
Mean width and diameter of proportional

sections of a symmetric convex body

A. Giannopoulos and V. D. Milman

1 Introduction

Let K be a symmetric convex body in Rn. The purpose of this paper is to provide
upper and lower bounds for the diameter of a random [λn]–dimensional central
section of K, where the proportion λ ∈ (0, 1) is arbitrary but fixed. There are
several aspects of our approach to this question that should be clarified right away:

(1) We are interested in bounds expressed in terms of average parameters of the
body K which can be efficiently computed in a simple way, therefore being useful
from the computational geometry point of view.

(2) The dimension n is understood to tend to infinity. Then, we say that our
bounds hold for a random [λn]–dimensional section of K if they are satisfied by all
K∩ξ where ξ is in a subset of the appropriate Grassmannian with Haar probability
measure greater than 1− h(λ, n), and h(λ, n)→ 0 as n tends to infinity.

(3) We say that our estimates are tight for a class of bodies and a fixed pro-
portion λ if the ratio of our upper and lower bounds depends only on λ. It is clear
that one cannot obtain tight bounds for the class of all symmetric convex bodies: it
is not hard to describe almost degenerated bodies in Rn (for example, an ellipsoid
with highly incomparable semiaxes) for which the diameter of [λn]–sections does
not concentrate around some value. So, it is an important question to see under
what conditions on K the estimates obtained by a method are tight.

We use the standard notation of the asymptotic theory of finite dimensional
normed spaces (which can be found in [MS]): We consider a fixed Euclidean struc-
ture in Rn and write | . | for the corresponding Euclidean norm. We denote the
Euclidean unit ball and the unit sphere by Dn and Sn−1 respectively, and we write
σ for the rotationally invariant probability measure on Sn−1.

If W is a symmetric convex body in Rn, then W induces in a natural way a
norm ‖ . ‖W to Rn. As usual, the polar body {y ∈ Rn : maxx∈W |〈y, x〉| ≤ 1} of
W is denoted by W o. An important average parameter of W is the average of the
norm ‖ . ‖W on Sn−1, defined by

(1.1) M(W ) =

∫
Sn−1

‖θ‖W σ(dθ).

With this notation, the quantity M∗(W ) := M(W o) has a natural geometric mean-
ing: it is half the mean width of W .
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Suppose that K is a symmetric convex body in Rn such that 1
bDn ⊆ K ⊆ aDn.

Let λ ∈ (0, 1) and set k = [λn]. If Gn,k is the Grassmannian of all k–dimensional
subspaces of Rn equipped with the Haar probability measure νn,k and if ξ ∈ Gn,k,
we have

(1.2) M∗(K ∩ ξ) =

∫
S(ξ)

‖θ‖(K∩ξ)oσξ(dθ) =

∫
S(ξ)

max
x∈K∩ξ

|〈x, θ〉|σξ(dθ),

and we can naturally define the function S∗K : (0, 1)→ (0,∞) with

(1.3) S∗K(λ) =

∫
Gn,k

M∗(K ∩ ξ) νn,k(dξ).

In other words, S∗K(λ) gives the average mean width of the [λn]–dimensional central
sections of K. It is not hard to check that S∗K is increasing in λ. In particular,
S∗K(λ) ≤ M∗(K) for every λ ∈ (0, 1). We view S∗K(λ) as an average parameter of
the body K, although it is computationally more complex than the single quantity
M∗(K): the empirical distribution method (described in a similar setting in [BLM])

shows that given any δ and ζ in (0, 1), a random choice of N = [c
log( 2

δ )

ζ2 ] + 1 points

x1, . . . , xN in Sn−1 satisfies

(1.4) |M∗(K)− 1

N

N∑
i=1

‖xi‖Ko | < ζM∗(K)

with probability at least 1 − δ, where c > 0 is an absolute constant. Therefore,
M∗(K) can be efficiently “computed” with high probability to any given degree of
accuracy. The computation of S∗K(λ) is more complicated and depends on whether
the values of the function M∗(K ∩ ξ) on Gn,k are concentrated around their mean
value S∗K(λ). We shall deal with this question in Section 4.

The function S∗K is clearly related to our problem on the diameter of the sections
of K: for every ξ ∈ Gn,k we have diam(K ∩ ξ) ≥ 2M∗(K ∩ ξ). Therefore, if we
define the average diameter function

(1.5) DK(λ) =

∫
Gn,k

diam(K ∩ ξ) νn,k(dξ),

we have the obvious lower bound 2S∗K(λ) ≤ DK(λ) for every λ ∈ (0, 1). In Section
3 we assume that our body K satisfies a polynomial condition of the form ab ≤ nt
for some fixed t > 0 and show that an upper bound for DK(λ) in terms of S∗K is
also possible:

Theorem A. Let 1
bDn ⊆ K ⊆ aDn and ab ≤ nt for some t > 0. If λ ∈ (0, 1), we

have
2S∗K(λ) ≤ DK(λ) ≤ 5S∗K(λ/θ)/(1− θ)1/2,

for all θ ∈ (λ, 1) with 1− θ ≥ cλ−1t log n/n, where c > 0 is an absolute constant.
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The point in the statement above is that θ can be chosen to be very close to 1,
provided that the dimension n is large and t is fixed. The polynomial condition ab ≤
nt is mild and, roughly speaking, prevents the body K from being degenerated. For
example, all the well–known natural representatives of any affine class of symmetric
convex bodies satisfy a condition of this type with a small value of t: when the
ellipsoid of maximal or minimal volume or the distance ellipsoid of K is a ball we
have ab ≤

√
n, when K is in the isotropic position, in the `–position, or in M–

position of any order α > 1
2 we also have ab ≤ nt for a suitable t > 0 independent

from n.
The double–sided estimate given by Theorem A determines the average diam-

eter DK(λ) for “most” values of λ ∈ (0, 1). As a consequence of the polynomial
condition ab ≤ nt, our function S∗K is forced to increase in a regular way on most of
(0, 1) and this implies that the bounds of Theorem A are tight: one has the a–priori
information that S∗K(λ) ' DK(λ) for most values of λ up to a constant depending
only on λ and t.

The duality relation

(1.6) S∗K(λ)S∗Ko(µ) ≤ c

1− (λ+ µ)

holds true for every body K satisfying a polynomial condition and every λ, µ ∈ (0, 1)
with λ + µ < 1, provided that n is large enough. The proof of this inequality is
based on the second named author’s “distance lemma” (see Theorem 3.4).

In Section 4 we study the question of the diameter of a “random” [λn]-section
of K. Passing from the average diameter DK(λ) to the diameter of most sections
requires some strong concentration of the function M∗(K ∩ξ) on Gn,[λn] around its
expectation S∗K(λ). We study the behavior of M∗(K ∩ ξ) and show that it satisfies
a certain Lipschitz estimate. The resulting deviation inequality is relatively weak,
however in the important case where ab is roughly speaking o(

√
n) (or more gen-

erally bM∗(K) = o(
√
n)) we prove an analogue of Theorem A for random sections

(see Section 4 for variations of this result and more precise conditions on ab):

Theorem B. Let K satisfy Dn ⊆ K ⊆ γ(n)Dn with γ(n) = o(n1/2). Let λ ∈ (0, 1)
and k = [λn]. Then, for every θ ∈ (λ, 1) we have

c1S
∗
K(λθ) ≤ diam(K ∩ ξ) ≤ c2S∗K(λ/θ)/(1− θ)1/2

for most ξ ∈ Gn,k, provided that n is large enough (depending on θ).

Using this fact one can determine the diameter of a random [λn]-section of
a body K with ab = o(n1/2) for many values of λ. More precisely, we consider
any λ-flag of subspaces Rn = E0 ⊃ E1 ⊃ . . . ⊃ Es with dimEj = [λjn], s =
s(λ) ' log[(1− λ)n]/ log(1/λ) and prove that for most orthogonal transformations
T ∈ O(n) and most values of j, the diameter of K ∩ T (Ej) is determined by

diam(K ∩ T (Ej)) ' S∗K(λj)

3



up to a constant depending only on λ. (Theorem 4.8). This is of interest being
a statement for a generic body K whose minimal/maximal volume or distance
ellipsoid is a Euclidean ball.

In Section 5 we study the case of a body in M–position of order α (an α–regular
body in the terminology of [P1]: see the beginning of Section 5 for the necessary
definitions). In this case, we determine S∗K(λ) up to a constant depending only on
λ and α:

Theorem C. Let K be a symmetric convex body in Rn, which is in M–position of
order α > 1/2. For every λ ∈ (0, 1),

c1λ
α v.rad(K) ≤ S∗K(λ) ≤ c2(1− λ)−α v.rad(K),

where v.rad(K) = (|K|/|Dn|)1/n and c1, c2 > 0 are constants depending only on α.

Actually, the left hand side inequality holds true in the much stronger form

M∗(K ∩ ξ) ≥ c1λα v.rad(K)

for every ξ ∈ Gn,[λn], while the right hand side inequality holds with M∗(K ∩ ξ)
replacing S∗K(λ) for most ξ ∈ Gn,[λn]. One may view Theorem C as a proportional
version of Urysohn’s inequality

M∗(K) ≥ v.rad(K)

for bodies in M–position of order α, which turns out to be an equivalence in this
case: we have S∗K(λ) ' v.rad(K) up to functions depending only on λ and α.

Using this information one determines diam(K ∩ ξ) for a random ξ ∈ Gn,k up
to a function of λ, for all λ ∈ (0, 1) (Theorem 5.3).

We close this paper with two upper bounds on the quantities S∗K(λ) and M∗(K)
in the case where K is in M–position of order α:

Theorem D. Let K be a symmetric convex body in Rn in M–position of order
α > 1

2 , and set ε = α− 1
2 .

(i) If 1− λ ' 1/ log n, we have

S∗K(λ)S∗Ko(λ) ≤ c(α) log2α n.

(ii) For the mean width of K we have the upper bound

M∗(K) ≤ cε−5/4nε.

Both estimates in Theorem D should be compared to the following classical
estimate of Pisier (see [L], [FT], and [P2]): Every body K has a linear image
K1 such that M(K1)M∗(K1) ≤ c log n. Part (i) of Theorem D demonstrates a
regularity of the function F (λ) = S∗K(λ)S∗Ko(λ) in the M–position case: If K is in
M–position of order α (with α even far from 1/2), then the growth of F remains
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logarithmic in n for λ even very close to 1. Pisier’s result implies that every body K
has a linear image K1 of volume |K1| = |Dn| with mean width M∗(K1) ≤ c log n.
Part (ii) of Theorem D shows that a body K in M–position of order α sufficiently
close to 1/2 has mean width logarithmic in n. Simple examples show that for every
value of ε = α− 1

2 , the nε bound for M∗(K) in Theorem D(ii) cannot be improved.

A different approach to the question of the diameter of random proportional
sections was proposed in [GM1]. We briefly discuss this method in Section 2.
Throughout the text, we compare the two methods whenever it is possible.

In the sequel, the letters c, c′, c1 etc. stand for absolute positive constants, not
necessarily the same in every occurrence. The volume, the cardinality of a finite
set and the Euclidean norm are all denoted by | . |: this should cause no confusion.

2 The Low M ∗–estimate and a first approach to
the problem

This section is a survey of results from [GM1], [GM2] and describes the “M∗K–
approach” to the diameter problem.

A crucial inequality of the asymptotic theory of finite dimensional normed
spaces is the second named author’s Low M∗–estimate which relates the diame-
ter of proportional sections of a symmetric convex body W in Rm to its mean
width M∗(W ). Roughly speaking, one has

(2.1) diam(W ∩ η) ≤M∗(W )/h1(µ)

for most η ∈ Gm,[µm], where h1 is a function depending only on µ ∈ (0, 1). For
proofs of (2.1) see [M1], [PT], [Go]: it is known that it holds true with h1(µ) =
c(1 − µ)1/2 and that this dependence on µ is best possible. We shall make use of
the precise probabilistic form of the Low M∗–estimate which can be found in [Go],
[M4]:

2.1 Theorem (Low M∗–estimate) If W is a symmetric convex body in Rm and
if µ, ε ∈ (0, 1), then we have

(2.2) diam(W ∩ η) ≤ 2M∗(W )

(1− ε)
√

1− µ
,

for all η in a subset Lm,k of Gm,k of measure νm,k(Lm,k) ≥ 1−c exp(−c′ε2(1−µ)m),
where k = [µm] and c, c′ > 0 are absolute constants. 2

Theorem 2.1 already shows that the diameter of a random section of propor-
tional dimension is controlled by the mean width of the body. In [GM1] we exploit
the idea of pushing the Low M∗–estimate to its limit in order to determine a rea-
sonable “confidence interval” for the diameter of the [λn]–sections of a body K in
Rn using average parameters of K with the same complexity as M∗(K).
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To this end, we consider the function M∗K : R+ → (0, 1] defined by

M∗K(r) = M∗(K ∩ rDn)/r,

and as a simple consequence of Theorem 2.1 we see that if r1 > 0 is the solution
of the equation M∗K(r) = h1(λ) = 1

2 (1 − λ)1/2 in r, then most [λn]–sections of K
have diameter smaller than 2r1 (see [GM1], Theorem 2.1).

It turns out that this same function can provide a general lower bound for the
diameter of the [λn]–sections of K. The main new ingredient is a conditional Low
M–estimate which is in a sense dual to Theorem 2.1:

2.2 Theorem (Conditional Low M–estimate) If K is a symmetric convex body
in Rn and if λ ∈ (0, 1), then for the solution r2 of the equation

M∗K(r) = h2(λ) := 1− c
1

1−λ

in r we can find a subset Ln,k of Gn,k with νn,k(Ln,k) ≥ 1 − ck, where k = [λn],
such that

diam(Ko ∩ ξ) ≤ 10

r2
C

λ
1−λ

for all ξ ∈ Ln,k, where 0 < c < 1 and C > 1 are absolute constants, and n is large
enough. 2

Theorem 2.2 shows that most [λn]–projections of K contain a Euclidean ball of
radius proportional to r2 up to a function depending only on λ. When λ ∈ ( 1

2 , 1),
this fact combined with Borsuk’s antipodal theorem gives r2 as a lower bound for
the diameter of the [λn]–sections of K. We thus have a double sided estimate of
diam(K ∩ ξ) in terms of the function M∗K :

2.3 Theorem (M∗K approach to the diameter problem) There exist two
explicit functions h1, h2 : (0, 1) → (0, 1) such that for every λ ∈ ( 1

2 , 1) and ev-
ery symmetric convex body K in Rn, solving the equations M∗K(r) = h1(λ) and
M∗K(r) = h2(λ) in r we find an upper estimate r1 and a lower estimate r2 for the
diameter of a random [λn]–section of K. 2

The important point in Theorem 2.3 is that the functions h1 and h2 are universal
and that the statement holds true for an arbitrary bodyK, the only restriction being
that n should be large enough depending on λ. Another advantage of Theorem 2.3
is that it makes use of the global (hence computationally simple) parameter M∗

of the body. On the other hand, being so general the estimates cannot be tight
in full generality. Another disadvantage of the method in [GM1] is that the use of
Borsuk’s theorem forces us to study only proportions λ ∈ ( 1

2 , 1). This first approach
gives no information for small proportions.

Our method in this paper is based on the function S∗K which was defined in
Section 1. It provides lower and upper bounds for the diameter of the sections of
K of any fixed proportion λ ∈ (0, 1). We also show that the estimates obtained are
tight for large classes of symmetric convex bodies and for most values of λ. Some
of our results were announced in [GM2].
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Let us close this section with an application of the M∗K approach: For every
integer t ≥ 2 we define the minimal circumradius of an intersection of t rotations
of a body K by

rt(K) = min{ρ > 0 : u1(K) ∩ . . . ∩ ut(K) ⊆ ρDn for some u1, . . . , ut ∈ SO(n)},

and the “upper radius” of a random n/t–dimensional central section of K by

Rt(K) = min{R > 0 : νn,n/t(ξ ∈ Gn,n/t : K ∩ ξ ⊆ RDξ) ≥ 1− 1

t+ 1
}.

It is proved in [M4] that
r2t(K) ≤

√
tRt(K)

for every t ≥ 2 and every body K. In [GM2] we prove that the local parameter
Rt(K) and the global parameter rt(K) are closely related in the sense that an
inverse inequality is possible in full generality:

2.4 Theorem. For every integer t ≥ 2 and every symmetric convex body K in Rn,
n ≥ n0(t), we have

Rf(t)(K) ≤ g(t)rt(K),

where g(t) = Ct, f(t) = [g(t)], and C > 1 is an absolute constant. 2

The proof of Theorem 2.4 is based on Theorems 2.1 and 2.2. The result is
somehow unexpected for an arbitrary body K. The search for the best possible
functions f and g in the statement above is likely to give more information and
probably new ideas related to the M∗K approach.

3 Average Mean Width and Diameter of Propor-
tional Sections of a Symmetric Convex Body
Satisfying Polynomial Bounds

Let K be a symmetric convex body in Rn. Recall that the “average diameter”
function DK : (0, 1)→ (0,∞) is defined by

DK(λ) =

∫
Gn,k

diam(K ∩ ξ) νn,k(dξ),

where k = [λn]. Since 2M∗(K∩ξ) ≤ diam(K∩ξ) for every ξ ∈ Gn,k, we immediately
compare DK(λ) with S∗K(λ):

(3.1) 2S∗K(λ) ≤ DK(λ)

for every λ ∈ (0, 1). Using Theorem 2.1 we shall give an upper bound for DK(λ) in
terms of S∗K . This is possible if we assume that K satisfies a polynomial condition:
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3.1 Theorem. Let K be a symmetric convex body in Rn, such that 1
bDn ⊆ K ⊆

aDn with ab ≤ nt. For every λ ∈ (0, 1), we have
(3.2)
2S∗K(λ) ≤ DK(λ) ≤ 5 inf{S∗K(λ/θ)/(1− θ)1/2 : θ ∈ (λ, 1), 1− θ ≥ c1tλ−1 log n/n},

where c1 > 0 is an absolute constant.

[It is clear that given any λ ∈ (0, 1) the set in (3.2) will be non-empty provided
that n ≥ n0(λ, t).]

Proof: Let θ ∈ (λ, 1) with 1 − θ ≥ c1tλ
−1 logn

n , and fix a subspace η with dimη =
(λ/θ)n. There exists a subset L(λ/θ)n,λn(η) ofG(λ/θ)n,λn(η) with measure ν(L(λ/θ)n,λn(η)) ≥
1− c exp(−c′ λθ (1− θ)n) such that for every ξ ∈ L(λ/θ)n,λn(η)

diam(K ∩ ξ) ≤ 4M∗(K ∩ η)√
1− θ

.

Integrating over G(λ/θ)n,λn(η) we get:

(3.3)

∫
G(λ/θ)n,λn(η)

diam(K∩ξ) ν(dξ) ≤ 4M∗(K ∩ η)√
1− θ

+abM∗(K∩η) exp(−t log n),

if c1 > 0 is chosen suitably large, where we made use of the fact that for every ξ
we have diam(K ∩ ξ) ≤ 2a ≤ 2abM∗(K ∩ η). Since ab ≤ nt, it follows that

(3.4)

∫
G(λ/θ)n,λn(η)

diam(K ∩ ξ) ν(dξ) ≤ 5
M∗(K ∩ η)√

1− θ
,

Now, integrating (3.4) over Gn,(λ/θ)n and recalling (3.1) we obtain

2S∗K(λ) ≤ DK(λ) ≤ 5
S∗K(λ/θ)√

1− θ
,

and the proof is complete. 2

3.2 Remark. If one has some information on the way S∗K(λ) increases as a function
of λ, then Theorem 3.1 can be useful in order to determine the average diameter
of the λn-dimensional sections of K. It is however clear that the lower and upper
bounds provided by Theorem 3.1 will be “close” only if S∗K(λ) increases in a regular
way.

When K satisfies a polynomial condition ab ≤ nt, then there will be many
intervals of regularity for S∗K(λ). To make this more precise, let us fix some λ ∈
(0, 1) and consider the finite sequence kj = [λjn], j = 0, 1, . . . , s(λ). The length
s(λ) of the sequence is the smallest positive integer s for which [λsn] = [λs+1n]. It
is easy to check that s(λ) ' log((1− λ)n)/ log(1/λ).

Since S∗K is increasing in λ, we have

M∗(K) = S∗K(k0) ≥ S∗K(k1) ≥ . . . ≥ S∗K(ks(λ)).
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We set dj = kj−1/kj , j = 1, . . . , s(λ). Given any small δ ∈ (0, 1) and any ζ > 1,
consider the set Jζ = {j ≤ s(λ) : dj ≥ ζ}. Then, |Jζ | ≤ t log n/ log ζ ≤ δs(λ) if ζ
satisfies the condition log ζ ≥ c1 tδ log( 2

1−λ ) log( 1
λ ).

Choose any j ∈ Jζ . Then, Theorem 3.1 implies that

(3.5) 2S∗K(λj) ≤ DK(λj) ≤ 5(1− λ)−1/2S∗K(λj−1) ≤ 5(1− λ)−1/2ζS∗K(λj).

Thus, DK(λj) ' S∗K(λj) for all j ≤ s(λ) in a set of cardinality greater than
(1− δ)s(λ), up to a function depending only on λ, t, and δ.

This observation has a meaning from the computational point of view, since
S∗K(λ) can be computed in contrast to DK(λ). The degree of efficiency of this
method clearly depends on the a-priori information one has for the concentration
of the function M∗(K ∩ ξ), ξ ∈ Gn,[λn] around S∗K(λ) (see next section).

It is reasonable to expect that S∗K increases faster as λ → 1−. If true, this
would imply that S∗K increases regularly on every interval [0, λ0], λ0 < 1, when K
satisfies a polynomial condition and n ≥ n0(λ0, t). In particular, the bounds given
by Theorem 3.1 would be tight for all “small” values of λ. Thus, we are lead to the
following:

Question: Is it true that S∗K is a “convex” function of λ on (0, 1)?

It is also interesting to note some duality relations which are satisfied by S∗K :
If F : (0, 1]× (0, 1]→ R+ is defined by

F (λ, µ) = S∗K(λ)S∗Ko(µ),

then one has upper bounds for F (λ, µ) which are independent of K (assuming that
ab is polynomial in n), provided that λ+ µ < 1. We start with a simple lemma:

3.3 Lemma. Let K be a symmetric convex body in Rn such that 1
bDn ⊆ K ⊆

aDn, with ab ≤ nt. Then, if λ, ε ∈ (0, 1), and if r is the solution of the equation
M∗(K ∩ rDn) = (1− ε)(1− λ)1/2r, we have

S∗K(λ) ≤ 2r,

provided that n/ log n ≥ c1t/ε2(1− λ), where c1 > 0 is an absolute constant.

Proof: Let k = [λn]. It is clear that r > 1/b, hence for every ξ ∈ Gn,k we have
the obvious estimate M∗(K ∩ ξ) ≤ a ≤ abr ≤ ntr. On the other hand, by the low
M∗-estimate we know that K ∩ ξ ⊆ rDξ for all ξ in a subset Ln,k of Gn,k with
measure exceeding 1− c exp(−c′ε2(1− λ)n). Therefore,

(3.6) S∗K(λ) =

∫
Gn,k

M∗(K ∩ ξ)νn,k(dξ) ≤ νn,k(Lcn,k)ntr + νn,k(Ln,k)r

≤ (c exp(−c′ε2(1− λ)n)nt + 1)r ≤ 2r,

if n is large enough. 2

We will also need the Distance Lemma from [M3]:
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3.4 Lemma. Let W be a symmetric convex body in Rn with ρDn ⊆ W ⊆ rDn.
Assume that (M∗(W )/r)2 + (M(W )ρ)2 = s > 1. Then,

(3.7)
r

ρ
≤ 1

s− 1
. 2

It is an obvious consequence of Hölder’s inequality that for every symmetric
convex body K in Rn the inequality

(3.8) M(K)M∗(K) ≥ 1

holds true. Moreover, this inequality is in general far from being sharp: it holds as
an equality if and only if K is a multiple of the Euclidean ball. On the other hand,
a well–known sequence of results of Figiel–Tomczak [FT], Lewis [L] and Pisier [P2]
states that for every K we can find a linear image K of K for which

(3.9) M(K)M∗(K) ≤ c log n,

where c > 0 is an absolute constant.
It is not hard to check that S∗K(λ)S∗Ko(µ) ≥ 1 for every λ, µ ∈ (0, 1): If for

example λ ≥ µ we have

S∗K(λ)S∗Ko(µ) ≥ S∗K(µ)S∗Ko(µ) ≥ 1

by the monotonicity of S∗K and Hölder’s inequality. Using Lemmas 3.3 and 3.4 one
can see that for bodies satisfying a polynomial condition a weaker version of (3.9)
is always true:

3.5 Theorem. Let K be a symmetric convex body in Rn such that 1
bDn ⊆ K ⊆

aDn, with ab ≤ nt. If λ, µ, κ ∈ (0, 1) and λ+ µ = 1− κ, then

(3.10) S∗K(λ)S∗Ko(µ) ≤ 8

κ
,

provided that n is large enough (depending on t, λ and µ).

Proof: Let n/ log n ≥ 64c1t/κ
2(1 − λ), where c1 is the constant from Lemma 3.3.

We apply Lemma 3.3 with ε = 1
8κ: Find r > 0 such that M∗(K ∩ rDn) = (1 −

κ/8)(1− λ)1/2r. Then, Lemma 3.3 shows that

(3.11) S∗K(λ) ≤ 2r.

Next, find ρ > 0 such that M∗(Ko ∩ 1
ρDn) = (1 − κ/8)(1 − µ)1/2 1

ρ . Since 1
aDn ⊆

K ⊆ bDn, Lemma 3.3 applies again to give

(3.12) S∗Ko(µ) ≤ 2

ρ
.
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Without loss of generality we assume that ρ ≤ r. Let T = co((K ∩ rDn) ∪ ρDn).
Then, ρDn ⊆ T ⊆ rDn, T ⊇ K ∩ rDn, and T o ⊇ Ko ∩ 1

ρDn, therefore

(3.13)(
M∗(T )

r

)2

+(M(T )ρ)
2 ≥

(
M∗(K ∩ rDn)

r

)2

+

(
M∗(Ko ∩ 1

ρ
Dn)ρ

)2

= (1−κ/8)2(2−λ−µ)

= (1− κ/8)2(1 + κ) ≥ 1 +
κ

2
.

Since ρDn ⊆ T ⊆ rDn, the distance lemma implies that

(3.14)
r

ρ
≤ 2

κ
.

Combining (3.11), (3.12) and (3.14), we obtain

S∗K(λ)S∗Ko(µ) ≤ 8

κ
. 2

In Section 5 we shall see that in the case of a body in M–position of order α one
can avoid the restriction λ + µ < 1. For λ and µ both very close to 1, we have
F (λ, µ) bounded by a constant independent from n.

4 On the Diameter of a Random Proportional Sec-
tion

We proceed to see whether one can obtain more precise information about the
diameter of a “random” [λn]-dimensional section of K. Here, we specify “random”
as follows: for every ξ in a subset Ln,[λn] of Gn,[λn] with measure νn,[λn](Ln,[λn]) ≥
1− h(λ, n), where h(λ, n) = on(1). This approaches 1 for every λ as the dimension
n grows to infinity.

To this end, we first study the behavior of M∗(K ∩ ξ) as a function of ξ on
Gn,k. We consider two distances ρ and d on Gn,k, defined by
(4.1)

ρ(ξ, η) = min{(
k∑
i=1

|ei − fi|2)1/2 : {ei}i≤k, {fi}i≤k are orthonormal bases of ξ, η}

and

(4.2) d(ξ, η) = max{d1(x, S(η)) : x ∈ S(ξ), d1 the geodesic distance}.

Our first Lemma compares ρ with d. It is probably a well known fact but we
did not find a convenient reference so we prove it below:

4.1 Lemma. Let ξ, η ∈ Gn,k. Then,

(4.3) (2/π)d(ξ, η) ≤ ρ(ξ, η) ≤ (2k)1/2d(ξ, η).
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Proof: The left hand side inequality is clear: Let {ei} and {fi} be two orthonormal
bases of ξ, η respectively. If x =

∑
tiei ∈ S(ξ), then |x−

∑
tifi| ≤ (

∑
|ei−fi|2)1/2,

therefore (2/π)d1(x, S(η)) ≤ (
∑
|ei−fi|2)1/2. It follows that (2/π)d(ξ, η) ≤ ρ(ξ, η).

For the right hand side inequality, we use an inductive argument based on the
following claim:

Claim: Let E,F ∈ Gn,m, m ≥ 2, and x ∈ S(E) be such that |PF (x)| is minimal.
Then, for every x1 ∈ E ∩ x⊥ we have PF (x1) ⊥ PF (x).

[Proof: Suppose that x1 ∈ S(E) ∩ x⊥ with β = 〈PF (x1), PF (x)〉 6= 0. Without loss
of generality we may assume that β > 0. For every t > 0 we have

|PF (x− tx1)| ≥ |x− tx1||PF (x)|,

which implies that

(4.4) 2β ≤ t(|PF (x1)|2 − |PF (x)|2),

a contradiction if we let t→ 0+.]

We use the claim to choose orthonormal bases {ei} and {fi} of ξ, η as follows:
We choose e1 ∈ S(ξ) such that |Pη(e1)| is minimal. Observe that if Pη(e1) = 0, then
d(ξ, η) = π/2 and we have nothing to prove. If not, we set f1 = Pη(e1)/|Pη(e1)|.
If {ei}i≤s and {fi}i≤s have been chosen, we choose es+1 ∈ S(ξ) ∩ 〈ei, i ≤ s〉⊥
with |Pη(es+1)| minimal. By the claim, Pη(es+1) ⊥ 〈fi, i ≤ s〉, so we set fs+1 =
Pη(es+1)/|Pη(es+1)|.

With this construction,

(4.5) |ei − fi| =
√

2(1− |Pη(ei)|2)1/2 ≤
√

2(1− |Pη(e1)|2)1/2 ≤
√

2d(ξ, η).

It follows that ρ(ξ, η) ≤ (2k)1/2d(ξ, η). 2

Using Lemma 4.1, we can prove that M∗(K ∩ ξ) satisfies the following Lipschitz
estimate:

4.2 Lemma. Let K be a symmetric convex body in Rn with 1
bDn ⊆ K ⊆ aDn, and

fix λ ∈ (0, 1) and k = [λn]. Then,

(4.6) |M∗(K ∩ ξ)−M∗(K ∩ η)| ≤ 6a2bd(ξ, η)

for every ξ, η ∈ Gn,k.

Proof: Let {ei}i≤k and {fi}i≤k be two orthonormal bases of ξ and η respectively,

such that ρ2(ξ, η) =
∑k
i=1 |ei − fi|2. Recall that

(4.7)

M∗(K ∩ ξ) ' 1√
k

∫
Ω

‖
k∑
i=1

gi(ω)ei‖(K∩ξ)odω =
1√
k

∫
Ω

max
x∈K∩ξ

〈x,
k∑
i=1

gi(ω)ei〉dω,

12



where g1, . . . , gk are independent standard Gaussian random variables on some
probability space Ω (with an analogous estimate holding for M∗(K ∩ η) and the
orthonormal basis {fi}i≤k).

We define a function h on Rn by

(4.8) h(x) = max{〈z, x〉 : z ∈ K ∩ (ξ ∪ η)}.

Then, we easily see that

(4.9) |M∗(K∩ξ)−M∗(K∩η)| ≤
∫
S(ξ)

[h(x)−‖x‖(K∩ξ)o ]+|
∫
S(ξ)

h(x)−
∫
S(η)

h(y) |

+

∫
S(η)

[h(y)− ‖y‖(K∩η)o ].

For the middle term note that, by Lemma 4.1,

(4.10) |
∫
S(ξ)

h(x)−
∫
S(η)

h(y)| ' 1√
k

∫
Ω

|h(
∑

giei)− h(
∑

gifi)|dω

≤ 1√
k

∫
Ω

h(
∑

gi(ei − fi))dω

≤ a√
k

∫
Ω

|
∑

gi(ei − fi)|dω

≤ aρ(ξ, η)√
k
≤
√

2ad(ξ, η).

By symmetry, it remains to estimate the first term in (4.9). Given x ∈ S(ξ), suppose
that h(x) = 〈z, x〉 for some z ∈ K∩η with ‖z‖ = 1 (if the max was attained for some
z ∈ K ∩ ξ we would simply have h(x)− ‖x‖(K∩ξ)o = 0). We can find x0 ∈ |z|S(ξ)
with |z− x0| ≤ |z|d(ξ, η). If x0 ∈ K ∩ ξ, then h(x)−‖x‖(K∩ξ)o ≤ 〈z− x0, x〉 ≤ |z−
x0| ≤ ad(ξ, η). Assume that ‖x0‖ > 1. Then, ‖x0‖ ≤ ‖z‖+‖x0−z‖ ≤ 1+abd(ξ, η),
and we write

(4.11) h(x)− ‖x‖(K∩ξ)o ≤ 〈z −
x0

‖x0‖
, x〉 ≤ 〈z − x0, x〉+ 〈(1− 1

‖x0‖
)x0, x〉

≤ ad(ξ, η) +
abd(ξ, η)

1 + abd(ξ, η)
|x0|

≤
[
a+

a2b

1 + abd(ξ, η)

]
d(ξ, η) ≤ 2a2bd(ξ, η).

Inserting this information into (4.9) we conclude the proof. 2

Lemma 4.2 and a well–known deviation inequality for a Lipschitz function on
Gn,k (see [MS], Chapter 6 and Appendix V) give us the following estimate:
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4.3 Lemma. Let K be a symmetric convex body in Rn with 1
bDn ⊆ K ⊆ aDn, and

fix λ ∈ (0, 1) and k = [λn]. Then,
(4.12)

νn,k

(
{ξ ∈ Gn,k : |M∗(K ∩ ξ)− S∗K(λ)| ≥ 1

2
S∗K(λ)}

)
≤ exp(−c n

a4b2
[S∗K(λ)]2),

where c > 0 is an absolute constant. 2

Lemma 4.3 provides a rather weak concentration of the values of the function
M∗(K ∩ ξ) around its expectation S∗K(λ): when applied directly, it is practically
useful only if ab is considerably small. However, as a first step we can make use of
this information in a quite interesting case: when Dn ⊆ K ⊆ aDn with a = o(

√
n).

In analogy to M∗K(r) we define the auxiliary function

(4.13) S∗K(r, λ) =

∫
Gn,k

M∗(K ∩ rDn ∩ ξ) νn,k(dξ),

where r > 0, λ ∈ (0, 1), and k = [λn]. This is a function increasing in r and λ. For
fixed λ ∈ (0, 1), the obvious inequality ‖θ‖(K∩rDn∩ξ)o ≤ ‖θ‖(K∩rDn)o for θ ∈ S(ξ)
shows that

(4.14) S∗K(r, λ) ≤M∗(K ∩ rDn) = rM∗K(r)

for all r > 0. Furthermore, one has the following additional information:

4.4 Lemma. The functions S∗K(r, λ) and rM∗K(r) = M∗(K ∩ rDn) are concave in
r.

Proof: We first show that M∗(K ∩ rDn) is concave. Let r1, r2 > 0 and 0 < β < 1.
Given θ ∈ Sn−1, there exist xi ∈ K∩riDn, i = 1, 2, such that maxx∈K∩riDn〈x, θ〉 =
〈xi, θ〉. Then, βx1 + (1− β)x2 ∈ K ∩ (βr1 + (1− β)r2)Dn, and

max
x∈K∩(βr1+(1−β)r2)Dn

〈x, θ〉 ≥ 〈βx1 + (1− β)x2, θ〉

= β max
x∈K∩r1Dn

〈x, θ〉+ (1− β) max
x∈K∩r2Dn

〈x, θ〉.

Integrating over Sn−1 we get

M∗(K ∩ (βr1 + (1− β)r2)Dn) ≥ βM∗(K ∩ r1Dn) + (1− β)M∗(K ∩ r2Dn).

In exactly the same way we show that M∗(K ∩ rDn ∩ ξ) is concave in r for every
ξ ∈ Gn,k, and integrating on Gn,k we see that S∗K(r, λ) is concave too. 2

Let {an} be a sequence satisfying an/
√
n → 0 as n → ∞. Using Lemma 4.3

and the function S∗K(r, λ) we have the following information about the diameter of
random proportional sections:

4.5 Proposition. Suppose that Dn ⊆ K ⊆ anDn. Let λ, θ ∈ (0, 1) and k = [λn].
We denote by rθK(λ) the solution of the equation

(4.15) S∗K(r, λ) = (1− θ)1/2r/3
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in r. Then, if λ < θ < 1 and n/a2
n ≥ C(λ, θ) we have

(4.16) (1− θ)1/2rθK(λ)/3 ≤ diam(K ∩ ξ) ≤ 2rθK(λ/θ),

for a random ξ ∈ Gn,k.

Proof: Given λ ∈ (0, 1), we find rθK(λ) solving (4.15) and then apply Lemma 4.3 to
the body K ∩ rθK(λ)Dn: we can find a subset L1 of Gn,k with measure

νn,k(L1) ≥ 1− exp(−c (1− θ)n
9r2

) ≥ 1− h(θ, n)

where h(θ, n) = on(1), such that for every ξ ∈ L1,

(4.17) (1− θ)1/2rθK(λ)/6 < M∗(K ∩ rθK(λ)Dn ∩ ξ) < (1− θ)1/2rθK(λ)/2.

The left hand side inequality clearly implies that for all ξ ∈ L1 we have

(4.18) diam(K ∩ ξ) ≥ (1− θ)1/2rθK(λ)/3.

On the other hand, the right hand side of (4.17) shows that there exists a subset
L2 of Gn,[(λ/θ)n] with measure ≥ 1− h(θ, n), such that

(4.19) M∗(K ∩ rθK(λ/θ)Dn ∩ η) < (1− θ)1/2rθK(λ/θ)/2

for every η ∈ L2, and the Low M∗-estimate implies that for most ξ ∈ G[(λ/θ)n],k(η)
we have

(4.20) diam(K ∩ rθK(λ/θ)Dn ∩ ξ) ≤ 4
M∗(K ∩ rθK(λ/θ)Dn ∩ η)√

1− θ
< 2rθK(λ/θ),

which shows that

(4.21) diam(K ∩ ξ) ≤ 2rθK(λ/θ),

for all ξ ∈ L3 ⊆ Gn,k with νn,k(L3) ≥ 1 − ch(θ, n). By (4.18) and (4.21), (4.16)
holds true with probability greater than 1− c1h(θ, n). 2

4.6 Remark. Let γ(θ, n) = (c(1 − θ)n/18 log n)
1
2 , where c is the constant from

Lemma 4.3. Assume that Dn ⊆ K ⊆ aDn, where a < γ(θ, n). Then, a careful
reading of the proof of Proposition 4.5 shows that it holds true with h(θ, n) = n−2.
It is then not hard to compare the solution rθK(λ) of the equation S∗K(r, λ) =
(1 − θ)1/2r/3 with the function S∗K itself. We clearly have S∗K(r, λ) ≤ S∗K(λ) for
every r > 0, and hence

(4.22) rθK(λ) ≤ 3S∗K(λ)/(1− θ)1/2

for all λ, θ ∈ (0, 1). On the other hand, assuming that Dn ⊆ K ⊆ γ(θ, n)Dn, by
Proposition 4.5 for every λ < θ < 1 we can find L ⊆ Gn,k with ν(Lc) ≤ cn−2 such
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that diam(K ∩ ξ) ≤ 2rθK(λ/θ) for all ξ ∈ L. Since rθK(λ/θ) ≥ 1, a simple estimate
gives

(4.23) S∗K(λ) ≤ 1

2

∫
Gn,k

diam(K ∩ ξ)dξ ≤ rθK(λ/θ)[1 + cγ(θ, n)n−2] ≤ c′rθK(λ/θ)

where c′ > 0 is an absolute constant. Therefore, we obtain an analogue of Propo-
sition 4.5 in which the process of “solving the equation in r” is avoided:

4.7 Theorem. Let λ, θ ∈ (0, 1) with λ < θ, and k = [λn]. For every symmetric
convex body K in Rn, n ≥ n0(θ), satisfying Dn ⊆ K ⊆ γ(θ, n)Dn, there exists a
subset Ln,k(θ) of Gn,k with measure greater than 1− cn−2, such that

(4.24) c1S
∗
K(λθ) ≤ diam(K ∩ ξ) ≤ c2S∗K(λ/θ)/(1− θ)1/2

for all ξ ∈ Ln,k(θ), where c1, c2 > 0 are absolute constants. 2

It is clear that the new point here lies in the left hand side inequality. The
right hand side of (4.24) is a consequence of the Low M∗–estimate (under milder
assumptions on K: see section 3).

Using Proposition 4.5 we proceed to obtain a-priori information on the diameter
of a random [λn]-section of K for “most” λ ∈ (0, 1). To this end, for every λ ∈ (0, 1)
we define a λ-flag of subspaces of Rn to be a finite sequence of subspaces

Rn = E0 ⊃ E1 ⊃ . . . ⊃ Es(λ),

of dimension dim(Ej) = kj = [λjn], j = 0, 1, . . . , s(λ). The length of the λ-flag is
the smallest integer s for which ks = ks+1. As in Remark 3.2, one easily checks
that s(λ) ' log[(1− λ)n]/ log(1/λ).

Let rj , j = 0, 1, . . . , s(λ), be the solution of the equation

(4.25) S∗K(r, kj) = (1− λ)1/2r/3

in r. In the notation of Proposition 4.5 we have rj = rλK(λj). We shall show that for
most j ≤ s(λ) the diameter of a random kj-section of K with Dn ⊆ K ⊆ γ(λ, n)Dn

is equal to rj up to a function depending only on λ:

4.8 Theorem. Let λ ∈ (0, 1) and K be a symmetric convex body in Rn with
Dn ⊆ K ⊆ γ(λ, n)Dn. Let {Ej}j≤s(λ) be any λ-flag of subspaces of Rn. For every
β ∈ (0, 1) we can find a set of indices J ⊆ {0, 1, . . . , s(λ)} with |J | ≥ (1 − β)s(λ)
and a subset L of the orhogonal group O(n) with Haar measure ν(L) ≥ 1− 1

n , such
that

(4.26) c1rj ≤ diam(K ∩ T (Ej)) ≤ c2g(λ, β)rj ,

for every T ∈ L and every j ∈ J , where c1, c2 > 0 are absolute constants and g(λ, β)
is an explicit function depending only on λ and β.
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Proof: We first observe that the sequence rj , j = 0, 1, . . . , s(λ) is decreasing: we
write fj(r) for the function S∗K(r, λj). Then rj is the solution of the equation
fj(r) = (1− λ)1/2r/3 in r. Since λj−1 > λj , we have fj−1 ≥ fj on (0,∞) for every
j = 1, . . . , s(λ). Also, by Lemma 2.1 each fj is a concave increasing function of r. It
is then clear that the unique points rj where fj intersect the line y = (1−λ)1/2r/3
satisfy the inequality rj−1 ≥ rj for all j ≤ s(λ).

We denote by dj the ratio rj−1/rj , j ≤ s(λ). Since Dn ⊆ K ⊆ γ(λ, n)Dn, we
have

(4.27) d1 . . . ds(λ) = r0/rs(λ) ≤ γ(λ, n).

It follows that for every ζ > 1, if Jζ = {j ≤ s(λ) : dj ≥ ζ} we must have |Jζ | ≤
log n/ log ζ. This means that |Jζ | ≤ βs(λ) provided that log ζ ≥ c′

β log( 2
1−λ ) log(1/λ).

Consider any j ∈ Jζ . By Proposition 4.5, for all T in a subset Lj of O(n) with
measure greater than 1− c1n−2 we have

(4.28) (1− λ)1/2rj/3 ≤ diam(K ∩ T (Ej)) ≤ 2rj−1 ≤ 2ζrj .

Set L =
⋂
j∈Jζ Lj . Then, ν(L) ≥ 1− n−1 if n is large enough, and for every j ∈ Jζ

and every T ∈ L we have diam(K ∩ T (Ej)) ' rj up to ζ/(1 − λ)1/2. Recall that

|Jζ | ≥ (1− β)s(λ) if ζ ≥ g(λ, β) = c′

β log( 2
1−λ ) log( 1

λ ), and the proof is complete. 2

4.9 Remark. In view of (4.22), (4.23) and (4.25), one can replace rj by S∗K(λj) in
Theorem 4.8. An argument similar to the one in the proof of Theorem 4.8 shows
that this is true for most j ∈ J .

4.10 Remark. Suppose that the maximal/minimal volume ellipsoid or the distance
ellipsoid of K is a Euclidean ball. Without loss of generality we may assume that
Dn ⊆ K ⊆ aDn with a ≤

√
n. If γ(θ, n) ≤ a ≤

√
n, we may apply the results of

this section to the body K1 = K ∩ γ(θ, n)Dn. Since K1 ⊆ K ⊆ c(θ)
√

log nK1, all
statements will hold true up to a

√
log n-factor for the body K as well.

Let us also note that an additional application of the Low M∗–estimate shows
that the results of this section hold for every symmetric convex body K with 1

bDn ⊆
K ⊆ aDn and bM∗(K) = o(

√
n). It would be interesting to know if the condition

can be replaced by the weaker M(K)M∗(K) = o(
√
n).

5 The case of a body in M-Position of order α

If A,B are symmetric convex bodies in Rn we define as usual the covering number
N(A,B) of A by B to be the smallest integer N for which we can find yi ∈ Rn, i =
1, . . . , N such that A ⊆

⋃
i≤N (yi+B). It is known that given any symmetric convex

body K in Rn and any α > 1
2 , there exists a linear image K of K satisfying the

following two conditions:

(i) The volume radius of K is 1: |K| = |Dn|.
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(ii) max{N(K, tDn), N(Dn, tK), N(Ko, tDn), N(Dn, tK
o)} ≤ exp(c(α) n

t1/α
), for

every t ≥ 1, where c(α) > 0 is a constant depending only on α: c(α) = O(1/(α −
1
2 )1/2) as α→ 1

2 .

Condition (i) is just a normalization. We could have omitted it and replaced Dn by
sDn, where |K| = |sDn|, in (ii). The fact that a body K which satisfies (i) and (ii)
exists in every affine class for every α > 1

2 is an improvement of Pisier (see e.g [P1],
Chapter 7) on previous work of Milman related to the inverse Brunn–Minkowski
inequality [M2], where (ii) had been established for α = 1.

In this section we assume that K is a symmetric convex body satisfying (i)
and (ii), and say that K is in M–position of order α (α–regular in the terminology
of [P1]). One of the consequences of (i) and (ii) is the inverse Brunn-Minkowski
inequality [M2] which will be used below in the following precise form: If u1, . . . , us
are orthogonal transformations of Rn, then ui(K) is in M–position of order α for
every i ≤ s, and

(5.1) |1
s

s∑
i=1

ui(K)| 1n ≤ c′(α)sα|K| 1n .

The constant c′(α) in (5.1) is related to c(α) in (ii) as follows: c′(α) ≤ exp(2c(α))
[P1]. Observe also that, if r > 0 then K∩rDn and co(K∪rDn) (normalized so that
their volume will be |Dn|) are also in M–position of order α, with c(α) replaced by
c′c(α), where c′ is an absolute constant.

We shall prove that in this case S∗K(λ) is determined by the volume radius of
K up to explicit functions depending only on λ and α:

5.1 Theorem. Let K be a symmetric convex body in Rn which is in M–position
of order α > 1

2 . For every λ ∈ (0, 1) we have

(5.2) c1(α)λα
(
|K|
|Dn|

) 1
n

≤ S∗K(λ) ≤ c2(α)

(1− λ)α

(
|K|
|Dn|

) 1
n

,

where c1(α), c2(α) are constants depending only on α.

The lower bound may be viewed as a proportional version of Urysohn’s in-
equality. Together with the upper bound it shows that if we accept a small loss of
dimension in computing the mean width of the body, then in the case of a body in
M–position of order α we have an equivalence

S∗K(λ) ' v.rad(K)

up to a function depending only on λ and α. For the proof of the lower bound we
shall need the following geometric Lemma which is based on measure concentration
arguments:

5.2 Lemma. Let γ ≥ 1, p > 0, 0 < λ < 1, and W be a symmetric convex body in
Rm such that

N(W, tDm) ≤ exp(γ
m

λtp
)
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for every t ≥ 1. Then, there exists a subspace η ∈ Gm,[m/2] such that

(5.3) W ∩ η ⊆ cγ1/pλ−1/pDη,

where c > 0 is an absolute constant.

Proof: Let t ≥ 1. We can find N ≤ exp(γ m
λtp ) and xi ∈ Rm, i = 1, . . . , N , such that

W ⊆
⋃
i≤N (xi + tDm). Consider the sphere RSm−1, where R > 0 is a constant to

be chosen.
Let σR denote the normalized rotationally invariant measure on RSm−1. It is

easy to see that for every i ≤ N the intersection Ai = (xi + 2tDm) ∩ RSm−1 has
measure

σR(Ai) ≤ σ(B(2t/R)),

where B(ε) denotes a cap of angular radius ε > 0 in Sm−1. We estimate σ(B(2t/R))
in a standard way:

σ(B(2t/R)) =

∫ sin−1(2t/R)

0
sinm−2 s ds

2
∫ π/2

0
sinm−2 s ds

≤
(
c1t

R

)m−1

,

for some absolute constant c1 > 0. This implies that if we set A =
⋃
i≤N Ai, then

(5.4) σR(A ∩RSm−1) ≤ exp(γ
m

λtp
)

(
c1t

R

)m−1

.

Assuming that R is chosen large enough, this is exponentially small in m. More
precisely, since the cardinality of a t–net in RS[m/2]−1 is bounded by (2R/t)[m/2],
a standard argument (see [MS], Chapter 4) shows that if

exp(γ
m

λtp
)

(
2R

t

)m
2
(
c1t

R

)m−1

< 1,

then we can find a subspace η ∈ Gm,[m/2] and a t-net C(η) for η∩RSm−1 such that
A ∩ C(η) = ∅. Analyzing the condition on R, we see that it is enough to choose

(5.5) R = c2t exp(
3γ

λtp
),

for some constant c2 > c1. We can now easily show that with this choice of R we
have W ∩ η ⊆ RDη: Suppose not. Then, we can find x ∈ RSm−1 which is also
in W ∩ η. It follows that |x − xi| ≤ t for some i ≤ N , and |x − y| ≤ t for some
y ∈ C(η). But then, |y−xi| ≤ 2t, which means that A∩C(η) 6= ∅, a contradiction.

We choose t = (γ/λ)1/p ≥ 1. Then, R = cγ1/pλ−1/p and the proof is complete.
2

We can now pass to the proof of the Theorem:
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Lower bound: Let λ ∈ (0, 1), k = [λn], and consider any ξ ∈ Gn,k. The projection
Pξ(K

o) of Ko onto ξ satisfies

(5.6) N(Pξ(K
o), tDξ) ≤ N(Ko, tDn) ≤ exp(c(α)

k

λt1/α
),

for every t ≥ 1. We may clearly assume that c(α) ≥ 1. We apply Lemma 5.2 with
W = Pξ(K

o), m = k, γ = c(α), and p = 1/α: There exists η ∈ Gk,[k/2](ξ) for which

(5.7) Pξ(K
o) ∩ η ⊆ c[c(α)]αλ−αDη := [c1(α)]−1λ−αDη.

Taking polars in η we see that Pη(K ∩ ξ) ⊇ c1(α)λαDη. Recall that for every
symmetric convex body W in Rm and every η ∈ Gm,s the inequality M(W ∩ η) ≤√
m/sM(W ) holds, so we get

(5.8)

M∗(K ∩ ξ) = M((K ∩ ξ)o) ≥ 1√
2
M((K ∩ ξ)o ∩ η) =

1√
2
M∗(Pη(K ∩ ξ)) ≥ c′1(α)λα.

It is then obvious that
S∗K(λ) ≥ c′1(α)λα. 2

[It is interesting to note that the lower bound (5.8) holds true for every subspace
ξ ∈ Gn,k. Observe also that c′1(α) ≥ c/(α− 1

2 )α/2.]

Upper bound: Let λ ∈ (0, 1) and k = [λn]. Find r > 0 such that

(5.9) M∗(K ∩ rDn) =
1

2
(1− λ)1/2r.

By the LowM∗-estimate there exists a subset Ln,k ofGn,k with measure νn,k(Ln,k) ≥
1− c exp(−c′(1− λ)n), such that

(5.10) M∗(K ∩ ξ) ≤ 1

2
diam(K ∩ ξ) ≤ r

for every ξ ∈ Gn,k. On the other hand (see [BLM]), we can find s ≤ c1
1−λ and

orthogonal transformations u1, . . . , us, satisfying

(5.11)
1

4
(1− λ)1/2rDn ⊆

1

s

s∑
i=1

ui(K ∩ rDn) ⊆ (1− λ)1/2rDn.

Set K1 = 1
s

∑
ui(K ∩ rDn). Then, for every ξ ∈ Gn,k we have

K1 ∩ ξ ⊇
1

s

s∑
i=1

[ui(K ∩ rDn) ∩ ξ],

which, together with (5.11), implies that

(1− λ)1/2r ≥M∗(K1 ∩ ξ) ≥
1

s

s∑
i=1

M∗[ui(K ∩ rDn) ∩ ξ],
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and an integration over Gn,k shows that

(5.12) S∗K∩rDn(λ) ≤ (1− λ)1/2r.

We give an upper bound for r using the inverse Brunn-Minkowski inequality:
K ∩ rDn is α-regular, therefore by (5.1) and (5.11) we obtain
(5.13)

1

4
(1− λ)1/2r ≤

(
|K1|
|Dn|

) 1
n

≤ c′(α)sα
(
|K ∩ rDn|
|Dn|

) 1
n

≤ cα1 c
′(α)

(1− λ)α

(
|K|
|Dn|

) 1
n

.

Finally, we can compare S∗K∩rDn(λ) with S∗K(λ): Observe first that there is
a constant c3(α) such that K ⊆ c3(α)nαDn and Ko ⊆ c3(α)nαDn. This follows
immediately from the bounds (ii) of the covering numbers of K and Ko by large
balls. Choosing t = c2[c(α)]αnα for some absolute constant c2, we can make both
N(K, tDn) and N(Ko, tDn) smaller than 2. Using this information and the fact
that the set Ln,k has almost full measure, we easily check that for W = K or
K ∩ rDn, ∫

Ln,k

M∗(W ∩ ξ)νn,k(dξ) '
∫
Gn,k

M∗(W ∩ ξ)νn,k(dξ),

up to absolute constants. But, M∗(K ∩ ξ) = M∗(K ∩ rDn ∩ ξ) for every ξ ∈ Ln,k,
which implies that

(5.14) S∗K(λ) ≤ cS∗K∩rDn(λ).

Combining (5.12), (5.13) and (5.14), we get

S∗K(λ) ≤ c2(α)(1− λ)−α
(
|K|
|Dn|

) 1
n

.

This completes the proof of the theorem. Observe that c2(α) ≤ c4c′(α) ≤ c4 exp(2c(α))
for some absolute constant c4 > 0. 2

A careful reading of the proof above shows that the diameter of “most” sections
K ∩ ξ, ξ ∈ Gn,λn, is determined up to constants depending only on λ:

5.3 Theorem. Let K be a symmetric convex body in Rn which is in M–position
of order α. Then, for every λ ∈ (0, 1) and for most ξ ∈ Gn,λn we have

c1(α)λα
(
|K|
|Dn|

) 1
n

≤ diam(K ∩ ξ) ≤ c2(α)

(1− λ)α+ 1
2

(
|K|
|Dn|

) 1
n

.

Proof: Since diam(K ∩ ξ) ≥ 2M∗(K ∩ ξ), the lower estimate holds true for every
ξ ∈ Gn,λn by (5.8). According to the proof of the upper estimate in Theorem 5.1,
if r is the solution of the equation M∗(K ∩ rDn) = (1− λ)1/2r/2, then

diam(K ∩ ξ) ≤ 2r ≤ c2(α)

(1− λ)α+ 1
2

(
|K|
|Dn|

) 1
n

,
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for all ξ ∈ Ln,λn ⊆ Gn,λn, where νn,λn(Ln,λn) ≥ 1− c exp(−c′(1− λ)n) (see (5.10)
and (5.13)). 2

5.4 Remark. The discussion above also shows that the M∗K approach is equivalent
to the S∗K approach in the M–position: If r = r(λ) is the solution of the equation
M∗K(r) = 1

2

√
1− λ, then

r ' S∗K(λ) ' diam(K ∩ ξ)

for all λ ∈ (0, 1) and for most ξ ∈ Gn,[λn], up to functions depending only on λ and
α. This is clear from the lower bound in Theorem 5.1 and the inequalities (5.12),
(5.13) and (5.14).

It should also be noted that for an α-regular body K in Rn, as a consequence
of the upper estimate in Theorem 5.1 and of the Blaschke – Santaló inequality, we
have the following analogue of the duality relation given by Theorem 3.4:

5.5 Corollary. Let K be a symmetric convex body in Rn, which is in M–position
of order α > 1/2. For every λ, µ ∈ (0, 1) we have

(5.15) S∗K(λ)S∗Ko(µ) ≤ C(α)

(1− λ)α(1− µ)α
,

where C(α) > 0 is a constant depending only on α. 2

Note that there is no restriction on λ or µ, in contrast to Theorem 3.4. It is
also interesting to note that with α = 1 and λ = µ = 1 − 1

logt n
i.e for sections of

almost full dimension, one has

S∗K(λ)S∗Ko(λ) ≤ c log2t n.

We close this section with an upper estimate for M∗(K) when K is in M–
position of order α and |K| = |Dn|. Our method is analogous to the one used in
[D] for a second proof of J. Bourgain’s estimate [B] on the isotropic constant:

5.6 Theorem. Let K be a symmetric convex body in Rn which is in M–position
of order α > 1/2. Then,

(5.16) M∗(K) ≤ f(ε)nε,

where ε = α− 1/2 and f(ε) = cε−5/4.

Proof: We assume that K satisfies conditions (i) and (ii). Let d = diam(K). In the
proof of Theorem 5.1 we checked that

(5.17) d ≤ c1[c(α)]αnα,

for some absolute constant c1 > 0. From (ii) we also know that for every j =
0, 1, 2, . . . such that 2j ≤ d, we can find a subset Nj of K such that K ⊆

⋃
y∈Nj (y+

(d/2j)Dn) and log |Nj | ≤ c(α)n2j/αd−1/α.
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Let Zj = (Nj − Nj−1) ∩ (3d/2j)Dn, j = 1, . . . , r0 = [log2 d]. An inductive
argument shows that for every r ≤ r0, every y ∈ K can be written in the form

(5.18) y =

r∑
j=1

yj + zr,

where yj ∈ Zj and zr ∈ (d/2r)Dn (this is known as the Dudley–Fernique decom-
position of y ∈ K). Note also that

(5.19) log |Zj | ≤ 2c(α)
2j/αn

d1/α
.

Consider any θ ∈ Sn−1. Using (5.18), we easily check that

(5.20) max
y∈K
|〈x, θ〉| ≤

r∑
j=1

max
y∈Zj

|〈y, θ〉|+ d

2r
,

for every r = 1, . . . , r0. This implies that

(5.21) M∗(K) =

∫
Sn−1

‖θ‖Ko σ(dθ) ≤ 2 +

r0∑
j=1

∫
Sn−1

max
y∈Zj

|〈y, θ〉| σ(dθ).

Every y ∈ Zj can be written as y = ζ(y)y with y ∈ Sn−1 and |ζ(y)| ≤ 3d/2j .
Hence, for every j = 1, . . . , r0 we have

(5.22)

∫
Sn−1

max
y∈Zj

|〈y, θ〉| σ(dθ) ≤ 3d

2j

∫
Sn−1

max
y∈Zj

|〈y, θ〉| σ(dθ).

We estimate this last integral as follows: it is easy to see that there is an absolute
constant c2 > 0 such that∫

Sn−1

exp

(
|〈y, θ〉|2n

c22

)
σ(dθ) ≤ 2.

Therefore, for every t ≥ 1 we have

|{θ : max
y∈Zj

|〈y, θ〉| > c2t

(
log |Zj |
n

)1/2

}| ≤ |Zj | |{θ : exp

(
|〈y, θ〉|2n

c22

)
≥ |Zj |t

2

}|

≤ |Zj |1−t
2

,

which implies that for all j ≤ r0,

(5.23)

∫
Sn−1

max
y∈Zj

|〈y, θ〉| σ(dθ) ≤ c3
(log |Zj |)1/2

√
n

≤ c3[c(α)]1/2
2j/2α

d1/2α
.
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Going back to (5.21) and adding the estimates, we obtain

(5.24) M∗(K) ≤ 2 + c4[c(α)]1/2d1− 1
2α

r0∑
j=1

1

2j(1−
1
2α )

≤ c5
[c(α)]1/2

α− 1/2
d1− 1

2α .

Setting ε = α− 1
2 , we have c(α) ≤ c6/

√
ε and d1− 1

2α ≤ c7n
ε, thus (5.24) takes the

form

(5.25) M∗(K) ≤ c

ε5/4
nε. 2

5.7 Remark. It is easy to see that if diam(K) is the diameter of a symmetric convex
body K in Rn, then M∗(K) ≥ cdiam(K)/

√
n. On the other hand, given any α > 1

2
it is not hard to construct a body K in M–position of order α with diam(K) ≥ cnα.
Consider for example the body K1 = co{Dn,±nαen} and normalize it to receive a
body K of volume 1. It then follows that M∗(K) ≥ cnε where ε = α − 1

2 . This
shows that the estimate provided by Theorem 5.5 is exact.

The same example, combined with Theorem 5.1 shows that even in this very
natural M–position, the function S∗K may increase in an irregular way. It has

logarithmic growth up to λ = 1− logn
n while S∗K(1) ' nε.

5.8 Remark. Choosing ε ' 1/ log n in Theorem 5.6, we get that every symmetric
convex body K in Rn has a linear image K with the properties:

(i) |K| = |Dn| and M∗(K) ≤ c(log n)5/4.

(ii) N(K, tDn) ≤ exp(cn
√

log n/t2) for every t ≥ 1.

This should be compared with the `-position of K: It is a well-known fact (see
[P2]) that there exists a linear image K1 of K such that |K1| = |Dn|, M∗(K1) ≤
log n, and by Sudakov’s inequality N(K1, tD) ≤ exp(cn log2 n/t2) for every t ≥ 1.
Of course, the existence of bodies in M–position of order α inside every affine class
and for every α > 1/2 depends heavily on Pisier’s estimate about the `-position.
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