A note on the Banach-Mazur distance to the cube

A. Giannopoulos

Abstract

If X is an n-dimensional normed space and d denotes the Banach-Mazur distance, then $d(X, \ell_{\infty}^n) \leq c n^{5/6}$.

1 Introduction

If X, Y are n-dimensional spaces, we define the Banach–Mazur distance d(X,Y) by

$$d(X,Y) = \inf\{||T|| ||T^{-1}|| : T : X \to Y \text{ an isomorphism}\}.$$

A well-known theorem of F. John [J] asserts that for every *n*-dimensional normed space X we have $d(X, \ell_2^n) \leq \sqrt{n}$. This estimate is sharp as it can be seen by considering $X = \ell_{\infty}^n$ or ℓ_1^n .

Define

$$R_{\infty}^n = \max\{d(X, \ell_{\infty}^n): X \text{ an } n\text{-dimensional space}\}.$$

John's theorem and the multiplicative triangle inequality for d imply the estimates $\sqrt{n} \leq R_{\infty}^n \leq n$. The question of determining the asymptotic behavior of R_{∞}^n as n tends to infinity was raised by A. Pelczynski [P].

S.J. Szarek [Sz.1] considered random spaces and proved that $R_{\infty}^{n} \geq c\sqrt{n}\log n$. That is, R_{∞}^{n} is not of the order of \sqrt{n} (ℓ_{∞}^{n} is not an "asymptotic center" of the n-th Banach–Mazur compactum).

On the other hand, J. Bourgain and S.J. Szarek [BS] obtained the estimate $R_{\infty}^n = o(n)$, and S.J. Szarek – M. Talagrand [ST] improved this result to $R_{\infty}^n \leq cn^{7/8}$. A modification of their argument led this author [G] to the upper bound $R_{\infty}^n \leq cn^{0.859}$. In this note we report on some further progress in this direction:

Theorem 1. There exists an absolute constant c > 0 such that

$$R_{\infty}^{n} < cn^{5/6}$$
.

Our proof follows again the method of Szarek-Talagrand. It depends on obtaining a result of the following type:

Proposition: Let $X = (\mathbb{R}^n, ||.||)$ and $\varepsilon \in (0,1)$. Suppose that the ellipsoid of minimal volume containing the unit ball B_X of X is the Euclidean unit ball D. Then, we can find vectors z_1, \ldots, z_m in X with $||z_i|| = |z_i| = 1$ and $m \ge (1 - \varepsilon)n$, such that for any reals t_1, \ldots, t_m ,

$$\left|\sum_{i=1}^{m} t_i z_i\right| \ge c \frac{\varepsilon^d}{\sqrt{n}} \sum_{i=1}^{m} |t_i|,$$

where c, d are absolute positive constants.

In the next paragraph we prove that this Proposition holds true with d=1 (the corresponding values of d in [ST], [G] were 1.5, 1.272 respectively). Using this information one can derive Theorem 1 (the argument is omitted, see [ST] or [Sz.2] for the details).

We use the standard notation from [MS]. By |.| we denote the Euclidean norm and also the cardinality of a finite set. The letter c will denote an absolute positive constant, not necessarily the same in all its occurrences.

2 Proof of the Proposition

The proof is based on the following facts:

- (I) John's theorem and Dvoretzky-Rogers lemma: If the ellipsoid of minimal volume containing B_X is the Euclidean unit ball D, then
 - (i) $D \subseteq \sqrt{n}B_X$,
- (ii) there exist contact points y_1, \ldots, y_N , $N = O(n^2)$, $||y_i|| = |y_i| = 1$, and positive real numbers $\lambda_1, \ldots, \lambda_N$ such that $x = \sum_{i \leq N} \lambda_i \langle x, y_i \rangle y_i$ for every $x \in \mathbb{R}^n$. It follows that, given $\varepsilon \in (0,1)$, one can choose $x_1, \ldots, x_s, s \geq (1-\varepsilon)n$, among these contact points y_i , so that

Lemma 1. dist $(x_i, \text{span}\{x_j, j \neq i\}) \geq \sqrt{\varepsilon}, i = 1, \dots, s.$

Lemma 1 was introduced in [ST] in connection with the problem of the distance to the cube.

(II) Sauer-Shelah lemma [S], [Sh]: We shall make use of a special case:

Lemma 2. If M is a subset of $\{-L, L\}^m$, L > 0, and $|M| \ge 2^{m-1}$, then we can find $\sigma \subseteq \{1, \ldots, m\}$, $|\sigma| \ge \frac{m}{2}$, such that the restriction map

$$P_{\sigma}: (\delta_j)_{j \leq m} \to (\delta_j)_{j \in \sigma}$$

sends M onto $\{-L, L\}^{\sigma}$.

An "isomorphic" version of Lemma 2 was the crucial lemma in [ST]. Our contribution consists of the following lemma, which we think is of independent interest.

Lemma 3. Let $u_1, \ldots, u_s \in \mathbb{R}^n$, $|u_i| \leq 1$. Define the symmetric convex set

$$E = \{ (\delta_j)_{j \le s} : |\sum_{i=1}^s \delta_j u_j|^2 \le 2s \}.$$

Then, for every $\varepsilon \in (0,1)$ there exists $\sigma \subseteq \{1,\ldots,s\}$ with $|\sigma| \geq (1-\varepsilon)s$, such that

$$P_{\sigma}(E) \supseteq c\sqrt{\varepsilon} [-1,1]^{\sigma},$$

where c is an absolute positive constant.

Notation: $S = \{1, ..., s\}, \ Q = [-1, 1]^s, \ Q_\tau = [-1, 1]^\tau \text{ if } \tau \subseteq S.$

$$\alpha_k = \sum_{r=0}^{k-1} 2^{r/2}$$
 , $\beta_k = \sum_{r=0}^{k-1} 2^r$.

Proof: Consider points of the form $(\delta_j^{(1)})_{j \leq s}$, $\delta_j^{(1)} = \pm 1$. By the parallelogram law,

$$\mathrm{Ave}_{\delta_j^{(1)} = \pm 1} |\sum_{i=1}^s \delta_j^{(1)} u_j|^2 = \sum_{i=1}^s |u_j|^2 \le s.$$

Using Markov's inequality we find $M^1 \subseteq \{-1,1\}^s$, $|M^1| \ge 2^{s-1}$, such that, for every $(\delta_i^{(1)}) \in M^1$,

$$|\sum_{j=1}^{s} \delta_{j}^{(1)} u_{j}|^{2} \le 2s.$$

From Lemma 2 we can find $\sigma_1 \subseteq S$, $|\sigma_1| \ge \frac{s}{2}$, such that $P_{\sigma_1}(M^1) = \{-1,1\}^{\sigma_1}$. Since $M^1 \subseteq E \cap Q$, it follows that

$$Q_{\sigma_1} \subseteq P_{\sigma_1}(E \cap Q).$$

We shall prove by induction the following:

(1) For k = 1, 2, ..., we can find $\sigma_k \subseteq S, |\sigma_k| \ge (1 - \frac{1}{2^k})s$, such that

$$Q_{\sigma_k} \subseteq P_{\sigma_k}(\alpha_k E \cap \beta_k Q).$$

For k = 1 this follows from the previous inclusion.

Inductive step: Consider points of the form $\delta_j^{(k+1)}$, $j \leq s$, with $\delta_j^{(k+1)} = 0$ if $j \in \sigma_k$ and $\delta_j^{(k+1)} = \pm 2^{k/2}$ if $j \notin \sigma_k$. We then have

$$\operatorname{Ave}_{(\delta_j^{(k+1)})_{j \le s}} |\sum_{j=1}^s \delta_j^{(k+1)} u_j|^2 = \sum_{j \notin \sigma_k} 2^k |u_j|^2 \le s.$$

Observing that the cardinality of the set of $(\delta_j^{(k+1)})_{j \leq s}$ is $2^{s-|\sigma_k|}$ and using Markov's inequality, we can find $M^{k+1} \subseteq [\mathbf{0}_{\sigma_k} \times \{-2^{k/2}, 2^{k/2}\}^{S \setminus \sigma_k}] \cap E$ with $|M^{k+1}| \geq 2^{s-|\sigma_k|-1}$. Then Lemma 2 enables us to find $\sigma_{k+1}^* \subseteq S \setminus \sigma_k$, $|\sigma_{k+1}^*| \geq \frac{1}{2}(s-|\sigma_k|)$, such that

$$P_{\sigma_k \cup \sigma_{k+1}^*}(M^{k+1}) = \mathbf{0}_{\sigma_k} \times \{-2^{k/2}, 2^{k/2}\}^{\sigma_{k+1}^*}.$$

Since $M^{k+1} \subseteq E \cap 2^{k/2}Q$, it follows that

$$\mathbf{0}_{\sigma_k} \times 2^k Q_{\sigma_{k+1}^*} \subseteq P_{\sigma_k \cup \sigma_{k+1}^*}(2^{k/2}E \cap 2^k Q).$$

Suppose that $a\in Q_{\sigma_k}$, $b\in Q_{\sigma_{k+1}^*}$. From our inductive hypothesis we can find $w_a\in\beta_kQ_{\sigma_{k+1}^*}$ such that

$$(a, w_a) \in P_{\sigma_k \cup \sigma_{k+1}^*}(\alpha_k E \cap \beta_k Q).$$

Define $v_{a,b} = b - w_a$. It is clear that $v_{a,b} \in (\beta_k + 1)Q_{\sigma_{k+1}^*} = 2^k Q_{\sigma_{k+1}^*}$, hence

$$(\mathbf{0}_{\sigma_k}, v_{a,b}) \in P_{\sigma_k \cup \sigma_{k+1}^*}(2^{k/2}E \cap 2^kQ).$$

Then,

$$(a,b) = (a, w_a) + (\mathbf{0}_{\sigma_k}, v_{a,b})$$

$$\in P_{\sigma_k \cup \sigma_{k+1}^*}(\alpha_k E \cap \beta_k Q) + P_{\sigma_k \cup \sigma_{k+1}^*}(2^{k/2} E \cap 2^k Q)$$

$$\subseteq P_{\sigma_k \cup \sigma_{k+1}^*}(\alpha_{k+1} E \cap \beta_{k+1} Q).$$

It follows that

$$Q_{\sigma_k \cup \sigma_{k+1}^*} \subseteq P_{\sigma_k \cup \sigma_{k+1}^*}(\alpha_{k+1}E \cap \beta_{k+1}Q).$$

Set $\sigma_{k+1} = \sigma_k \cup \sigma_{k+1}^*$. It is easy to see that $|\sigma_{k+1}| \ge (1 - \frac{1}{2^{k+1}})s$, and the inductive step is completed.

From (1) we get

(2) For k = 1, 2, ..., we can find $\sigma_k \subseteq S, |\sigma_k| \ge (1 - \frac{1}{2^k})s$, such that

$$[-1,1]^{\sigma_k} \subseteq P_{\sigma_k}(\frac{2^{k/2}}{\sqrt{2}-1}E).$$

So,

$$P_{\sigma_k}(E) \supseteq c \sqrt{\frac{1}{2^k}} [-1, 1]^{\sigma_k}, \quad c = \sqrt{2} - 1.$$

Then we easily pass to the continuous version of the lemma (with a slightly worse constant c).

Example (S.J. Szarek [Sz.3]). Let n = s + 1 and $u_i = \frac{1}{\sqrt{2}}(e_i + e_n), i = 1, \ldots, s$. Here $\{e_i\}_{i \leq n}$ is the canonical orthonormal basis of \mathbb{R}^n . Then,

$$\left|\sum_{j=1}^{s} \delta_{j} u_{j}\right|^{2} = \frac{1}{2} \left[\sum_{j=1}^{s} \delta_{j}^{2} + \left(\sum_{j=1}^{s} \delta_{j}\right)^{2}\right],$$

and this implies that a necessary condition for $(\delta_j)_{j \le s}$ to be in E is

$$\sum_{j=1}^{s} \delta_j^2 \le 4s \quad \text{and} \quad |\sum_{j=1}^{s} \delta_j| \le 2\sqrt{s}.$$

Given $\varepsilon \in (0,1)$, consider any $\sigma \subseteq \{1,\ldots,s\}$, $|\sigma| = m \ge (1-\varepsilon)s$. Then, a point (t,t,\ldots,t) is in $P_{\sigma}(E)$ only if we can find $(\delta_i)_{i \notin \sigma}$ such that

$$mt^2 + \sum_{j \not \in \sigma} \delta_j^2 \leq 4s \quad \text{ and } \quad |mt + \sum_{j \not \in \sigma} \delta_j| \leq 2\sqrt{s},$$

and using the Cauchy-Schwarz inequality one can see that this is possible only if $|t| < c\sqrt{\varepsilon}$.

This example shows that Lemma 3 cannot be improved. A version of this lemma (with a weaker dependence on ε) appeared in [G].

Now we can pass to the

Proof of the Proposition. According to Lemma 1, we can choose $x_1, \ldots, x_s \in B_X$, with $s \geq (1 - \frac{\varepsilon}{2})n$, such that

$$\operatorname{dist}(x_i, \operatorname{span}\{x_j, j \neq i\}) \ge \sqrt{\frac{\varepsilon}{2}}, \ i, j = 1, \dots, s.$$

Then, we can find $v_i \perp \operatorname{span}\{x_j, j \neq i\}$ so that $\langle x_i, v_i \rangle = 1$ and $|v_i| \leq \sqrt{\frac{2}{\varepsilon}}$. That is, there exist $v_1, \ldots, v_s \in \mathbb{R}^n$ for which

$$|v_i| \le \sqrt{\frac{2}{\varepsilon}}$$
 and $\langle x_i, v_j \rangle = \delta_{ij}, i, j = 1, \dots, s.$

Set $u_i = \sqrt{\frac{\varepsilon}{2}} v_i$ and apply Lemma 3 to obtain $\sigma \subseteq \{1, \ldots, s\}, |\sigma| \ge (1 - \frac{\varepsilon}{2})s$, with

$$P_{\sigma}(E) \supseteq c\sqrt{\varepsilon} [-1,1]^{\sigma}.$$

Obviously, $|\sigma| \geq (1-\varepsilon)n$. Now, for any sequence $(t_i)_{i \in \sigma}$ of reals, one has

$$\sum_{i \in \sigma} |t_i| = \langle \sum_{i \in \sigma} t_i x_i, \sum_{j \in \sigma} \operatorname{sign}(t_j) v_j \rangle.$$

Since $(c\sqrt{\varepsilon}\operatorname{sign}(t_j))_{j\in\sigma}\in P_{\sigma}(E)$, we can find $(\delta_j)_{j\leq s}$ in E so that $\delta_j=c\sqrt{\varepsilon}\operatorname{sign}(t_j)$ for $j\in\sigma$. Observe that whenever $i\in\sigma$ and $j\notin\sigma$ then $\langle x_i,v_j\rangle=0$, and therefore

$$\langle \sum_{i \in \sigma} t_i x_i, \sum_{j \in \sigma} \operatorname{sign}(t_j) v_j \rangle = \frac{1}{c\sqrt{\varepsilon}} \langle \sum_{i \in \sigma} t_i x_i, \sum_{j=1}^s \delta_j v_j \rangle$$

$$\leq \frac{1}{c\sqrt{\varepsilon}} |\sum_{i \in \sigma} t_i x_i| \sqrt{\frac{2}{\varepsilon}} |\sum_{i=1}^s \delta_j u_j|$$

$$\leq \frac{2\sqrt{s}}{c\varepsilon} \mid \sum_{i \in \sigma} t_i x_i \mid \leq \frac{\sqrt{n}}{c'\varepsilon} \mid \sum_{i \in \sigma} t_i x_i \mid.$$

Choose z_i , $i = 1, ..., |\sigma| = m$, to be those x_j for which $j \in \sigma$, and the Proposition is proved.

3 Remark

As was mentioned in [Sz.2], another consequence of the Proposition is the following "proportional Dvoretzky–Rogers factorization" result (the proof of which is a word-by-word repetition of the argument given in [ST]):

Theorem 2 If $\varepsilon \in (0,1)$ and X is an n-dimensional normed space, there exist vectors $x_1, \ldots, x_m \in X$, $m \geq (1-\varepsilon)n$, such that for any reals t_1, \ldots, t_m ,

$$\max_{1 \le j \le m} |t_j| \le \|\sum_{j=1}^m t_j x_j\|_X \le \frac{c}{\varepsilon^{3/2}} (\sum_{j=1}^m |t_j|^2)^{1/2},$$

where c>0 is an absolute constant. Equivalently, the formal identity $i_{2,\infty}:\ell_2^m\to \ell_\infty^m$ can be written as $i_{2,\infty}=\alpha \circ \beta,\ \beta:\ell_2^m\to X,\ \alpha:X\to \ell_\infty^m,$ with $\|\alpha\|\ \|\beta\|\le c/\varepsilon^{3/2}.$ The same holds true for $i_{1,2}:\ell_1^m\to \ell_2^m.$

ACKNOWLEDGEMENT: I would like to thank Professor S.J. Szarek for pointing out to me that the $\sqrt{\varepsilon}$ -dependence in Lemma 3, if true would be optimal.

References

- [BS] J. Bourgain and S.J. Szarek, The Banach-Mazur distance to the cube and the Dvoretzky-Rogers factorization, Israel J. Math. **62** (1988), 169-180.
- [G] A.A. Giannopoulos, On the Banach-Mazur distance to the cube, Preprint, December 1992.
- [J] F. John, Extremum problems with inequalities as subsidiary conditions, Courant Anniversary Volume, New York: Interscience (1948), 187-204.
- [MS] V.D. Milman and G. Schechtman, Asymptotic Theory of Finite-Dimensional Normed Spaces, Lecture Notes in Mathematics 1200 (1986).
- [P] A. Pelczynski, Structural theory of Banach spaces and its interplay with analysis and probability, Proceedings of the ICM 1983, PWN-North Holland 1984, 237-269.
- [ST] S.J. Szarek and M. Talagrand, An isomorphic version of the Sauer-Shelah lemma and the Banach-Mazur distance to the cube, GAFA Seminar '87-88, Lecture Notes in Mathematics 1376 (1989), 105-112.

- [S] N. Sauer, On the density of families of sets, J. Comb. Theory, Ser. A, ${\bf 13}$ (1972), 145-147.
- [Sh] S. Shelah, A combinatorial problem: stability and order for models and theories in infinitary languages, Pacific J. Math. 41 (1972), 247-261.
- [Sz.1] S.J. Szarek, Spaces with large distance to ℓ_{∞}^n and random matrices, American J. Math. 112 (1990), 899-942.
- [Sz.2] S.J. Szarek, On the geometry of the Banach-Mazur compactum, Lecture Notes in Mathematics 1470 (1991), 48-59.
- [Sz.3] S.J. Szarek, Personal Communication.

DEPARTMENT OF MATHEMATICS, CASE WESTERN RESERVE UNIVERSITY, CLEVELAND, OHIO, USA.

 $Current \ Address: \ Department \ of \ Mathematics, \ University \ of \ Crete, \ Iraklion, \ Crete, \ Greece. \\ E-mail: \ deligia@talos.cc.uch.gr$