A note on the Banach-Mazur distance to the cube

A. Giannopoulos

Abstract

If X is an n-dimensional normed space and d denotes the Banach-Mazur distance, then $d\left(X, \ell_{\infty}^{n}\right) \leq c n^{5 / 6}$.

1 Introduction

If X, Y are n-dimensional spaces, we define the Banach-Mazur distance $d(X, Y)$ by

$$
d(X, Y)=\inf \left\{\|T\|\left\|T^{-1}\right\|: T: X \rightarrow Y \text { an isomorphism }\right\}
$$

A well-known theorem of F. John [J] asserts that for every n-dimensional normed space X we have $d\left(X, \ell_{2}^{n}\right) \leq \sqrt{n}$. This estimate is sharp as it can be seen by considering $X=\ell_{\infty}^{n}$ or ℓ_{1}^{n}.

Define

$$
R_{\infty}^{n}=\max \left\{d\left(X, \ell_{\infty}^{n}\right): X \text { an } n \text {-dimensional space }\right\} .
$$

John's theorem and the multiplicative triangle inequality for d imply the estimates $\sqrt{n} \leq R_{\infty}^{n} \leq n$. The question of determining the asymptotic behavior of R_{∞}^{n} as n tends to infinity was raised by A. Pelczynski [P].
S.J. Szarek [Sz.1] considered random spaces and proved that $R_{\infty}^{n} \geq c \sqrt{n} \log n$. That is, R_{∞}^{n} is not of the order of \sqrt{n} (ℓ_{∞}^{n} is not an "asymptotic center" of the n-th Banach-Mazur compactum).

On the other hand, J. Bourgain and S.J. Szarek [BS] obtained the estimate $R_{\infty}^{n}=o(n)$, and S.J. Szarek - M. Talagrand [ST] improved this result to $R_{\infty}^{n} \leq$ $c n^{7 / 8}$. A modification of their argument led this author [G] to the upper bound $R_{\infty}^{n} \leq c n^{0.859}$. In this note we report on some further progress in this direction:

Theorem 1. There exists an absolute constant $c>0$ such that

$$
R_{\infty}^{n} \leq c n^{5 / 6}
$$

Our proof follows again the method of Szarek-Talagrand. It depends on obtaining a result of the following type:

Proposition: Let $X=\left(\mathbb{R}^{n},\|\cdot\|\right)$ and $\varepsilon \in(0,1)$. Suppose that the ellipsoid of minimal volume containing the unit ball B_{X} of X is the Euclidean unit ball D. Then, we can find vectors z_{1}, \ldots, z_{m} in X with $\left\|z_{i}\right\|=\left|z_{i}\right|=1$ and $m \geq(1-\varepsilon) n$, such that for any reals t_{1}, \ldots, t_{m},

$$
\left|\sum_{i=1}^{m} t_{i} z_{i}\right| \geq c \frac{\varepsilon^{d}}{\sqrt{n}} \sum_{i=1}^{m}\left|t_{i}\right|
$$

where c, d are absolute positive constants.
In the next paragraph we prove that this Proposition holds true with $d=1$ (the corresponding values of d in [ST], [G] were $1.5,1.272$ respectively). Using this information one can derive Theorem 1 (the argument is omitted, see [ST] or [Sz.2] for the details).

We use the standard notation from [MS]. By |.| we denote the Euclidean norm and also the cardinality of a finite set. The letter c will denote an absolute positive constant, not necessarily the same in all its occurrences.

2 Proof of the Proposition

The proof is based on the following facts:
(I) John's theorem and Dvoretzky-Rogers lemma: If the ellipsoid of minimal volume containing B_{X} is the Euclidean unit ball D, then
(i) $D \subseteq \sqrt{n} B_{X}$,
(ii) there exist contact points $y_{1}, \ldots, y_{N}, N=O\left(n^{2}\right),\left\|y_{i}\right\|=\left|y_{i}\right|=1$, and positive real numbers $\lambda_{1}, \ldots, \lambda_{N}$ such that $x=\sum_{i \leq N} \lambda_{i}\left\langle x, y_{i}\right\rangle y_{i}$ for every $x \in \mathbb{R}^{n}$. It follows that, given $\varepsilon \in(0,1)$, one can choose $x_{1}, \ldots, x_{s}, s \geq(1-\varepsilon) n$, among these contact points y_{i}, so that
Lemma 1. $\operatorname{dist}\left(x_{i}, \operatorname{span}\left\{x_{j}, j \neq i\right\}\right) \geq \sqrt{\varepsilon}, i=1, \ldots, s$.
Lemma 1 was introduced in [ST] in connection with the problem of the distance to the cube.
(II) Sauer-Shelah lemma [S], [Sh]: We shall make use of a special case:

Lemma 2. If M is a subset of $\{-L, L\}^{m}, L>0$, and $|M| \geq 2^{m-1}$, then we can find $\sigma \subseteq\{1, \ldots, m\},|\sigma| \geq \frac{m}{2}$, such that the restriction map

$$
P_{\sigma}:\left(\delta_{j}\right)_{j \leq m} \rightarrow\left(\delta_{j}\right)_{j \in \sigma}
$$

sends M onto $\{-L, L\}^{\sigma}$.

An "isomorphic" version of Lemma 2 was the crucial lemma in [ST]. Our contribution consists of the following lemma, which we think is of independent interest.
Lemma 3. Let $u_{1}, \ldots, u_{s} \in \mathbb{R}^{n},\left|u_{i}\right| \leq 1$. Define the symmetric convex set

$$
E=\left\{\left(\delta_{j}\right)_{j \leq s}:\left|\sum_{j=1}^{s} \delta_{j} u_{j}\right|^{2} \leq 2 s\right\}
$$

Then, for every $\varepsilon \in(0,1)$ there exists $\sigma \subseteq\{1, \ldots, s\}$ with $|\sigma| \geq(1-\varepsilon) s$, such that

$$
P_{\sigma}(E) \supseteq c \sqrt{\varepsilon}[-1,1]^{\sigma},
$$

where c is an absolute positive constant.
Notation: $S=\{1, \ldots, s\}, Q=[-1,1]^{s}, \quad Q_{\tau}=[-1,1]^{\tau}$ if $\tau \subseteq S$.

$$
\alpha_{k}=\sum_{r=0}^{k-1} 2^{r / 2} \quad, \quad \beta_{k}=\sum_{r=0}^{k-1} 2^{r}
$$

Proof: Consider points of the form $\left(\delta_{j}^{(1)}\right)_{j \leq s}, \delta_{j}^{(1)}= \pm 1$. By the parallelogram law,

$$
\operatorname{Ave}_{\delta_{j}^{(1)}= \pm 1}\left|\sum_{j=1}^{s} \delta_{j}^{(1)} u_{j}\right|^{2}=\sum_{j=1}^{s}\left|u_{j}\right|^{2} \leq s
$$

Using Markov's inequality we find $M^{1} \subseteq\{-1,1\}^{s},\left|M^{1}\right| \geq 2^{s-1}$, such that, for every $\left(\delta_{j}^{(1)}\right) \in M^{1}$,

$$
\left|\sum_{j=1}^{s} \delta_{j}^{(1)} u_{j}\right|^{2} \leq 2 s
$$

From Lemma 2 we can find $\sigma_{1} \subseteq S,\left|\sigma_{1}\right| \geq \frac{s}{2}$, such that $P_{\sigma_{1}}\left(M^{1}\right)=\{-1,1\}^{\sigma_{1}}$. Since $M^{1} \subseteq E \cap Q$, it follows that

$$
Q_{\sigma_{1}} \subseteq P_{\sigma_{1}}(E \cap Q)
$$

We shall prove by induction the following:

$$
\begin{align*}
& \text { For } k=1,2, \ldots \text {, we can find } \sigma_{k} \subseteq S,\left|\sigma_{k}\right| \geq\left(1-\frac{1}{2^{k}}\right) s \text {, such that } \tag{1}\\
& \qquad Q_{\sigma_{k}} \subseteq P_{\sigma_{k}}\left(\alpha_{k} E \cap \beta_{k} Q\right)
\end{align*}
$$

For $k=1$ this follows from the previous inclusion.
Inductive step: Consider points of the form $\delta_{j}^{(k+1)}, j \leq s$, with $\delta_{j}^{(k+1)}=0$ if $j \in \sigma_{k}$ and $\delta_{j}^{(k+1)}= \pm 2^{k / 2}$ if $j \notin \sigma_{k}$. We then have

$$
\operatorname{Ave}_{\left(\delta_{j}^{(k+1)}\right)_{j \leq s}}\left|\sum_{j=1}^{s} \delta_{j}^{(k+1)} u_{j}\right|^{2}=\sum_{j \notin \sigma_{k}} 2^{k}\left|u_{j}\right|^{2} \leq s
$$

Observing that the cardinality of the set of $\left(\delta_{j}^{(k+1)}\right)_{j \leq s}$ is $2^{s-\left|\sigma_{k}\right|}$ and using Markov's inequality, we can find $M^{k+1} \subseteq\left[\mathbf{0}_{\sigma_{k}} \times\left\{-2^{k / 2}, 2^{k / 2}\right\}^{S \backslash \sigma_{k}}\right] \cap E$ with $\left|M^{k+1}\right| \geq$ $2^{s-\left|\sigma_{k}\right|-1}$. Then Lemma 2 enables us to find $\sigma_{k+1}^{*} \subseteq S \backslash \sigma_{k},\left|\sigma_{k+1}^{*}\right| \geq \frac{1}{2}\left(s-\left|\sigma_{k}\right|\right)$, such that

$$
P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(M^{k+1}\right)=\mathbf{0}_{\sigma_{k}} \times\left\{-2^{k / 2}, 2^{k / 2}\right\}^{\sigma_{k+1}^{*}}
$$

Since $M^{k+1} \subseteq E \cap 2^{k / 2} Q$, it follows that

$$
\mathbf{0}_{\sigma_{k}} \times 2^{k} Q_{\sigma_{k+1}^{*}} \subseteq P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(2^{k / 2} E \cap 2^{k} Q\right)
$$

Suppose that $a \in Q_{\sigma_{k}}, b \in Q_{\sigma_{k+1}^{*}}$. From our inductive hypothesis we can find $w_{a} \in \beta_{k} Q_{\sigma_{k+1}^{*}}$ such that

$$
\left(a, w_{a}\right) \in P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(\alpha_{k} E \cap \beta_{k} Q\right)
$$

Define $v_{a, b}=b-w_{a}$. It is clear that $v_{a, b} \in\left(\beta_{k}+1\right) Q_{\sigma_{k+1}^{*}}=2^{k} Q_{\sigma_{k+1}^{*}}$, hence

$$
\left(\mathbf{0}_{\sigma_{k}}, v_{a, b}\right) \in P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(2^{k / 2} E \cap 2^{k} Q\right)
$$

Then,

$$
\begin{aligned}
(a, b) & =\left(a, w_{a}\right)+\left(\mathbf{0}_{\sigma_{k}}, v_{a, b}\right) \\
& \in P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(\alpha_{k} E \cap \beta_{k} Q\right)+P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(2^{k / 2} E \cap 2^{k} Q\right) \\
& \subseteq P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(\alpha_{k+1} E \cap \beta_{k+1} Q\right)
\end{aligned}
$$

It follows that

$$
Q_{\sigma_{k} \cup \sigma_{k+1}^{*}} \subseteq P_{\sigma_{k} \cup \sigma_{k+1}^{*}}\left(\alpha_{k+1} E \cap \beta_{k+1} Q\right)
$$

Set $\sigma_{k+1}=\sigma_{k} \cup \sigma_{k+1}^{*}$. It is easy to see that $\left|\sigma_{k+1}\right| \geq\left(1-\frac{1}{2^{k+1}}\right) s$, and the inductive step is completed.
From (1) we get
(2) For $k=1,2, \ldots$, we can find $\sigma_{k} \subseteq S,\left|\sigma_{k}\right| \geq\left(1-\frac{1}{2^{k}}\right) s$, such that

$$
[-1,1]^{\sigma_{k}} \subseteq P_{\sigma_{k}}\left(\frac{2^{k / 2}}{\sqrt{2}-1} E\right)
$$

So,

$$
P_{\sigma_{k}}(E) \supseteq c \sqrt{\frac{1}{2^{k}}}[-1,1]^{\sigma_{k}}, \quad c=\sqrt{2}-1
$$

Then we easily pass to the continuous version of the lemma (with a slightly worse constant c).

Example (S.J. Szarek [Sz.3]). Let $n=s+1$ and $u_{i}=\frac{1}{\sqrt{2}}\left(e_{i}+e_{n}\right), i=1, \ldots, s$. Here $\left\{e_{i}\right\}_{i \leq n}$ is the canonical orthonormal basis of \mathbb{R}^{n}. Then,

$$
\left|\sum_{j=1}^{s} \delta_{j} u_{j}\right|^{2}=\frac{1}{2}\left[\sum_{j=1}^{s} \delta_{j}^{2}+\left(\sum_{j=1}^{s} \delta_{j}\right)^{2}\right]
$$

and this implies that a necessary condition for $\left(\delta_{j}\right)_{j \leq s}$ to be in E is

$$
\sum_{j=1}^{s} \delta_{j}^{2} \leq 4 s \quad \text { and } \quad\left|\sum_{j=1}^{s} \delta_{j}\right| \leq 2 \sqrt{s}
$$

Given $\varepsilon \in(0,1)$, consider any $\sigma \subseteq\{1, \ldots, s\},|\sigma|=m \geq(1-\varepsilon) s$. Then, a point (t, t, \ldots, t) is in $P_{\sigma}(E)$ only if we can find $\left(\delta_{j}\right)_{j \notin \sigma}$ such that

$$
m t^{2}+\sum_{j \notin \sigma} \delta_{j}^{2} \leq 4 s \quad \text { and } \quad\left|m t+\sum_{j \notin \sigma} \delta_{j}\right| \leq 2 \sqrt{s}
$$

and using the Cauchy-Schwarz inequality one can see that this is possible only if $|t| \leq c \sqrt{\varepsilon}$.

This example shows that Lemma 3 cannot be improved. A version of this lemma (with a weaker dependence on ε) appeared in [G].

Now we can pass to the
Proof of the Proposition. According to Lemma 1, we can choose $x_{1}, \ldots, x_{s} \in$ B_{X}, with $s \geq\left(1-\frac{\varepsilon}{2}\right) n$, such that

$$
\operatorname{dist}\left(x_{i}, \operatorname{span}\left\{x_{j}, j \neq i\right\}\right) \geq \sqrt{\frac{\varepsilon}{2}}, \quad i, j=1, \ldots, s
$$

Then, we can find $v_{i} \perp \operatorname{span}\left\{x_{j}, j \neq i\right\}$ so that $\left\langle x_{i}, v_{i}\right\rangle=1$ and $\left|v_{i}\right| \leq \sqrt{\frac{2}{\varepsilon}}$. That is, there exist $v_{1}, \ldots, v_{s} \in \mathbb{R}^{n}$ for which

$$
\left|v_{i}\right| \leq \sqrt{\frac{2}{\varepsilon}} \quad \text { and } \quad\left\langle x_{i}, v_{j}\right\rangle=\delta_{i j}, \quad i, j=1, \ldots, s
$$

Set $u_{i}=\sqrt{\frac{\varepsilon}{2}} v_{i}$ and apply Lemma 3 to obtain $\sigma \subseteq\{1, \ldots, s\},|\sigma| \geq\left(1-\frac{\varepsilon}{2}\right) s$, with

$$
P_{\sigma}(E) \supseteq c \sqrt{\varepsilon}[-1,1]^{\sigma} .
$$

Obviously, $|\sigma| \geq(1-\varepsilon) n$. Now, for any sequence $\left(t_{i}\right)_{i \in \sigma}$ of reals, one has

$$
\sum_{i \in \sigma}\left|t_{i}\right|=\left\langle\sum_{i \in \sigma} t_{i} x_{i}, \sum_{j \in \sigma} \operatorname{sign}\left(t_{j}\right) v_{j}\right\rangle
$$

Since $\left(c \sqrt{\varepsilon} \operatorname{sign}\left(t_{j}\right)\right)_{j \in \sigma} \in P_{\sigma}(E)$, we can find $\left(\delta_{j}\right)_{j \leq s}$ in E so that $\delta_{j}=c \sqrt{\varepsilon} \operatorname{sign}\left(t_{j}\right)$ for $j \in \sigma$. Observe that whenever $i \in \sigma$ and $j \notin \sigma$ then $\left\langle x_{i}, v_{j}\right\rangle=0$, and therefore

$$
\begin{gathered}
\left\langle\sum_{i \in \sigma} t_{i} x_{i}, \sum_{j \in \sigma} \operatorname{sign}\left(t_{j}\right) v_{j}\right\rangle=\frac{1}{c \sqrt{\varepsilon}}\left\langle\sum_{i \in \sigma} t_{i} x_{i}, \sum_{j=1}^{s} \delta_{j} v_{j}\right\rangle \\
\leq \frac{1}{c \sqrt{\varepsilon}}\left|\sum_{i \in \sigma} t_{i} x_{i}\right| \sqrt{\frac{2}{\varepsilon}}\left|\sum_{j=1}^{s} \delta_{j} u_{j}\right|
\end{gathered}
$$

$$
\leq \frac{2 \sqrt{s}}{c \varepsilon}\left|\sum_{i \in \sigma} t_{i} x_{i}\right| \leq \frac{\sqrt{n}}{c^{\prime} \varepsilon}\left|\sum_{i \in \sigma} t_{i} x_{i}\right|
$$

Choose $z_{i}, i=1, \ldots,|\sigma|=m$, to be those x_{j} for which $j \in \sigma$, and the Proposition is proved.

3 Remark

As was mentioned in [Sz.2], another consequence of the Proposition is the following "proportional Dvoretzky-Rogers factorization" result (the proof of which is a word-by-word repetition of the argument given in [ST]):
Theorem 2 If $\varepsilon \in(0,1)$ and X is an n-dimensional normed space, there exist vectors $x_{1}, \ldots, x_{m} \in X, m \geq(1-\varepsilon) n$, such that for any reals t_{1}, \ldots, t_{m},

$$
\max _{1 \leq j \leq m}\left|t_{j}\right| \leq\left\|\sum_{j=1}^{m} t_{j} x_{j}\right\|_{X} \leq \frac{c}{\varepsilon^{3 / 2}}\left(\sum_{j=1}^{m}\left|t_{j}\right|^{2}\right)^{1 / 2},
$$

where $c>0$ is an absolute constant. Equivalently, the formal identity $i_{2, \infty}: \ell_{2}^{m} \rightarrow$ ℓ_{∞}^{m} can be written as $i_{2, \infty}=\alpha \mathrm{o} \beta, \beta: \ell_{2}^{m} \rightarrow X, \alpha: X \rightarrow \ell_{\infty}^{m}$, with $\|\alpha\|\|\beta\| \leq c / \varepsilon^{3 / 2}$. The same holds true for $i_{1,2}: \ell_{1}^{m} \rightarrow \ell_{2}^{m}$.

Acknowledgement: I would like to thank Professor S.J. Szarek for pointing out to me that the $\sqrt{\varepsilon}$-dependence in Lemma 3, if true would be optimal.

References

[BS] J. Bourgain and S.J. Szarek, The Banach-Mazur distance to the cube and the Dvoretzky-Rogers factorization, Israel J. Math. 62 (1988), 169-180.
[G] A.A. Giannopoulos, On the Banach-Mazur distance to the cube, Preprint, December 1992.
[J] F. John, Extremum problems with inequalities as subsidiary conditions, Courant Anniversary Volume, New York: Interscience (1948), 187-204.
[MS] V.D. Milman and G. Schechtman, Asymptotic Theory of Finite-Dimensional Normed Spaces, Lecture Notes in Mathematics 1200 (1986).
[P] A. Pelczynski, Structural theory of Banach spaces and its interplay with analysis and probability, Proceedings of the ICM 1983, PWN-North Holland 1984, 237-269.
[ST] S.J. Szarek and M. Talagrand, An isomorphic version of the Sauer-Shelah lemma and the Banach-Mazur distance to the cube, GAFA Seminar '87-88, Lecture Notes in Mathematics 1376 (1989), 105-112.
[S] N. Sauer, On the density of families of sets, J. Comb. Theory, Ser. A, 13 (1972), 145-147.
[Sh] S. Shelah, A combinatorial problem: stability and order for models and theories in infinitary languages, Pacific J. Math. 41 (1972), 247-261.
[Sz.1] S.J. Szarek, Spaces with large distance to ℓ_{∞}^{n} and random matrices, American J. Math. 112 (1990), 899-942.
[Sz.2] S.J. Szarek, On the geometry of the Banach-Mazur compactum, Lecture Notes in Mathematics 1470 (1991), 48-59.
[Sz.3] S.J. Szarek, Personal Communication.

Department of Mathematics, Case Western Reserve University, Cleveland, Ohio, USA.
Current Address: Department of Mathematics, University of Crete, Iraklion, Crete, Greece.
E-mail: deligia@talos.cc.uch.gr

