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Abstract

Our work is a further investigation on the connection between proba-
bility and geometry. We extend several known results from convex bodies
and log-concave measures to the setting of contoured probability distri-
butions as we study the relation of several parameters of a convex body,
a profile function and the resulting contoured distribution, where log-
concavity is not required.

1 Introduction

The connection between information theory and geometry has been known
and studied since the late 70's. Lieb showed in [23] that Shannon power inequal-
ity and Brunn-Minkowski inequality can be both derived from the sharp Young's
inequality proved by Beckner [4]. Brascamp and Lieb [8] (see also Costa and
Cover [12], and later Cover, Dembo and Thomas [13]) proved an analogy be-
tween the isoperimetric inequality in geometry and an inequality for the Fisher
information and the entropy.

Our study is motivated by the work of Guleryuz, Lutwak, Yang and Zhang
[18], where they established further this connection by introducing a new class
of probability distributions, the contoured distributions. The level sets of the
probability density of such a distribution are dilates of a star-shaped set K in
Rn that contains the origin in its interior, called the contoured body of the dis-
tribution. On the other hand, the density function f of a contoured distribution
can be expressed in the form f(x) = ϕ(∥x∥K) where ∥ · ∥K is the Minkowski
functional of the contoured body K and the function ϕ : [0,∞) → [0,∞) is
the so called radial profile of the distribution. Note that contoured distribu-
tions whose contoured body is a centered ellipsoid are known as elliptically
contoured distributions.
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Based on the aforementioned density decomposition, Guleryuz, Lutwak,
Yang and Zhang showed in [18] that information theoretic invariants of a con-
toured distribution are closely related to geometric invariants of its contoured
body. Moreover, they characterized the contoured distributions with extremal
entropy in terms of its radial profile and contour body, showing a clear link
between geometric and information theoretical inequalities.

In this article we carry on the study of contoured probability distributions
on Rn, along with their geometric aspects, from an asymptotic point of view as
n → ∞. At the same time we show how a contoured distribution could be an
example of a non log-concave distribution with log-concave properties.

In section 3 we further investigate the relation between a contoured distri-
bution and its defining convex contoured body and radial profile function. We
examine probabilistic and geometric quantities of a contoured distribution such
as the moments, its Lq-centroid bodies and its isotropic constant (see in section
2 for the precise definitions). We relate them to the corresponding geometric
quantities of the contoured convex body of the distribution and as a first appli-
cation, we prove (see Theorem 3.7) the famous Paouris large deviation inequality
[28] (a main property of log-concave distributions) for contoured distributions.

In the next sections we show how several known results for random convex
polytopes can be extended from the setting of log-concave distributions to the
setting of contoured distributions. A symmetric random polytope in Rn is the
convex hull of 2N random vectors ±X1, . . . ,±XN in Rn, where N is a positive
integer, and is denoted as KN = conv{±X1, . . . ,±XN}. In earlier results,
see for example [15], [16], [24], [14], the points whose convex hull forms the
random polytope are chosen uniformly from an isotropic convex body, or more
generally have an isotropic log-concave probability distribution. Moving to the
class of contoured distributions, log-concavity is no more a necessity. The radial
profile function that defines the contoured distribution may not be log-concave
(see below for the definitions) and consequently the corresponding contoured
distribution is not logarithmically concave. We give the simple example of the
functions ϕ(t) = e−t

a for 0 < a < 1, that define non-log-concave contoured
distributions, and (after a slight modification) satisfy the restrictions that are
required by our theorems (see the remark in Section 3.3).

In Section 4, we trace all the required restrictions needed in our setting, so
that the known results for the geometric parameters of a random polytope KN

with N log-concave vertices remain valid when instead we have a contoured
distribution. In particular, Theorem 4.1 asserts that, under mild assumptions,

P
(
c1Zq(X) ⊆ KN

)
≥ 1− exp

(
−c3 nβN1−β)− P

(
∥Γ∥ ≥ γ LX

sup f
1/n
X

√
N

)
,

for any q ≤ c2 log(N/n), where c2 > 0 is a constant depending only on the radial
profile of the contured distribution with density fX , c1, c3 and γ are absolute
positive constants, X1, . . . , XN are independent random vectors identically dis-
tributed according to the contoured probability density fX , LX is their isotropic
constant and ∥Γ∥ is the operator norm of the random operator Γ : ℓn2 → ℓN2 with
Γx =

(
⟨X1, x⟩, . . . , ⟨XN , x⟩

)
, x ∈ Rn.
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In Section 5 we investigate the relation between a contoured distribution
and its defining convex contoured body and radial profile function, in order
to provide asymptotic estimates for basic geometric parameters of a contoured
random polytope. More precisely, for the mean width of KN we show that (The-
orem 5.1) E

[
w(KN )

]
≤ cw

(
ZlogN (X)

)
, where c > 0 is an absolute constant,

and for the volume radius vr(KN ) we show that (Theorem 5.5)

P
(
vr
(
KN

)
≤ c
√

logN IlogN (Xϕ)V (K)1/nLK

)
≥ 1− 1

2N
.

For the notation used above we refer the reader to Section 2 and Section 3 of
the paper. In our proofs, we extend a number of useful facts, in our setting,
which may be interesting on their own.

Acknowledgement. I would like to thank Antonis Tsolomitis for many
fruitful discussions on the subject, and Apostolos Giannopoulos for his valuable
comments on the presentation of the paper. Finally, I would like to thank the
anonymous referee for his comments, after careful reading of the manuscript.

2 Notation and background material
We work in Rn, equipped with a Euclidean structure ⟨·, ·⟩. We denote by | ·
| the corresponding Euclidean norm, Bn2 stands for the Euclidean unit ball,
and Sn−1 for the unit sphere. The volume of a set A ⊆ Rn is denoted by
V (A). The volume of Bn2 is simply denoted by ωn. The volume radius of A
is denoted by vr(A) and it is the radius of the Euclidean ball having the same
volume as A, i.e. vr(A) = (V (A)/ωn)

1/n. We write σ = σn for the rotationally
invariant probability measure on Sn−1 and dθ = nωndσ(θ) denotes integration
with respect to the Lebesgue measure on Sn−1. For any integrable function
f : Rn → R we write

∫
Rn f(x) dx for the Lebesgue integral of f . For any

Borel measurable subset A of Rn we denote its indicator function by 1A and
we write

∫
A
f(x) dx =

∫
Rn f(x)1A(x) dx for the Lebesgue integral of f over A.

Integration in polar coordinates gives that∫
Rn

f(x) dx =

∫
Sn−1

∫ ∞

0

f(tθ) tn−1dt dθ = nωn

∫
Sn−1

∫ ∞

0

f(tθ) tn−1dt dσ(θ).

The letters c, c1, c2 etc, denote absolute positive constants whose value may
change from line to line. Whenever we write a ≃ b, we mean that there exist
absolute constants c1, c2 > 0 such that c1a ≤ b ≤ c2a. Similarly, if A,B ⊆ Rn
we write A ≃ B if there exist absolute constants c1, c2 > 0 such that c1A ⊆
B ⊆ c2A.

Let K be a subset of Rn. We say that K is centered if its center of mass lies
at the origin i.e.

∫
K
⟨x, θ⟩dx = 0 for every θ ∈ Sn−1, and that K is symmetric

if −x ∈ K whenever x ∈ K. Moreover, we say that K is a convex body if it
is a convex compact subset of Rn with non-empty interior, and that K is star
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shaped if λx ∈ K whenever x ∈ K and λ ∈ [0, 1]. The Minkowski functional of
a star shaped set K ⊆ Rn is the function

∥x∥K := inf
{
λ > 0 : x ∈ λK

}
, x ∈ Rn.

It is not hard to see that ∥T−1x∥K = ∥x∥TK for every T ∈ GL(n), where GL(n)
is the set of all invertible linear maps on Rn. The Minkowski functional of a
symmetric convex body K in Rn is a norm in Rn and, vice versa, any norm ∥·∥ in
Rn defines a symmetric convex body K in Rn, namely, K = {x ∈ Rn : ∥x∥ ≤ 1}.
The support function of a convex body K in Rn is defined by

hK(x) = max{⟨x, y⟩ : y ∈ K}, x ∈ Rn,

and w(K) stands for the mean width of K, that is the average of hK over the
unit sphere:

w(K) =

∫
Sn−1

hK(θ) dσ(θ).

If the origin is an interior point of K then its polar body Ko is the convex
body in Rn defined by Ko := {y ∈ Rn : ⟨x, y⟩ ≤ 1 for all x ∈ K}. Note that
hK(x) = ∥x∥Ko and hKo(x) = ∥x∥K for all x ∈ Rn.

A Borel random vector X in Rn is called logarithmically concave (or log-
concave) if its probability distribution µX(A) = P (X ∈ A) is a log-concave
measure in Rn, that is

µX
(
(1− λ)A+ λB

)
≥ µX(A)1−λµX(B)λ

for all compact A,B ⊆ Rn and any λ ∈ (0, 1). A function f : Rn → [0,∞) is
called log-concave if

f
(
(1− λ)x+ λy

)
≥ f(x)1−λf(y)λ,

for all x, y ∈ Rn and any λ ∈ (0, 1). C. Borell proved in [6] that every Borel
random vector X which is log-concave and satisfies µX(E) = P (X ∈ E) < 1 for
every hyperplane E of Rn is absolutely continuous (with respect to Lebesgue
measure) and its density is log-concave. Note that if K is a convex body in
Rn then the random vector XK with density fK = 1

V (K)1K is log-concave. We
refer to the books [17], [31] and [30] for more details on the Brunn-Minkowski
theory and the geometry of convex bodies in Rn.

For a random vector X in Rn, we write X ∼ f if X is absolutely continuous
with respect to the Lebesgue measure and f is its probability density function.
Moreover, we say that X is centered if EX = 0. We also use the notation X d

= Y
to denote that the random vectors X,Y have the same distribution.

Let X be a Borel centered random vector in Rn with a probability density
function fX . The covariance matrix Cov(X) = CX = E

[
X ⊗ X

]
of X is the

n× n matrix with entries

Covij(X) = E[XiXj ] =

∫
Rn

xixjfX(x)dx.
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For any p ≥ 1, the p-th moment of the Euclidean norm of X is defined by

Ip(X) =
(
E|X|p

)1/p
=

(∫
Rn

|x|pfX(x)dx

)1/p

.

It is well khown that for a log-concave random vector X in Rn, one can extend
the definition of Ip(X) for any p > −n.

Note that by Hölder's inequality Ip(X) is a non decreasing function of p,
and under the extra assumption that X is log-concave, a reverse estimate holds
true (see [7], [5], [10] and [27]), that is for any 1 ≤ p ≤ q one has that

Ip(X) ⊆ Iq(X) ⊆ c
q

p
Ip(X). (1)

The Lp-centroid body Zp(X) of X, p ≥ 1, is the symmetric convex body in
Rn with support function

hZp(X)(y) =
(
E|⟨X, y⟩|p

)1/p
=

(∫
Rn

|⟨x, y⟩|pfX(x) dx

)1/p

, y ∈ Rn.

The L2-centroid body Z2(X) is the Legendre ellipsoid ECX
of X, which is defined

by the covariance matrix of X by ECX
= C

1/2
X Bn2 . The formula

Zp(TX) = T
(
Zp(X)

)
, (2)

holds true for any T ∈ GL(n) and p ≥ 1; this follows directly from the definition
of Zp(X). Hölder's inequality shows that Zp(X) ⊆ Zq(X), for any 1 ≤ p ≤ q,
while, if we additionally assume that X is log-concave, then Borell's lemma (see
[25]) implies a reverse inclusion, and so in that case we have

Zp(X) ⊆ Zq(X) ⊆ c
q

p
Zp(X), (3)

for any 1 ≤ p ≤ q.

The isotropic constant LX of X, is defined by the formula

LX :=

(
sup
x∈Rn

fX(x)

)1/n ∣∣ detCov(X)
∣∣1/2n.

It is an affine invariant of X and does not depend on the choice of the Euclidean
structure. A random vector X in Rn is called isotropic if it is centered and there
exists a constant αX > 0 such that

Cov(X) = α2
XIn, (4)

where In is the identity map in Rn. In this case, αX =
∣∣ detCov(X)

∣∣1/2n. Note
that X is isotropic and satisfies (4) if and only if the ellipsoid Z2(X) is the
Euclidean ball αXBn2 . Moreover, one can check that every centered random

5



vector X on Rn has an isotropic linear image, i.e., there exists T ∈ GL(n) such
that TX is isotropic.

For any centered convex body K in Rn, let XK be the log-concave random
vector in Rn with density

fK(x) =
1

V (K)
1K(x), x ∈ Rn. (5)

Then, (sup fK)
1/n

= 1/V (K)1/n and we write Cov(K) = Cov(XK), Ip(K) =
Ip(XK) and Zp(K) = Zp(XK), p ≥ 1. Thus, as a special case of (1) we have
that

Ip(K) ≤ Iq(K) ≤ c
q

p
Ip(K),

for any 1 ≤ p ≤ q. Note also that since XK is a log-concave random vector,
Ip(K) is defined for any p > −n.

The isotropic constant of K is defined by

LK = LXK
=

1

V (K)1/n

∣∣ detCov(K)
∣∣1/2n. (6)

We call K isotropic if and only if there exists a constant αK > 0 such that

Cov(K) = α2
KIn, (7)

where αK =
∣∣ detCov(K)

∣∣1/2n.

Remark. Usually, in the bibliography, for an isotropic random vector X it is
additionally assumed that Cov(X) = In, that is αX = 1, and this normalization
implies that LX = supx∈Rn fX(x)1/n. Moreover, for an isotropic convex body
K it is additionally assumed that V (K) = 1, that is sup fK = 1, which gives
that LK = aK =

∣∣ detCov(K)
∣∣1/2n. In this paper we prefer to use the general

normalization introduced in (4) and (7), since it suits better in our case.

Paouris proved in [27] that, for any 1 ≤ p ≤
√
n, the p-th moment Ip(X) of an

isotropic and log-concave random vectorX in Rn is equivalent to I2(X) =
√
nαX

up to an absolute constant. A consequence of this result is the celebrated
Paouris's deviation inequality: If X is an isotropic log-concave random vector
X in Rn, then

P
(
|X| ≥ c

√
nαXt

)
≤ e−

√
nt, (8)

for every t ≥ 1.
A well-known open question in the theory of isotropic log-concave measures,

is the hyperplane conjecture, which asks if there exists an absolute constant
C > 0 such that

Ln := sup
{
LX : X is an isotropic log-concave random vector on Rn

}
≤ C,
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for all n ≥ 2. Bourgain proved in [7] that Ln ≤ c 4
√
n log n and later Klartag

[19] obtain the bound Ln ≤ c 4
√
n (see also [22]). Chen [11] in a breakthrough

work proved that for any ε > 0 there exists n0(ε) ∈ N such that Ln ≤ nε for
every n ≥ n0(ε). Then, Klartag and Lehec [21] showed that Ln ≤ c(log n)4,
and the best known bound until now is due to Klartag [20], who proved that
Ln ≤ c

√
log n, where c > 0 is an absolute constant.

The reader may find more details about isotropic log-concave measures in
the book [9]. We also refer to the book [3] for an exposition of the asymptotic
theory of finite dimensional normed spaces.

3 Contoured distributions
A distribution in Rn is called contoured if it is absolutely continuous and its
probability density function f admits a decomposition of the form

f(x) = cϕ
(
λ(x)

)
,

where c is a positive constant, ϕ : [0,+∞) → [0,+∞) is an integrable function
and λ : Rn → [0,∞) is a shape function, which means that it is positive away
from 0 and positively homogeneous i.e. λ(tx) = tλ(x) for any t > 0 and x ∈ Rn.

Associated to any shape function λ is the compact star-shaped body

Kλ =
{
x ∈ Rn : λ(x) ≤ 1

}
.

Conversely, associated to any compact star-shaped body K, called a contoured
body, is the shape function defined by the Minkowski functional of the contoured
body K, i.e.

λK(x) = inf
{
t > 0 : x ∈ tK

}
.

Then, there exists an one-to-one correspondence between shape functions and
contoured bodies which leads us to the following notation.

We say that a random vector has a contoured distribution in Rn if it has a
density function of the form

fK,ϕ(x) =
ωn

V (K)
ϕ(∥x∥K), x ∈ Rn, (9)

where K is a star-shaped set in Rn and ϕ : [0,+∞) → [0,+∞) is an integrable
function such that ϕ(|x|) is a density in Rn, i.e.

nωn

∫ ∞

0

tn−1 ϕ(t) dt = 1. (10)

The body K is called the contoured body of the distribution, and ϕ is called the
radial profile function of the distribution.

In the rest of the paper we only consider distributions with a contoured
body K which is a centered convex body in Rn. We write XK,ϕ for a contoured
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random vector with density given by (9). In the special case where K = Bn2 ,
we simplify the notation by writing Xϕ and fϕ instead of XBn

2 ,ϕ
and fBn

2 ,ϕ
.

We refer to the paper [18] for more details about the definition of a contoured
distribution and the normalization (10) of its radial profile function.

3.1 Moments
First we note that the action of a linear transformation on a contoured random
vector is carried over to the contoured body of the distribution.

Proposition 3.1. Let XK,ϕ ∼ fK,ϕ(x) =
ωn

V (K)ϕ(∥x∥K) and T ∈ GL(n). Then,

TXK,ϕ
d
= XTK,ϕ. (11)

Proof. For any random vector X ∼ f
X

in Rn and T ∈ GL(n) we have that

TX ∼ fTX(x) =
1

| detT |
fX ◦ T−1(x).

Thus,

fTXK,ϕ
(x) =

1

| detT |
fXK,ϕ

(T−1x) =
1

| detT |
ωn

V (K)
ϕ(∥T−1x∥K)

=
ωn

V (TK)
ϕ(∥x∥TK) = fXTK,ϕ

(x). □

The next proposition is a result from [18], which describes the splitting of
the covariance matrix of a contoured distribution. For the reader's convenience,
we present its simple proof.

Proposition 3.2 ([18]). Let XK,ϕ ∼ fK,ϕ(x) =
ωn

V (K)ϕ(∥x∥K). Then,

Cov(XK,ϕ) =
n+ 2

n
I2(Xϕ)

2 Cov(K) ≃ I2(Xϕ)
2 Cov(K). (12)

Proof. For every i, j = 1, . . . , n, integration in polar coordinates implies that

Covij(XK,ϕ) =
ωn

V (K)

∫
Rn

xixjϕ(∥x∥K) dx

=
ωn

V (K)

∫
Sn−1

∫ ∞

0

θiθjϕ(t∥θ∥K)tn+1 dtdθ

=
ωn

V (K)

∫
Sn−1

∫ ∞

0

θiθj

∥θ∥n+2
K

ϕ(s) sn+1 dsdθ

= ωn

∫ ∞

0

ϕ(s) sn+1 ds
1

V (K)

∫
Sn−1

θiθj

∥θ∥n+2
K

dθ

=
n+ 2

n
E|Xϕ|2 Covij(K),
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since

(n+ 2)Covij(K) =
n+ 2

V (K)

∫
K

xixjdx =
1

V (K)

∫
Sn−1

θiθj

∥θ∥n+2
K

dθ. □

A main observation of this paper is that the same phenomenon also occurs
for the p-th moments and the Lp-centroid bodies of a contoured random vec-
tor. They both split into two parts, one for the radial profile and one for the
contoured body of the distribution.

Proposition 3.3. Let XK,ϕ ∼ fK,ϕ(x) =
ωn

V (K)ϕ(∥x∥K). Then, for any p ≥ 1

Ip(XK,ϕ) =

(
n+ p

n

)1/p

Ip(Xϕ) Ip(K) ≃ Ip(Xϕ) Ip(K). (13)

Proof. Note that for the special contoured random vector Xϕ ∼ fϕ(x) = ϕ(|x|),
a direct computation in polar coordinates gives us that

Ip(Xϕ) = (E|Xϕ|p)1/p =
(
nωn

∫ ∞

0

tn+p−1 ϕ(t) dt

)1/p

, (14)

for any p ≥ 1. Also, integrating in polar coordinates we see that

(n+ p) Ip(K)p =
n+ p

V (K)

∫
K

|x|pdx =
n+ p

V (K)

∫
Sn−1

∫ 1
∥θ∥K

0

tn+p−1 dtdθ

=
1

V (K)

∫
Sn−1

1

∥θ∥n+pK

dθ.

Thus,

Ip(XK,ϕ)
p =

ωn
V (K)

∫
Rn

|x|pϕ(∥x∥K)dx

=
ωn

V (K)

∫
Sn−1

∫ ∞

0

ϕ(t∥θ∥K)tn+p−1dtdθ

= ωn

∫ ∞

0

ϕ(s)sn+p−1ds
1

V (K)

∫
Sn−1

1

∥θ∥n+pK

dθ

=
E|Xϕ|p

n
(n+ p) Ip(K)p. □

Proposition 3.4. Let XK,ϕ ∼ fK,ϕ(x) =
ωn

V (K)ϕ(∥x∥K). Then, for any p ≥ 1

Zp(XK,ϕ) =

(
n+ p

n

)1/p

Ip(Xϕ)Zp(K) ≃ Ip(Xϕ)Zp(K). (15)
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Proof. We compute

(n+ p)hpZp(K)(x) =
n+ p

V (K)

∫
K

|⟨x, y⟩|p dy

=
n+ p

V (K)

∫
Sn−1

∫ 1
∥θ∥K

0

|⟨x, θ⟩|p tn+p−1 dtdθ

=
1

V (K)

∫
Sn−1

|⟨x, θ⟩|p

∥θ∥n+pK

dθ.

Thus,

hpZp(XK,ϕ)
(x) =

ωn
V (K)

∫
Rn

|⟨x, y⟩|pϕ(∥x∥K) dy

=
ωn

V (K)

∫
Sn−1

∫ ∞

0

|⟨x, θ⟩|pϕ(t∥θ∥K) tn+p−1 dt dθ

= ωn

∫ ∞

0

ϕ(s) sn+p−1 ds
1

V (K)

∫
Sn−1

|⟨x, θ⟩|p

∥θ∥n+pK

dθ

=
Ip(Xϕ)

p

n
(n+ p)hpZp(K)(x). □

3.2 Isotropicity
Here we study the concept of isotropicity of a contoured distribution and its
relation with the isotropicity of the corresponding contoured body.

Let K be a centered convex body in Rn and X = XK,ϕ be a contoured
random vector with density function fK,ϕ(x) = ωn

V (K)ϕ(∥x∥K), x ∈ Rn. We
consider the symmetric positive definite linear maps generated by the covariance
matrices of X and K,

RXy = E
[
⟨y,X⟩X

]
=

ωn
V (K)

∫
Rn

⟨y, x⟩xϕ
(
∥x∥K

)
dx

and
RKy =

1

V (K)

∫
K

⟨y, x⟩x dx,

for any y ∈ Rn and set SX = R
−1/2
X and SK = R

−1/2
K . Then, SXX and SKK

are isotropic images of X and K respectively. We refer the reader to [9] for more
details on this well known fact about the isotropic image of a random vector or
a convex body. Moreover, by Proposition 3.2,

SX =

√
n

n+ 2
I2(Xϕ)

−1 SK (16)

and then, by the definition (7) of the isotropicity of convex bodies, we see that
SXK is also isotropic and LSXK = LSKK = LK . Thus, Proposition 3.1 and the
above discussion prove the following.
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Proposition 3.5. Let XK,ϕ ∼ fK,ϕ(x) = ωn

V (K)ϕ(∥x∥K). There exists T ∈

GL(n) such that TXK,ϕ
d
= XTK,ϕ is isotropic and TK is also isotropic.

We finally state the formula that relates the isotropic constant of a contoured
distribution with the one of the corresponding contoured body.

Proposition 3.6. Let XK,ϕ ∼ fK,ϕ(x) =
ωn

V (K)ϕ(∥x∥K). Then

LXK,ϕ
= ω1/n

n

√
n+ 2

n
I2(Xϕ)

(
sup
t∈R+

ϕ(t)

)1/n

LK .

Proof. By the definition of the isotropic constant we have that

LXK,ϕ
=

(
sup
x∈Rn

fK,ϕ(x)

)1/n ∣∣ detCov(XK,ϕ)
∣∣1/2n,

and
LK =

1

V (K)1/n

∣∣ detCov(K)
∣∣1/2n.

Then (
sup
x∈Rn

fK,ϕ(x)

)1/n

=
ω
1/n
n

V (K)1/n

(
sup
x∈Rn

ϕ(∥x∥K)

)1/n

=
ω
1/n
n

V (K)1/n

(
sup
t∈R+

ϕ(t)

)1/n

and by Proposition 3.2

∣∣ detCov(XK,ϕ)
∣∣1/2n =

√
n+ 2

n
I2(Xϕ) |detCov(K)|1/2n ,

which completes the proof.

3.3 Deviation estimates
We say that a radial profile function ϕ : [0,∞) → [0,∞) satisfies the concentra-
tion condition in Rn with constant τ = τϕ > 0, that depends only on ϕ, if the
random vector Xϕ = XBn

2 ,ϕ
satisfies

Ip(Xϕ) ≤ τϕ I2(Xϕ), (17)

for all p ≥ 1.
Concentration conditions like (17) are valid for several cases of distributions.

For example, if ϕ is a log-concave function then so is the density fϕ(x) = ϕ(|x|)
of the random vector Xϕ. Thus, estimate (1) ensures that any log-concave radial
profile satisfies the concentration condition (17) with constant τp = cp.
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Below we give simple examples of radial profile functions ϕ satisfying the
concentration condition (17) with a constant τϕ > 0 that depends only on ϕ.

Consider a > 0 and let

ϕa(t) =
1

nωn
∫ 1

0
tn−1e−ta dt

e−t
a

χ[0,1](t).

It is easy to verify that ϕa is a radial profile, i.e. fϕa
(x) = ϕa(|x|) defines a

density on Rn, and for the random vector Xϕa
∼ fϕa

(x) we have that

Ip(Xϕa
) =

(∫ 1

0
tn+p−1e−t

a

dt∫ 1

0
tn−1e−ta dt

)1/p

.

Using the fact that e−1 ≤ e−t
a ≤ 1 for t ∈ [0, 1], we easily check that Ip(Xϕa) ≃

1 for any p ≥ 1, and hence ϕa satisfies (17) with an absolute constant c > 0.
Note that clearly, if we choose a ∈ (0, 1), then ϕa is not log-concave on its
support.

However, this effect does not relate to the fact that the above radial pro-
file function ϕa has a bounded support. A small modification can provide an
alternative ϕ that is ``frequently non-log-concave'' as t→ ∞.

One can notice that setting ϕ(t) = λe−t
a , where λ is suitably chosen to make

ϕ(∥x∥2) a density on Rn, will not help. The tails of this function are too heavy
and fail to satisfy condition (17) for all p ≥ 1; nevertheless, they do satisfy it,
up to p = n. Here, contrary to the case of convex bodies where Ip(K) ≃ In(K)
for p ≥ n, this is not the case for Ip(Xϕ). To get the promised example, we have
to lighten up the tails of e−ta .

Consider 0 < a < 1 and two sequences xk < yk ≤ xk+1 with x0 = 0 and
y0 = 1, that both diverge to +∞. Define A = ∪∞

k=1[xk, yk] and let

ϕ(t) =
e−t

a

χA

nωn
∑∞
k=0

∫ yk
xk
tn−1e−ta dt

.

Then ϕ defines a density on Rn of the form ϕ(|x|), it is not eventually zero and
it is not eventually log-concave since we choose 0 < a < 1. For any p ≥ 1,

Ip(Xϕ) ≤
(

n

n+ p

)1/p
(∑∞

k=1(y
n+p
k − xn+pk )e−x

a
k∑∞

k=1(y
n
k − xnk )e

−yak

)1/p

≤ c

(
n

n+ p

)1/p
( ∞∑
k=1

(yn+pk − xn+pk )e−x
a
k

)1/p

.

By choosing xk close enough to yk so that yn+pk −xn+pk < 1/k2 we get again that
Ip(Xϕ) ≤ c, and hence ϕ satisfies (17) with τ = c > 0, an absolute constant.

In the following theorem we prove a deviation inequality like (8) for con-
toured random vectors, under the assumption (17) on the radial profile of their
distribution. We emphasise the fact that such random vectors, as the above
remark shows, do not necessarily need to be log-concave.
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Theorem 3.7. Let X = XK,ϕ ∼ fK,ϕ(x) = ωn

V (K)ϕ(∥x∥K) be isotropic and
assume that the radial profile function ϕ satisfies the concentration condition
(17) in Rn, with a constant τϕ > 0 that depends only on ϕ. Then,

P
(
|X| ≥ cϕtαX

√
n
)
≤ e−t

√
n, (18)

for every t ≥ 1, where cϕ > 0 is a constant depending only on ϕ and αX =

| detCov(X)|1/2n = LX/ sup f
1/n
X .

Proof. We follow the argument from [27] and [28]. Estimate (1), Proposition 3.3
and the concentration condition (17) on the radial profile ϕ, imply that

Iq(X) ≤ c′ϕ
q

p
Ip(X), (19)

for any 1 ≤ p ≤ q, where c′ϕ > 0 is a constant depending only on ϕ.
Consequently, for any t, p, q ≥ 1, the estimate (19) for 1 ≤ p ≤ pq and

Markov's inequality give

P
(
|X| > e c′ϕt Ip(X)

)
≤ P

(
|X| > e t

q
Ipq(X)

)
≤
( q
e t

)pq
.

Taking q = t ≥ 1, we conclude that

P
(
|X| > c′′ϕtIp(X)

)
≤ e−tp (20)

for every t ≥ 1 and p ≥ 1.
Note that, by Proposition 3.5, the centered contoured convex body K is

also isotropic and so by Paouris's concentration result (see [28]) we have that
Ip(K) ≃ I2(K), for all p ≤

√
n. Thus, by Proposition 3.3 and (17), we obtain

I2(X) ≤ Ip(X) ≤ cϕI2(X) ∀ p ≤
√
n.

Note also that
(
E|⟨X, θ⟩|2

)1/2
= αX = | detCov(X)|1/2n, for all θ ∈ Sn−1, and

so I2(X) =
√
nαX . Thus, the constant moments behaviour up to p =

√
n

combined with the estimate (20) implies that

P
(
|X| > cϕ t αX

√
n
)
≤ e−t

√
n

for all t ≥ 1 where cϕ > 0 is a constant depending only on ϕ.

4 Geometric aspects of contoured random poly-
topes

We write KN = conv{±X1, . . . ,±XN} for the symmetric convex hull of the
random vectors X1, . . . , XN in Rn. In other words KN is the random polytope
in Rn having the random points ±X1, . . . ,±XN , as its vertices. Applying our
results, we are able to prove an estimate for the asymptotic shape of a contoured
random polytope, similar to the one for the log-concave case (see [14], [16]).
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Theorem 4.1. Let 0 < β ≤ 1
2 , γ > 1. There exists an absolute constant c > 0

such that if n,N ∈ N with N ≥ cγn, then if X1, . . . , XN are independent copies
of the contoured random vector

X ∼ fX = fK,ϕ(x) =
ωn

V (K)
ϕ (∥x∥K) , x ∈ Rn

where K is an isotropic convex body in Rn and the radial profile function ϕ
satisfies the condition

bϕ := sup
q≥1

I2q(Xϕ)

Iq(Xϕ)
<∞, (21)

and if KN = conv{±X1, . . . ,±XN} is the random polytope generated by the
Xi's, then for all q ≤ β

2 log(c2bϕ)
log N

n we have that

P
(
c1Zq(X) ⊆ KN

)
≥ 1−exp

(
−c3 nβN1−β)−P (∥Γ∥ ≥ γ LX

sup f
1/n
X

√
N

)
, (22)

where c1, c2, c3 are positive absolute constants and ∥Γ∥ is the operator norm of
the random operator Γ : ℓn2 → ℓN2 with Γx =

(
⟨X1, x⟩, . . . , ⟨XN , x⟩

)
, x ∈ Rn.

Remark. Note that the concentration condition (21) is weaker than (17), in the
sense that if a radial profile function ϕ satisfies condition (17) with a constant
τϕ > 0 depending only on ϕ, then ϕ satisfies (21) as well, with a constant bϕ > 0
such that bϕ ≤ τϕ.

We need first a technical lemma from [14].

Lemma 4.2. Let σ ⊆ {1, . . . , N} and θ ∈ Sn−1. Then, under the assumptions
of Theorem 4.1,

P

(
max
j∈σ

∣∣⟨Xj , θ⟩
∣∣ ≤ 1

2
∥⟨·, θ⟩∥q

)
≤ exp

(
− |σ|
(c bϕ)2q

)
(23)

where ∥⟨·, θ⟩∥q =
(
E|⟨X, θ⟩|q

)1/q and c > 0 is an absolute constant.

Proof. Using the assumption that Xi's are independent and identically dis-
tributed, we have

P

(
max
j∈σ

∣∣⟨Xj , θ⟩
∣∣ ≤ 1

2
∥⟨·, θ⟩∥q

)
=

∏
j∈σ

P

(∣∣⟨Xj , θ⟩
∣∣ ≤ 1

2
∥⟨·, θ⟩∥q

)

= P

(∣∣⟨X, θ⟩∣∣ ≤ 1

2
∥⟨·, θ⟩∥q

)|σ|

.

To estimate the last probability, we use the Paley-Zygmund inequality

P
(
Y ≥ tE[Y ]

)
≥ (1− t)2

(
E[Y ]

)2
E [Y 2]

∀ t ∈ (0, 1), (24)
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for the random variable Y =
∣∣⟨X, θ⟩∣∣q. Note that by (21) and Proposition 3.4,

E
[
Y 2
]
= E

∣∣⟨X, θ⟩∣∣2q = hZ2q(X)(θ)
2q ≤

(
c1bϕ

)2q
hZq(X)(θ)

2q

=
(
c1bϕ

)2qE [Y ]
2
,

and so

P

(∣∣⟨X, θ⟩∣∣ ≤ 1

2
∥⟨·, θ⟩∥q

)|σ|

≤

(
1−

(
1− 1

2q

)2(
c1bϕ

)2q
)|σ|

≤

(
1− 1(

2c1bϕ
)2q
)|σ|

≤ exp

(
− |σ|(

2c1bϕ
)2q
)
. □

Proof of Theorem 4.1. Let m :=
[
5(N/n)β

]
+ 1, k := [N/m] and σ1, . . . , σk be

a partition of {1, . . . , N} with |σi| ≥ m, for all i = 1, . . . , k. For any σ ⊆
{1, . . . , N} define Pσ to be the projection on the coordinates defined by the
index set σ. We consider the average norm in RN , defined by

∥u∥o =
1

k

k∑
i=1

∥∥Pσi(u)
∥∥
∞ =

1

k

k∑
i=1

max
j∈σi

|uj |, (25)

for any u = (u1, . . . , uN ) ∈ RN . Then, since

hKN
(x) = max

1≤j≤N

∣∣⟨Xj , x⟩
∣∣ ≥ max

j∈σi

∣∣⟨Xj , x⟩
∣∣ = ∥∥Pσi

(
Γ(x)

)∥∥
∞,

for every i = 1, . . . , k, one has that

hKN
(x) ≥ ∥Γ(x)∥o ∀x ∈ Rn. (26)

For any x ∈ Rn such that ∥Γ(x)∥o < 1
4∥⟨·, x⟩∥q, there exists a set I ⊆ {1, . . . , k},

with |I| > k
2 , and

∥∥Pσi

(
Γ(x)

)∥∥
∞ < 1

2∥⟨·, x⟩∥q for every i ∈ I. Indeed, if

I =

{
i ≤ k :

∥∥Pσi

(
Γ(x)

)∥∥
∞ <

1

2
∥⟨·, x⟩∥q

}
,

then, |I| > k/2. Otherwise, if |Ic| ≥ k/2 we would have

∥Γ(x)∥o ≥
1

k

∑
i∈Ic

∥∥Pσi

(
Γ(x)

)∥∥
∞ ≥ 1

4
∥⟨·, x⟩∥q > ∥Γ(x)∥o ,
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which is a contradiction. Thus, Lemma 4.2 implies that for every θ ∈ Sn−1

P

(
∥Γ(θ)∥o <

1

4
∥⟨·, θ⟩∥q

)
≤

∑
I⊆{1,...,k}

|I|>k/2

∏
i∈I

P

(∥∥Pσi

(
Γ(θ)

)∥∥
∞ ≤ 1

2
∥⟨·, θ⟩∥q

)

≤
∑

I⊆{1,...,k}
|I|>k/2

∏
i∈I

exp

(
− |σi|(

2c1bϕ
)2q
)

≤
∑

I⊆{1,...,k}
|I|>k/2

exp

(
− m|I|(

2c1bϕ
)2q
)

≤
∑

I⊆{1,...,k}
|I|>k/2

exp

(
− km

2
(
2c1bϕ

)2q
)

≤
k∑

j=⌊ k
2 ⌋

(
k

j

)
exp

(
− km

2
(
2c1bϕ

)2q
)

≤ exp

(
k log 2− km

2
(
2c1bϕ

)2q
)

≤ exp

(
N

m
log 2− N

4
(
2c1bϕ

)2q
)

≤ exp

(
log 2

5
N1−βnβ − N

4
(
2c1bϕ

)2q
)
,

where 2c1 is the absolute positive constant c from Lemma 4.2. Choosing

q ≤ q0 =
β

log(8c1bϕ)2
log

N

n
(27)

we see that
N

4
(
2c1bϕ

)2q ≥ N(
8c1bϕ

)2q ≥ N1−βnβ ,

and so we get

P

(
∥Γ(θ)∥o <

1

4
∥⟨·, θ⟩∥q

)
≤ exp

(
−c2N1−βnβ

)
, (28)

for every θ ∈ Sn−1, where c2 = 1− (log 2)/5 > 0.
Now, let D =

{
θ ∈ Rn : 1

2∥⟨·, θ⟩∥q = 1
}

and U be a δ-net of D, with respect
to the norm 1

2∥⟨·, θ⟩∥q, of cardinality |U | ≤ (3/δ)
n (for the existence of U , see

Lemma 2.6 in [26]). Then, (28) gives that

P

(
∃u ∈ U : ∥Γ(u)∥o ≤

1

2

)
≤ exp

(
n log

3

δ
− c2N

1−βnβ
)
. (29)

Since K, and so also X, is isotropic,

Zq(X) ⊇ Z2(X) =
LX

sup f
1/n
X

Bn2 .

Fix γ > 1 and suppose that ∥Γ∥ ≤ γ LX

sup f
1/n
X

√
N . Then by the Cauchy-Schwartz

inequality we get that

∥Γ(x)∥o ≤
1√
k
∥Γ(x)∥2 ≤ γ

LX

sup f
1/n
X

√
N

k
∥x∥2 ≤ γ

√
N

k
∥⟨·, x⟩∥q
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for all x ∈ Rn. For every θ ∈ D there exists u ∈ U such that 1
2∥⟨·, θ − u⟩∥q < δ

and so

∥Γ(u)∥o ≤ ∥Γ(θ)∥o + ∥Γ(θ − u)∥o ≤ ∥Γ(θ)∥o + cγδ

√
N

k
.

Then, if δ = 1
4cγ

√
k
N , (29) implies that

P

(
∃θ ∈ Sn−1 : ∥Γ(θ)∥o ≤

1

8
∥⟨·, θ⟩∥q , ∥Γ∥ ≤ γ LX

sup f
1/n
X

√
N

)
= P

(
∃θ ∈ D : ∥Γ(θ)∥o ≤

1

4
, ∥Γ∥ ≤ γ LX

sup f
1/n
X

√
N

)
≤ P

(
∃u ∈ U : ∥Γ(u)∥o ≤

1

2
, ∥Γ∥ ≤ γ LX

sup f
1/n
X

√
N

)
≤ exp

(
n log

(
12cγ

√
N

k

)
− c2N

1−βnβ

)
≤ exp

(
−c3N1−βnβ

)
,

for some absolute constant c3 > 0. The last inequality is valid if we assume that
N is large enough. Indeed, for any suitable absolute constant c′ > 0, one has
that

log
N

n
≤ c′

√
N

n

if N ≥ c0n for an absolute constant c0 > 0 (depending on c′). Thus, since γ > 1,
if c4 ≥ max{c0, 12c} and if we take

N ≥ c4γn ≥ 12cγn, (30)

then by the definition of k and m and the fact that 0 < β ≤ 1/2, we have

log

(
12cγ

√
N

k

)
≤ C log

N

n
≤ c′C

√
N

n
≤ c′C

(
N

n

)1−β

,

which implies that

n log

(
12cγ

√
N

k

)
≤ c′CN1−βnβ < c2N

1−βnβ

choosing the constant c′ > 0 suitably small.
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Finally, taking into account (26), we get the desired result:

P

(
KN ⊉

1

8
Zq(X)

)
≤ P

(
∃θ ∈ Sn−1 : ∥Γ(θ)∥o ≤

1

8
∥⟨·, θ⟩∥q

)
≤ P

(
∃θ ∈ Sn−1 : ∥Γ(θ)∥o ≤

1

8
∥⟨·, θ⟩∥q , ∥Γ∥ ≤ γ LX

sup f
1/n
X

√
N

)
+ P

(
∥Γ∥ ≥ γ LX

sup f
1/n
X

√
N

)
≤ exp

(
−c3N1−βnβ

)
+ P

(
∥Γ∥ ≥ γ LX

sup f
1/n
X

√
N

)
,

completing the proof.

4.1 A norm estimate for contoured random matrices
We close this section providing an estimate for the probability

P

(
∥Γ∥ ≥ γ LX

sup f
1/n
X

√
N

)
that appears in Theorem 4.1.

Proposition 4.3. Let n,N be positive integers with n ≤ N ≤ e
√
n and K be an

isotropic convex body in Rn. Let X1, . . . , XN be independent copies of a random
vector X ∼ fX = fK,ϕ(x) = ωn

V (K)ϕ (∥x∥K), x ∈ Rn, where the radial profile
function ϕ : [0,∞) → [0,∞) satisfies the concentration condition (17)

Iq(Xϕ) ≤ τϕI2(Xϕ) ∀ q ≥ 1,

for some constant τϕ > 0 depending only on ϕ. Let Γ be the N × n random
matrix whose rows are the Xi's, which defines the random operator Γ : ℓn2 → ℓN2
with Γx =

(
⟨X1, x⟩, . . . , ⟨XN , x⟩

)
, x ∈ Rn. Then, one has that

∥Γ∥ = sup
θ∈Sn−1

(
N∑
i=1

|⟨Xi, θ⟩|2
)1/2

≤ cϕ
LX

sup f
1/n
X

n1/4N1/4,

with probability greater than or equal to 1 − 2 exp(−c
√
n), where c > 0 is an

absolute constant and cϕ > 0 is a constant depending only on ϕ.

For the proof of Proposition 4.3 we use the large deviation inequality for
contoured distributions from Theorem 3.7 along with the following strong result
for random matrices from [2] (see also [1]).

Theorem 4.4 (Adamczak et al.). Let N,n be positive integers and ψ, κ ≥ 1.
Let X1, . . . , XN be independent random vectors in Rn satisfying the conditions

P

(
max

1≤i≤N

|Xi|√
n
> κmax

{
1,

(
N

n

)1/4
})

≤ e−
√
n (31)

18



and
max

1≤i≤N
sup

θ∈Sn−1

∥⟨Xi, θ⟩∥ψ1 ≤ ψ. (32)

Then, with probability at least 1− 2 exp(−c
√
n), we have that

sup
θ∈Sn−1

∣∣∣∣∣ 1N
N∑
i=1

(
|⟨Xi, θ⟩|2 − E|⟨Xi, θ⟩|2

)∣∣∣∣∣ ≤ C(κ+ ψ)2
√
n

N
.

Note that the ψα norm of a random variable Y , for an α ≥ 1, is the Orlicz
norm of Y corresponding to the Orlicz function ψα(t) = exp(|t|α) − 1, defined
by

∥Y ∥ψα
= inf

{
λ ≥ 0 : E

[
exp

(
|Y |
λ

)α]
≤ 2
}
.

In what follows, we will use the following well known characterization of the ψα
norm (see, eg, [9] Lemma 2.4.2):

∥Y ∥ψα ≃ sup
p≥α

(E|Y |p)1/p

p1/α
. (33)

Proof of Proposition 4.3. We will show that the random N -tuple X1, . . . , XN

satisfies both conditions (31) and (32) with some appropriate constants.
The first condition, is an immediate consequence of Theorem 3.7

P
(
|X| > c′ϕ t αX

√
n
)
≤ e−t

√
n, ∀ t ≥ 1,

where αX = | detCov(X)|1/2n = LX/ sup f
1/n
X . Then, since N ≤ e

√
n, the union

bound gives us that the N -tuple X1, . . . , XN satisfies the condition (31) with
constant κ ≥ 1 such that

κ ≥ c1(ϕ)αX ≥ c1(ϕ)αX

( n
N

)1/4
, (34)

where c1(ϕ) > 0 is a constant depending only on ϕ.
For the second condition (32), notice that the convex body K satisfies a ψ1

condition, since by (3) we have that Zp(K) ⊆ c pZ2(K) for all p ≥ 1. Thus, by
(13) and the concentration condition (17) for ϕ, we get that

Zp(X) ⊆ cϕ pZ2(X) ∀ p ≥ 1, (35)

where cϕ > 0 is a constant depending only on ϕ. Note that since the convex
body K, and so the contoured random vector X as well, is isotropic, we have
that Z2(X) = αXB

n
2 , and so (35) could be written as

sup
θ∈Sn−1

sup
p≥1

∥⟨X, θ⟩∥Lp

p
≤ cϕαX .
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By the characterization (33) of the ψ1 norm, the last estimate implies that the
N -tuple X1, . . . , XN satisfies condition (32) with constant

ψ = c2(ϕ)αX , (36)

where c2(ϕ) > 0 is a constant depending only on ϕ.
Finally, Theorem 4.4 combined with the estimates (34) and (36) implies that

with probability greater than or equal to 1− 2e−c
√
n one has

∥Γ∥ = sup
θ∈Sn−1

(
N∑
i=1

|⟨Xi, θ⟩|2
)1/2

≤ c(ϕ)αX n
1/4N1/4

where c(ϕ) > 0 is a constant depending only on ϕ.

5 Geometric invariants of random polytopes
The random polytope KN can be weakly sandwiched between two Lq-centroid
bodies Zq1(X) and Zq2(X), with q1, q2 ≃ϕ log (N/n), where a ≃ϕ b means
that there exist positive constants c1(ϕ), c2(ϕ) depending on the function ϕ
such that c1(ϕ)a ≤ b ≤ c2(ϕ)a. This result is valid for more general sampling
distributions and this is why the results of this section are stated with more
general assumptions: Let n,N ∈ N with n < N . Let X be any random vector
in Rn with E|X|q < ∞ ∀ q > 1, and X1, . . . , XN be independent copies of X
forming the random polytope

KN = KN (X) = conv
{
±X1, . . . ,±XN

}
.

As an immediate consequence (see [14]) of the union bound and Markov's
inequality it follows that, for any a, q ≥ 1, one has

P
(
hKN

(θ) > ahZq(X)(θ)
)
≤ Na−q (37)

for all θ ∈ Sn−1. Then, an application of Fubini's Theorem implies that

E
[
σ
(
θ ∈ Sn−1 : hKN

(θ) > ahZq(X)(θ)
)]

≤ Na−q. (38)

Thus, if for example we take a = e and q = (k+1) logN , where k is any positive
integer, then by the above estimate we get that

E
[
σ
(
θ ∈ Sn−1 : hKN

(θ) ≤ ehZq(X)(θ)
)]

≥ 1− 1

Nk
,

that is, for a random KN we expect that in most directions θ ∈ Sn−1, eZq(X)
would be outside KN .
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5.1 Mean Width
The simple estimate (37) implies that the expected mean witdth of KN , is
dominated by the mean width of ZlogN (X).

Theorem 5.1. Let X be a random vector in Rn with E|X|q < ∞, ∀ q > 1.
Let KN = conv{±X1, . . . ,±XN}, where N ≥ 3 and X1, . . . , XN be independent
copies of X. Then

E
[
w(KN )

]
≤ cw

(
ZlogN (X)

)
where c > 0 is an absolute constant.

Proof. Let c0 > 1 be an absolute constant. Then, for any a ≥ 1 and q ≥ c0 we
have

w(KN ) =

∫
Sn−1

hKN
(θ) dσ(θ)

≤
∫{

hKN
≤ahZq(X)

} ahZq(X)(θ) dσ(θ) +

∫{
hKN

>ahZq(X)

} hKN
(θ) dσ(θ)

≤ aw
(
Zq(X)

)
+

∫{
hKN

>ahZq(X)

} hKN
(θ) dσ(θ)

and so

E
[
w(KN )

]
≤ aw

(
Zq(X)

)
+ E

∫{
hKN

>ahZq(X)

} hKN
(θ) dσ(θ).

Now, we use (37) to estimate the last expectation:

E
∫{

hKN
>ahZq(X)

} hKN
(θ) dσ(θ)

=

∫
Sn−1

E
[
hKN

(θ)1{
hKN

(θ)>ahZq(X)(θ)
}] dσ(θ)

=

∫
Sn−1

∞∑
k=0

E
[
hKN

(θ)1{
2kahZq(X)(θ)<hKN

(θ)≤2k+1ahZq(X)(θ)
}] dσ(θ)

≤ 2a

∫
Sn−1

hZq(X)(θ)

∞∑
k=0

2kP
(
hKN

(θ) > 2kahZq(X)(θ)
)
dσ(θ)

≤ 2a

( ∞∑
k=0

2−(q−1)k

)
a−qN w

(
Zq(X)

)
≤ c1a a

−qN w
(
Zq(X)

)
,

where c1 > 0 is a constant depending on c0. Choosing a = e and q = logN , we
finally get

E
[
w(KN )

]
≤
(
a+ c1a a

−qN
)
w
(
Zq(X)

)
≤ cw

(
Zq(X)

)
. □
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5.2 Volume Radius
Let K be a convex body in Rn. For any 1 ≤ q < n define

w−q
(
K
)
=

(∫
Sn−1

1

hqK(θ)
dσ(θ)

)−1/q

.

Lemma 5.2 ([14]). For any 1 ≤ q < n

vr
(
KN

)
≤ w−q

(
KN

)
. (39)

Proof. For any and 1 ≤ q < n and the symmetric convex polytope KN =
conv

{
± X1, . . . ,±XN

}
, Blaschke-Santaló inequality and integration in polar

coordinates give that

vr
(
KN

)
=

(
V (KN )

ωn

)1/n

≤
(

ωn
V (K◦

N )

)1/n

=

(∫
Sn−1

h−nKN
(θ) dσ(θ)

)−1/n

≤
(∫

Sn−1

h−qKN
(θ) dσ(θ)

)−1/q

= w−q(KN ). □

In order to provide an upper bound for the volume radius with ``high''
probability we need first to provide a bound for the w−q-width of the random
polytope KN .

Proposition 5.3. Let X be a random vector in Rn with E|X|q < ∞, and
assume that there exists a constant β > 1, depending only on the distribution of
X, such that

Zq(X) ⊆ Z2q(X) ⊆ βZq(X), (40)

for all q > 1. Let N ∈ N, N < en/2, let X1, . . . , XN be independent copies
of X and consider the random polytope KN = conv

{
± X1, . . . ,±XN

}
. If

log 2N ≤ q < n then we have that

w−q
(
KN

)
≤ 1

2e2β
w−q/2

(
Zq/2(X)

)
(41)

with probability ≥ 1− e−q.

Proof. Notice that for any a, q ≥ 1,∫
Sn−1

hqKN
(θ)

hqZq(X)(θ)
dσ(θ)

=

∫{
hKN

≤ahZq(X)

} hqKN
(θ)

hqZq(X)(θ)
dσ(θ) +

∫{
hKN

>ahZq(X)

} hqKN
(θ)

hqZq(X)(θ)
dσ(θ)

≤ aq +

∫{
hKN

>ahZq(X)

} hqKN
(θ)

hqZq(X)(θ)
dσ(θ).

22



Then, by (40) and (37) we have

E
∫{

hKN
>ahZq(X)

} hqKN
(θ)

hqZq(X)(θ)
dσ(θ)

=

∫
Sn−1

E

[
hqKN

(θ)

hqZq(X)(θ)
1{

ahZq(X)(θ)<hKN
(θ)
}] dσ(θ)

=

∫
Sn−1

∞∑
k=0

E

[
hqKN

(θ)

hqZq(X)(θ)
1{

2kahZq(X)(θ)<hKN
(θ)≤2k+1ahZq(X)(θ)

}] dσ(θ)
≤ (2a)q

∫
Sn−1

∞∑
k=0

2qk P
(
hKN

(θ) > 2kahZq(X)(θ)
)
dσ(θ)

≤ (2a)q
∫
Sn−1

∞∑
k=0

2qk P

(
hKN

(θ) > 2k
a

β
hZ2q(X)(θ)

)
dσ(θ)

≤ N

(
2β2

a

)q ∞∑
k=0

(
1

2q

)k
≤
(

2β2

a

)q
2N.

Thus, for a = eβ2 and q ≥ log 2N , we get that
(

2β2

a

)q
2N = 2q e−q 2N ≤ 2q

and so

E
∫
Sn−1

hqKN
(θ)

hqZq(X)(θ)
dσ(θ) ≤ (eβ2)q + 2q ≤ (2eβ2)q.

Therefore, Markov's inequality implies that

P

(∫
Sn−1

hqKN
(θ)

hqZq(X)(θ)
dσ(θ) ≤

(
2e2β2

)q) ≥ 1− e−q. (42)

Moreover, for any 1 ≤ q ≤ n or N ≤ en/2, by the Cauchy-Schwartz inequality
we get

w−q/2
(
Zq(X)

)−q
=

∫
Sn−1

1

h
q/2
Zq(X)(θ)

dσ(θ)

2

≤
∫
Sn−1

1

hqKN
(θ)

dσ(θ)

∫
Sn−1

hqKN
(θ)

hqZq(X)(θ)
dσ(θ)

= w−q
(
KN

)−q ∫
Sn−1

hqKN
(θ)

hqZq(X)(θ)
dσ(θ)

and so by (42)

P

(
w−q

(
KN

)
≤ 1

2e2β2
w−q/2

(
Zq(X)

))
≥ 1− e−q.
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Finally, by (40) we conclude that

w−q
(
KN

)
≤ 1

2e2β2
w−q/2

(
Zq(X)

)
≤ 1

2e2β
w−q/2

(
Zq/2(X)

)
with probability ≥ 1− e−q, and the proof is complete.

For the next step, we make use of Paouris' formula from [29]: Let K be a
centered convex body in Rn and q ∈ N with q < n. Then

w−q
(
Zq(K)

)
≃
√
q

n
I−q(K). (43)

Lemma 5.4. Let X = XK,ϕ ∼ fK,ϕ(x) =
ωn

V (K)ϕ
(
∥x∥K

)
, where K is a centered

convex body in Rn. If 1 ≤ q < n, then

w−q/2
(
Zq/2

(
XK,ϕ

))
≤ c

√
q

n
Iq/2(Xϕ) I2(K) (44)

where c > 0 is an absolute constant.

Proof. By (15) we have that

Zq/2
(
XK,ϕ

)
=

(
2n+ q

2n

)2/q

Iq/2(Xϕ)Zq/2(K) ≃ Iq/2(Xϕ)Zq/2(K)

and the result follows from (43), Proposition 3.4 and Hölder's inequality:

w−q/2
(
Zq/2

(
XK,ϕ

))
≃ Iq/2(Xϕ)w−q/2

(
Zq/2(K)

)
≃
√
q

n
Iq/2(Xϕ) I−q/2(K)

≤ c

√
q

n
Iq/2(Xϕ) I2(K). □

Theorem 5.5. Let X = XK,ϕ be a contoured random vector in Rn with density
fK,ϕ(x) =

ωn

V (K)ϕ
(
∥x∥K

)
, where K is a centered convex body in Rn, and assume

that
bϕ = sup

q≥1

I2q(Xϕ)

Iq(Xϕ)
<∞.

Let 1 ≤ N < en/2 and X1, . . . , XN be independent copies of X. Then, for the
random polytope KN = conv

{
±X1, . . . ,±XN

}
we have that

vr
(
KN

)
≤ c
√

logN IlogN (Xϕ)V (K)1/nLK (45)

with probability greater than or equal to 1− 1
2N .
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Proof. Without loss of generality we may assume that X = XK,ϕ is isotropic
or equivalently that K is isotropic. Then, by (3) and Proposition 3.4, we have
that

Z2q

(
XK,ϕ

)
=

(
n+ 2q

n

)1/2q

I2q
(
Xϕ

)
Z2q(K)

⊆ c

(
n+ 2q

n

)1/2q

I2q
(
Xϕ

)
Zq(K)

= c

(
n+2q
n

)1/2q(
n+q
n

)1/q I2q
(
Xϕ

)
Iq
(
Xϕ

) Zq(XK,ϕ

)
⊆ c1 bϕ Zq

(
XK,ϕ

)
.

Thus, for any N ∈ N with N < en/2 and for any log 2N ≤ q < n, we can apply
Lemma 5.2 and Proposition 5.3 to get that(

V (KN )

ωn

)1/n

≤ c2
bϕ
w−q/2

(
Zq/2

(
XK,ϕ

))
(46)

with probability greater than or equal to 1− e−q ≥ 1− 1/2N . Now, by Lemma
5.4, and since K is isotropic, we get that

w−q/2
(
Zq/2

(
XK,ϕ

))
≤ c

√
q

n
Iq/2

(
Xϕ

)
I2(K)

= c

√
q

n
Iq/2

(
Xϕ

)√
n
∣∣ detCov(K)

∣∣1/2n
= c

√
q Iq/2

(
Xϕ

)
V (K)1/nLK . (47)

We finish the proof, by combining the above estimates (46) and (47).
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