
A note on the Banah-Mazur distane tothe ubeA. GiannopoulosAbstratIf X is an n-dimensional normed spae and d denotes the Banah{Mazurdistane, then d(X; `n1) � n5=6.1 IntrodutionIf X; Y are n-dimensional spaes, we de�ne the Banah{Mazur distane d(X;Y )by d(X;Y ) = inffkTk kT�1k : T : X ! Y an isomorphismg:A well-known theorem of F. John [J℄ asserts that for every n-dimensional normedspae X we have d(X; `n2 ) � pn. This estimate is sharp as it an be seen byonsidering X = `n1 or `n1 .De�ne Rn1 = maxfd(X; `n1) : X an n�dimensional spaeg:John's theorem and the multipliative triangle inequality for d imply the estimatespn � Rn1 � n. The question of determining the asymptoti behavior of Rn1 as ntends to in�nity was raised by A. Pelzynski [P℄.S.J. Szarek [Sz.1℄ onsidered random spaes and proved that Rn1 � pn logn.That is, Rn1 is not of the order of pn (`n1 is not an \asymptoti enter" of then-th Banah{Mazur ompatum).On the other hand, J. Bourgain and S.J. Szarek [BS℄ obtained the estimateRn1 = o(n), and S.J. Szarek { M. Talagrand [ST℄ improved this result to Rn1 �n7=8. A modi�ation of their argument led this author [G℄ to the upper boundRn1 � n0:859. In this note we report on some further progress in this diretion:Theorem 1. There exists an absolute onstant  > 0 suh thatRn1 � n5=6:1



Our proof follows again the method of Szarek{Talagrand. It depends on ob-taining a result of the following type:Proposition: Let X = (Rn ; k:k) and " 2 (0; 1). Suppose that the ellipsoid ofminimal volume ontaining the unit ball BX of X is the Eulidean unit ball D.Then, we an �nd vetors z1; : : : ; zm in X with kzik = jzij = 1 and m � (1� ")n,suh that for any reals t1; : : : ; tm,j mXi=1 tizij �  "dpn mXi=1 jtij;where ; d are absolute positive onstants.In the next paragraph we prove that this Proposition holds true with d = 1(the orresponding values of d in [ST℄, [G℄ were 1.5, 1.272 respetively). Using thisinformation one an derive Theorem 1 (the argument is omitted, see [ST℄ or [Sz.2℄for the details).We use the standard notation from [MS℄. By j:j we denote the Eulidean normand also the ardinality of a �nite set. The letter  will denote an absolute positiveonstant, not neessarily the same in all its ourrenes.2 Proof of the PropositionThe proof is based on the following fats:(I) John's theorem and Dvoretzky{Rogers lemma: If the ellipsoid of minimal volumeontaining BX is the Eulidean unit ball D, then(i) D � pnBX ,(ii) there exist ontat points y1; : : : ; yN , N = O(n2), kyik = jyij = 1, andpositive real numbers �1; : : : ; �N suh that x =Pi�N �ihx; yiiyi for every x 2 Rn .It follows that, given " 2 (0; 1), one an hoose x1; : : : ; xs, s � (1 � ")n, amongthese ontat points yi, so thatLemma 1. dist(xi; spanfxj ; j 6= ig) � p"; i = 1; : : : ; s.Lemma 1 was introdued in [ST℄ in onnetion with the problem of the distaneto the ube.(II) Sauer{Shelah lemma [S℄, [Sh℄: We shall make use of a speial ase:Lemma 2. If M is a subset of f�L;Lgm, L > 0, and jM j � 2m�1, then we an�nd � � f1; : : : ;mg, j�j � m2 , suh that the restrition mapP� : (Æj)j�m ! (Æj)j2�sends M onto f�L;Lg�. 2



An \isomorphi" version of Lemma 2 was the ruial lemma in [ST℄. Our on-tribution onsists of the following lemma, whih we think is of independent interest.Lemma 3. Let u1; : : : ; us 2 Rn ; juij � 1. De�ne the symmetri onvex setE = f(Æj)j�s : j sXj=1 Æjuj j2 � 2sg:Then, for every " 2 (0; 1) there exists � � f1; : : : ; sg with j�j � (1� ")s, suh thatP�(E) � p" [�1; 1℄�;where  is an absolute positive onstant.Notation: S = f1; : : : ; sg; Q = [�1; 1℄s; Q� = [�1; 1℄� if � � S.�k = k�1Xr=0 2r=2 ; �k = k�1Xr=0 2r:Proof: Consider points of the form (Æ(1)j )j�s, Æ(1)j = �1. By the parallelogram law,AveÆ(1)j =�1j sXj=1 Æ(1)j uj j2 = sXj=1 juj j2 � s:Using Markov's inequality we �nd M1 � f�1; 1gs; jM1j � 2s�1, suh that, forevery (Æ(1)j ) 2M1, j sXj=1 Æ(1)j uj j2 � 2s:From Lemma 2 we an �nd �1 � S; j�1j � s2 , suh that P�1 (M1) = f�1; 1g�1.Sine M1 � E \Q, it follows thatQ�1 � P�1 (E \Q):We shall prove by indution the following:(1) For k = 1; 2; : : : ; we an �nd �k � S; j�k j � (1� 12k )s; suh thatQ�k � P�k (�kE \ �kQ):For k = 1 this follows from the previous inlusion.Indutive step: Consider points of the form Æ(k+1)j ; j � s, with Æ(k+1)j = 0 if j 2 �kand Æ(k+1)j = �2k=2 if j =2 �k. We then haveAve(Æ(k+1)j )j�s j sXj=1 Æ(k+1)j uj j2 = Xj =2�k 2kjuj j2 � s:3



Observing that the ardinality of the set of (Æ(k+1)j )j�s is 2s�j�kj and using Markov'sinequality, we an �nd Mk+1 � [0�k � f�2k=2; 2k=2gSn�k ℄ \ E with jMk+1j �2s�j�k j�1. Then Lemma 2 enables us to �nd ��k+1 � Sn�k; j��k+1j � 12 (s � j�k j),suh that P�k[��k+1(Mk+1) = 0�k � f�2k=2; 2k=2g��k+1 :Sine Mk+1 � E \ 2k=2Q, it follows that0�k � 2kQ��k+1 � P�k[��k+1(2k=2E \ 2kQ):Suppose that a 2 Q�k ; b 2 Q��k+1 . From our indutive hypothesis we an �ndwa 2 �kQ��k+1 suh that (a; wa) 2 P�k[��k+1(�kE \ �kQ):De�ne va;b = b� wa. It is lear that va;b 2 (�k + 1)Q��k+1 = 2kQ��k+1 , hene(0�k ; va;b) 2 P�k[��k+1(2k=2E \ 2kQ):Then, (a; b) = (a; wa) + (0�k ; va;b)2 P�k[��k+1(�kE \ �kQ) + P�k[��k+1(2k=2E \ 2kQ)� P�k[��k+1(�k+1E \ �k+1Q):It follows that Q�k[��k+1 � P�k[��k+1(�k+1E \ �k+1Q):Set �k+1 = �k [��k+1. It is easy to see that j�k+1j � (1� 12k+1 )s, and the indutivestep is ompleted.From (1) we get(2) For k = 1; 2; : : : ; we an �nd �k � S; j�k j � (1� 12k )s; suh that[�1; 1℄�k � P�k ( 2k=2p2� 1E):So, P�k (E) � r 12k [�1; 1℄�k ;  = p2� 1:Then we easily pass to the ontinuous version of the lemma (with a slightly worseonstant ). 2Example (S.J. Szarek [Sz.3℄). Let n = s + 1 and ui = 1p2 (ei + en); i = 1; : : : ; s.Here feigi�n is the anonial orthonormal basis of Rn . Then,j sXj=1 Æjuj j2 = 12 24 sXj=1 Æ2j + ( sXj=1 Æj)235 ;4



and this implies that a neessary ondition for (Æj)j�s to be in E issXj=1 Æ2j � 4s and j sXj=1 Æj j � 2ps:Given " 2 (0; 1), onsider any � � f1; : : : ; sg; j�j = m � (1 � ")s. Then, a point(t; t; : : : ; t) is in P�(E) only if we an �nd (Æj)j =2� suh thatmt2 +Xj =2� Æ2j � 4s and jmt+Xj =2� Æj j � 2ps;and using the Cauhy-Shwarz inequality one an see that this is possible only ifjtj � p".This example shows that Lemma 3 annot be improved. A version of this lemma(with a weaker dependene on ") appeared in [G℄.Now we an pass to theProof of the Proposition. Aording to Lemma 1, we an hoose x1; : : : ; xs 2BX , with s � (1� "2 )n, suh thatdist (xi; spanfxj ; j 6= ig) �r"2 ; i; j = 1; : : : ; s:Then, we an �nd vi ? spanfxj ; j 6= ig so that hxi; vii = 1 and jvij � q 2" . Thatis, there exist v1; : : : ; vs 2 Rn for whihjvij �r2" and hxi; vji = Æij ; i; j = 1; : : : ; s:Set ui =p "2 vi and apply Lemma 3 to obtain � � f1; : : : ; sg; j�j � (1� "2 )s, withP�(E) � p" [�1; 1℄�:Obviously, j�j � (1� ")n. Now, for any sequene (ti)i2� of reals, one hasXi2� jtij = hXi2� tixi;Xj2� sign(tj)vj i:Sine (p"sign(tj))j2� 2 P�(E), we an �nd (Æj)j�s in E so that Æj = p" sign(tj)for j 2 �. Observe that whenever i 2 � and j =2 � then hxi; vji = 0, and thereforehXi2� tixi;Xj2� sign(tj)vj i = 1p" hXi2� tixi; sXj=1 Æjvj i� 1p" jXi2� tixijr2" j sXj=1 Æjuj j5



� 2ps" jXi2� tixij � pn0" jXi2� tixij:Choose zi; i = 1; : : : ; j�j = m, to be those xj for whih j 2 �, and the Propositionis proved. 23 RemarkAs was mentioned in [Sz.2℄, another onsequene of the Proposition is the following\proportional Dvoretzky{Rogers fatorization" result (the proof of whih is a word-by-word repetition of the argument given in [ST℄):Theorem 2 If " 2 (0; 1) and X is an n-dimensional normed spae, there existvetors x1; : : : ; xm 2 X, m � (1� ")n, suh that for any reals t1; : : : ; tm,max1�j�m jtj j � k mXj=1 tjxjkX � "3=2 ( mXj=1 jtj j2)1=2;where  > 0 is an absolute onstant. Equivalently, the formal identity i2;1 : `m2 !`m1 an be written as i2;1 = �o�; � : `m2 ! X; � : X ! `m1, with k�k k�k � ="3=2.The same holds true for i1;2 : `m1 ! `m2 . 2Aknowledgement: I would like to thank Professor S.J. Szarek for pointing outto me that the p"{dependene in Lemma 3, if true would be optimal.Referenes[BS℄ J. Bourgain and S.J. Szarek, The Banah{Mazur distane to the ube and theDvoretzky{Rogers fatorization, Israel J. Math. 62 (1988), 169-180.[G℄ A.A. Giannopoulos, On the Banah{Mazur distane to the ube, Preprint, Deem-ber 1992.[J℄ F. John, Extremum problems with inequalities as subsidiary onditions, CourantAnniversary Volume, New York: Intersiene (1948), 187-204.[MS℄ V.D. Milman and G. Shehtman, Asymptoti Theory of Finite{DimensionalNormed Spaes, Leture Notes in Mathematis 1200 (1986).[P℄ A. Pelzynski, Strutural theory of Banah spaes and its interplay with analysisand probability, Proeedings of the ICM 1983, PWN-North Holland 1984, 237-269.[ST℄ S.J. Szarek and M. Talagrand, An isomorphi version of the Sauer{Shelah lemmaand the Banah{Mazur distane to the ube, GAFA Seminar '87-88, Leture Notesin Mathematis 1376 (1989), 105-112.6
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