
+

hΨ2(C2)(θ)
b

.

This completes the proof. �

Proof of Theorem 3.1. Let K1 be the convex body that we obtain if we apply
Proposition 3.6 with C1 = K, C2 = B̃n

2 , a = LK and b = 1. Since |K∩LKB̃n
2 |1/n '

1, we immediately get

(3.18) Zq(K1) '
Zq(K)

LK
+
√

qBn
2 ⊇ √

qBn
2

for all 1 ≤ q ≤ n. Since Ψ2(K) ⊇ cLKBn
2 , we also have

(3.19) Ψ2(K1) '
Ψ2(K)

LK
+ Bn

2 ' Ψ2(K)
LK

.

This already proves (2) and (3).
For (1) we use the fact that Z2(K) = LKBn

2 to write

(3.20)
LK1√

n
' |Z2(K1)|1/n ' |Bn

2 +
√

2Bn
2 |1/n '

1√
n

.

It follows that LK1 ≤ c1 for some absolute constant c1 > 0. �

Note: We conclude this Section by pointing out the following consequence of The-
orem 3.1: If K is a centered convex body of volume 1 in Rn, then there exists a
centered convex body K1 of volume 1 in Rn, such that
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(1) LK1 ' 1
(2) d(Ψ2(K),Ψ2(K1)) ' 1, where d(A,B) is the geometric distance of A,B.

This means that the geometry of the “Ψ2–body” cannot be a reason for LK to be
unbounded.

4. p-medians

In this section we describe an argument that can be used in order to give upper
bounds for the covering numbers N(K, tBn

2 ) of a convex body K by multiples of
the Euclidean ball. In fact, we will work in a more general setting than the one
which is needed for our purpose. We start with the following definition.

Definition 4.1. Let µ be a centered log-concave probability measure on Rn
with density fµ and let C be a symmetric convex body in Rn. For every p > 0 we
define the p-median of C with respect to µ as the unique number mp(µ, C) > 0 for
which

(4.1) µ (mp(µ,C)C) = 2−p.

Similarly, if K is a centered convex body of volume 1 in Rn, we define mp(K, C)
by the equation

(4.2) |K ∩mp(K, C)C| = 2−p.

Note that mp(K, C) is a decreasing function of p. If we set m0(K, C) = R(K, C)
and m∞(K, C) = 0 then mp(K, C) is a continuous function of p on [0,∞]. Note also
that m1 is the usual median of ‖ · ‖C on K; it is known that m1(K, C) ' I1(K, C).
Moreover, we have the following:

Lemma 4.2. Let K be a centered convex body of volume 1 in Rn, let C be a
symmetric convex body in Rn and let p ≥ 1. Then,

(4.3) mp(K, C) ≥ 1
2
I−p(K, C).

Moreover, if p < n and if I−p(K, C) ≤ aI−2p(K, C) for some a ≥ 1, then we have
that

(4.4) m2p log(2a)(K, C) ≤ 2I−p(K, C).

Proof. We set I−p := I−p(K, C) and mp := mp(K, C). From Markov’s inequality
we have that

(4.5)
∣∣∣∣K ∩ 1

2
I−p(K, C)C

∣∣∣∣ ≤ 2−p = |K ∩mp(K, C)C|,

and hence, mp(K, C) ≥ 1
2I−p(K, C). On the other hand, by the Paley–Zygmund

inequality (see [21]) we have that

(4.6) |{x ∈ K : ‖x‖−pC ≥ spI−p−p}| ≥ (1− sp)2
(

I−p−p

I−p−2p

)2

= (1− sp)2
(

I−2p

I−p

)2p

.

Choosing s = 1
2 , we get

(4.7) |K ∩ 2I−pC| ≥ (1− 2−p)2a−2p ≥ (2a)−2p = 2−2p log 2a.

This proves (4.4). �
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Let L be a star-shaped body in Rn. For every r > 0 we define a probability
density gL,r on Rn by

(4.8) gL,r(x) :=
1

|L|Γ(n+r
r )

e−‖x‖
r
L .

We write gL := gL,1. Note that the density γn of the standard Gaussian measure
can be expressed as γn := g√2Bn

2 ,2
. Note also that, if µL,r is the measure with

density gL,r, then for every compact set C and any a > 0, one has that

(4.9) gaL,r(C) = gL,r
(C

a

)
.

Lemma 4.3. Under the above assumptions, the measure µL,r with density gL,r
is a probability measure on Rn. If L is convex and r ≥ 1 then µL,r is a log-concave
measure. If L is symmetric, then gL,r is even. If L has center of mass at the origin
then gL,r has center of mass at the origin.

Moreover, if |L| = 1, if V is a star-shaped body, and if p > 0 and q > −n, we
have that

(4.10) Zp(gL,r) =

(
Γ
(
n+p+r

r

)
Γ
(
n+r
r

) )1/p

Zp(L)

and

(4.11) Iq(gL,r, V ) =

(
Γ
(
n+q+r
r

)
Γ
(
n+r
r

) )1/q

Iq(L, V ).

Proof. Let h : Rn → R+ be homogeneous of degree p. Then,

(4.12)
∫

Rn

h(x)dµL,r(x) =
Γ
(
n+p+r

r

)
Γ
(
n+r
r

) 1
|L|

∫
L

h(x)dx.

Indeed, ∫
Rn

h(x)e−‖x‖
r
Ldx =

∫
Rn

h(x)
∫ ∞

‖x‖L

(−e−t
r

)′dtdx

=
∫ ∞

0

rtr−1e−t
r

∫
‖x‖L≤t

h(x)dxdt

=
∫
‖x‖L≤1

h(x)dx

∫ ∞

0

rtr+p+n−1e−t
r

dt

= Γ
(

n + p + r

r

)∫
L

h(x)dx.

The assertions of the Lemma follow if we choose h to be 1, 〈x, θ〉, |〈x, θ〉|p or ‖x‖qV
respectively. �

Proposition 4.4. Let K and C be star-shaped sets in Rn. Assume that C is
symmetric, K has volume 1 and K is r-convex: for every x, y ∈ Rn,

(4.13) ‖x + y‖rK + ‖x− y‖rK ≤ 2‖x‖rK + 2‖y‖rK .

Then, for every p > 0 we have that

(4.14) log N

(
K,

c1

p1/r
mp(gK,r, C)C

)
≤ c2p,
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where c1, c2 > 0 are absolute constants.

Proof. Let {z1, . . . , zN} be a maximal set of points in K with respect to the condi-
tion ‖zi − zj‖C ≥ t. Then, the sets zi + t

2C have mutually disjoint interiors.
Let A := |K|Γ(n+r

r ). Using the symmetry of C and (4.13) we see that, for
every s > 0,

gK,r

(
2s

t
zi + sC

)
=

1
A

∫
sC

e−‖x+
2s
t zi‖r

K dx

≥ 1
A

∫
sC

e−(‖x‖r
K+‖ 2s

t zi‖r
K)dx

=
1
A

e−‖
2s
t zi‖r

K

∫
sC

e−‖x‖
r
K dx

≥ e−( 2s
t )r

gK,r(sC).

Choose s = mp(gK,r, C) and t := 2s
p1/r . Then,

(4.15) 1 ≥
N∑
i=1

µK,r

(
2s

t
+ sC

)
≥ N2−pe−p.

This implies that N(K, tC) ≤ N ≤ ec2p, where c2 > 0 is an absolute constant. �

Corollary 4.5. Let C be a symmetric convex body in Rn and let 1 ≤ p ≤ n/2
be such that W−2p(C) ' W−p(C). Then,

(4.16) log N
(
C, c1

√
n/pW−p(C)Bn

2

)
≤ c2p,

where c1, c2 > 0 are absolute constants.

Proof. We apply Proposition 4.4 with K = B̃n
2 and r = 2. Lemma 4.3 shows that,

for any 1 ≤ q ≤ n/2,

(4.17) I−q(gB̃n
2 ,2

, C◦) '
√

nI−q(B̃n
2 , C◦) ' nW−q(C),

where the last equality follows by integration in polar coordinates.
Since W−2p(C) ' W−p(C), Lemma 4.2 shows that

(4.18) mp(gB̃n
2 ,2

, C◦) ' nW−p(C).

Now, Proposition 4.4 gives

(4.19) log N

(
B̃n

2 , c
n
√

p
W−p(C)C◦

)
≤ cp.

Therefore,

(4.20) log N

(
Bn

2 , c

√
n

√
p

W−p(C)C◦
)
≤ c′p.

The result follows from Theorem 2.1. �

Remarks. (i) The argument that we used is a variation of an argument of M.
Talagrand (see [10] and [11]). The new ingredient is the use of the p-median.

(ii) There exist convex bodies that do not satisfy the “regularity” assumption
W−2p(C) ' W−p(C) of Corollary 4.4. Given any a ≥ 1 and 1 ≤ p ≤ n

4 one can find
an ellipsoid E such that W−2p(E) ≤ 1

aW−p(E).
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5. Covering numbers of the Lq-centroid bodies

Our goal in this section is to show the following:

Proposition 5.1. Let K be an isotropic convex body in Rn, let 1 ≤ q ≤ n and
t ≥ 1. Then,

(5.1) log N (Zq(K), c1t
√

qLKBn
2 ) ≤ c2

n

t2
+ c3

√
n
√

q

t
,

where c1, c2, c3 > 0 are absolute constants.

We will use the following fact proved in [19]: if K is a centered convex body
of volume 1, and if 1 ≤ p ≤ n/2, then

(5.2) I−p(K) '
√

n

p
W−p(Zp(K)).

We will also use the following Lp version of the Blaschke–Santaló inequality obtained
by Lutwak and Zhang [12]: (see also [6] for a proof in the convex case):

Theorem 5.2. Let K be an origin star-shaped body of volume 1 in Rn. Then,

(5.3) |Z◦
p (K)|1/n ≤ |Z◦

p (B̃n
2 )|1/n,

with equality if and only if K is a centered ellipsoid of volume 1.

Moreover, the reverse inequality has been established in [18]:

Theorem 5.3. Let K be a centered convex body of volume 1 in Rn. Then,

(5.4) |Z◦
p (K)|1/n ≥ c

LK
|Z◦
p (B̃n

2 )|1/n,

It follows that, for every centered convex body K of volume 1 in Rn and every
1 ≤ p ≤ n,

(5.5) W−n(Zp(K)) =
( |Z◦

p (K)|
|Bn

2 |

)1/n

≤

(
|Z◦
p (B̃n

2 )|
|Bn

2 |

) 1
n

≤ c1
√

p

and

(5.6) W−n(Zp(K)) =
( |Z◦

p (K)|
|Bn

2 |

)1/n

≥ c′

LK

(
|Z◦
p (B̃n

2 )|
|Bn

2 |

)1/n

≥ c2

LK

√
p,

where c1, c2 > 0 are absolute constants.
We will also use the following simple fact (for a proof see [19, Proposition 4.7]):

Proposition 5.4. Let K be an origin star-shaped body of volume 1 in Rn and
let 0 < p ≤ n

2 . Then,

(5.7) I−p(K) ≥ I−p(B̃n
2 ) '

√
n.

We are now ready to prove the following:

Proposition 5.5. Let K be an isotropic convex body in Rn, let 1 ≤ q ≤ n/2
and 1 ≤ t ≤

√
n/q. Then,

(5.8) log N (Zq(K), c1t
√

qLKBn
2 ) ≤ c2

n

t2
,

where c1, c2 > 0 are absolute constants.
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Proof. Assume first that LK ' 1. From Proposition 5.4 we have that I−q(K) ≥
c
√

n. Also, by Hölder’s inequality, I−q(K) ≤ I2(K) '
√

n.
Using (5.2), (5.5) and (5.6) we get W−q(Zq(K)) ' √

q ' W−n(Zq(K)). This
shows that, for all q ≤ r ≤ n,

(5.9) W−2r(Zq(K)) ' W−r(Zq(K)) ' √
q.

Then, Corollary 4.5 implies that

(5.10) log N
(
Zq(K), c

√
n/rW−r(Zq(K))Bn

2

)
≤ cr.

Let 1 ≤ t ≤
√

n/q. Choosing r = n/t2, we get

(5.11) log N (Zq(K), ct
√

qBn
2 ) ≤ c

n

t2
.

We now turn to the general case. From Theorem 3.1, if K is an isotropic convex
body in Rn then we can find a second isotropic convex body K1 in Rn such that
LK1 ' 1 and, for every 1 ≤ q ≤ n,

(5.12) Zq(K1) '
1

LK
Zq(K) +

√
qBn

2 .

Therefore, for any 1 ≤ t ≤
√

n/q,

N

(
1

LK
Zq(K), t

√
qBn

2

)
≤ N

(
1

LK
Zq(K) +

√
qBn

2 , t
√

qBn
2

)
≤ N (Zq(K1), t

√
qBn

2 )

≤ e
n
t2 .

This completes the proof. �

Proof of Proposition 5.1. The case 1 ≤ t ≤
√

n/q follows from Proposition 5.5
(observe that

√
n
√
q

t ≤ n
t2 ). Assume that t ≥

√
n/q. We set p :=

√
n
√
q

t ≤ q. Then,
using (2.8), we have that

N (Zq(K), t
√

qLKBn
2 ) ≤ N

(
c
q

p
Zp(K), t

√
qLKBn

2

)
≤ N

(
Zp(K), t

√
p

q

√
pLKBn

2

)
.

Applying Proposition 5.5 for Zp(K) with t =
√

n/p, we see that

N (Zq(K), t
√

qLKBn
2 ) ≤ N

(
Zp(K),

√
n

p

√
pLKBn

2

)
≤ ecp = exp

(
c

√
n
√

q

t

)
,

and the proof is complete (observe that
√
n
√
q

t ≥ n
t2 in this case). �

Proposition 5.1 gives us some information about the “regularity” of the covering
numbers of Zq(K). In particular:

Corollary 5.6. Let K be an isotropic convex body in Rn and let 1 ≤ q ≤ n.
Define β ≥ 1 by the equation q = n1/β. Let a := min{β, 2}. Then,

(5.13) N (Zq(K), c1t
√

qLKBn
2 ) ≤ exp

(
c2

n

ta

)
,
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where c1, c2 > 0 are absolute constants.

Proof. Assume first that β ≥ 2. Then, q ≤
√

n and it is known (see [18]) that
W (Zq(K)) ' √

qLK . In this case, the result follows from Sudakov’s inequality
(2.6).

On the other hand, if β ∈ [1, 2], using the fact that qβ = n, we observe that for
all 1 ≤ t ≤ √

q,

(5.14)
√

q
√

n

t
≤ n

ta
,

and the result follows from Proposition 5.1. �

Using (2.14), (2.15) one can immediately extend the results of this section to the
setting of log-concave measures:

Corollary 5.7. Let µ be an isotropic log-concave measure in Rn and let 1 ≤
q ≤ n and t ≥ 1. Then,

(5.15) log N (Zq(µ), c1t
√

qBn
2 ) ≤ c2

n

t2
+ c3

√
n
√

q

t
.

Moreover, if β ≥ 1 satisfies q = n1/β and if we set a = min{β, 2}, then

(5.16) N (Zq(µ), c1t
√

qBn
2 ) ≤ ec2

n
ta ,

where c1, c2, c3 > 0 are absolute constants.

6. Volume of Ψ2(K)

Let K be a centered convex body of volume 1 in Rn. Recall the definition of
Ψ2(K): it is the symmetric convex body with support function

(6.1) hΨ2(K)(θ) = sup
1≤p≤n

hZp(K)(θ)√
p

.

From the definition, one has Zp(K) ⊆ √
pΨ2(K) for all 1 ≤ p ≤ n. In particular,

Z2(K) ⊆
√

2Ψ2(K), which implies that

(6.2) |Ψ2(K)|1/n ≥ c
LK√

n
.

Our goal is to give an upper bound for the volume of Ψ2(K). Our estimate is the
following:

Theorem 6.1. Let K be a centered convex body of volume 1 in Rn. Then,

(6.3) |Ψ2(K)|1/n ≤ c

√
log n√

n
LK .

Moreover, there exists θ ∈ Sn−1 such that

(6.4) |{x ∈ K : |〈x, θ〉| ≥ cthZ2(K)(θ)}| ≤ e−
t2

log (t+1)

for all t ≥ 1, where c > 0 is an absolute constant.

Our first observation is that, starting with the definition

(6.5) Ψ2(K) = conv
{

Zp(K)
√

p
, p ∈ [1, n]

}
,
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and using the fact that Z2p(K) ' Zp(K), we may write

(6.6) Ψ2(K) ' conv
{

Zp(K)
√

p
, p = 2k, k = 1, . . . , log2 n

}
.

We set

(6.7) m1 := log2(
√

n), m2 := log2

(
n

log n

)
, m3 := log2 n = 2m1,

and we define symmetric convex bodies C1, C2, C2,1, C3 and C3,1 as follows:

C1 := conv
{

Zp(K)
√

p
, p ∈ [1,

√
n]
}

,

C2 := conv
{

Zp(K)
√

p
, p = 2k, k = m1, . . . ,m2

}
,

C2,1 := conv
{

Zp(K)
√

p
√

log p
, p = 2k, k = m1, . . . ,m2

}
,

C3 := conv
{

Zp(K)
√

p
, p = 2k, k = m2 + 1, . . . ,m3

}
,

C3,1 := conv
{

Zp(K)
√

p
√

log p
, p = 2k, k = m2 + 1, . . . ,m3

}
.

It is clear that

(6.8) Ψ2(K) ' conv{C1, C2, C3}.

We also define

(6.9) V := conv{C1, C2,1, C3,1}.

We will give upper bounds for the covering numbers of C1, C2, C2,1, C3, C3,1 by
LKBn

2 .

(i) Covering numbers of C1

We will need some preliminary observations.

Lemma 6.2. Let K be a centered convex body in Rn and let 1 ≤ q ≤ n. Let A
be a subset of K with volume |A| ≥ 1− e−q. Then, for all 1 ≤ p ≤ c1q,

(6.10) Zp(K) ⊆ 2Zp(Ã),

where c1 > 0 is an absolute constant.

Proof. Recall that there exists an absolute constant c > 0 such that hZ2p(K)(θ) ≤
chZp(K)(θ) for all θ ∈ Sn−1 and p ≥ 1.
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We fix an absolute constant c1 > 0 such that e−q/2cc1q ≤ 1
2 . Then, we have

that ∫
K

|〈x, θ〉|pdx =
∫
A

|〈x, θ〉|pdx +
∫
K\A

|〈x, θ〉|pdx

≤ |A|1+
p
n

∫
Ã

|〈x, θ〉|pdx + |K \A| 12
(∫

K

|〈x, θ〉|2pdx

) 1
2

≤
∫
Ã

|〈x, θ〉|pdx + e−
q
2 cp
∫
K

|〈x, θ〉|pdx

≤
∫
Ã

|〈x, θ〉|pdx +
1
2

∫
K

|〈x, θ〉|pdx.

This proves the Lemma. �

We will also use the following (see [17, Theorem 2.1] for a proof):

Lemma 6.3. Let K be an isotropic convex body with R(K) ≤ a
√

nLK . Then,

(6.11)
(
|Ψ2(K)|
|Bn

2 |

)1/n

≤ W (Ψ2(K)) ≤ W√
n(Ψ2(K)) ≤ c(a)LK ,

where c > 0 is an absolute constant.

Proposition 6.4. Let K be an isotropic convex body in Rn. Then,

(6.12)
(
|C1|
|Bn

2 |

)1/n

≤ W (C1) ≤ W√
n(C1) ≤ cLK ,

where c > 0 is an absolute constant. Moreover, for all t ≥ 1,

(6.13) N (C1, c1tLKBn
2 ) ≤ e

c2n

t2 ,

where c1, c2 > 0 are absolute constants.

Proof. It is known that |K ∩ s
√

nLKBn
2 | ≥ 1 − e−s

√
n for s ≥ c′, where c′ > 0 is

an absolute constant (this is the main result in [18]). Set s = max{c−1
1 , c′} where

c1 > 0 is the constant from Lemma 6.2. Let A = K ∩ c−1
1

√
nLKBn

2 . Then, R(Ã) ≤
c′
√

nLK and Ã is almost isotropic. Also, by Lemma 6.2, for every 1 ≤ p ≤
√

n, we
have Zp(K) ⊆ 2Zp(Ã). Therefore,

(6.14) C1 ⊆ 2C1(Ã) ⊆ 2Ψ2(Ã).

Now, the result follows from Lemma 6.3 and Sudakov’s inequality (2.6). �

(ii) Covering numbers of C2 and C3

We will need the following (see [8] for a proof):

Lemma 6.5. Let A1, . . . , As be subsets of RBk
2 . For every t > 0,

(6.15) N(conv(A1 ∪ · · · ∪As), 2tBk
2 ) ≤

(
cR

t

)s s∏
i=1

N(Ai, tB
k
2 ).

Lemma 6.6. Let K be an isotropic convex body in Rn. For every t ≥ 1,

(6.16) max
{

N(C2, c1t
√

log nLKBn
2 ), N(C3, c2t(log log n)LKBn

2 )
}
≤ ec3

n
t

and

(6.17) max{N (C2,1, c1LKBn
2 ) , N (C3,1, c2LKBn

2 )} ≤ ec3n,
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where c1, c2, c3 > 0 are absolute constants.

Proof. We first consider the bodies C2 and C2,1. We set s := m2 −m1 and define

(6.18) Ai :=
1

2
m1+i

2

Z2m1+i(K) and Ai,1 :=
1

2
m1+i

2
√

m1 + i
Z2m1+i(K),

for i = 0, . . . , s. Note that max{R(Ai), R(Ai,1)} ≤
√

nLK for 0 ≤ i ≤ s. From
Proposition 5.1 we have that, for every r ≥ 1,

(6.19) log N (Ai, crLKBn
2 ) ≤ c′n

r2
+

c′n

r
√

log n

and

(6.20) log N (Ai,1, cLKBn
2 ) ≤ c′n

m1 + i
+

c′n√
m1 + i

√
log n

≤ c′′
c′n

m1 + i
.

Using Lemma 6.5, we see that

(6.21) log N (C2, 2crLKBn
2 ) ≤ log2 n +

c′n log n

r2
+

c′n log n

r
√

log n
.

Since R(C2) ≤
√

nLK , we consider the case 1 ≤ t ≤
√

n. Then, log2 n ≤ n
t . Setting

r = t
√

log n we conclude that, for any t ≥ 1,

(6.22) log N
(
C2, 2ct

√
log nLKBn

2

)
≤ 3c′n

t
.

Similarly, we see that

(6.23) log N (C2,1, 2cLKBn
2 ) ≤ log2 n + c′n

s∑
i=1

1
m1 + i

≤ c′′n

2m1∑
j=m1+1

1
j
≤ c′′′n.

We now consider the bodies C3 and C3,1. We set s := m3 − m2 = log log n and
define

(6.24) Ai :=
1

2
m2+i

2

Z2m2+i(K), Ai,1 :=
1

2
m2+i

2
√

m2 + i
Z2m2+i(K),

for i = 1, . . . , s. Note that max{R(Ai), R(Ai,1)} ≤
√

nLK for all 1 ≤ i ≤ s.
Corollary 5.5 shows that, for any r ≥ 1,

(6.25) log N (Ai, crLKBn
2 ) ≤ c′n

r
and log N (Ai,1, cLKBn

2 ) ≤ c′n

m2 + i
≤ c′′n

log n
.

From Lemma 6.5, we get

(6.26) log N (C3, 2crLKBn
2 ) ≤ log2 n +

c′n(log log n)
r

.

Now, we set t := r
(log logn) . As before, we may assume that 1 ≤ t ≤

√
n, and hence,

log2 n ≤ n
t . Setting r = t log log n we conclude that, for any t ≥ 1,

(6.27) log N (C3, 2ct(log log n)LKBn
2 ) ≤ 3c′n

t
.

Also, by Lemma 6.5,

(6.28) log N (C3,1, 2cLKBn
2 ) ≤ c′

n(log log n)
log n

≤ cn.

This concludes the proof. �
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Proposition 6.7. Let K be an isotropic convex body in Rn. For every t ≥ 1,

(6.29) N
(
Ψ2(K), c1t

√
log nLKBn

2

)
≤ ec2

n
t and

(6.30) N (V, c3LKBn
2 ) ≤ ec2n,

where c1, c2, c3 > 0 are absolute constants.

Proof. We apply Lemma 6.5 for A1 := C1, A2 := C2 and A3 := C3 and we use
Proposition 6.4 and Lemma 6.6. We work similarly for V . �

Proof of Theorem 6.1. The first assertion follows immediately from Proposition
6.7 (with t = 1) and the fact that for any pair of compact subsets A and B of Rn,
one has |A| ≤ N(A,B)|B|.

The same argument shows that |V |1/n ≤ cLK |Bn
2 |1/n. Consider the symmetric

convex body

(6.31) V1 := conv
{

Zp(K)
√

p
√

log p
, p ∈ [2, n]

}
and V2 := conv

{
Zp(K)

√
p
√

log p
, p ≥ 2

}
.

Note that, by (2.9), V1 ' V2. Then, V1 ⊆ cV and |V2|1/n ≤ cLK |Bn
2 |1/n. So, there

exists θ ∈ Sn−1 such that hV2(θ) ≤ cLK . This implies that, for all p ≥ 1,

(6.32) hZp(K)(θ) ≤ c
√

p
√

log pLK .

By Markov’s inequality we have that, for every p > 0,

(6.33) |{x ∈ K : |〈x, θ〉| ≥ ehZp(K)(θ)}| ≤ e−p.

Let t ≥ 1. If we define p by the equation
√

p = t√
log (t+1)

, then (6.32) and (6.33)

imply (6.4). �

Proof of Theorem 1.1. The first part follows immediately from Theorem 6.1 and
(2.15). The proof of the second part is similar to the proof of Theorem 6.1. We
omit the details. �
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